mariadb/storage/innobase/row/row0uins.cc
Vlad Lesin 20e9e804c1 MDEV-20605 Awaken transaction can miss inserted by other transaction records due to wrong persistent cursor restoration
sel_restore_position_for_mysql() moves forward persistent cursor
position after btr_pcur_restore_position() call if cursor relative position
is BTR_PCUR_ON and the cursor points to the record with NOT the same field
values as in a stored record(and some other not important for this case
conditions).

It was done because btr_pcur_restore_position() sets
page_cur_mode_t mode  to PAGE_CUR_LE for cursor->rel_pos ==  BTR_PCUR_ON
before opening cursor. So we are searching for the record less or equal
to stored one. And if the found record is not equal to stored one, then
it is less and we need to move cursor forward.

But there can be a situation when the stored record was purged, but the
new one with the same key but different value was inserted while
row_search_mvcc() was suspended. In this case, when the thread is
awaken, it will invoke sel_restore_position_for_mysql(), which, in turns,
invoke btr_pcur_restore_position(), which will return false because found
record don't match stored record, and
sel_restore_position_for_mysql() will move forward cursor position.

The above can lead to the case when awaken row_search_mvcc() do not see
records inserted by other transactions while it slept. The mtr test case
shows the example how it can be.

The fix is to return special value from persistent cursor restoring
function which would notify its caller that uniq fields of restored
record and stored record are the same, and in this case
sel_restore_position_for_mysql() don't move cursor forward.

Delete-marked records are correctly processed in row_search_mvcc().
Non-unique secondary indexes are "uniquified" by adding the PK, the
index->n_uniq should then be index->n_fields. So there is no need in
additional checks in the fix.

If transaction's readview can't see the changes made in secondary index
record, it requests clustered index record in row_search_mvcc() to check
its transaction id and get the correspondent record version. After this
row_search_mvcc() commits mtr to preserve clustered index latching
order, and starts mtr. Between those mtr commit and start secondary
index pages are unlatched, and purge has the ability to remove stored in
the cursor record, what causes rows duplication in result set for
non-locking reads, as cursor position is restored to the previously
visited record.

To solve this the changes are just switched off for non-locking reads,
it's quite simple solution, besides the changes don't make sense for
non-locking reads.

The more complex and effective from performance perspective solution is
to create mtr savepoint before clustered record requesting and rolling
back to that savepoint after that. See MDEV-27557.

One more solution is to have per-record transaction id for secondary
indexes. See MDEV-17598.

If any of those is implemented, just remove select_lock_type argument in
sel_restore_position_for_mysql().
2022-02-14 17:35:04 +03:00

