mariadb/sql/rpl_utility.cc
Alexander Barkov 9aaf62d058 MDEV-15926 MEDIUMINT returns wrong I_S attributes
Problem:

The logic in store_column_type() with a switch on field type was
hard to follow. The part for MEDIUMINT (MYSQL_TYPE_INT24) was not correct.
It erroneously calculated the precision of MEDIUMINT UNSIGNED
as 7 instead of 8.

A similar hard-to-follow switch doing some type specific calculations
resided in adjust_max_effective_column_length(). It was also wrong for
MEDIUMINT (reported as a separate issue in MDEV-15946).

Solution:

1. Introducing a new class Information_schema_numeric_attributes
2. Adding a new virtual method Field::information_schema_numeric_attributes()
3. Splitting the logic in store_column_type() into virtual
   implementations of information_schema_numeric_attributes().
4. In order to avoid adding duplicate code for the integer data types,
   adding a new virtual method Field_int::numeric_precision(),
   which returns the number of digits.

Additional changes:

1. Adding the "const" qualifier to Field::max_display_length()

2. Moving the code from adjust_max_effective_column_length()
  directly to Field::max_display_length().
  There was no any sense to have two implementations:
  - a set of wrong virtual implementations for Field_xxx::max_display_length()
  - additional code in adjust_max_effective_column_length() fixing
    bad results of Field_xxx::max_display_length()
  This change is safe:
  - The code using Field::max_display_length()
    in field.cc, sql_show.cc, sql_type.cc is not affected.
  - The code in rpl_utility.cc is also not affected.
    See a new DBUG_ASSSERT and new comments explaining why.

  In the new reduction, Field_xxx::max_display_length() returns
  correct results for all integer types (except MEDIUMINT, see below).

  Putting implementations of numeric_precision() and max_display_length()
  near each other in field.h made the logic much clearer and thus
  helped to reveal bad results for Field_medium::max_display_length(),
  which returns 9 instead of 8 for signed MEDIUMINT fields.
  This problem will be addressed separately (MDEV-15946).

Note, this change is also useful for pluggable data types (see MDEV-4912),
as now a user defined Field_xxx has a way to control what's returned
in INFORMATION_SCHEMA.COLUMNS.NUMERIC_PRECISION and
INFORMATION_SCHEMA.COLUMNS.NUMERIC_SCALE by implementing
a desired behavior in Field_xxx::information_schema_numeric_attributes().
2018-04-20 18:11:27 +04:00

1281 lines
38 KiB
C++

/* Copyright (c) 2006, 2013, Oracle and/or its affiliates.
Copyright (c) 2011, 2013, Monty Program Ab
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include "mariadb.h"
#include <my_bit.h>
#include "rpl_utility.h"
#include "log_event.h"
#if !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION)
#include "rpl_rli.h"
#include "sql_select.h"
/**
Calculate display length for MySQL56 temporal data types from their metadata.
It contains fractional precision in the low 16-bit word.
*/
static uint32
max_display_length_for_temporal2_field(uint32 int_display_length,
unsigned int metadata)
{
metadata&= 0x00ff;
return int_display_length + metadata + (metadata ? 1 : 0);
}
/**
Compute the maximum display length of a field.
@param sql_type Type of the field
@param metadata The metadata from the master for the field.
@return Maximum length of the field in bytes.
The precise values calculated by field->max_display_length() and
calculated by max_display_length_for_field() can differ (by +1 or -1)
for integer data types (TINYINT, SMALLINT, MEDIUMINT, INT, BIGINT).
This slight difference is not important here, because we call
this function only for two *different* integer data types.
*/
static uint32
max_display_length_for_field(enum_field_types sql_type, unsigned int metadata)
{
DBUG_PRINT("debug", ("sql_type: %d, metadata: 0x%x", sql_type, metadata));
DBUG_ASSERT(metadata >> 16 == 0);
switch (sql_type) {
case MYSQL_TYPE_NEWDECIMAL:
return metadata >> 8;
case MYSQL_TYPE_FLOAT:
return 12;
case MYSQL_TYPE_DOUBLE:
return 22;
case MYSQL_TYPE_SET:
case MYSQL_TYPE_ENUM:
return metadata & 0x00ff;
case MYSQL_TYPE_STRING:
{
uchar type= metadata >> 8;
if (type == MYSQL_TYPE_SET || type == MYSQL_TYPE_ENUM)
return metadata & 0xff;
else
/* This is taken from Field_string::unpack. */
return (((metadata >> 4) & 0x300) ^ 0x300) + (metadata & 0x00ff);
}
case MYSQL_TYPE_YEAR:
case MYSQL_TYPE_TINY:
return 4;
case MYSQL_TYPE_SHORT:
return 6;
case MYSQL_TYPE_INT24:
return 9;
case MYSQL_TYPE_LONG:
return 11;
#ifdef HAVE_LONG_LONG
case MYSQL_TYPE_LONGLONG:
return 20;
#endif
case MYSQL_TYPE_NULL:
return 0;
case MYSQL_TYPE_NEWDATE:
return 3;
case MYSQL_TYPE_DATE:
return 3;
case MYSQL_TYPE_TIME:
return MIN_TIME_WIDTH;
case MYSQL_TYPE_TIME2:
return max_display_length_for_temporal2_field(MIN_TIME_WIDTH, metadata);
case MYSQL_TYPE_TIMESTAMP:
return MAX_DATETIME_WIDTH;
case MYSQL_TYPE_TIMESTAMP2:
return max_display_length_for_temporal2_field(MAX_DATETIME_WIDTH, metadata);
case MYSQL_TYPE_DATETIME:
return MAX_DATETIME_WIDTH;
case MYSQL_TYPE_DATETIME2:
return max_display_length_for_temporal2_field(MAX_DATETIME_WIDTH, metadata);
case MYSQL_TYPE_BIT:
/*
Decode the size of the bit field from the master.
