mariadb/newbrt/pma.c
Bradley C. Kuszmaul 48f0ad74b5 Up
git-svn-id: file:///svn/tokudb@519 c7de825b-a66e-492c-adef-691d508d4ae1
2007-11-14 17:58:38 +00:00

1523 lines
47 KiB
C

/* An in-memory Packed Memory Array dictionary.
The keys and values are arrays of bytes, but are not necessarily kept in scan order.
Only the pointers are kept.
*/
#include "key.h"
#include "memory.h"
#include "myassert.h"
#include "../include/db.h"
#include <stdio.h>
#include <errno.h>
/* Only needed for testing. */
#include <string.h>
#include "list.h"
#include "kv-pair.h"
#include "pma-internal.h"
#include "log.h"
/* get KEY_VALUE_OVERHEAD */
#include "brt-internal.h"
/**************************** static functions forward declarations. *********************/
/*
* finish a deletion from the pma. called when there are no cursor references
* to the kv pair.
*/
static void __pma_delete_finish(PMA pma, int here);
/*
* resize the pma array to asksize. zero all array entries starting from startx.
*/
static int __pma_resize_array(PMA pma, int asksize, int startx);
/*
* extract pairs from the pma in the window delimited by lo and hi.
*/
static struct kv_pair_tag *__pma_extract_pairs(PMA pma, int count, int lo, int hi);
/*
* update the cursors in a cursor set given a set of tagged pairs.
*/
static void __pma_update_cursors(PMA pma, struct list *cursorset, struct kv_pair_tag *tpairs, int n);
/*
* update this pma's cursors given a set of tagged pairs.
*/
static void __pma_update_my_cursors(PMA pma, struct kv_pair_tag *tpairs, int n);
/*
* a deletion occured at index "here" in the pma. rebalance the windows around "here". if
* necessary, shrink the pma.
*/
static void __pma_delete_at(PMA pma, int here);
/*
* if the pma entry at here is deleted and there are no more references to it
* then finish the deletion
*/
static void __pma_delete_resume(PMA pma, int here);
/*
* count the number of cursors that reference a pma pair
*/
static int __pma_count_cursor_refs(PMA pma, int here);
/**************************** end of static functions forward declarations. *********************/
#ifndef PMA_USE_MEMPOOL
#define PMA_USE_MEMPOOL 1
#endif
#if PMA_USE_MEMPOOL
/* allocate a kv pair from the pma kv memory pool */
static struct kv_pair *kv_pair_malloc_mempool(void *key, int keylen, void *val, int vallen, struct mempool *mp) {
struct kv_pair *kv = mempool_malloc(mp, sizeof (struct kv_pair) + keylen + vallen, 4);
if (kv)
kv_pair_init(kv, key, keylen, val, vallen);
return kv;
}
/* compress all of the kv pairs to the left edge of the memory pool and
update the pma index with the new kv pair locations */
static int pma_compress_kvspace(PMA pma) {
if (mempool_get_frag_size(&pma->kvspace) == 0)
return -1;
void *mp = toku_malloc(pma->kvspace.size);
if (mp == 0)
return -2;
struct mempool new_kvspace;
mempool_init(&new_kvspace, mp, pma->kvspace.size);
int i;
for (i=0; i<pma->N; i++) {
struct kv_pair *kv = pma->pairs[i];
if (kv_pair_inuse(kv)) {
kv = kv_pair_ptr(kv);
struct kv_pair *newkv = mempool_malloc(&new_kvspace, kv_pair_size(kv), 4);
assert(newkv);
memcpy(newkv, kv, kv_pair_size(kv));
if (kv_pair_deleted(pma->pairs[i]))
kv_pair_set_deleted(newkv);
pma->pairs[i] = newkv;
}
}
toku_free(pma->kvspace.base);
pma->kvspace = new_kvspace;
return 0;
}
#endif
/* malloc space for a kv pair from the pma memory pool and initialize it.
if the allocation fails, try to compress the memory pool and try again. */
static struct kv_pair *pma_malloc_kv_pair(PMA pma __attribute__((unused)), void *k, int ksize, void *v, int vsize) {
#if PMA_USE_MEMPOOL
struct kv_pair *kv = kv_pair_malloc_mempool(k, ksize, v, vsize, &pma->kvspace);
if (kv == 0) {
if (0 == pma_compress_kvspace(pma))
kv = kv_pair_malloc_mempool(k, ksize, v, vsize, &pma->kvspace);
}
#else
struct kv_pair *kv = kv_pair_malloc(k, ksize, v, vsize);
#endif
return kv;
}
static void pma_mfree_kv_pair(PMA pma __attribute__((unused)), struct kv_pair *kv) {
kv = kv_pair_ptr(kv);
#if PMA_USE_MEMPOOL
mempool_mfree(&pma->kvspace, kv, kv_pair_size(kv));
#else
kv_pair_free(kv);
#endif
}
int pma_n_entries (PMA pma) {
return pma->n_pairs_present;
}
int pma_index_limit (PMA pma) {
return pma->N;
}
int pmanode_valid (PMA pma, int i) {
assert(0<=i); assert(i<pma_index_limit(pma));
return kv_pair_valid(pma->pairs[i]);
}
bytevec pmanode_key (PMA pma, int i) {
struct kv_pair *pair;
assert(0<=i); assert(i<pma_index_limit(pma));
pair = pma->pairs[i];
assert(kv_pair_valid(pair));
return kv_pair_key(pair);
}
ITEMLEN pmanode_keylen (PMA pma, int i) {
struct kv_pair *pair;
assert(0<=i); assert(i<pma_index_limit(pma));
pair = pma->pairs[i];
assert(kv_pair_valid(pair));
return kv_pair_keylen(pair);
}
bytevec pmanode_val (PMA pma, int i) {
struct kv_pair *pair;
assert(0<=i); assert(i<pma_index_limit(pma));
pair = pma->pairs[i];
assert(kv_pair_valid(pair));
return kv_pair_val(pair);
}
ITEMLEN pmanode_vallen (PMA pma, int i) {
struct kv_pair *pair;
assert(0<=i); assert(i<pma_index_limit(pma));
pair = pma->pairs[i];
assert(kv_pair_valid(pair));
return kv_pair_vallen(pair);
}
/* Could pick the same one every time if we wanted. */
