mirror of
https://github.com/MariaDB/server.git
synced 2025-01-22 23:04:20 +01:00
63574f1275
The InnoDB source code contains quite a few references to a closed-source hot backup tool which was originally called InnoDB Hot Backup (ibbackup) and later incorporated in MySQL Enterprise Backup. The open source backup tool XtraBackup uses the full database for recovery. So, the references to UNIV_HOTBACKUP are only cluttering the source code.
515 lines
17 KiB
C++
515 lines
17 KiB
C++
/*****************************************************************************
|
|
|
|
Copyright (c) 1994, 2016, Oracle and/or its affiliates. All Rights Reserved.
|
|
|
|
This program is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free Software
|
|
Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
|
|
|
|
*****************************************************************************/
|
|
|
|
/**************************************************//**
|
|
@file include/mem0mem.h
|
|
The memory management
|
|
|
|
Created 6/9/1994 Heikki Tuuri
|
|
*******************************************************/
|
|
|
|
#ifndef mem0mem_h
|
|
#define mem0mem_h
|
|
|
|
#include "univ.i"
|
|
#include "ut0mem.h"
|
|
#include "ut0byte.h"
|
|
#include "ut0rnd.h"
|
|
#include "mach0data.h"
|
|
|
|
#include <memory>
|
|
|
|
/* -------------------- MEMORY HEAPS ----------------------------- */
|
|
|
|
/** A block of a memory heap consists of the info structure
|
|
followed by an area of memory */
|
|
typedef struct mem_block_info_t mem_block_t;
|
|
|
|
/** A memory heap is a nonempty linear list of memory blocks */
|
|
typedef mem_block_t mem_heap_t;
|
|
|
|
/** Types of allocation for memory heaps: DYNAMIC means allocation from the
|
|
dynamic memory pool of the C compiler, BUFFER means allocation from the
|
|
buffer pool; the latter method is used for very big heaps */
|
|
|
|
#define MEM_HEAP_DYNAMIC 0 /* the most common type */
|
|
#define MEM_HEAP_BUFFER 1
|
|
#define MEM_HEAP_BTR_SEARCH 2 /* this flag can optionally be
|
|
ORed to MEM_HEAP_BUFFER, in which
|
|
case heap->free_block is used in
|
|
some cases for memory allocations,
|
|
and if it's NULL, the memory
|
|
allocation functions can return
|
|
NULL. */
|
|
|
|
/** Different type of heaps in terms of which datastructure is using them */
|
|
#define MEM_HEAP_FOR_BTR_SEARCH (MEM_HEAP_BTR_SEARCH | MEM_HEAP_BUFFER)
|
|
#define MEM_HEAP_FOR_PAGE_HASH (MEM_HEAP_DYNAMIC)
|
|
#define MEM_HEAP_FOR_RECV_SYS (MEM_HEAP_BUFFER)
|
|
#define MEM_HEAP_FOR_LOCK_HEAP (MEM_HEAP_BUFFER)
|
|
|
|
/** The following start size is used for the first block in the memory heap if
|
|
the size is not specified, i.e., 0 is given as the parameter in the call of
|
|
create. The standard size is the maximum (payload) size of the blocks used for
|
|
allocations of small buffers. */
|
|
|
|
#define MEM_BLOCK_START_SIZE 64
|
|
#define MEM_BLOCK_STANDARD_SIZE \
|
|
(UNIV_PAGE_SIZE >= 16384 ? 8000 : MEM_MAX_ALLOC_IN_BUF)
|
|
|
|
/** If a memory heap is allowed to grow into the buffer pool, the following
|
|
is the maximum size for a single allocated buffer: */
|
|
#define MEM_MAX_ALLOC_IN_BUF (UNIV_PAGE_SIZE - 200)
|
|
|
|
/** Space needed when allocating for a user a field of length N.
|
|
The space is allocated only in multiples of UNIV_MEM_ALIGNMENT. */
|
|
#define MEM_SPACE_NEEDED(N) ut_calc_align((N), UNIV_MEM_ALIGNMENT)
|
|
|
|
#ifdef UNIV_DEBUG
|
|
/** Macro for memory heap creation.
|
|
@param[in] size Desired start block size. */
|
|
# define mem_heap_create(size) \
|
|
mem_heap_create_func((size), __FILE__, __LINE__, MEM_HEAP_DYNAMIC)
|
|
|
|
/** Macro for memory heap creation.
|
|
@param[in] size Desired start block size.