*/
DBUG_ASSERT((metadata & 0xff) <= 7);
return 8 * (metadata >> 8U) + (metadata & 0x00ff);
case MYSQL_TYPE_VAR_STRING:
case MYSQL_TYPE_VARCHAR:
return metadata;
case MYSQL_TYPE_VARCHAR_COMPRESSED:
return metadata - 1;
/*
The actual length for these types does not really matter since
they are used to calc_pack_length, which ignores the given
length for these types.
Since we want this to be accurate for other uses, we return the
maximum size in bytes of these BLOBs.
*/
case MYSQL_TYPE_TINY_BLOB:
return (uint32)my_set_bits(1 * 8);
case MYSQL_TYPE_MEDIUM_BLOB:
return (uint32)my_set_bits(3 * 8);
case MYSQL_TYPE_BLOB:
case MYSQL_TYPE_BLOB_COMPRESSED:
/*
For the blob type, Field::real_type() lies and say that all
blobs are of type MYSQL_TYPE_BLOB. In that case, we have to look
at the length instead to decide what the max display size is.
*/
return (uint32)my_set_bits(metadata * 8);
case MYSQL_TYPE_LONG_BLOB:
case MYSQL_TYPE_GEOMETRY:
return (uint32)my_set_bits(4 * 8);
default:
return ~(uint32) 0;
}
}
/*
Compare the pack lengths of a source field (on the master) and a
target field (on the slave).
@param field Target field.
@param type Source field type.
@param metadata Source field metadata.
@retval -1 The length of the source field is smaller than the target field.
@retval 0 The length of the source and target fields are the same.
@retval 1 The length of the source field is greater than the target field.
*/
int compare_lengths(Field *field, enum_field_types source_type, uint16 metadata)
{
DBUG_ENTER("compare_lengths");
size_t const source_length=
max_display_length_for_field(source_type, metadata);
size_t const target_length= field->max_display_length();
DBUG_PRINT("debug", ("source_length: %lu, source_type: %u,"
" target_length: %lu, target_type: %u",
(unsigned long) source_length, source_type,
(unsigned long) target_length, field->real_type()));
int result= source_length < target_length ? -1 : source_length > target_length;
DBUG_PRINT("result", ("%d", result));
DBUG_RETURN(result);
}
#endif //MYSQL_CLIENT
/*********************************************************************
* table_def member definitions *
*********************************************************************/
/*
This function returns the field size in raw bytes based on the type
and the encoded field data from the master's raw data.
*/
uint32 table_def::calc_field_size(uint col, uchar *master_data) const
{
uint32 length= 0;
switch (type(col)) {
case MYSQL_TYPE_NEWDECIMAL:
length= my_decimal_get_binary_size(m_field_metadata[col] >> 8,
m_field_metadata[col] & 0xff);
break;
case MYSQL_TYPE_DECIMAL:
case MYSQL_TYPE_FLOAT:
case MYSQL_TYPE_DOUBLE:
length= m_field_metadata[col];
break;
/*
The cases for SET and ENUM are include for completeness, however
both are mapped to type MYSQL_TYPE_STRING and their real types
are encoded in the field metadata.
*/
case MYSQL_TYPE_SET:
case MYSQL_TYPE_ENUM:
case MYSQL_TYPE_STRING:
{
uchar type= m_field_metadata[col] >> 8U;
if ((type == MYSQL_TYPE_SET) || (type == MYSQL_TYPE_ENUM))
length= m_field_metadata[col] & 0x00ff;
else
{
/*
We are reading the actual size from the master_data record
because this field has the actual lengh stored in the first
byte.
*/
length= (uint) *master_data + 1;
DBUG_ASSERT(length != 0);
}
break;
}
case MYSQL_TYPE_YEAR:
case MYSQL_TYPE_TINY:
length= 1;
break;
case MYSQL_TYPE_SHORT:
length= 2;
break;
case MYSQL_TYPE_INT24:
length= 3;
break;
case MYSQL_TYPE_LONG:
length= 4;
break;
#ifdef HAVE_LONG_LONG
case MYSQL_TYPE_LONGLONG:
length= 8;
break;
#endif
case MYSQL_TYPE_NULL:
length= 0;
break;
case MYSQL_TYPE_NEWDATE:
length= 3;
break;
case MYSQL_TYPE_DATE:
case MYSQL_TYPE_TIME:
length= 3;
break;
case MYSQL_TYPE_TIME2:
length= my_time_binary_length(m_field_metadata[col]);
break;
case MYSQL_TYPE_TIMESTAMP:
length= 4;
break;
case MYSQL_TYPE_TIMESTAMP2:
length= my_timestamp_binary_length(m_field_metadata[col]);
break;
case MYSQL_TYPE_DATETIME:
length= 8;
break;
case MYSQL_TYPE_DATETIME2:
length= my_datetime_binary_length(m_field_metadata[col]);
break;
case MYSQL_TYPE_BIT:
{
/*
Decode the size of the bit field from the master.
from_len is the length in bytes from the master
from_bit_len is the number of extra bits stored in the master record
If from_bit_len is not 0, add 1 to the length to account for accurate
number of bytes needed.