int pma_random_pick(PMA pma, bytevec *key, ITEMLEN *keylen, bytevec *val, ITEMLEN *vallen) {
#if 1
int i;
/* For now a simple implementation where we simply start at the beginning and look. */
for (i=0; i<pma_index_limit(pma); i++) {
struct kv_pair *pair = pma->pairs[i];
if (kv_pair_valid(pair)) {
*key = kv_pair_key(pair);
*keylen = kv_pair_keylen(pair);
*val = kv_pair_val(pair);
*vallen = kv_pair_vallen(pair);
return 0;
}
}
return DB_NOTFOUND;
#else
/* Maybe we should pick a random item to remove in order to reduce the unbalancing. */
int i;
int l = pma_index_limit(pma);
int r = random()%l;
/* For now a simple implementation where we simply start at the beginning and look. */
for (i=0; i<l; i++) {
int ir=(i+r)%l;
struct kv_pair *pair = pma->pairs[ir];
if (kv_pair_valid(pair)) {
*key = kv_pair_key(pair);
*keylen = kv_pair_keylen(pair);
*val = kv_pair_val(pair);
*vallen = kv_pair_vallen(pair);
return 0;
}
}
return DB_NOTFOUND;
#endif
}
static int pma_count_finds=0;
static int pma_count_divides=0;
static int pma_count_scans=0;
void pma_show_stats (void) {
printf("%d finds, %d divides, %d scans\n", pma_count_finds, pma_count_divides, pma_count_scans);
}
/* search the index for a matching key */
static int __pma_search(PMA pma, DBT *k, DB *db, int lo, int hi, int *found) {
assert(0 <= lo && lo <= hi);
if (lo >= hi) {
*found = 0;
return lo;
} else {
int mi = (lo + hi)/2;
assert(lo <= mi && mi < hi);
int omi = mi;
while (mi < hi && !kv_pair_inuse(pma->pairs[mi]))
mi++;
if (mi >= hi)
return __pma_search(pma, k, db, lo, omi, found);
struct kv_pair *kv = kv_pair_ptr(pma->pairs[mi]);
DBT k2;
int cmp = pma->compare_fun(db, k, fill_dbt(&k2, kv_pair_key(kv), kv_pair_keylen(kv)));
if (cmp > 0)
return __pma_search(pma, k, db, mi+1, hi, found);
if (cmp < 0)
return __pma_search(pma, k, db, lo, mi, found);
*found = 1;
return mi;
}
}
/* search the index for the rightmost matching key */
static int __pma_right_search(PMA pma, DBT *k, DB *db, int lo, int hi, int *found) {
assert(0 <= lo && lo <= hi);
if (lo >= hi) {
*found = 0;
return lo;
} else {
int mi = (lo + hi)/2;
assert(lo <= mi && mi < hi);
int omi = mi;
while (mi < hi && !kv_pair_inuse(pma->pairs[mi]))
mi++;
if (mi >= hi)
return __pma_right_search(pma, k, db, lo, omi, found);
struct kv_pair *kv = kv_pair_ptr(pma->pairs[mi]);
DBT k2;
int cmp = pma->compare_fun(db, k, fill_dbt(&k2, kv_pair_key(kv), kv_pair_keylen(kv)));
if (cmp > 0)
return __pma_right_search(pma, k, db, mi+1, hi, found);
if (cmp < 0)
return __pma_right_search(pma, k, db, lo, mi, found);
/* we have a match, try to find a match on the right tree */
int here;
here = __pma_right_search(pma, k, db, mi+1, hi, found);
if (*found == 0)
here = mi;
*found = 1;
return here;
}
}
/* search the index for the left most matching key */
static int __pma_left_search(PMA pma, DBT *k, DB *db, int lo, int hi, int *found) {
assert(0 <= lo && lo <= hi);
if (lo >= hi) {
*found = 0;
return lo;
} else {
int mi = (lo + hi)/2;
assert(lo <= mi && mi < hi);
int omi = mi;
while (mi < hi && !kv_pair_inuse(pma->pairs[mi]))
mi++;
if (mi >= hi)
return __pma_left_search(pma, k, db, lo, omi, found);
struct kv_pair *kv = kv_pair_ptr(pma->pairs[mi]);
DBT k2;
int cmp = pma->compare_fun(db, k, fill_dbt(&k2, kv_pair_key(kv), kv_pair_keylen(kv)));
if (cmp > 0)
return __pma_left_search(pma, k, db, mi+1, hi, found);
if (cmp < 0)
return __pma_left_search(pma, k, db, lo, mi, found);
/* we have a match, try to find a match on the left tree */
int here;
here = __pma_left_search(pma, k, db, lo, mi, found);
if (*found == 0)
here = mi;
*found = 1;
return here;
}
}
/* search the index for the right most matching key and value */
static int __pma_dup_search(PMA pma, DBT *k, DBT *v, DB *db, int lo, int hi, int *found) {
assert(0 <= lo && lo <= hi);
if (lo >= hi) {
*found = 0;
return lo;
} else {
int mi = (lo + hi)/2;
assert(lo <= mi && mi < hi);
int omi = mi;
while (mi < hi && !kv_pair_inuse(pma->pairs[mi]))
mi++;
if (mi >= hi)
return __pma_dup_search(pma, k, v, db, lo, omi, found);
struct kv_pair *kv = kv_pair_ptr(pma->pairs[mi]);
DBT k2, v2;
int cmp = pma->compare_fun(db, k, fill_dbt(&k2, kv_pair_key(kv), kv_pair_keylen(kv)));
if (cmp == 0)
cmp = pma->dup_compare_fun(db, v, fill_dbt(&v2, kv_pair_val(kv), kv_pair_vallen(kv)));
if (cmp > 0)
return __pma_dup_search(pma, k, v, db, mi+1, hi, found);
if (cmp < 0)
return __pma_dup_search(pma, k, v, db, lo, mi, found);
/* we have a match, try to find a match on the right tree */
int here;
here = __pma_dup_search(pma, k, v, db, mi+1, hi, found);
if (*found == 0)
here = mi;
*found = 1;
return here;
}
}
// Return the smallest index such that no lower index contains a larger key.
// This will be in the range 0 (inclusive) to pma_index_limit(pma) (inclusive).
// Thus the returned index may not be a valid index into the array if it is == pma_index_limit(pma)
// For example: if the array is empty, that means we return 0.
// For example: if the array is full of small keys, that means we return pma_index_limit(pma), which is off the end of teh array.