|
|
@param[in] type Heap type */
|
|
# define mem_heap_create_typed(size, type) \
|
|
mem_heap_create_func((size), __FILE__, __LINE__, (type))
|
|
|
|
#else /* UNIV_DEBUG */
|
|
/** Macro for memory heap creation.
|
|
@param[in] size Desired start block size. */
|
|
# define mem_heap_create(size) mem_heap_create_func((size), MEM_HEAP_DYNAMIC)
|
|
|
|
/** Macro for memory heap creation.
|
|
@param[in] size Desired start block size.
|
|
@param[in] type Heap type */
|
|
# define mem_heap_create_typed(size, type) \
|
|
mem_heap_create_func((size), (type))
|
|
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
/** Creates a memory heap.
|
|
NOTE: Use the corresponding macros instead of this function.
|
|
A single user buffer of 'size' will fit in the block.
|
|
0 creates a default size block.
|
|
@param[in] size Desired start block size.
|
|
@param[in] file_name File name where created
|
|
@param[in] line Line where created
|
|
@param[in] type Heap type
|
|
@return own: memory heap, NULL if did not succeed (only possible for
|
|
MEM_HEAP_BTR_SEARCH type heaps) */
|
|
UNIV_INLINE
|
|
mem_heap_t*
|
|
mem_heap_create_func(
|
|
ulint size,
|
|
#ifdef UNIV_DEBUG
|
|
const char* file_name,
|
|
ulint line,
|
|
#endif /* UNIV_DEBUG */
|
|
ulint type);
|
|
|
|
/** Frees the space occupied by a memory heap.
|
|
NOTE: Use the corresponding macro instead of this function.
|
|
@param[in] heap Heap to be freed */
|
|
UNIV_INLINE
|
|
void
|
|
mem_heap_free(
|
|
mem_heap_t* heap);
|
|
|
|
/** Allocates and zero-fills n bytes of memory from a memory heap.
|
|
@param[in] heap memory heap
|
|
@param[in] n number of bytes; if the heap is allowed to grow into
|
|
the buffer pool, this must be <= MEM_MAX_ALLOC_IN_BUF
|
|
@return allocated, zero-filled storage */
|
|
UNIV_INLINE
|
|
void*
|
|
mem_heap_zalloc(
|
|
mem_heap_t* heap,
|
|
ulint n);
|
|
|
|
/** Allocates n bytes of memory from a memory heap.
|
|
@param[in] heap memory heap
|
|
@param[in] n number of bytes; if the heap is allowed to grow into
|
|
the buffer pool, this must be <= MEM_MAX_ALLOC_IN_BUF
|
|
@return allocated storage, NULL if did not succeed (only possible for
|
|
MEM_HEAP_BTR_SEARCH type heaps) */
|
|
UNIV_INLINE
|
|
void*
|
|
mem_heap_alloc(
|
|
mem_heap_t* heap,
|
|
ulint n);
|
|
|
|
/** Returns a pointer to the heap top.
|
|
@param[in] heap memory heap
|
|
@return pointer to the heap top */
|
|
UNIV_INLINE
|
|
byte*
|
|
mem_heap_get_heap_top(
|
|
mem_heap_t* heap);
|
|
|
|
/** Frees the space in a memory heap exceeding the pointer given.
|
|
The pointer must have been acquired from mem_heap_get_heap_top.
|
|
The first memory block of the heap is not freed.
|
|
@param[in] heap heap from which to free
|
|
@param[in] old_top pointer to old top of heap */
|
|
UNIV_INLINE
|
|
void
|
|
mem_heap_free_heap_top(
|
|
mem_heap_t* heap,
|
|
byte* old_top);
|
|
|
|
/** Empties a memory heap.
|
|
The first memory block of the heap is not freed.
|
|
@param[in] heap heap to empty */
|
|
UNIV_INLINE
|
|
void
|
|
mem_heap_empty(
|
|
mem_heap_t* heap);
|
|
|
|
/** Returns a pointer to the topmost element in a memory heap.
|
|
The size of the element must be given.
|
|
@param[in] heap memory heap
|
|
@param[in] n size of the topmost element
|
|
@return pointer to the topmost element */
|
|
UNIV_INLINE
|
|
void*
|
|
mem_heap_get_top(
|
|
mem_heap_t* heap,
|
|
ulint n);
|
|
|
|
/** Checks if a given chunk of memory is the topmost element stored in the
|
|
heap. If this is the case, then calling mem_heap_free_top() would free
|
|
that element from the heap.