*/
uint from_len= (m_field_metadata[col] >> 8U) & 0x00ff;
uint from_bit_len= m_field_metadata[col] & 0x00ff;
DBUG_ASSERT(from_bit_len <= 7);
length= from_len + ((from_bit_len > 0) ? 1 : 0);
break;
}
case MYSQL_TYPE_VARCHAR:
case MYSQL_TYPE_VARCHAR_COMPRESSED:
{
length= m_field_metadata[col] > 255 ? 2 : 1; // c&p of Field_varstring::data_length()
length+= length == 1 ? (uint32) *master_data : uint2korr(master_data);
break;
}
case MYSQL_TYPE_TINY_BLOB:
case MYSQL_TYPE_MEDIUM_BLOB:
case MYSQL_TYPE_LONG_BLOB:
case MYSQL_TYPE_BLOB:
case MYSQL_TYPE_BLOB_COMPRESSED:
case MYSQL_TYPE_GEOMETRY:
{
/*
Compute the length of the data. We cannot use get_length() here
since it is dependent on the specific table (and also checks the
packlength using the internal 'table' pointer) and replication
is using a fixed format for storing data in the binlog.
*/
switch (m_field_metadata[col]) {
case 1:
length= *master_data;
break;
case 2:
length= uint2korr(master_data);
break;
case 3:
length= uint3korr(master_data);
break;
case 4:
length= uint4korr(master_data);
break;
default:
DBUG_ASSERT(0); // Should not come here
break;
}
length+= m_field_metadata[col];
break;
}
default:
length= ~(uint32) 0;
}
return length;
}
#if !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION)
/**
*/
void show_sql_type(enum_field_types type, uint16 metadata, String *str, CHARSET_INFO *field_cs)
{
DBUG_ENTER("show_sql_type");
DBUG_PRINT("enter", ("type: %d, metadata: 0x%x", type, metadata));
switch (type)
{
case MYSQL_TYPE_TINY:
str->set_ascii(STRING_WITH_LEN("tinyint"));
break;
case MYSQL_TYPE_SHORT:
str->set_ascii(STRING_WITH_LEN("smallint"));
break;
case MYSQL_TYPE_LONG:
str->set_ascii(STRING_WITH_LEN("int"));
break;
case MYSQL_TYPE_FLOAT:
str->set_ascii(STRING_WITH_LEN("float"));
break;
case MYSQL_TYPE_DOUBLE:
str->set_ascii(STRING_WITH_LEN("double"));
break;
case MYSQL_TYPE_NULL:
str->set_ascii(STRING_WITH_LEN("null"));
break;
case MYSQL_TYPE_TIMESTAMP:
case MYSQL_TYPE_TIMESTAMP2:
str->set_ascii(STRING_WITH_LEN("timestamp"));
break;
case MYSQL_TYPE_LONGLONG:
str->set_ascii(STRING_WITH_LEN("bigint"));
break;
case MYSQL_TYPE_INT24:
str->set_ascii(STRING_WITH_LEN("mediumint"));
break;
case MYSQL_TYPE_NEWDATE:
case MYSQL_TYPE_DATE:
str->set_ascii(STRING_WITH_LEN("date"));
break;
case MYSQL_TYPE_TIME:
case MYSQL_TYPE_TIME2:
str->set_ascii(STRING_WITH_LEN("time"));
break;
case MYSQL_TYPE_DATETIME:
case MYSQL_TYPE_DATETIME2:
str->set_ascii(STRING_WITH_LEN("datetime"));
break;
case MYSQL_TYPE_YEAR:
str->set_ascii(STRING_WITH_LEN("year"));
break;
case MYSQL_TYPE_VAR_STRING:
case MYSQL_TYPE_VARCHAR:
case MYSQL_TYPE_VARCHAR_COMPRESSED:
{
CHARSET_INFO *cs= str->charset();
size_t length=
cs->cset->snprintf(cs, (char*) str->ptr(), str->alloced_length(),
"varchar(%u)%s", metadata,
type == MYSQL_TYPE_VARCHAR_COMPRESSED ? " compressed"
: "");
str->length(length);
}
break;
case MYSQL_TYPE_BIT:
{
CHARSET_INFO *cs= str->charset();
int bit_length= 8 * (metadata >> 8) + (metadata & 0xFF);
size_t length=
cs->cset->snprintf(cs, (char*) str->ptr(), str->alloced_length(),
"bit(%d)", bit_length);
str->length(length);
}
break;
case MYSQL_TYPE_DECIMAL:
{
CHARSET_INFO *cs= str->charset();
size_t length=
cs->cset->snprintf(cs, (char*) str->ptr(), str->alloced_length(),
"decimal(%d,?)/*old*/", metadata);
str->length(length);
}
break;
case MYSQL_TYPE_NEWDECIMAL:
{
CHARSET_INFO *cs= str->charset();
size_t length=
cs->cset->snprintf(cs, (char*) str->ptr(), str->alloced_length(),
"decimal(%d,%d)", metadata >> 8, metadata & 0xff);
str->length(length);
}
break;
case MYSQL_TYPE_ENUM:
str->set_ascii(STRING_WITH_LEN("enum"));
break;
case MYSQL_TYPE_SET:
str->set_ascii(STRING_WITH_LEN("set"));
break;
case MYSQL_TYPE_BLOB:
case MYSQL_TYPE_BLOB_COMPRESSED:
/*
Field::real_type() lies regarding the actual type of a BLOB, so
it is necessary to check the pack length to figure out what kind
of blob it really is.