// For example: if the array is full of large keys, then we return 0.
int pmainternal_find (PMA pma, DBT *k, DB *db) {
#if 1
int lo=0, hi=pma_index_limit(pma);
/* lo and hi are the minimum and maximum values (inclusive) that we could possibly return. */
pma_count_finds++;
while (lo<hi) {
int mid;
// Scan forward looking for a non-null value.
for (mid=(lo+hi)/2; mid<hi; mid++) {
struct kv_pair *kv = pma->pairs[mid];
if (kv_pair_inuse(kv)) {
// Found one.
kv = kv_pair_ptr(kv);
DBT k2;
int cmp = pma->compare_fun(db, k, fill_dbt(&k2, kv->key, kv->keylen));
if (cmp==0) return mid;
else if (cmp<0) {
/* key is smaller than the midpoint, so look in the low half. */
hi = (lo+hi)/2; /* recalculate the midpoint, since mid is no necessarily the midpoint now. */
pma_count_divides++;
goto next_range;
} else {
/* key is larger than the midpoint. So look in the high half. */
lo = mid+1; /* The smallest value we could want to return is lo. */
pma_count_divides++;
goto next_range;
}
/* Not reached */
}
pma_count_scans++;
}
/* If we got here, all from mid to hi were null, so adjust hi to the midpoint. */
/* If the whole array is null, we'll end up returning index 0, which is good. */
hi = (lo+hi)/2;
pma_count_divides++;
next_range: ; /* We have adjusted lo and hi, so look again. */
}
assert(0<=lo);
assert(lo==hi);
assert(hi <= pma_index_limit(pma));
#if 0
/* If lo points at something, the something should not be smaller than key. */
if (lo>0 && lo < pma_index_limit(pma) && pma->pairs[lo]) {
//printf("lo=%d\n", lo);
DBT k2;
assert(0 >= pma->compare_fun(db, k, fill_dbt(&k2, pma->pairs[lo]->key, pma->pairs[lo]->keylen)));
}
#endif
return lo;
#else
int found, lo;
lo = __pma_search(pma, k, db, 0, pma->N, &found);
if (lo>0 && lo < pma_index_limit(pma) && pma->pairs[lo]) {
//printf("lo=%d\n", lo);
DBT k2;
assert(0 >= pma->compare_fun(db, k, fill_dbt(&k2, pma->pairs[lo]->key, pma->pairs[lo]->keylen)));
}
return lo;
#endif
}
//int min (int i, int j) { if (i<j) return i; else return j; }
//int max (int i, int j) { if (i<j) return j; else return i; }
//double lg (int n) { return log((double)n)/log(2.0); }
int pmainternal_printpairs (struct kv_pair *pairs[], int N) {
int count=0;
int i;
printf("{");
for (i=0; i<N; i++) {
if (i!=0) printf(" ");
if (kv_pair_valid(pairs[i])) {
printf("%s", (char*)kv_pair_key(pairs[i]));
count++;
}
else printf("_");
}
printf("}");
return count;
}
void print_pma (PMA pma) {
int count;
printf("N=%d n_present=%d ", pma_index_limit(pma), pma->n_pairs_present);
count=pmainternal_printpairs(pma->pairs, pma_index_limit(pma));
printf("\n");
assert(count==pma->n_pairs_present);
}
/* Smooth the data, and return the location of the null. */
static int distribute_data (struct kv_pair *destpairs[], int dcount,
struct kv_pair_tag sourcepairs[], int scount, PMA pma) {
assert(scount<=dcount);
if (scount==0) {
return -1;
}
if (scount==1) {
destpairs[0]=sourcepairs[0].pair;
if (pma)
sourcepairs[0].newtag = destpairs - pma->pairs;
if (destpairs[0]==0) return 0;
else return -1;
} else {
int r1 = distribute_data(destpairs, dcount/2,
sourcepairs, scount/2, pma);
int r2 = distribute_data(destpairs +dcount/2, dcount-dcount/2,
sourcepairs+scount/2, scount-scount/2, pma);
assert(r1==-1 || r2==-1);
if (r1!=-1) return r1;
else if (r2!=-1) return r2+dcount/2;
else return -1;
}
}
/* spread the non-empty pairs around. There are n of them. Create an empty slot just before the IDXth
element, and return that slot's index in the smoothed array. */
int pmainternal_smooth_region (struct kv_pair *pairs[], int n, int idx, int base, PMA pma) {
int i;
int n_present=0;
for (i=0; i<n; i++) {
if (kv_pair_inuse(pairs[i])) n_present++;
}
n_present++; // Save one for the blank guy.
{
//#define USE_MALLOC_IN_SMOOTH
#ifdef USE_MALLOC_IN_SMOOTH
struct kv_pair_tag *MALLOC_N(n_present, tmppairs);
#else
struct kv_pair_tag tmppairs[n_present];
#endif
int n_saved=0;
int r;
for (i=0; i<n; i++) {
if (i==idx) {
tmppairs[n_saved++].pair = 0;
}
if (kv_pair_inuse(pairs[i])) {
tmppairs[n_saved].oldtag = base + i;
tmppairs[n_saved++].pair = pairs[i];
}
pairs[i] = 0;
}
if (idx==n) {
tmppairs[n_saved++].pair = 0;
}
//printf(" temp="); printpairs(tmppairs, n_saved);
assert(n_saved==n_present);
/* Now the tricky part. Distribute the data. */
r=distribute_data (pairs, n,
tmppairs, n_saved, pma);
if (pma && !list_empty(&pma->cursors))
__pma_update_my_cursors(pma, tmppairs, n_present);
#ifdef USE_MALLOC_IN_SMOOTH
toku_free(tmppairs);
#endif
return r;
}
}
int toku_lg (int n) {
int result=0;
int two_to_result = 1;
while (two_to_result<n) {
result++;
two_to_result*=2;
}
return result;
}
/* Calculate densitysteps and uplgN, given N. */
void pmainternal_calculate_parameters (PMA pma) {
int N = pma_index_limit(pma);
int lgN = toku_lg(N);
int n_divisions=0;
//printf("N=%d lgN=%d\n", N, lgN);
while (N/2>=lgN) {
n_divisions++;
N/=2;
}
pma->uplgN=N;
//printf("uplgN = %d n_divisions=%d\n", pma->uplgN, n_divisions);
assert(n_divisions>0);
pma->udt_step = (PMA_UDT_HIGH - PMA_UDT_LOW)/n_divisions;
pma->ldt_step = (PMA_LDT_HIGH - PMA_LDT_LOW)/n_divisions;
}
int pmainternal_count_region (struct kv_pair *pairs[], int lo, int hi) {
int n=0;
while (lo<hi) {
if (kv_pair_inuse(pairs[lo])) n++;
lo++;
}
return n;
}
int pma_create(PMA *pma, pma_compare_fun_t compare_fun, int maxsize) {
int error;
TAGMALLOC(PMA, result);
if (result==0) return -1;
result->dup_mode = 0;
result->n_pairs_present = 0;
result->pairs = 0;
list_init(&result->cursors);
result->compare_fun = compare_fun;
result->skey = 0;
result->sval = 0;
result->N = PMA_MIN_ARRAY_SIZE;
result->pairs = 0;
error = __pma_resize_array(result, result->N, 0);
if (error) {
toku_free(result);
return -1;
}
if (maxsize == 0)
maxsize = 4*1024;
maxsize = maxsize + maxsize/4;
#if PMA_USE_MEMPOOL
void *mpbase = toku_malloc(maxsize); assert(mpbase);
mempool_init(&result->kvspace, mpbase, maxsize);
#endif
*pma = result;