|
|
@param[in] heap memory heap
|
|
@param[in] buf presumed topmost element
|
|
@param[in] buf_sz size of buf in bytes
|
|
@return true if topmost */
|
|
UNIV_INLINE
|
|
bool
|
|
mem_heap_is_top(
|
|
mem_heap_t* heap,
|
|
const void* buf,
|
|
ulint buf_sz)
|
|
MY_ATTRIBUTE((warn_unused_result));
|
|
|
|
/*****************************************************************//**
|
|
Allocate a new chunk of memory from a memory heap, possibly discarding
|
|
the topmost element. If the memory chunk specified with (top, top_sz)
|
|
is the topmost element, then it will be discarded, otherwise it will
|
|
be left untouched and this function will be equivallent to
|
|
mem_heap_alloc().
|
|
@return allocated storage, NULL if did not succeed (only possible for
|
|
MEM_HEAP_BTR_SEARCH type heaps) */
|
|
UNIV_INLINE
|
|
void*
|
|
mem_heap_replace(
|
|
/*=============*/
|
|
mem_heap_t* heap, /*!< in/out: memory heap */
|
|
const void* top, /*!< in: chunk to discard if possible */
|
|
ulint top_sz, /*!< in: size of top in bytes */
|
|
ulint new_sz);/*!< in: desired size of the new chunk */
|
|
/*****************************************************************//**
|
|
Allocate a new chunk of memory from a memory heap, possibly discarding
|
|
the topmost element and then copy the specified data to it. If the memory
|
|
chunk specified with (top, top_sz) is the topmost element, then it will be
|
|
discarded, otherwise it will be left untouched and this function will be
|
|
equivallent to mem_heap_dup().
|
|
@return allocated storage, NULL if did not succeed (only possible for
|
|
MEM_HEAP_BTR_SEARCH type heaps) */
|
|
UNIV_INLINE
|
|
void*
|
|
mem_heap_dup_replace(
|
|
/*=================*/
|
|
mem_heap_t* heap, /*!< in/out: memory heap */
|
|
const void* top, /*!< in: chunk to discard if possible */
|
|
ulint top_sz, /*!< in: size of top in bytes */
|
|
const void* data, /*!< in: new data to duplicate */
|
|
ulint data_sz);/*!< in: size of data in bytes */
|
|
/*****************************************************************//**
|
|
Allocate a new chunk of memory from a memory heap, possibly discarding
|
|
the topmost element and then copy the specified string to it. If the memory
|
|
chunk specified with (top, top_sz) is the topmost element, then it will be
|
|
discarded, otherwise it will be left untouched and this function will be
|
|
equivallent to mem_heap_strdup().
|
|
@return allocated string, NULL if did not succeed (only possible for
|
|
MEM_HEAP_BTR_SEARCH type heaps) */
|
|
UNIV_INLINE
|
|
char*
|
|
mem_heap_strdup_replace(
|
|
/*====================*/
|
|
mem_heap_t* heap, /*!< in/out: memory heap */
|
|
const void* top, /*!< in: chunk to discard if possible */
|
|
ulint top_sz, /*!< in: size of top in bytes */
|
|
const char* str); /*!< in: new data to duplicate */
|
|
/*****************************************************************//**
|
|
Frees the topmost element in a memory heap.
|
|
The size of the element must be given. */
|
|
UNIV_INLINE
|
|
void
|
|
mem_heap_free_top(
|
|
/*==============*/
|
|
mem_heap_t* heap, /*!< in: memory heap */
|
|
ulint n); /*!< in: size of the topmost element */
|
|
/*****************************************************************//**
|
|
Returns the space in bytes occupied by a memory heap. */
|
|
UNIV_INLINE
|
|
ulint
|
|
mem_heap_get_size(
|
|
/*==============*/
|
|
mem_heap_t* heap); /*!< in: heap */
|
|
|
|
/**********************************************************************//**
|
|
Duplicates a NUL-terminated string.
|
|
@return own: a copy of the string, must be deallocated with ut_free */
|
|
UNIV_INLINE
|
|
char*
|
|
mem_strdup(
|
|
/*=======*/
|
|
const char* str); /*!< in: string to be copied */
|
|
/**********************************************************************//**
|
|
Makes a NUL-terminated copy of a nonterminated string.