602 lines
17 KiB
C++

/*****************************************************************************
Copyright (c) 1997, 2017, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2017, 2021, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file row/row0uins.cc
Fresh insert undo
Created 2/25/1997 Heikki Tuuri
*******************************************************/
#include "row0uins.h"
#include "dict0dict.h"
#include "dict0stats.h"
#include "dict0boot.h"
#include "dict0crea.h"
#include "trx0undo.h"
#include "trx0roll.h"
#include "btr0btr.h"
#include "mach0data.h"
#include "row0undo.h"
#include "row0vers.h"
#include "row0log.h"
#include "trx0trx.h"
#include "trx0rec.h"
#include "row0row.h"
#include "row0upd.h"
#include "que0que.h"
#include "ibuf0ibuf.h"
#include "log0log.h"
#include "fil0fil.h"
/*************************************************************************
IMPORTANT NOTE: Any operation that generates redo MUST check that there
is enough space in the redo log before for that operation. This is
done by calling log_free_check(). The reason for checking the
availability of the redo log space before the start of the operation is
that we MUST not hold any synchonization objects when performing the
check.
If you make a change in this module make sure that no codepath is
introduced where a call to log_free_check() is bypassed. */
/***************************************************************//**
Removes a clustered index record. The pcur in node was positioned on the
record, now it is detached.
@return DB_SUCCESS or DB_OUT_OF_FILE_SPACE */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_undo_ins_remove_clust_rec(
/*==========================*/
undo_node_t* node) /*!< in: undo node */
{
dberr_t err;
ulint n_tries = 0;
mtr_t mtr;
dict_index_t* index = node->pcur.btr_cur.index;
bool online;
ut_ad(index->is_primary());
ut_ad(node->trx->in_rollback);
mtr.start();
if (index->table->is_temporary()) {
ut_ad(node->rec_type == TRX_UNDO_INSERT_REC);
mtr.set_log_mode(MTR_LOG_NO_REDO);
ut_ad(!dict_index_is_online_ddl(index));
ut_ad(index->table->id >= DICT_HDR_FIRST_ID);
online = false;
} else {
index->set_modified(mtr);
ut_ad(lock_table_has_locks(index->table));
online = dict_index_is_online_ddl(index);
if (online) {
ut_ad(node->rec_type == TRX_UNDO_INSERT_REC);
ut_ad(node->trx->dict_operation_lock_mode
!= RW_X_LATCH);
ut_ad(node->table->id != DICT_INDEXES_ID);
ut_ad(node->table->id != DICT_COLUMNS_ID);
mtr_s_lock_index(index, &mtr);
}
}
/* This is similar to row_undo_mod_clust(). The DDL thread may
already have copied this row from the log to the new table.
We must log the removal, so that the row will be correctly
purged. However, we can log the removal out of sync with the
B-tree modification. */
ut_a(btr_pcur_restore_position(
online ? BTR_MODIFY_LEAF | BTR_ALREADY_S_LATCHED
: (node->rec_type == TRX_UNDO_INSERT_METADATA)
? BTR_MODIFY_TREE
: BTR_MODIFY_LEAF,
&node->pcur, &mtr) == btr_pcur_t::SAME_ALL);
rec_t* rec = btr_pcur_get_rec(&node->pcur);
ut_ad(rec_get_trx_id(rec, index) == node->trx->id
|| node->table->is_temporary());
ut_ad(!rec_get_deleted_flag(rec, index->table->not_redundant())
|| rec_is_alter_metadata(rec, index->table->not_redundant()));
ut_ad(rec_is_metadata(rec, index->table->not_redundant())
== (node->rec_type == TRX_UNDO_INSERT_METADATA));
if (online && dict_index_is_online_ddl(index)) {
mem_heap_t* heap = NULL;
const rec_offs* offsets = rec_get_offsets(
rec, index, NULL, index->n_core_fields,
ULINT_UNDEFINED, &heap);
row_log_table_delete(rec, index, offsets, NULL);
mem_heap_free(heap);
} else {
switch (node->table->id) {
case DICT_INDEXES_ID:
ut_ad(!online);
ut_ad(node->trx->dict_operation_lock_mode
== RW_X_LATCH);
ut_ad(node->rec_type == TRX_UNDO_INSERT_REC);
dict_drop_index_tree(&node->pcur, node->trx, &mtr);
mtr.commit();
mtr.start();
ut_a(btr_pcur_restore_position(BTR_MODIFY_LEAF,
&node->pcur, &mtr)== btr_pcur_t::SAME_ALL);
break;
case DICT_COLUMNS_ID:
/* This is rolling back an INSERT into SYS_COLUMNS.
If it was part of an instant ALTER TABLE operation, we
must evict the table definition, so that it can be
reloaded after the dictionary operation has been
completed. At this point, any corresponding operation
to the metadata record will have been rolled back. */
ut_ad(!online);
ut_ad(node->trx->dict_operation_lock_mode
== RW_X_LATCH);
ut_ad(node->rec_type == TRX_UNDO_INSERT_REC);
if (rec_get_n_fields_old(rec)
!= DICT_NUM_FIELDS__SYS_COLUMNS) {
break;
}
ulint len;
const byte* data = rec_get_nth_field_old(
rec, DICT_FLD__SYS_COLUMNS__TABLE_ID, &len);
if (len != 8) {
break;
}
node->trx->evict_table(mach_read_from_8(data));
}
}
if (btr_cur_optimistic_delete(&node->pcur.btr_cur, 0, &mtr)) {
err = DB_SUCCESS;
goto func_exit;
}
btr_pcur_commit_specify_mtr(&node->pcur, &mtr);
retry:
/* If did not succeed, try pessimistic descent to tree */
mtr.start();
if (index->table->is_temporary()) {
mtr.set_log_mode(MTR_LOG_NO_REDO);
} else {
index->set_modified(mtr);
}
ut_a(btr_pcur_restore_position(BTR_MODIFY_TREE | BTR_LATCH_FOR_DELETE,
&node->pcur, &mtr) == btr_pcur_t::SAME_ALL);
btr_cur_pessimistic_delete(&err, FALSE, &node->pcur.btr_cur, 0, true,
&mtr);
/* The delete operation may fail if we have little
file space left: TODO: easiest to crash the database
and restart with more file space */
if (err == DB_OUT_OF_FILE_SPACE
&& n_tries < BTR_CUR_RETRY_DELETE_N_TIMES) {
btr_pcur_commit_specify_mtr(&(node->pcur), &mtr);
n_tries++;
os_thread_sleep(BTR_CUR_RETRY_SLEEP_TIME);
goto retry;
}
func_exit:
if (err == DB_SUCCESS && node->rec_type == TRX_UNDO_INSERT_METADATA) {
/* When rolling back the very first instant ADD COLUMN
operation, reset the root page to the basic state. */
btr_reset_instant(*index, true, &mtr);
}
btr_pcur_commit_specify_mtr(&node->pcur, &mtr);
return(err);
}
/***************************************************************//**
Removes a secondary index entry if found.
@return DB_SUCCESS, DB_FAIL, or DB_OUT_OF_FILE_SPACE */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_undo_ins_remove_sec_low(
/*========================*/
ulint mode, /*!< in: BTR_MODIFY_LEAF or BTR_MODIFY_TREE,
depending on whether we wish optimistic or
pessimistic descent down the index tree */
dict_index_t* index, /*!< in: index */
dtuple_t* entry, /*!< in: index entry to remove */
que_thr_t* thr) /*!< in: query thread */
{
btr_pcur_t pcur;
dberr_t err = DB_SUCCESS;
mtr_t mtr;
const bool modify_leaf = mode == BTR_MODIFY_LEAF;
row_mtr_start(&mtr, index, !modify_leaf);
if (modify_leaf) {
mode = BTR_MODIFY_LEAF | BTR_ALREADY_S_LATCHED;
mtr_s_lock_index(index, &mtr);
} else {
ut_ad(mode == (BTR_MODIFY_TREE | BTR_LATCH_FOR_DELETE));
mtr_sx_lock_index(index, &mtr);
}
if (row_log_online_op_try(index, entry, 0)) {
goto func_exit_no_pcur;
}
if (dict_index_is_spatial(index)) {
if (modify_leaf) {
mode |= BTR_RTREE_DELETE_MARK;
}
btr_pcur_get_btr_cur(&pcur)->thr = thr;
mode |= BTR_RTREE_UNDO_INS;
}
switch (row_search_index_entry(index, entry, mode, &pcur, &mtr)) {
case ROW_BUFFERED:
case ROW_NOT_DELETED_REF:
/* These are invalid outcomes, because the mode passed
to row_search_index_entry() did not include any of the
flags BTR_INSERT, BTR_DELETE, or BTR_DELETE_MARK. */
ut_error;
case ROW_NOT_FOUND:
break;
case ROW_FOUND:
if (dict_index_is_spatial(index)
&& rec_get_deleted_flag(
btr_pcur_get_rec(&pcur),
dict_table_is_comp(index->table))) {
ib::error() << "Record found in index " << index->name
<< " is deleted marked on insert rollback.";
ut_ad(0);
}
btr_cur_t* btr_cur = btr_pcur_get_btr_cur(&pcur);
if (modify_leaf) {
err = btr_cur_optimistic_delete(btr_cur, 0, &mtr)
? DB_SUCCESS : DB_FAIL;
} else {
/* Passing rollback=false here, because we are
deleting a secondary index record: the distinction
only matters when deleting a record that contains
externally stored columns. */
btr_cur_pessimistic_delete(&err, FALSE, btr_cur, 0,
false, &mtr);
}
}
btr_pcur_close(&pcur);
func_exit_no_pcur:
mtr_commit(&mtr);
