mariadb/sql/item_sum.cc
2013-01-21 15:23:40 -08:00

3460 lines
86 KiB
C++

/* Copyright (c) 2000, 2011, Oracle and/or its affiliates.
Copyright (c) 2008-2011 Monty Program Ab
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/**
@file
@brief
Sum functions (COUNT, MIN...)
*/
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation // gcc: Class implementation
#endif
#include "mysql_priv.h"
#include "sql_select.h"
/**
Prepare an aggregate function item for checking context conditions.
The function initializes the members of the Item_sum object created
for a set function that are used to check validity of the set function
occurrence.
If the set function is not allowed in any subquery where it occurs
an error is reported immediately.
@param thd reference to the thread context info
@note
This function is to be called for any item created for a set function
object when the traversal of trees built for expressions used in the query
is performed at the phase of context analysis. This function is to
be invoked at the descent of this traversal.
@retval
TRUE if an error is reported
@retval
FALSE otherwise
*/
bool Item_sum::init_sum_func_check(THD *thd)
{
if (!thd->lex->allow_sum_func)
{
my_message(ER_INVALID_GROUP_FUNC_USE, ER(ER_INVALID_GROUP_FUNC_USE),
MYF(0));
return TRUE;
}
/* Set a reference to the nesting set function if there is any */
in_sum_func= thd->lex->in_sum_func;
/* Save a pointer to object to be used in items for nested set functions */
thd->lex->in_sum_func= this;
nest_level= thd->lex->current_select->nest_level;
ref_by= 0;
aggr_level= -1;
aggr_sel= NULL;
max_arg_level= -1;
max_sum_func_level= -1;
outer_fields.empty();
return FALSE;
}
/**
Check constraints imposed on a usage of a set function.
The method verifies whether context conditions imposed on a usage
of any set function are met for this occurrence.
It checks whether the set function occurs in the position where it
can be aggregated and, when it happens to occur in argument of another
set function, the method checks that these two functions are aggregated in
different subqueries.
If the context conditions are not met the method reports an error.
If the set function is aggregated in some outer subquery the method
adds it to the chain of items for such set functions that is attached
to the the st_select_lex structure for this subquery.
A number of designated members of the object are used to check the
conditions. They are specified in the comment before the Item_sum
class declaration.
Additionally a bitmap variable called allow_sum_func is employed.
It is included into the thd->lex structure.
The bitmap contains 1 at n-th position if the set function happens
to occur under a construct of the n-th level subquery where usage
of set functions are allowed (i.e either in the SELECT list or
in the HAVING clause of the corresponding subquery)
Consider the query:
@code
SELECT SUM(t1.b) FROM t1 GROUP BY t1.a
HAVING t1.a IN (SELECT t2.c FROM t2 WHERE AVG(t1.b) > 20) AND
t1.a > (SELECT MIN(t2.d) FROM t2);
@endcode
allow_sum_func will contain:
- for SUM(t1.b) - 1 at the first position
- for AVG(t1.b) - 1 at the first position, 0 at the second position
- for MIN(t2.d) - 1 at the first position, 1 at the second position.
@param thd reference to the thread context info
@param ref location of the pointer to this item in the embedding expression
@note
This function is to be called for any item created for a set function
object when the traversal of trees built for expressions used in the query
is performed at the phase of context analysis. This function is to
be invoked at the ascent of this traversal.
@retval
TRUE if an error is reported
@retval
FALSE otherwise
*/
bool Item_sum::check_sum_func(THD *thd, Item **ref)
{
bool invalid= FALSE;
nesting_map allow_sum_func= thd->lex->allow_sum_func;
/*
The value of max_arg_level is updated if an argument of the set function
contains a column reference resolved against a subquery whose level is
greater than the current value of max_arg_level.
max_arg_level cannot be greater than nest level.
nest level is always >= 0
*/
if (nest_level == max_arg_level)
{
/*
The function must be aggregated in the current subquery,
If it is there under a construct where it is not allowed
we report an error.