|
|
@return own: a copy of the string, must be deallocated with ut_free */
|
|
UNIV_INLINE
|
|
char*
|
|
mem_strdupl(
|
|
/*========*/
|
|
const char* str, /*!< in: string to be copied */
|
|
ulint len); /*!< in: length of str, in bytes */
|
|
|
|
/** Duplicates a NUL-terminated string, allocated from a memory heap.
|
|
@param[in] heap memory heap where string is allocated
|
|
@param[in] str string to be copied
|
|
@return own: a copy of the string */
|
|
char*
|
|
mem_heap_strdup(
|
|
mem_heap_t* heap,
|
|
const char* str);
|
|
|
|
/**********************************************************************//**
|
|
Makes a NUL-terminated copy of a nonterminated string,
|
|
allocated from a memory heap.
|
|
@return own: a copy of the string */
|
|
UNIV_INLINE
|
|
char*
|
|
mem_heap_strdupl(
|
|
/*=============*/
|
|
mem_heap_t* heap, /*!< in: memory heap where string is allocated */
|
|
const char* str, /*!< in: string to be copied */
|
|
ulint len); /*!< in: length of str, in bytes */
|
|
|
|
/**********************************************************************//**
|
|
Concatenate two strings and return the result, using a memory heap.
|
|
@return own: the result */
|
|
char*
|
|
mem_heap_strcat(
|
|
/*============*/
|
|
mem_heap_t* heap, /*!< in: memory heap where string is allocated */
|
|
const char* s1, /*!< in: string 1 */
|
|
const char* s2); /*!< in: string 2 */
|
|
|
|
/**********************************************************************//**
|
|
Duplicate a block of data, allocated from a memory heap.
|
|
@return own: a copy of the data */
|
|
void*
|
|
mem_heap_dup(
|
|
/*=========*/
|
|
mem_heap_t* heap, /*!< in: memory heap where copy is allocated */
|
|
const void* data, /*!< in: data to be copied */
|
|
ulint len); /*!< in: length of data, in bytes */
|
|
|
|
/****************************************************************//**
|
|
A simple sprintf replacement that dynamically allocates the space for the
|
|
formatted string from the given heap. This supports a very limited set of
|
|
the printf syntax: types 's' and 'u' and length modifier 'l' (which is
|
|
required for the 'u' type).
|
|
@return heap-allocated formatted string */
|
|
char*
|
|
mem_heap_printf(
|
|
/*============*/
|
|
mem_heap_t* heap, /*!< in: memory heap */
|
|
const char* format, /*!< in: format string */
|
|
...) MY_ATTRIBUTE ((format (printf, 2, 3)));
|
|
|
|
/** Checks that an object is a memory heap (or a block of it)
|
|
@param[in] heap Memory heap to check */
|
|
UNIV_INLINE
|
|
void
|
|
mem_block_validate(
|
|
const mem_heap_t* heap);
|
|
|
|
#ifdef UNIV_DEBUG
|
|
/** Validates the contents of a memory heap.
|
|
Asserts that the memory heap is consistent
|
|
@param[in] heap Memory heap to validate */
|
|
void
|
|
mem_heap_validate(
|
|
const mem_heap_t* heap);
|
|
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
/*#######################################################################*/
|
|
|
|
/** The info structure stored at the beginning of a heap block */
|
|
struct mem_block_info_t {
|
|
ulint magic_n;/* magic number for debugging */
|
|
#ifdef UNIV_DEBUG
|
|
char file_name[8];/* file name where the mem heap was created */
|
|
ulint line; /*!< line number where the mem heap was created */
|
|
#endif /* UNIV_DEBUG */
|
|
UT_LIST_BASE_NODE_T(mem_block_t) base; /* In the first block in the
|
|
the list this is the base node of the list of blocks;
|
|
in subsequent blocks this is undefined */
|
|
UT_LIST_NODE_T(mem_block_t) list; /* This contains pointers to next
|
|
and prev in the list. The first block allocated
|
|
to the heap is also the first block in this list,
|
|
though it also contains the base node of the list. */
|
|
ulint len; /*!< physical length of this block in bytes */
|
|
ulint total_size; /*!< physical length in bytes of all blocks
|
|
in the heap. This is defined only in the base
|
|