assert((unsigned long)result->pairs[result->N]==0xdeadbeefL);
return 0;
}
/* find the smallest power of 2 >= n */
static int __pma_array_size(PMA pma __attribute__((unused)), int asksize) {
int n = PMA_MIN_ARRAY_SIZE;
while (n < asksize)
n *= 2;
return n;
}
static int __pma_resize_array(PMA pma, int asksize, int startz) {
int i;
int n;
n = __pma_array_size(pma, asksize);
pma->N = n;
if (pma->pairs == 0)
pma->pairs = toku_malloc((1 + pma->N) * sizeof (struct kv_pair *));
else
pma->pairs = toku_realloc(pma->pairs, (1 + pma->N) * sizeof (struct kv_pair *));
if (pma->pairs == 0)
return -1;
pma->pairs[pma->N] = (void *) 0xdeadbeef;
for (i=startz; i<pma->N; i++) {
pma->pairs[i] = 0;
}
pmainternal_calculate_parameters(pma);
return 0;
}
int pma_set_dup_mode(PMA pma, int dup_mode) {
assert(dup_mode == 0 || dup_mode == DB_DUP || dup_mode == (DB_DUP+DB_DUPSORT));
pma->dup_mode = dup_mode;
return 0;
}
int pma_set_dup_compare(PMA pma, pma_compare_fun_t dup_compare_fun) {
assert(pma->dup_mode & DB_DUPSORT);
pma->dup_compare_fun = dup_compare_fun;
return 0;
}
int pma_cursor (PMA pma, PMA_CURSOR *cursp) {
PMA_CURSOR MALLOC(curs);
assert(curs!=0);
if (errno!=0) return errno;
curs->position=-1; /* undefined */
curs->pma = pma;
curs->skey = 0;
curs->sval=0;
list_push(&pma->cursors, &curs->next);
*cursp=curs;
return 0;
}
int pma_cursor_get_pma(PMA_CURSOR c, PMA *pmap) {
*pmap = c->pma;
return 0;
}
int pma_cursor_set_position_last (PMA_CURSOR c) {
PMA pma = c->pma;
int result = 0;
int old_position = c->position;
c->position=pma->N-1;
while (!kv_pair_valid(c->pma->pairs[c->position])) {
if (c->position>0)
c->position--;
else {
c->position = -1;
result = DB_NOTFOUND;
break;
}
}
if (old_position != c->position)
__pma_delete_resume(pma, old_position);
return result;
}
int pma_cursor_set_position_prev (PMA_CURSOR c) {
PMA pma = c->pma;
int old_position = c->position;
c->position--;
while (c->position >= 0) {
if (kv_pair_valid(pma->pairs[c->position])) {
__pma_delete_resume(pma, old_position);
return 0;
}
c->position--;
}
c->position = old_position;
return DB_NOTFOUND;
}
int pma_cursor_set_position_first (PMA_CURSOR c) {
PMA pma = c->pma;
int result = 0;
int old_position = c->position;
c->position=0;
while (!kv_pair_valid(c->pma->pairs[c->position])) {
if (c->position+1<pma->N)
c->position++;
else {
c->position = -1;
result =DB_NOTFOUND;
break;
}
}
if (old_position != c->position)
__pma_delete_resume(pma, old_position);
return result;
}
int pma_cursor_set_position_next (PMA_CURSOR c) {
PMA pma = c->pma;
int old_position=c->position;
c->position++;
while (c->position<pma->N) {
if (kv_pair_valid(c->pma->pairs[c->position])) {
__pma_delete_resume(pma, old_position);
return 0;
}
c->position++;
}
c->position=old_position;
return DB_NOTFOUND;
}
int pma_cursor_get_current(PMA_CURSOR c, DBT *key, DBT *val) {
if (c->position == -1)
return DB_NOTFOUND;
PMA pma = c->pma;
struct kv_pair *pair = pma->pairs[c->position];
if (!kv_pair_valid(pair))
return BRT_KEYEMPTY;
ybt_set_value(key, pair->key, pair->keylen, &c->skey);
ybt_set_value(val, pair->key + pair->keylen, pair->vallen, &c->sval);
return 0;
}
int pma_cursor_set_key(PMA_CURSOR c, DBT *key, DB *db) {
PMA pma = c->pma;
int here, found;
if (pma->dup_mode & DB_DUP) {
here = __pma_left_search(pma, key, db, 0, pma->N, &found);
} else
here = pmainternal_find(pma, key, db);
assert(0<=here ); assert(here<=pma_index_limit(pma));
int r = DB_NOTFOUND;
if (here < pma->N) {
DBT k2;
struct kv_pair *pair = pma->pairs[here];
if (kv_pair_valid(pair) &&
pma->compare_fun(db, key, fill_dbt(&k2, kv_pair_key(pair), kv_pair_keylen(pair)))==0) {
__pma_delete_resume(c->pma, c->position);
c->position = here;
r = 0;
}
}
return r;
}
int pma_cursor_set_both(PMA_CURSOR c, DBT *key, DBT *val, DB *db) {
PMA pma = c->pma;
int here = pmainternal_find(pma, key, db);
assert(0<=here ); assert(here<=pma_index_limit(pma));
int r = DB_NOTFOUND;
if (here < pma->N) {
DBT k2, v2;
struct kv_pair *pair = pma->pairs[here];
if (kv_pair_valid(pair) &&
pma->compare_fun(db, key, fill_dbt(&k2, kv_pair_key(pair), kv_pair_keylen(pair))) == 0 &&
pma->compare_fun(db, val, fill_dbt(&v2, kv_pair_val(pair), kv_pair_vallen(pair))) == 0) {
__pma_delete_resume(c->pma, c->position);
c->position = here;
r = 0;
}
}
return r;
}
int pma_cursor_set_range(PMA_CURSOR c, DBT *key, DB *db) {
PMA pma = c->pma;
int here, found;
if (pma->dup_mode & DB_DUP)
here = __pma_left_search(pma, key, db, 0, pma->N, &found);
else
here = pmainternal_find(pma, key, db);
assert(0<=here ); assert(here<=pma_index_limit(pma));
/* find the first valid pair where key[here] >= key */
int r = DB_NOTFOUND;
while (here < pma->N) {
struct kv_pair *pair = pma->pairs[here];
if (kv_pair_valid(pair)) {
__pma_delete_resume(c->pma, c->position);
c->position = here;
r = 0;
break;
}
here += 1;
}
return r;
}
int pma_cursor_delete_under(PMA_CURSOR c, int *kvsize) {
int r = DB_NOTFOUND;
if (c->position >= 0) {
PMA pma = c->pma;
assert(c->position < pma->N);
struct kv_pair *kv = pma->pairs[c->position];
if (kv_pair_valid(kv)) {
if (kvsize)
*kvsize = kv_pair_keylen(kv) + kv_pair_vallen(kv);
pma->pairs[c->position] = kv_pair_set_deleted(kv);
r = 0;
}
}
return r;
}
int pma_cursor_free (PMA_CURSOR *cursp) {
PMA_CURSOR curs=*cursp;
PMA pma = curs->pma;
list_remove(&curs->next);
if (curs->position >= 0 && kv_pair_deleted(pma->pairs[curs->position]) &&
__pma_count_cursor_refs(pma, curs->position) == 0) {
__pma_delete_finish(pma, curs->position);
}
if (curs->skey) toku_free(curs->skey);
if (curs->sval) toku_free(curs->sval);
toku_free(curs);
*cursp=0;
return 0;
}
/* Make some space for a key to go at idx (the thing currently at idx should end up at to the right.) */
/* Return the new index. (Making space may involve moving things around, including the hole at index.) */
int pmainternal_make_space_at (PMA pma, int idx) {
/* Within a range LO to HI we have a limit of how much packing we will tolerate.