*/
switch (get_blob_type_from_length(metadata))
{
case MYSQL_TYPE_TINY_BLOB:
str->set_ascii(STRING_WITH_LEN("tinyblob"));
break;
case MYSQL_TYPE_MEDIUM_BLOB:
str->set_ascii(STRING_WITH_LEN("mediumblob"));
break;
case MYSQL_TYPE_LONG_BLOB:
str->set_ascii(STRING_WITH_LEN("longblob"));
break;
case MYSQL_TYPE_BLOB:
str->set_ascii(STRING_WITH_LEN("blob"));
break;
default:
DBUG_ASSERT(0);
break;
}
if (type == MYSQL_TYPE_BLOB_COMPRESSED)
str->append(STRING_WITH_LEN(" compressed"));
break;
case MYSQL_TYPE_STRING:
{
/*
This is taken from Field_string::unpack.
*/
CHARSET_INFO *cs= str->charset();
uint bytes= (((metadata >> 4) & 0x300) ^ 0x300) + (metadata & 0x00ff);
size_t length=
cs->cset->snprintf(cs, (char*) str->ptr(), str->alloced_length(),
"char(%d)", bytes / field_cs->mbmaxlen);
str->length(length);
}
break;
case MYSQL_TYPE_GEOMETRY:
str->set_ascii(STRING_WITH_LEN("geometry"));
break;
default:
str->set_ascii(STRING_WITH_LEN("<unknown type>"));
}
DBUG_VOID_RETURN;
}
/**
Check the order variable and print errors if the order is not
acceptable according to the current settings.
@param order The computed order of the conversion needed.
@param rli The relay log info data structure: for error reporting.
*/
bool is_conversion_ok(int order, Relay_log_info *rli)
{
DBUG_ENTER("is_conversion_ok");
bool allow_non_lossy, allow_lossy;
allow_non_lossy = slave_type_conversions_options &
(1ULL << SLAVE_TYPE_CONVERSIONS_ALL_NON_LOSSY);
allow_lossy= slave_type_conversions_options &
(1ULL << SLAVE_TYPE_CONVERSIONS_ALL_LOSSY);
DBUG_PRINT("enter", ("order: %d, flags:%s%s", order,
allow_non_lossy ? " ALL_NON_LOSSY" : "",
allow_lossy ? " ALL_LOSSY" : ""));
if (order < 0 && !allow_non_lossy)
{
/* !!! Add error message saying that non-lossy conversions need to be allowed. */
DBUG_RETURN(false);
}
if (order > 0 && !allow_lossy)
{
/* !!! Add error message saying that lossy conversions need to be allowed. */
DBUG_RETURN(false);
}
DBUG_RETURN(true);
}
/**
Can a type potentially be converted to another type?
This function check if the types are convertible and what
conversion is required.
If conversion is not possible, and error is printed.
If conversion is possible:
- *order will be set to -1 if source type is smaller than target
type and a non-lossy conversion can be required. This includes
the case where the field types are different but types could
actually be converted in either direction.
- *order will be set to 0 if no conversion is required.
- *order will be set to 1 if the source type is strictly larger
than the target type and that conversion is potentially lossy.
@param[in] field Target field
@param[in] type Source field type
@param[in] metadata Source field metadata
@param[in] rli Relay log info (for error reporting)
@param[in] mflags Flags from the table map event
@param[out] order Order between source field and target field
@return @c true if conversion is possible according to the current
settings, @c false if conversion is not possible according to the
current setting.
*/
static bool
can_convert_field_to(Field *field,
enum_field_types source_type, uint16 metadata,
Relay_log_info *rli, uint16 mflags,
int *order_var)
{
DBUG_ENTER("can_convert_field_to");
bool same_type;
#ifndef DBUG_OFF
char field_type_buf[MAX_FIELD_WIDTH];
String field_type(field_type_buf, sizeof(field_type_buf), &my_charset_latin1);
field->sql_type(field_type);
DBUG_PRINT("enter", ("field_type: %s, target_type: %d, source_type: %d, source_metadata: 0x%x",
field_type.c_ptr_safe(), field->real_type(), source_type, metadata));
#endif
/**
@todo
Implement Field_varstring_cmopressed::real_type() and
Field_blob_compressed::real_type() properly. All occurencies
of Field::real_type() have to be inspected and adjusted if needed.
Until it is not ready we have to compare source_type against
binlog_type() when replicating from or to compressed data types.
@sa Comment for Field::binlog_type()
*/
if (source_type == MYSQL_TYPE_VARCHAR_COMPRESSED ||
source_type == MYSQL_TYPE_BLOB_COMPRESSED ||
field->binlog_type() == MYSQL_TYPE_VARCHAR_COMPRESSED ||
field->binlog_type() == MYSQL_TYPE_BLOB_COMPRESSED)
same_type= field->binlog_type() == source_type;
else
same_type= field->real_type() == source_type;
/*
If the real type is the same, we need to check the metadata to
decide if conversions are allowed.