node and is set to ULINT_UNDEFINED in others. */
|
|
ulint type; /*!< type of heap: MEM_HEAP_DYNAMIC, or
|
|
MEM_HEAP_BUF possibly ORed to MEM_HEAP_BTR_SEARCH */
|
|
ulint free; /*!< offset in bytes of the first free position for
|
|
user data in the block */
|
|
ulint start; /*!< the value of the struct field 'free' at the
|
|
creation of the block */
|
|
|
|
void* free_block;
|
|
/* if the MEM_HEAP_BTR_SEARCH bit is set in type,
|
|
and this is the heap root, this can contain an
|
|
allocated buffer frame, which can be appended as a
|
|
free block to the heap, if we need more space;
|
|
otherwise, this is NULL */
|
|
void* buf_block;
|
|
/* if this block has been allocated from the buffer
|
|
pool, this contains the buf_block_t handle;
|
|
otherwise, this is NULL */
|
|
};
|
|
|
|
#define MEM_BLOCK_MAGIC_N 764741555
|
|
#define MEM_FREED_BLOCK_MAGIC_N 547711122
|
|
|
|
/* Header size for a memory heap block */
|
|
#define MEM_BLOCK_HEADER_SIZE ut_calc_align(sizeof(mem_block_info_t),\
|
|
UNIV_MEM_ALIGNMENT)
|
|
|
|
#ifndef UNIV_NONINL
|
|
#include "mem0mem.ic"
|
|
#endif
|
|
|
|
/** A C++ wrapper class to the mem_heap_t routines, so that it can be used
|
|
as an STL allocator */
|
|
template<typename T>
|
|
class mem_heap_allocator
|
|
{
|
|
public:
|
|
typedef T value_type;
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef T* pointer;
|
|
typedef const T* const_pointer;
|
|
typedef T& reference;
|
|
typedef const T& const_reference;
|
|
|
|
mem_heap_allocator(mem_heap_t* heap) : m_heap(heap) { }
|
|
|
|
mem_heap_allocator(const mem_heap_allocator& other)
|
|
:
|
|
m_heap(other.m_heap)
|
|
{
|
|
// Do nothing
|
|
}
|
|
|
|
template <typename U>
|
|
mem_heap_allocator (const mem_heap_allocator<U>& other)
|
|
:
|
|
m_heap(other.m_heap)
|
|
{
|
|
// Do nothing
|
|
}
|
|
|
|
~mem_heap_allocator() { m_heap = 0; }
|
|
|
|
size_type max_size() const
|
|
{
|
|
return(ULONG_MAX / sizeof(T));
|
|
}
|
|
|
|
/** This function returns a pointer to the first element of a newly
|
|
allocated array large enough to contain n objects of type T; only the
|
|
memory is allocated, and the objects are not constructed. Moreover,
|
|
an optional pointer argument (that points to an object already
|
|
allocated by mem_heap_allocator) can be used as a hint to the
|
|
implementation about where the new memory should be allocated in
|
|
order to improve locality. */
|
|
pointer allocate(size_type n, const_pointer hint = 0)
|
|
{
|
|
return(reinterpret_cast<pointer>(
|
|
mem_heap_alloc(m_heap, n * sizeof(T))));
|
|
}
|
|
|
|
void deallocate(pointer p, size_type n) { }
|
|
|
|
pointer address (reference r) const { return(&r); }
|
|
|
|
const_pointer address (const_reference r) const { return(&r); }
|
|
|
|
void construct(pointer p, const_reference t)
|
|
{
|
|
new (reinterpret_cast<void*>(p)) T(t);
|
|
}
|
|
|
|
void destroy(pointer p)
|
|
{
|
|
(reinterpret_cast<T*>(p))->~T();
|
|
}
|
|
|
|
/** Allocators are required to supply the below template class member
|
|
which enables the possibility of obtaining a related allocator,
|
|
parametrized in terms of a different type. For example, given an
|
|
allocator type IntAllocator for objects of type int, a related
|
|
allocator type for objects of type long could be obtained using
|
|
IntAllocator::rebind<long>::other */
|
|
template <typename U>
|
|
struct rebind
|
|
{
|
|
typedef mem_heap_allocator<U> other;
|
|
};
|
|
|
|
private:
|
|
mem_heap_t* m_heap;
|
|
template <typename U> friend class mem_heap_allocator;
|
|
};
|
|
|
|
template <class T>
|
|
bool operator== (const mem_heap_allocator<T>& left,
|
|
const mem_heap_allocator<T>& right)
|
|
{
|
|
return(left.heap == right.heap);
|
|
}
|
|
|
|
template <class T>
|
|
bool operator!= (const mem_heap_allocator<T>& left,
|
|
const mem_heap_allocator<T>& right)
|
|
{
|
|
return(left.heap != right.heap);
|
|
}
|
|
|
|
#endif
|