* We allow the entire array to be 50% full.
* We allow a region of size lgN to be full.
* At sizes in between, we interpolate.
*/
int size=pma->uplgN;
int lo=idx;
int hi=idx;
double udt=PMA_UDT_HIGH;
while (1) {
/* set hi-lo equal size, make sure it is a supserset of (hi,lo). */
lo=idx-size/2;
hi=idx+size/2;
//printf("lo=%d hi=%d\n", lo, hi);
if (lo<0) { hi-=lo; lo=0; }
else if (hi>pma_index_limit(pma)) { lo-=(hi-pma_index_limit(pma)); hi=pma_index_limit(pma); }
else { ; /* nothing */ }
//printf("lo=%d hi=%d\n", lo, hi);
assert(0<=lo); assert(lo<hi); assert(hi<=pma_index_limit(pma)); assert(hi-lo==size); // separate into separate assertions so that gcov doesn't see branches not taken.
assert(udt>0.499); assert(udt<=1);
if (udt<0.5001) { assert(lo==0); assert(hi==pma_index_limit(pma)); }
{
int count = (1+ /* Don't forget space for the new guy. */
pmainternal_count_region(pma->pairs, lo, hi));
double density = (double) count / (double) (hi - lo);
if (density <= udt)
break;
if (lo==0 && hi==pma_index_limit(pma)) {
/* The array needs to be doubled in size. */
assert(size==pma_index_limit(pma));
size*=2;
// printf("pma_make_space_realloc %d to %d hi %d\n", pma->N, size, hi);
__pma_resize_array(pma, size, hi);
hi=size;
//printf("doubled N\n");
break;
}
}
udt-=pma->udt_step;
size*=2;
}
//printf("%s:%d Smoothing from %d to %d to density %f\n", __FILE__, __LINE__, lo, hi, density);
{
int new_index = pmainternal_smooth_region(pma->pairs+lo, hi-lo, idx-lo, lo, pma);
return new_index+lo;
}
}
enum pma_errors pma_lookup (PMA pma, DBT *k, DBT *v, DB *db) {
int here, found;
if (pma->dup_mode & DB_DUP) {
here = __pma_left_search(pma, k, db, 0, pma->N, &found);
} else
here = pmainternal_find(pma, k, db);
assert(0<=here ); assert(here<=pma_index_limit(pma));
if (here==pma_index_limit(pma)) return DB_NOTFOUND;
DBT k2;
struct kv_pair *pair;
pair = pma->pairs[here];
if (kv_pair_valid(pair) && pma->compare_fun(db, k, fill_dbt(&k2, pair->key, pair->keylen))==0) {
return ybt_set_value(v, pair->key + pair->keylen, pair->vallen, &pma->sval);
} else {
return DB_NOTFOUND;
}
}
/* returns 0 if OK.
* You must have freed all the cursors, otherwise returns nonzero and does nothing. */
int pma_free (PMA *pmap) {
int i;
PMA pma=*pmap;
if (!list_empty(&pma->cursors))
return -1;
if (pma->n_pairs_present > 0) {
for (i=0; i < pma->N; i++) {
struct kv_pair *kv = pma->pairs[i];
if (kv_pair_inuse(kv)) {
pma_mfree_kv_pair(pma, kv);
pma->pairs[i] = 0;
pma->n_pairs_present--;
}
}
}
assert(pma->n_pairs_present == 0);
#if PMA_USE_MEMPOOL
void *mpbase = mempool_get_base(&pma->kvspace);
mempool_fini(&pma->kvspace);
toku_free(mpbase);
#endif
toku_free(pma->pairs);
if (pma->skey) toku_free(pma->skey);
if (pma->sval) toku_free(pma->sval);
toku_free(pma);
*pmap=0;
return 0;
}
/* Copies keylen and datalen */
/* returns an error if the key is already present. */
int pma_insert (PMA pma, DBT *k, DBT *v, DB* db, TOKUTXN txn, DISKOFF diskoff, u_int32_t rand4fingerprint, u_int32_t *fingerprint) {
int found, idx;
if (pma->dup_mode & DB_DUPSORT) {
idx = __pma_dup_search(pma, k, v, db, 0, pma->N, &found);
if (found)
idx += 1;
} else if (pma->dup_mode & DB_DUP) {
idx = __pma_right_search(pma, k, db, 0, pma->N, &found);
if (found)
idx += 1;
} else {
idx = pmainternal_find(pma, k, db);
if (idx < pma_index_limit(pma) && pma->pairs[idx]) {
DBT k2;
struct kv_pair *kv = kv_pair_ptr(pma->pairs[idx]);
if (0==pma->compare_fun(db, k, fill_dbt(&k2, kv->key, kv->keylen))) {
if (kv_pair_deleted(pma->pairs[idx])) {
pma_mfree_kv_pair(pma, pma->pairs[idx]);
pma->pairs[idx] = pma_malloc_kv_pair(pma, k->data, k->size, v->data, v->size);
assert(pma->pairs[idx]);
*fingerprint += rand4fingerprint*toku_calccrc32_kvpair(k->data, k->size, v->data, v->size);
int r = tokulogger_log_phys_add_or_delete_in_leaf(db, txn, diskoff, 0, pma->pairs[idx]);
return r;
} else
return BRT_ALREADY_THERE; /* It is already here. Return an error. */
}
}
}
if (kv_pair_inuse(pma->pairs[idx])) {
idx = pmainternal_make_space_at (pma, idx); /* returns the new idx. */
}
assert(0 <= idx && idx < pma->N);
assert(!kv_pair_inuse(pma->pairs[idx]));
pma->pairs[idx] = pma_malloc_kv_pair(pma, k->data, k->size, v->data, v->size);
assert(pma->pairs[idx]);
pma->n_pairs_present++;
*fingerprint += rand4fingerprint*toku_calccrc32_kvpair(k->data, k->size, v->data, v->size);
return tokulogger_log_phys_add_or_delete_in_leaf(db, txn, diskoff, 1, pma->pairs[idx]);
}
/* find the next matching key in the pma starting from index here */
static int pma_next_key(PMA pma, DBT *k, DB *db, int here, int n, int *found) {
assert(0 <= here);
*found = 0;
while (here < n && !kv_pair_inuse(pma->pairs[here]))
here += 1;
if (here < n) {
struct kv_pair *kv = kv_pair_ptr(pma->pairs[here]);
DBT k2;
if (0 == pma->compare_fun(db, k, fill_dbt(&k2, kv_pair_key(kv), kv_pair_keylen(kv))))
*found = 1;
}
return here;
}