*/
if (same_type)
{
if (metadata == 0) // Metadata can only be zero if no metadata was provided
{
/*
If there is no metadata, we either have an old event where no
metadata were supplied, or a type that does not require any
metadata. In either case, conversion can be done but no
conversion table is necessary.
*/
DBUG_PRINT("debug", ("Base types are identical, but there is no metadata"));
*order_var= 0;
DBUG_RETURN(true);
}
DBUG_PRINT("debug", ("Base types are identical, doing field size comparison"));
if (field->compatible_field_size(metadata, rli, mflags, order_var))
DBUG_RETURN(is_conversion_ok(*order_var, rli));
else
DBUG_RETURN(false);
}
else if (
/*
Conversion from MariaDB TIMESTAMP(0), TIME(0), DATETIME(0)
to the corresponding MySQL56 types is non-lossy.
*/
(metadata == 0 &&
((field->real_type() == MYSQL_TYPE_TIMESTAMP2 &&
source_type == MYSQL_TYPE_TIMESTAMP) ||
(field->real_type() == MYSQL_TYPE_TIME2 &&
source_type == MYSQL_TYPE_TIME) ||
(field->real_type() == MYSQL_TYPE_DATETIME2 &&
source_type == MYSQL_TYPE_DATETIME))) ||
/*
Conversion from MySQL56 TIMESTAMP(N), TIME(N), DATETIME(N)
to the corresponding MariaDB or MySQL55 types is non-lossy.
*/
(metadata == field->decimals() &&
((field->real_type() == MYSQL_TYPE_TIMESTAMP &&
source_type == MYSQL_TYPE_TIMESTAMP2) ||
(field->real_type() == MYSQL_TYPE_TIME &&
source_type == MYSQL_TYPE_TIME2) ||
(field->real_type() == MYSQL_TYPE_DATETIME &&
source_type == MYSQL_TYPE_DATETIME2))))
{
/*
TS-TODO: conversion from FSP1>FSP2.
*/
*order_var= -1;
DBUG_RETURN(true);
}
else if (!slave_type_conversions_options)
DBUG_RETURN(false);
/*
Here, from and to will always be different. Since the types are
different, we cannot use the compatible_field_size() function, but
have to rely on hard-coded max-sizes for fields.
*/
DBUG_PRINT("debug", ("Base types are different, checking conversion"));
switch (source_type) // Source type (on master)
{
case MYSQL_TYPE_DECIMAL:
case MYSQL_TYPE_NEWDECIMAL:
case MYSQL_TYPE_FLOAT:
case MYSQL_TYPE_DOUBLE:
switch (field->real_type())
{
case MYSQL_TYPE_NEWDECIMAL:
/*
Then the other type is either FLOAT, DOUBLE, or old style
DECIMAL, so we require lossy conversion.
*/
*order_var= 1;
DBUG_RETURN(is_conversion_ok(*order_var, rli));
case MYSQL_TYPE_DECIMAL:
case MYSQL_TYPE_FLOAT:
case MYSQL_TYPE_DOUBLE:
{
if (source_type == MYSQL_TYPE_NEWDECIMAL ||
source_type == MYSQL_TYPE_DECIMAL)
*order_var = 1; // Always require lossy conversions
else
*order_var= compare_lengths(field, source_type, metadata);
DBUG_ASSERT(*order_var != 0);
DBUG_RETURN(is_conversion_ok(*order_var, rli));
}
default:
DBUG_RETURN(false);
}
break;
/*
The length comparison check will do the correct job of comparing
the field lengths (in bytes) of two integer types.
*/
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_INT24:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
switch (field->real_type())
{
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_INT24:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
/*
max_display_length_for_field() is not fully precise for the integer
data types. So its result cannot be compared to the result of
field->max_dispay_length() when the table field and the binlog field
are of the same type.
This code should eventually be rewritten not to use
compare_lengths(), to detect subtype/supetype relations
just using the type codes.
*/
DBUG_ASSERT(source_type != field->real_type());
*order_var= compare_lengths(field, source_type, metadata);
DBUG_ASSERT(*order_var != 0);
DBUG_RETURN(is_conversion_ok(*order_var, rli));
default:
DBUG_RETURN(false);
}
break;
/*
Since source and target type is different, and it is not possible
to convert bit types to anything else, this will return false.
*/
case MYSQL_TYPE_BIT:
DBUG_RETURN(false);
/*
If all conversions are disabled, it is not allowed to convert
between these types. Since the TEXT vs. BINARY is distinguished by
the charset, and the charset is not replicated, we cannot
currently distinguish between , e.g., TEXT and BLOB.