return(err);
}
/***************************************************************//**
Removes a secondary index entry from the index if found. Tries first
optimistic, then pessimistic descent down the tree.
@return DB_SUCCESS or DB_OUT_OF_FILE_SPACE */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_undo_ins_remove_sec(
/*====================*/
dict_index_t* index, /*!< in: index */
dtuple_t* entry, /*!< in: index entry to insert */
que_thr_t* thr) /*!< in: query thread */
{
dberr_t err;
ulint n_tries = 0;
/* Try first optimistic descent to the B-tree */
err = row_undo_ins_remove_sec_low(BTR_MODIFY_LEAF, index, entry, thr);
if (err == DB_SUCCESS) {
return(err);
}
/* Try then pessimistic descent to the B-tree */
retry:
err = row_undo_ins_remove_sec_low(
BTR_MODIFY_TREE | BTR_LATCH_FOR_DELETE,
index, entry, thr);
/* The delete operation may fail if we have little
file space left: TODO: easiest to crash the database
and restart with more file space */
if (err != DB_SUCCESS && n_tries < BTR_CUR_RETRY_DELETE_N_TIMES) {
n_tries++;
os_thread_sleep(BTR_CUR_RETRY_SLEEP_TIME);
goto retry;
}
return(err);
}
/** Parse an insert undo record.
@param[in,out] node row rollback state
@param[in] dict_locked whether the data dictionary cache is locked */
static bool row_undo_ins_parse_undo_rec(undo_node_t* node, bool dict_locked)
{
dict_index_t* clust_index;
byte* ptr;
undo_no_t undo_no;
table_id_t table_id;
ulint dummy;
bool dummy_extern;
ut_ad(node->state == UNDO_INSERT_PERSISTENT
|| node->state == UNDO_INSERT_TEMPORARY);
ut_ad(node->trx->in_rollback);
ut_ad(trx_undo_roll_ptr_is_insert(node->roll_ptr));
ptr = trx_undo_rec_get_pars(node->undo_rec, &node->rec_type, &dummy,
&dummy_extern, &undo_no, &table_id);
node->update = NULL;
if (node->state == UNDO_INSERT_PERSISTENT) {
node->table = dict_table_open_on_id(table_id, dict_locked,
DICT_TABLE_OP_NORMAL);
} else if (!dict_locked) {
mutex_enter(&dict_sys.mutex);
node->table = dict_sys.get_temporary_table(table_id);
mutex_exit(&dict_sys.mutex);
} else {
node->table = dict_sys.get_temporary_table(table_id);
}
if (!node->table) {
return false;
}
switch (node->rec_type) {
default:
ut_ad("wrong undo record type" == 0);
goto close_table;
case TRX_UNDO_INSERT_METADATA:
case TRX_UNDO_INSERT_REC:
break;
case TRX_UNDO_RENAME_TABLE:
dict_table_t* table = node->table;
ut_ad(!table->is_temporary());
ut_ad(dict_table_is_file_per_table(table)
== !is_system_tablespace(table->space_id));
size_t len = mach_read_from_2(node->undo_rec)
+ size_t(node->undo_rec - ptr) - 2;
ptr[len] = 0;
const char* name = reinterpret_cast<char*>(ptr);
if (strcmp(table->name.m_name, name)) {
dict_table_rename_in_cache(table, name, false,
table_id != 0);
}
goto close_table;
}
if (UNIV_UNLIKELY(!node->table->is_accessible())) {
close_table:
/* Normally, tables should not disappear or become
unaccessible during ROLLBACK, because they should be
protected by InnoDB table locks. Corruption could be
a valid exception.
FIXME: When running out of temporary tablespace, it
would probably be better to just drop all temporary
tables (and temporary undo log records) of the current
connection, instead of doing this rollback. */
dict_table_close(node->table, dict_locked, FALSE);
node->table = NULL;
return false;
} else {
ut_ad(!node->table->skip_alter_undo);
clust_index = dict_table_get_first_index(node->table);
if (clust_index != NULL) {
if (node->rec_type == TRX_UNDO_INSERT_REC) {
ptr = trx_undo_rec_get_row_ref(
ptr, clust_index, &node->ref,
node->heap);
} else {
node->ref = &trx_undo_metadata;
if (!row_undo_search_clust_to_pcur(node)) {
/* An error probably occurred during
an insert into the clustered index,
after we wrote the undo log record. */
goto close_table;
}
return true;
}
if (!row_undo_search_clust_to_pcur(node)) {
/* An error probably occurred during
an insert into the clustered index,
after we wrote the undo log record. */
goto close_table;
}
if (node->table->n_v_cols) {
trx_undo_read_v_cols(node->table, ptr,