static int pma_delete_dup (PMA pma, DBT *k, DB *db, u_int32_t rand4sem, u_int32_t *fingerprint) {
/* find the left most matching key in the pma */
int found, lefthere;
lefthere = __pma_left_search(pma, k, db, 0, pma->N, &found);
int rightfound = found, righthere = lefthere;
while (rightfound) {
struct kv_pair *kv = pma->pairs[righthere];
if (kv_pair_valid(kv)) {
/* mark the pair as deleted */
*fingerprint -= rand4sem*toku_calccrc32_kvpair (kv_pair_key_const(kv), kv_pair_keylen(kv), kv_pair_val_const(kv), kv_pair_vallen(kv));
pma->pairs[righthere] = kv_pair_set_deleted(kv);
if (__pma_count_cursor_refs(pma, righthere) == 0) {
pma_mfree_kv_pair(pma, kv);
pma->pairs[righthere] = 0;
pma->n_pairs_present--;
}
}
/* find the next matching key in the pma */
righthere = pma_next_key(pma, k, db, righthere+1, pma->N, &rightfound);
}
if (found) {
/* check the density of the region centered around the deleted pairs */
__pma_delete_at(pma, (lefthere + righthere) / 2);
}
return found ? BRT_OK : DB_NOTFOUND;
}
static int pma_delete_nodup (PMA pma, DBT *k, DB *db, u_int32_t rand4sem, u_int32_t *fingerprint) {
int idx = pmainternal_find(pma, k, db);
struct kv_pair *kv = pma->pairs[idx];
if (!kv_pair_valid(kv)) {
if (0) printf("%s:%d l=%d r=%d\n", __FILE__, __LINE__, idx, DB_NOTFOUND);
return DB_NOTFOUND;
}
*fingerprint -= rand4sem*toku_calccrc32_kvpair (kv_pair_key_const(kv), kv_pair_keylen(kv), kv_pair_val_const(kv), kv_pair_vallen(kv));
pma->pairs[idx] = kv_pair_set_deleted(kv);
if (__pma_count_cursor_refs(pma, idx) == 0)
__pma_delete_finish(pma, idx);
return BRT_OK;
}
int pma_delete (PMA pma, DBT *k, DB *db, u_int32_t rand4sem, u_int32_t *fingerprint) {
if (pma->dup_mode & DB_DUP)
return pma_delete_dup(pma, k, db, rand4sem, fingerprint);
else
return pma_delete_nodup(pma, k, db, rand4sem, fingerprint);
}
void __pma_delete_resume(PMA pma, int here) {
if (here >= 0 && kv_pair_deleted(pma->pairs[here]) &&__pma_count_cursor_refs(pma, here) == 0)
__pma_delete_finish(pma, here);
}
static void __pma_delete_finish(PMA pma, int here) {
struct kv_pair *kv = pma->pairs[here];
if (!kv_pair_inuse(kv))
return;
pma_mfree_kv_pair(pma, kv);
pma->pairs[here] = 0;
pma->n_pairs_present--;
__pma_delete_at(pma, here);
}
static void __pma_delete_at(PMA pma, int here) {
int size;
int count;
struct kv_pair_tag *newpairs;
int lgN;
double ldt;
lgN = pma->uplgN;
size = lgN;
ldt = PMA_LDT_HIGH;
/* check the density of regions from lg(N) size to the entire array */
for (;;) {
int lo, hi;
double density;
/* select a region centered on here */
lo = here - size/2;
hi = here + size/2;
if (lo < 0) {
hi -= lo;
lo = 0;
if (hi > pma->N)
hi = pma->N;
} else if (hi > pma->N) {
lo -= hi - pma->N;
hi = pma->N;
if (lo < 0)
lo = 0;
}
assert(lo <= hi);
/* compute the density of the region */
count = pmainternal_count_region(pma->pairs, lo, hi);
density = (double) count / ((double) (hi - lo));
/* rebalance if the density exceeds the lower threadshold */
if (0) printf("check size %d h %d density %d/%d %f %d-%d ldt %f\n", size,
lgN, count, hi-lo, density, lo, hi, ldt);
if (density >= ldt) {
if (size == lgN)
return;
if (0) printf("delete_at_rebalance %d over %d %d\n", count, lo, hi);
newpairs = __pma_extract_pairs(pma, count, lo, hi);
distribute_data(pma->pairs + lo, hi - lo, newpairs, count, pma);
__pma_update_my_cursors(pma, newpairs, count);
toku_free(newpairs);
return;
}
ldt -= pma->ldt_step;
size *= 2;
if (0 == lo && pma->N == hi)
break;
}
/* shrink */
size = __pma_array_size(pma, count + count/4);
if (size == pma->N)
return;
if (0) printf("shrink %d from %d to %d\n", count, pma->N, size);
newpairs = __pma_extract_pairs(pma, count, 0, pma->N);
assert(newpairs);
__pma_resize_array(pma, size, 0);
distribute_data(pma->pairs, pma->N, newpairs, count, pma);
/* update the cursors */
__pma_update_my_cursors(pma, newpairs, count);
toku_free(newpairs);
}
int pma_insert_or_replace (PMA pma, DBT *k, DBT *v,
int *replaced_v_size, /* If it is a replacement, set to the size of the old value, otherwise set to -1. */
DB *db, TOKUTXN txn, DISKOFF diskoff,
u_int32_t rand4fingerprint, u_int32_t *fingerprint) {
//printf("%s:%d v->size=%d\n", __FILE__, __LINE__, v->size);
int idx = pmainternal_find(pma, k, db);
struct kv_pair *kv;
int r;
if (idx < pma_index_limit(pma) && (kv = pma->pairs[idx])) {
DBT k2;
// printf("%s:%d\n", __FILE__, __LINE__);
kv = kv_pair_ptr(kv);
if (0==pma->compare_fun(db, k, fill_dbt(&k2, kv->key, kv->keylen))) {
if (!kv_pair_deleted(pma->pairs[idx])) {
*replaced_v_size = kv->vallen;
*fingerprint -= rand4fingerprint*toku_calccrc32_kvpair(kv_pair_key_const(kv), kv_pair_keylen(kv), kv_pair_val_const(kv), kv_pair_vallen(kv));
r=tokulogger_log_phys_add_or_delete_in_leaf(db, txn, diskoff, 0, kv);
if (r!=0) return r;
}
if (v->size == (unsigned int) kv_pair_vallen(kv)) {
memcpy(kv_pair_val(kv), v->data, v->size);
} else {
pma_mfree_kv_pair(pma, kv);
pma->pairs[idx] = pma_malloc_kv_pair(pma, k->data, k->size, v->data, v->size);