*/
invalid= !(allow_sum_func & (1 << max_arg_level));
}
else if (max_arg_level >= 0 || !(allow_sum_func & (1 << nest_level)))
{
/*
The set function can be aggregated only in outer subqueries.
Try to find a subquery where it can be aggregated;
If we fail to find such a subquery report an error.
*/
if (register_sum_func(thd, ref))
return TRUE;
invalid= aggr_level < 0 && !(allow_sum_func & (1 << nest_level));
if (!invalid && thd->variables.sql_mode & MODE_ANSI)
invalid= aggr_level < 0 && max_arg_level < nest_level;
}
if (!invalid && aggr_level < 0)
{
aggr_level= nest_level;
aggr_sel= thd->lex->current_select;
}
/*
By this moment we either found a subquery where the set function is
to be aggregated and assigned a value that is >= 0 to aggr_level,
or set the value of 'invalid' to TRUE to report later an error.
*/
/*
Additionally we have to check whether possible nested set functions
are acceptable here: they are not, if the level of aggregation of
some of them is less than aggr_level.
*/
if (!invalid)
invalid= aggr_level <= max_sum_func_level;
if (invalid)
{
my_message(ER_INVALID_GROUP_FUNC_USE, ER(ER_INVALID_GROUP_FUNC_USE),
MYF(0));
return TRUE;
}
if (in_sum_func)
{
/*
If the set function is nested adjust the value of
max_sum_func_level for the nesting set function.
We take into account only enclosed set functions that are to be
aggregated on the same level or above of the nest level of
the enclosing set function.
But we must always pass up the max_sum_func_level because it is
the maximum nested level of all directly and indirectly enclosed
set functions. We must do that even for set functions that are
aggregated inside of their enclosing set function's nest level
because the enclosing function may contain another enclosing
function that is to be aggregated outside or on the same level
as its parent's nest level.
*/
if (in_sum_func->nest_level >= aggr_level)
set_if_bigger(in_sum_func->max_sum_func_level, aggr_level);
set_if_bigger(in_sum_func->max_sum_func_level, max_sum_func_level);
}
/*
Check that non-aggregated fields and sum functions aren't mixed in the
same select in the ONLY_FULL_GROUP_BY mode.
*/
if (outer_fields.elements)
{
Item_field *field;
/*
Here we compare the nesting level of the select to which an outer field
belongs to with the aggregation level of the sum function. All fields in
the outer_fields list are checked.
If the nesting level is equal to the aggregation level then the field is
aggregated by this sum function.
If the nesting level is less than the aggregation level then the field
belongs to an outer select. In this case if there is an embedding sum
function add current field to functions outer_fields list. If there is
no embedding function then the current field treated as non aggregated
and the select it belongs to is marked accordingly.
If the nesting level is greater than the aggregation level then it means
that this field was added by an inner sum function.
Consider an example:
select avg ( <-- we are here, checking outer.f1
select (
select sum(outer.f1 + inner.f1) from inner
) from outer)
from most_outer;
In this case we check that no aggregate functions are used in the
select the field belongs to. If there are some then an error is
raised.
*/
List_iterator<Item_field> of(outer_fields);
while ((field= of++))
{
SELECT_LEX *sel= field->cached_table->select_lex;
if (sel->nest_level < aggr_level)
{
if (in_sum_func)
{
/*
Let upper function decide whether this field is a non
aggregated one.
*/
in_sum_func->outer_fields.push_back(field);
}
else
sel->set_non_agg_field_used(true);
}
if (sel->nest_level > aggr_level &&
(sel->agg_func_used()) &&
!sel->group_list.elements)
{
my_message(ER_MIX_OF_GROUP_FUNC_AND_FIELDS,
ER(ER_MIX_OF_GROUP_FUNC_AND_FIELDS), MYF(0));
return TRUE;
}
}
}
aggr_sel->set_agg_func_used(true);
update_used_tables();
thd->lex->in_sum_func= in_sum_func;
return FALSE;
}
/**
Attach a set function to the subquery where it must be aggregated.