node->row, false);
}
} else {
ib::warn() << "Table " << node->table->name
<< " has no indexes,"
" ignoring the table";
goto close_table;
}
}
return true;
}
/***************************************************************//**
Removes secondary index records.
@return DB_SUCCESS or DB_OUT_OF_FILE_SPACE */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_undo_ins_remove_sec_rec(
/*========================*/
undo_node_t* node, /*!< in/out: row undo node */
que_thr_t* thr) /*!< in: query thread */
{
dberr_t err = DB_SUCCESS;
dict_index_t* index = node->index;
mem_heap_t* heap;
heap = mem_heap_create(1024);
while (index != NULL) {
dtuple_t* entry;
if (index->type & DICT_FTS) {
dict_table_next_uncorrupted_index(index);
continue;
}
/* An insert undo record TRX_UNDO_INSERT_REC will
always contain all fields of the index. It does not
matter if any indexes were created afterwards; all
index entries can be reconstructed from the row. */
entry = row_build_index_entry(
node->row, node->ext, index, heap);
if (UNIV_UNLIKELY(!entry)) {
/* The database must have crashed after
inserting a clustered index record but before
writing all the externally stored columns of
that record, or a statement is being rolled
back because an error occurred while storing
off-page columns.
Because secondary index entries are inserted
after the clustered index record, we may
assume that the secondary index record does
not exist. */
} else {
err = row_undo_ins_remove_sec(index, entry, thr);
if (UNIV_UNLIKELY(err != DB_SUCCESS)) {
goto func_exit;
}
}
mem_heap_empty(heap);
dict_table_next_uncorrupted_index(index);
}
func_exit:
node->index = index;
mem_heap_free(heap);
return(err);
}
/***********************************************************//**
Undoes a fresh insert of a row to a table. A fresh insert means that
the same clustered index unique key did not have any record, even delete
marked, at the time of the insert. InnoDB is eager in a rollback:
if it figures out that an index record will be removed in the purge
anyway, it will remove it in the rollback.
@return DB_SUCCESS or DB_OUT_OF_FILE_SPACE */
dberr_t
row_undo_ins(
/*=========*/
undo_node_t* node, /*!< in: row undo node */
que_thr_t* thr) /*!< in: query thread */
{
dberr_t err;
bool dict_locked = node->trx->dict_operation_lock_mode == RW_X_LATCH;
if (!row_undo_ins_parse_undo_rec(node, dict_locked)) {
return DB_SUCCESS;
}
/* Iterate over all the indexes and undo the insert.*/
node->index = dict_table_get_first_index(node->table);
ut_ad(dict_index_is_clust(node->index));
switch (node->rec_type) {
default:
ut_ad("wrong undo record type" == 0);
/* fall through */
case TRX_UNDO_INSERT_REC:
/* Skip the clustered index (the first index) */
node->index = dict_table_get_next_index(node->index);
dict_table_skip_corrupt_index(node->index);
err = row_undo_ins_remove_sec_rec(node, thr);
if (err != DB_SUCCESS) {
break;
}
log_free_check();
if (node->table->id == DICT_INDEXES_ID) {
ut_ad(!node->table->is_temporary());
if (!dict_locked) {
mutex_enter(&dict_sys.mutex);
}
err = row_undo_ins_remove_clust_rec(node);
if (!dict_locked) {
mutex_exit(&dict_sys.mutex);
}
} else {
err = row_undo_ins_remove_clust_rec(node);
}
if (err == DB_SUCCESS && node->table->stat_initialized) {
/* Not protected by dict_sys.mutex for
performance reasons, we would rather get garbage
in stat_n_rows (which is just an estimate anyway)
than protecting the following code with a latch. */
dict_table_n_rows_dec(node->table);
/* Do not attempt to update statistics when
executing ROLLBACK in the InnoDB SQL
interpreter, because in that case we would
already be holding dict_sys.mutex, which
would be acquired when updating statistics. */
if (!dict_locked) {
dict_stats_update_if_needed(node->table,
*node->trx);
}
}
break;
case TRX_UNDO_INSERT_METADATA:
log_free_check();
ut_ad(!node->table->is_temporary());
err = row_undo_ins_remove_clust_rec(node);
}
dict_table_close(node->table, dict_locked, FALSE);
node->table = NULL;
return(err);
}