assert(pma->pairs[idx]);
}
r = tokulogger_log_phys_add_or_delete_in_leaf(db, txn, diskoff, 0, pma->pairs[idx]);
*fingerprint += rand4fingerprint*toku_calccrc32_kvpair(k->data, k->size, v->data, v->size);
return r;
}
}
if (kv_pair_inuse(pma->pairs[idx])) {
idx = pmainternal_make_space_at (pma, idx); /* returns the new idx. */
}
assert(!kv_pair_inuse(pma->pairs[idx]));
//printf("%s:%d v->size=%d\n", __FILE__, __LINE__, v->size);
pma->pairs[idx] = pma_malloc_kv_pair(pma, k->data, k->size, v->data, v->size);
assert(pma->pairs[idx]);
pma->n_pairs_present++;
*replaced_v_size = -1;
//printf("%s:%d txn=%p\n", __FILE__, __LINE__, txn);
r = tokulogger_log_phys_add_or_delete_in_leaf(db, txn, diskoff, 1, pma->pairs[idx]);
*fingerprint += rand4fingerprint*toku_calccrc32_kvpair(k->data, k->size, v->data, v->size);
return r;
}
void pma_iterate (PMA pma, void(*f)(bytevec,ITEMLEN,bytevec,ITEMLEN, void*), void*v) {
int i;
for (i=0; i<pma_index_limit(pma); i++) {
struct kv_pair *pair = pma->pairs[i];
if (pair) {
f(pair->key, pair->keylen,
pair->key + pair->keylen, pair->vallen, v);
}
}
}
int __pma_count_cursor_refs(PMA pma, int here) {
int refs = 0;
struct list *list;
struct pma_cursor *cursor;
list = list_head(&pma->cursors);
while (list != &pma->cursors) {
cursor = list_struct(list, struct pma_cursor, next);
if (cursor->position == here)
refs += 1;
list = list->next;
}
return refs;
}
static void __pma_update_cursors_position(PMA pma, struct list *cursor_set, int oldposition, int newposition) {
struct list *list, *nextlist;
struct pma_cursor *cursor;
list = list_head(cursor_set);
while (list != cursor_set) {
nextlist = list->next; /* may be removed later */
cursor = list_struct(list, struct pma_cursor, next);
if (cursor->position == oldposition) {
if (0) printf("cursor %p %d -> %d\n", cursor, oldposition, newposition);
cursor->position = newposition;
cursor->pma = pma;
list_remove(list);
list_push(&pma->cursors, list);
}
list = nextlist;
}
}
void __pma_update_cursors(PMA pma, struct list *cursor_set, struct kv_pair_tag *tpairs, int n) {
/* short cut */
if (list_empty(cursor_set))
return;
/* update all cursors to their new positions */
int i;
for (i=0; i<n; i++) {
if (tpairs[i].pair && tpairs[i].oldtag >= 0)
__pma_update_cursors_position(pma, cursor_set, tpairs[i].oldtag, tpairs[i].newtag);
}
}
static void __pma_update_my_cursors(PMA pma, struct kv_pair_tag *tpairs, int n) {
if (list_empty(&pma->cursors))
return;
struct list cursors;
list_move(&cursors, &pma->cursors);
__pma_update_cursors(pma, &cursors, tpairs, n);
while (!list_empty(&cursors)) {
struct list *list = list_head(&cursors);
list_remove(list);
list_push(&pma->cursors, list);
}
}
static struct kv_pair_tag *__pma_extract_pairs(PMA pma, int npairs, int lo, int hi) {
struct kv_pair_tag *pairs;
int i;
int lastpair;
pairs = toku_malloc(npairs * sizeof (struct kv_pair_tag));
if (pairs == 0)
return 0;
lastpair = 0;
for (i=lo; i<hi; i++) {
assert(0 <= i && i < pma->N);
if (pma->pairs[i] != 0) {
assert(pma->pairs[i] != (void*)0xdeadbeef);
pairs[lastpair].pair = pma->pairs[i];
pairs[lastpair].oldtag = i;
pma->pairs[i] = 0;
lastpair += 1;
}
}
assert(lastpair == npairs);
return pairs;
}
#if PMA_USE_MEMPOOL
static void __pma_relocate_kvpairs(PMA pma) {
int i;
for (i=0; i<pma->N; i++) {
struct kv_pair *kv = pma->pairs[i];
if (kv) {
pma->pairs[i] = kv_pair_malloc_mempool(kv_pair_key(kv), kv_pair_keylen(kv), kv_pair_val(kv),
kv_pair_vallen(kv), &pma->kvspace);
assert(pma->pairs[i]);
}
}
}
#endif
int pma_split(PMA origpma, unsigned int *origpma_size,
PMA leftpma, unsigned int *leftpma_size, u_int32_t leftrand4fp, u_int32_t *leftfingerprint,
PMA rightpma, unsigned int *rightpma_size, u_int32_t rightrand4fp, u_int32_t *rightfingerprint) {
int error;
int npairs;
struct kv_pair_tag *pairs;
int sumlen;
int runlen;
int i;
int n;
int spliti;
struct list cursors;
/* extract the pairs */
npairs = pma_n_entries(origpma);
if (npairs == 0)
return 0;
assert(pma_n_entries(leftpma) == 0);
assert(pma_n_entries(rightpma) == 0);
/* TODO move pairs to the stack */
pairs = __pma_extract_pairs(origpma, npairs, 0, origpma->N);
assert(pairs);
origpma->n_pairs_present = 0;
/* debug check the kv length sum */
sumlen = 0;
for (i=0; i<npairs; i++)
sumlen += kv_pair_keylen(pairs[i].pair) + kv_pair_vallen(pairs[i].pair) + KEY_VALUE_OVERHEAD;
if (origpma_size)
assert(*(int *)origpma_size == sumlen);
runlen = 0;
for (i=0; i<npairs;) {
runlen += kv_pair_keylen(pairs[i].pair) + kv_pair_vallen(pairs[i].pair) + KEY_VALUE_OVERHEAD;
i++;
if (2*runlen >= sumlen)
break;
}
spliti = i;
if (leftpma_size)
*leftpma_size = runlen;
if (rightpma_size)
*rightpma_size = sumlen - runlen;
/* set the cursor set to be all of the cursors from the original pma */
list_init(&cursors);
if (!list_empty(&origpma->cursors))
list_move(&cursors, &origpma->cursors);
{
u_int32_t sum = 0;
for (i=0; i<spliti; i++) {