The function looks for an outer subquery where the set function must be
aggregated. If it finds such a subquery then aggr_level is set to
the nest level of this subquery and the item for the set function
is added to the list of set functions used in nested subqueries
inner_sum_func_list defined for each subquery. When the item is placed
there the field 'ref_by' is set to ref.
@note
Now we 'register' only set functions that are aggregated in outer
subqueries. Actually it makes sense to link all set function for
a subquery in one chain. It would simplify the process of 'splitting'
for set functions.
@param thd reference to the thread context info
@param ref location of the pointer to this item in the embedding expression
@retval
FALSE if the executes without failures (currently always)
@retval
TRUE otherwise
*/
bool Item_sum::register_sum_func(THD *thd, Item **ref)
{
SELECT_LEX *sl;
nesting_map allow_sum_func= thd->lex->allow_sum_func;
for (sl= thd->lex->current_select->master_unit()->outer_select() ;
sl && sl->nest_level > max_arg_level;
sl= sl->master_unit()->outer_select() )
{
if (aggr_level < 0 && (allow_sum_func & (1 << sl->nest_level)))
{
/* Found the most nested subquery where the function can be aggregated */
aggr_level= sl->nest_level;
aggr_sel= sl;
}
}
if (sl && (allow_sum_func & (1 << sl->nest_level)))
{
/*
We reached the subquery of level max_arg_level and checked
that the function can be aggregated here.
The set function will be aggregated in this subquery.
*/
aggr_level= sl->nest_level;
aggr_sel= sl;
}
if (aggr_level >= 0)
{
ref_by= ref;
/* Add the object to the list of registered objects assigned to aggr_sel */
if (!aggr_sel->inner_sum_func_list)
next= this;
else
{
next= aggr_sel->inner_sum_func_list->next;
aggr_sel->inner_sum_func_list->next= this;
}
aggr_sel->inner_sum_func_list= this;
aggr_sel->with_sum_func= 1;
/*
Mark Item_subselect(s) as containing aggregate function all the way up
to aggregate function's calculation context.
Note that we must not mark the Item of calculation context itself
because with_sum_func on the calculation context st_select_lex is
already set above.
with_sum_func being set for an Item means that this Item refers
(somewhere in it, e.g. one of its arguments if it's a function) directly
or through intermediate items to an aggregate function that is calculated
in a context "outside" of the Item (e.g. in the current or outer select).
with_sum_func being set for an st_select_lex means that this st_select_lex
has aggregate functions directly referenced (i.e. not through a sub-select).
*/
for (sl= thd->lex->current_select;
sl && sl != aggr_sel && sl->master_unit()->item;
sl= sl->master_unit()->outer_select() )
sl->master_unit()->item->with_sum_func= 1;
}
thd->lex->current_select->mark_as_dependent(aggr_sel, NULL);
return FALSE;
}
Item_sum::Item_sum(List<Item> &list) :arg_count(list.elements),
forced_const(FALSE)
{
if ((args=(Item**) sql_alloc(sizeof(Item*)*arg_count)))
{
uint i=0;
List_iterator_fast<Item> li(list);
Item *item;
while ((item=li++))
{
args[i++]= item;
}
}
if (!(orig_args= (Item **) sql_alloc(sizeof(Item *) * arg_count)))
{
args= NULL;
}
mark_as_sum_func();
list.empty(); // Fields are used
}
/**
Constructor used in processing select with temporary tebles.