*/
case MYSQL_TYPE_TINY_BLOB:
case MYSQL_TYPE_MEDIUM_BLOB:
case MYSQL_TYPE_LONG_BLOB:
case MYSQL_TYPE_BLOB:
case MYSQL_TYPE_BLOB_COMPRESSED:
case MYSQL_TYPE_STRING:
case MYSQL_TYPE_VAR_STRING:
case MYSQL_TYPE_VARCHAR:
case MYSQL_TYPE_VARCHAR_COMPRESSED:
switch (field->real_type())
{
case MYSQL_TYPE_TINY_BLOB:
case MYSQL_TYPE_MEDIUM_BLOB:
case MYSQL_TYPE_LONG_BLOB:
case MYSQL_TYPE_BLOB:
case MYSQL_TYPE_BLOB_COMPRESSED:
case MYSQL_TYPE_STRING:
case MYSQL_TYPE_VAR_STRING:
case MYSQL_TYPE_VARCHAR:
case MYSQL_TYPE_VARCHAR_COMPRESSED:
*order_var= compare_lengths(field, source_type, metadata);
/*
Here we know that the types are different, so if the order
gives that they do not require any conversion, we still need
to have non-lossy conversion enabled to allow conversion
between different (string) types of the same length.
*/
if (*order_var == 0)
*order_var= -1;
DBUG_RETURN(is_conversion_ok(*order_var, rli));
default:
DBUG_RETURN(false);
}
break;
case MYSQL_TYPE_GEOMETRY:
case MYSQL_TYPE_TIMESTAMP:
case MYSQL_TYPE_DATE:
case MYSQL_TYPE_TIME:
case MYSQL_TYPE_DATETIME:
case MYSQL_TYPE_YEAR:
case MYSQL_TYPE_NEWDATE:
case MYSQL_TYPE_NULL:
case MYSQL_TYPE_ENUM:
case MYSQL_TYPE_SET:
case MYSQL_TYPE_TIMESTAMP2:
case MYSQL_TYPE_DATETIME2:
case MYSQL_TYPE_TIME2:
DBUG_RETURN(false);
}
DBUG_RETURN(false); // To keep GCC happy
}
/**
Is the definition compatible with a table?
This function will compare the master table with an existing table
on the slave and see if they are compatible with respect to the
current settings of @c SLAVE_TYPE_CONVERSIONS.
If the tables are compatible and conversions are required, @c
*tmp_table_var will be set to a virtual temporary table with field
pointers for the fields that require conversions. This allow simple
checking of whether a conversion are to be applied or not.
If tables are compatible, but no conversions are necessary, @c
*tmp_table_var will be set to NULL.
@param rli_arg[in]
Relay log info, for error reporting.
@param table[in]
Table to compare with
@param tmp_table_var[out]
Virtual temporary table for performing conversions, if necessary.
@retval true Master table is compatible with slave table.
@retval false Master table is not compatible with slave table.
*/
bool
table_def::compatible_with(THD *thd, rpl_group_info *rgi,
TABLE *table, TABLE **conv_table_var)
const
{
/*
We only check the initial columns for the tables.
*/
uint const cols_to_check= MY_MIN(table->s->fields, size());
Relay_log_info *rli= rgi->rli;
TABLE *tmp_table= NULL;
for (uint col= 0 ; col < cols_to_check ; ++col)
{
Field *const field= table->field[col];
int order;
if (can_convert_field_to(field, type(col), field_metadata(col), rli, m_flags, &order))
{
DBUG_PRINT("debug", ("Checking column %d -"
" field '%s' can be converted - order: %d",
col, field->field_name.str, order));
DBUG_ASSERT(order >= -1 && order <= 1);
/*
If order is not 0, a conversion is required, so we need to set
up the conversion table.
*/
if (order != 0 && tmp_table == NULL)
{
/*
This will create the full table with all fields. This is
necessary to ge the correct field lengths for the record.
*/
tmp_table= create_conversion_table(thd, rgi, table);
if (tmp_table == NULL)
return false;
/*
Clear all fields up to, but not including, this column.
*/
for (unsigned int i= 0; i < col; ++i)
tmp_table->field[i]= NULL;
}
if (order == 0 && tmp_table != NULL)
tmp_table->field[col]= NULL;
}
else
{
DBUG_PRINT("debug", ("Checking column %d -"
" field '%s' can not be converted",
col, field->field_name.str));
DBUG_ASSERT(col < size() && col < table->s->fields);
DBUG_ASSERT(table->s->db.str && table->s->table_name.str);
DBUG_ASSERT(table->in_use);
const char *db_name= table->s->db.str;
const char *tbl_name= table->s->table_name.str;
char source_buf[MAX_FIELD_WIDTH];
char target_buf[MAX_FIELD_WIDTH];
String source_type(source_buf, sizeof(source_buf), &my_charset_latin1);
String target_type(target_buf, sizeof(target_buf), &my_charset_latin1);
THD *thd= table->in_use;
show_sql_type(type(col), field_metadata(col), &source_type, field->charset());
field->sql_type(target_type);
rli->report(ERROR_LEVEL, ER_SLAVE_CONVERSION_FAILED, rgi->gtid_info(),
ER_THD(thd, ER_SLAVE_CONVERSION_FAILED),
col, db_name, tbl_name,
source_type.c_ptr_safe(), target_type.c_ptr_safe());
return false;
}
}
#ifndef DBUG_OFF
if (tmp_table)
{
for (unsigned int col= 0; col < tmp_table->s->fields; ++col)
if (tmp_table->field[col])
{
char source_buf[MAX_FIELD_WIDTH];
char target_buf[MAX_FIELD_WIDTH];
String source_type(source_buf, sizeof(source_buf), &my_charset_latin1);
String target_type(target_buf, sizeof(target_buf), &my_charset_latin1);
tmp_table->field[col]->sql_type(source_type);
table->field[col]->sql_type(target_type);
DBUG_PRINT("debug", ("Field %s - conversion required."