sum+=toku_calccrc32_kvpair(kv_pair_key_const(pairs[i].pair), kv_pair_keylen(pairs[i].pair),
kv_pair_val_const(pairs[i].pair), kv_pair_vallen(pairs[i].pair));
}
*leftfingerprint += leftrand4fp * sum;
}
{
u_int32_t sum = 0;
for (i=spliti; i<npairs; i++) {
sum+=toku_calccrc32_kvpair(kv_pair_key_const(pairs[i].pair), kv_pair_keylen(pairs[i].pair),
kv_pair_val_const(pairs[i].pair), kv_pair_vallen(pairs[i].pair));
}
*rightfingerprint += rightrand4fp * sum;
}
/* put the first half of pairs into the left pma */
n = spliti;
error = __pma_resize_array(leftpma, n + n/4, 0);
assert(error == 0);
distribute_data(leftpma->pairs, pma_index_limit(leftpma), &pairs[0], n, leftpma);
#if PMA_USE_MEMPOOL
__pma_relocate_kvpairs(leftpma);
#endif
__pma_update_cursors(leftpma, &cursors, &pairs[0], spliti);
leftpma->n_pairs_present = spliti;
/* put the second half of pairs into the right pma */
n = npairs - spliti;
error = __pma_resize_array(rightpma, n + n/4, 0);
assert(error == 0);
distribute_data(rightpma->pairs, pma_index_limit(rightpma), &pairs[spliti], n, rightpma);
#if PMA_USE_MEMPOOL
__pma_relocate_kvpairs(rightpma);
#endif
__pma_update_cursors(rightpma, &cursors, &pairs[spliti], n);
rightpma->n_pairs_present = n;
toku_free(pairs);
/* bind the remaining cursors to the left pma*/
while (!list_empty(&cursors)) {
struct list *list = list_head(&cursors);
list_remove(list);
list_push(&leftpma->cursors, list);
}
return 0;
}
int pma_get_last(PMA pma, DBT *key, DBT *val) {
int position;
struct kv_pair *pair;
void *v; int vlen;
position = pma->N - 1;
while ((pair = pma->pairs[position]) == 0) {
if (position > 0)
position--;
else
return DB_NOTFOUND;
}
if (key) {
v = kv_pair_key(pair);
vlen = kv_pair_keylen(pair);
fill_dbt(key, memdup(v, vlen), vlen);
}
if (val) {
v = kv_pair_val(pair);
vlen = kv_pair_vallen(pair);
fill_dbt(val, memdup(v, vlen), vlen);
}
return 0;
}
static void __pma_bulk_cleanup(struct pma *pma, struct kv_pair_tag *pairs, int n) {
int i;
for (i=0; i<n; i++)
if (pairs[i].pair)
pma_mfree_kv_pair(pma, pairs[i].pair);
}
int pma_bulk_insert(PMA pma, DBT *keys, DBT *vals, int n_newpairs, u_int32_t rand4fp, u_int32_t *sum) {
struct kv_pair_tag *newpairs;
int i;
int error;
u_int32_t delta=0;
if (n_newpairs == 0)
return 0;
if (!list_empty(&pma->cursors))
return -1;
if (pma_n_entries(pma) > 0)
return -2;
/* TODO put newpairs on the stack */
newpairs = toku_malloc(n_newpairs * sizeof (struct kv_pair_tag));
if (newpairs == 0) {
error = -3; return error;
}
for (i=0; i<n_newpairs; i++) {
delta += rand4fp*toku_calccrc32_kvpair (keys[i].data, keys[i].size, vals[i].data, vals[i].size);
#if PMA_USE_MEMPOOL
newpairs[i].pair = kv_pair_malloc_mempool(keys[i].data, keys[i].size,
vals[i].data, vals[i].size, &pma->kvspace);
#else
newpairs[i].pair = kv_pair_malloc(keys[i].data, keys[i].size, vals[i].data, vals[i].size);
#endif
if (newpairs[i].pair == 0) {
__pma_bulk_cleanup(pma, newpairs, i);
toku_free(newpairs);
error = -4; return error;
}
}
error = __pma_resize_array(pma, n_newpairs + n_newpairs/4, 0);
if (error) {
__pma_bulk_cleanup(pma, newpairs, n_newpairs);
toku_free(newpairs);
error = -5; return error;
}
distribute_data(pma->pairs, pma_index_limit(pma), newpairs, n_newpairs, pma);
pma->n_pairs_present = n_newpairs;
toku_free(newpairs);
*sum += delta;
return 0;
}
/* verify that the keys in the pma index are sorted subject to the pma mode
* no duplications, duplicates, sorted duplicates.
*/
void pma_verify(PMA pma, DB *db) {
int i;
struct kv_pair *kv;
/* find the first key in the index */
for (i=0; i<pma->N; i++) {
kv = pma->pairs[i];
if (kv_pair_inuse(kv)) {
kv = kv_pair_ptr(kv);
i += 1;
break;
}
}
/* compare the current key with the next key in the index */
struct kv_pair *nextkv;
for (; i<pma->N; i++) {
nextkv = pma->pairs[i];
if (kv_pair_inuse(nextkv)) {
nextkv = kv_pair_ptr(nextkv);
DBT kv_dbt, nextkv_dbt;
fill_dbt(&kv_dbt, kv_pair_key(kv), kv_pair_keylen(kv));
fill_dbt(&nextkv_dbt, kv_pair_key(nextkv), kv_pair_keylen(nextkv));
int r = pma->compare_fun(db, &kv_dbt, &nextkv_dbt);
if (pma->dup_mode == 0)
assert(r < 0);
else if (pma->dup_mode & DB_DUP)
assert(r <= 0);
if (r == 0 && (pma->dup_mode & DB_DUPSORT)) {
fill_dbt(&kv_dbt, kv_pair_val(kv), kv_pair_vallen(kv));
fill_dbt(&nextkv_dbt, kv_pair_val(nextkv), kv_pair_vallen(nextkv));
r = pma->dup_compare_fun(db, &kv_dbt, &nextkv_dbt);
assert(r <= 0);
}
kv = nextkv;
}
}
#if PMA_USE_MEMPOOL
/* verify all kv pairs are in the memory pool */
for (i=0; i<pma->N; i++) {
kv = pma->pairs[i];
if (kv_pair_inuse(kv)) {
kv = kv_pair_ptr(kv);
assert(mempool_inrange(&pma->kvspace, kv, kv_pair_size(kv)));
}
}
#endif
}
void pma_verify_fingerprint (PMA pma, u_int32_t rand4fingerprint, u_int32_t fingerprint) {
u_int32_t actual_fingerprint=0;
PMA_ITERATE(pma, kv, kl, dv, dl,
actual_fingerprint+=rand4fingerprint*toku_calccrc32_kvpair(kv,kl,dv,dl)
);
assert(actual_fingerprint==fingerprint);
}