*/
Item_sum::Item_sum(THD *thd, Item_sum *item):
Item_result_field(thd, item),
aggr_sel(item->aggr_sel),
nest_level(item->nest_level), aggr_level(item->aggr_level),
quick_group(item->quick_group),
arg_count(item->arg_count), orig_args(NULL),
used_tables_cache(item->used_tables_cache),
forced_const(item->forced_const)
{
if (arg_count <= 2)
{
args=tmp_args;
orig_args=tmp_orig_args;
}
else
{
if (!(args= (Item**) thd->alloc(sizeof(Item*)*arg_count)))
return;
if (!(orig_args= (Item**) thd->alloc(sizeof(Item*)*arg_count)))
return;
}
memcpy(args, item->args, sizeof(Item*)*arg_count);
memcpy(orig_args, item->orig_args, sizeof(Item*)*arg_count);
}
void Item_sum::mark_as_sum_func()
{
SELECT_LEX *cur_select= current_thd->lex->current_select;
cur_select->n_sum_items++;
cur_select->with_sum_func= 1;
with_sum_func= 1;
}
void Item_sum::print(String *str, enum_query_type query_type)
{
/* orig_args is not filled with valid values until fix_fields() */
Item **pargs= fixed ? orig_args : args;
str->append(func_name());
for (uint i=0 ; i < arg_count ; i++)
{
if (i)
str->append(',');
pargs[i]->print(str, query_type);
}
str->append(')');
}
void Item_sum::fix_num_length_and_dec()
{
decimals=0;
for (uint i=0 ; i < arg_count ; i++)
set_if_bigger(decimals,args[i]->decimals);
max_length=float_length(decimals);
}
Item *Item_sum::get_tmp_table_item(THD *thd)
{
Item_sum* sum_item= (Item_sum *) copy_or_same(thd);
if (sum_item && sum_item->result_field) // If not a const sum func
{
Field *result_field_tmp= sum_item->result_field;
for (uint i=0 ; i < sum_item->arg_count ; i++)
{
Item *arg= sum_item->args[i];
if (!arg->const_item())
{
if (arg->type() == Item::FIELD_ITEM)
((Item_field*) arg)->field= result_field_tmp++;
else
sum_item->args[i]= new Item_field(result_field_tmp++);
}
}
}
return sum_item;
}
bool Item_sum::walk (Item_processor processor, bool walk_subquery,
uchar *argument)
{
if (arg_count)
{
Item **arg,**arg_end;
for (arg= args, arg_end= args+arg_count; arg != arg_end; arg++)
{
if ((*arg)->walk(processor, walk_subquery, argument))
return 1;
}
}
return (this->*processor)(argument);
}
Field *Item_sum::create_tmp_field(bool group, TABLE *table,
uint convert_blob_length)
{
Field *field;
switch (result_type()) {
case REAL_RESULT:
field= new Field_double(max_length, maybe_null, name, decimals, TRUE);
break;
case INT_RESULT:
field= new Field_longlong(max_length, maybe_null, name, unsigned_flag);
break;
case STRING_RESULT:
if (max_length/collation.collation->mbmaxlen <= 255 ||
convert_blob_length > Field_varstring::MAX_SIZE ||
!convert_blob_length)
return make_string_field(table);
field= new Field_varstring(convert_blob_length, maybe_null,
name, table->s, collation.collation);
break;
case DECIMAL_RESULT:
field= Field_new_decimal::create_from_item(this);
break;
case ROW_RESULT:
default:
// This case should never be choosen
DBUG_ASSERT(0);
return 0;
}
if (field)
field->init(table);
return field;
}
void Item_sum::update_used_tables ()
{
if (!forced_const)
{
used_tables_cache= 0;
for (uint i=0 ; i < arg_count ; i++)
{
args[i]->update_used_tables();
used_tables_cache|= args[i]->used_tables();
}
}
}
Item *Item_sum::set_arg(int i, THD *thd, Item *new_val)
{
thd->change_item_tree(args + i, new_val);
return new_val;
}
String *
Item_sum_num::val_str(String *str)
{
return val_string_from_real(str);
}
my_decimal *Item_sum_num::val_decimal(my_decimal *decimal_value)
{
return val_decimal_from_real(decimal_value);
}
String *
Item_sum_int::val_str(String *str)
{
return val_string_from_int(str);
}