" Source type: '%s', Target type: '%s'",
tmp_table->field[col]->field_name.str,
source_type.c_ptr_safe(), target_type.c_ptr_safe()));
}
}
#endif
*conv_table_var= tmp_table;
return true;
}
/**
A wrapper to Virtual_tmp_table, to get access to its constructor,
which is protected for safety purposes (against illegal use on stack).
*/
class Virtual_conversion_table: public Virtual_tmp_table
{
public:
Virtual_conversion_table(THD *thd) :Virtual_tmp_table(thd) { }
/**
Add a new field into the virtual table.
@param sql_type - The real_type of the field.
@param metadata - The RBR binary log metadata for this field.
@param target_field - The field from the target table, to get extra
attributes from (e.g. typelib in case of ENUM).
*/
bool add(enum_field_types sql_type,
uint16 metadata, const Field *target_field)
{
const Type_handler *handler= Type_handler::get_handler_by_real_type(sql_type);
if (!handler)
{
sql_print_error("In RBR mode, Slave received unknown field type field %d "
" for column Name: %s.%s.%s.",
(int) sql_type,
target_field->table->s->db.str,
target_field->table->s->table_name.str,
target_field->field_name.str);
return true;
}
Field *tmp= handler->make_conversion_table_field(this, metadata,
target_field);
if (!tmp)
return true;
Virtual_tmp_table::add(tmp);
DBUG_PRINT("debug", ("sql_type: %d, target_field: '%s', max_length: %d, decimals: %d,"
" maybe_null: %d, unsigned_flag: %d, pack_length: %u",
sql_type, target_field->field_name.str,
tmp->field_length, tmp->decimals(), TRUE,
tmp->flags, tmp->pack_length()));
return false;
}
};
/**
Create a conversion table.
If the function is unable to create the conversion table, an error
will be printed and NULL will be returned.
@return Pointer to conversion table, or NULL if unable to create
conversion table.
*/
TABLE *table_def::create_conversion_table(THD *thd, rpl_group_info *rgi,
TABLE *target_table) const
{
DBUG_ENTER("table_def::create_conversion_table");
Virtual_conversion_table *conv_table;
Relay_log_info *rli= rgi->rli;
/*
At slave, columns may differ. So we should create
MY_MIN(columns@master, columns@slave) columns in the
conversion table.
*/
uint const cols_to_create= MY_MIN(target_table->s->fields, size());
if (!(conv_table= new(thd) Virtual_conversion_table(thd)) ||
conv_table->init(cols_to_create))
goto err;
for (uint col= 0 ; col < cols_to_create; ++col)
{
if (conv_table->add(type(col), field_metadata(col),
target_table->field[col]))
{
DBUG_PRINT("debug", ("binlog_type: %d, metadata: %04X, target_field: '%s'"
" make_conversion_table_field() failed",
binlog_type(col), field_metadata(col),
target_table->field[col]->field_name.str));
goto err;
}
}
if (conv_table->open())
goto err; // Could not allocate record buffer?
DBUG_RETURN(conv_table);
err:
if (conv_table)
delete conv_table;
rli->report(ERROR_LEVEL, ER_SLAVE_CANT_CREATE_CONVERSION, rgi->gtid_info(),
ER_THD(thd, ER_SLAVE_CANT_CREATE_CONVERSION),
target_table->s->db.str,
target_table->s->table_name.str);
DBUG_RETURN(NULL);
}
#endif /* MYSQL_CLIENT */
table_def::table_def(unsigned char *types, ulong size,
uchar *field_metadata, int metadata_size,
uchar *null_bitmap, uint16 flags)
: m_size(size), m_type(0), m_field_metadata_size(metadata_size),
m_field_metadata(0), m_null_bits(0), m_flags(flags),
m_memory(NULL)
{
m_memory= (uchar *)my_multi_malloc(MYF(MY_WME),
&m_type, size,
&m_field_metadata,
size * sizeof(uint16),
&m_null_bits, (size + 7) / 8,
NULL);
bzero(m_field_metadata, size * sizeof(uint16));
if (m_type)
memcpy(m_type, types, size);
else
m_size= 0;
/*
Extract the data from the table map into the field metadata array
iff there is field metadata. The variable metadata_size will be
0 if we are replicating from an older version server since no field
metadata was written to the table map. This can also happen if
there were no fields in the master that needed extra metadata.
*/
if (m_size && metadata_size)
{
int index= 0;
for (unsigned int i= 0; i < m_size; i++)
{
switch (binlog_type(i)) {
case MYSQL_TYPE_TINY_BLOB:
case MYSQL_TYPE_BLOB:
case MYSQL_TYPE_BLOB_COMPRESSED:
case MYSQL_TYPE_MEDIUM_BLOB:
case MYSQL_TYPE_LONG_BLOB:
case MYSQL_TYPE_DOUBLE:
case MYSQL_TYPE_FLOAT:
case MYSQL_TYPE_GEOMETRY:
{
/*
These types store a single byte.
*/
m_field_metadata[i]= field_metadata[index];
index++;
break;
}
case MYSQL_TYPE_SET:
case MYSQL_TYPE_ENUM:
case MYSQL_TYPE_STRING:
{
uint16 x= field_metadata[index++] << 8U; // real_type
x+= field_metadata[index++]; // pack or field length
m_field_metadata[i]= x;
break;
}
case MYSQL_TYPE_BIT:
{
uint16 x= field_metadata[index++];
x = x + (field_metadata[index++] << 8U);
m_field_metadata[i]= x;
break;
}
case MYSQL_TYPE_VARCHAR:
case MYSQL_TYPE_VARCHAR_COMPRESSED:
{
/*
These types store two bytes.
*/
char *ptr= (char *)&field_metadata[index];
m_field_metadata[i]= uint2korr(ptr);
index= index + 2;
break;
}
case MYSQL_TYPE_NEWDECIMAL:
{
uint16 x= field_metadata[index++] << 8U; // precision
x+= field_metadata[index++]; // decimals
m_field_metadata[i]= x;
break;
}
case MYSQL_TYPE_TIME2:
case MYSQL_TYPE_DATETIME2:
case MYSQL_TYPE_TIMESTAMP2:
m_field_metadata[i]= field_metadata[index++];
break;
default:
m_field_metadata[i]= 0;
break;
}
}
}
if (m_size && null_bitmap)
memcpy(m_null_bits, null_bitmap, (m_size + 7) / 8);
}
table_def::~table_def()
{
my_free(m_memory);
#ifndef DBUG_OFF
m_type= 0;
m_size= 0;
#endif
}
/**
@param even_buf point to the buffer containing serialized event
@param event_len length of the event accounting possible checksum alg
@return TRUE if test fails
FALSE as success
*/
bool event_checksum_test(uchar *event_buf, ulong event_len, enum enum_binlog_checksum_alg alg)
{
bool res= FALSE;
uint16 flags= 0; // to store in FD's buffer flags orig value
if (alg != BINLOG_CHECKSUM_ALG_OFF && alg != BINLOG_CHECKSUM_ALG_UNDEF)
{
ha_checksum incoming;
ha_checksum computed;
if (event_buf[EVENT_TYPE_OFFSET] == FORMAT_DESCRIPTION_EVENT)
{
#ifdef DBUG_ASSERT_EXISTS
int8 fd_alg= event_buf[event_len - BINLOG_CHECKSUM_LEN -
BINLOG_CHECKSUM_ALG_DESC_LEN];
#endif
/*
FD event is checksummed and therefore verified w/o the binlog-in-use flag
*/
flags= uint2korr(event_buf + FLAGS_OFFSET);
if (flags & LOG_EVENT_BINLOG_IN_USE_F)
event_buf[FLAGS_OFFSET] &= ~LOG_EVENT_BINLOG_IN_USE_F;
/*
The only algorithm currently is CRC32. Zero indicates
the binlog file is checksum-free *except* the FD-event.
*/
DBUG_ASSERT(fd_alg == BINLOG_CHECKSUM_ALG_CRC32 || fd_alg == 0);
DBUG_ASSERT(alg == BINLOG_CHECKSUM_ALG_CRC32);
/*
Complile time guard to watch over the max number of alg
*/
compile_time_assert(BINLOG_CHECKSUM_ALG_ENUM_END <= 0x80);
}
incoming= uint4korr(event_buf + event_len - BINLOG_CHECKSUM_LEN);
/* checksum the event content without the checksum part itself */
computed= my_checksum(0, event_buf, event_len - BINLOG_CHECKSUM_LEN);
if (flags != 0)
{
/* restoring the orig value of flags of FD */
DBUG_ASSERT(event_buf[EVENT_TYPE_OFFSET] == FORMAT_DESCRIPTION_EVENT);
event_buf[FLAGS_OFFSET]= (uchar) flags;
}
res= DBUG_EVALUATE_IF("simulate_checksum_test_failure", TRUE, computed != incoming);
}
return res;
}
#if defined(MYSQL_SERVER) && defined(HAVE_REPLICATION)
Deferred_log_events::Deferred_log_events(Relay_log_info *rli) : last_added(NULL)
{
my_init_dynamic_array(&array, sizeof(Log_event *), 32, 16, MYF(0));
}
Deferred_log_events::~Deferred_log_events()
{
delete_dynamic(&array);
}
int Deferred_log_events::add(Log_event *ev)
{
last_added= ev;
insert_dynamic(&array, (uchar*) &ev);
return 0;
}
bool Deferred_log_events::is_empty()
{
return array.elements == 0;
}
bool Deferred_log_events::execute(rpl_group_info *rgi)
{
bool res= false;
DBUG_ENTER("Deferred_log_events::execute");
DBUG_ASSERT(rgi->deferred_events_collecting);
rgi->deferred_events_collecting= false;
for (uint i= 0; !res && i < array.elements; i++)
{
Log_event *ev= (* (Log_event **)
dynamic_array_ptr(&array, i));
res= ev->apply_event(rgi);
}
rgi->deferred_events_collecting= true;
DBUG_RETURN(res);
}
void Deferred_log_events::rewind()
{
/*
Reset preceding Query log event events which execution was
deferred because of slave side filtering.
*/
if (!is_empty())
{
for (uint i= 0; i < array.elements; i++)
{
Log_event *ev= *(Log_event **) dynamic_array_ptr(&array, i);
delete ev;
}
last_added= NULL;
if (array.elements > array.max_element)
freeze_size(&array);
reset_dynamic(&array);
}
last_added= NULL;
}
#endif