my_decimal *Item_sum_int::val_decimal(my_decimal *decimal_value)
{
return val_decimal_from_int(decimal_value);
}
bool
Item_sum_num::fix_fields(THD *thd, Item **ref)
{
DBUG_ASSERT(fixed == 0);
if (init_sum_func_check(thd))
return TRUE;
decimals=0;
maybe_null= sum_func() != COUNT_FUNC;
for (uint i=0 ; i < arg_count ; i++)
{
if (args[i]->fix_fields(thd, args + i) || args[i]->check_cols(1))
return TRUE;
set_if_bigger(decimals, args[i]->decimals);
with_subselect|= args[i]->with_subselect;
}
result_field=0;
max_length=float_length(decimals);
null_value=1;
fix_length_and_dec();
if (check_sum_func(thd, ref))
return TRUE;
memcpy (orig_args, args, sizeof (Item *) * arg_count);
fixed= 1;
return FALSE;
}
bool
Item_sum_hybrid::fix_fields(THD *thd, Item **ref)
{
DBUG_ASSERT(fixed == 0);
Item *item= args[0];
if (init_sum_func_check(thd))
return TRUE;
// 'item' can be changed during fix_fields
if ((!item->fixed && item->fix_fields(thd, args)) ||
(item= args[0])->check_cols(1))
return TRUE;
decimals=item->decimals;
with_subselect= args[0]->with_subselect;
switch (hybrid_type= item->result_type()) {
case INT_RESULT:
case DECIMAL_RESULT:
case STRING_RESULT:
max_length= item->max_length;
break;
case REAL_RESULT:
max_length= float_length(decimals);
break;
case ROW_RESULT:
default:
DBUG_ASSERT(0);
};
setup_hybrid(args[0], NULL);
/* MIN/MAX can return NULL for empty set indepedent of the used column */
maybe_null= 1;
unsigned_flag=item->unsigned_flag;
result_field=0;
null_value=1;
fix_length_and_dec();
item= item->real_item();
if (item->type() == Item::FIELD_ITEM)
hybrid_field_type= ((Item_field*) item)->field->type();
else
hybrid_field_type= Item::field_type();
if (check_sum_func(thd, ref))
return TRUE;
orig_args[0]= args[0];
fixed= 1;
return FALSE;
}
/**
MIN/MAX function setup.
@param item argument of MIN/MAX function
@param value_arg calculated value of MIN/MAX function
@details
Setup cache/comparator of MIN/MAX functions. When called by the
copy_or_same function value_arg parameter contains calculated value
of the original MIN/MAX object and it is saved in this object's cache.
*/
void Item_sum_hybrid::setup_hybrid(Item *item, Item *value_arg)
{
value= Item_cache::get_cache(item);
value->setup(item);
value->store(value_arg);
arg_cache= Item_cache::get_cache(item);
arg_cache->setup(item);
cmp= new Arg_comparator();
cmp->set_cmp_func(this, (Item**)&arg_cache, (Item**)&value, FALSE);
collation.set(item->collation);
}
Field *Item_sum_hybrid::create_tmp_field(bool group, TABLE *table,
uint convert_blob_length)
{
Field *field;
if (args[0]->type() == Item::FIELD_ITEM)
{
field= ((Item_field*) args[0])->field;
if ((field= create_tmp_field_from_field(current_thd, field, name, table,
NULL, convert_blob_length)))
field->flags&= ~NOT_NULL_FLAG;
return field;
}
/*
DATE/TIME fields have STRING_RESULT result types.
In order to preserve field type, it's needed to handle DATE/TIME
fields creations separately.
*/
switch (args[0]->field_type()) {
case MYSQL_TYPE_DATE:
field= new Field_newdate(maybe_null, name, collation.collation);
break;
case MYSQL_TYPE_TIME:
field= new Field_time(maybe_null, name, collation.collation);
break;
case MYSQL_TYPE_TIMESTAMP:
case MYSQL_TYPE_DATETIME:
field= new Field_datetime(maybe_null, name, collation.collation);
break;
default:
return Item_sum::create_tmp_field(group, table, convert_blob_length);
}
if (field)
field->init(table);
return field;
}
/***********************************************************************
** reset and add of sum_func
***********************************************************************/
/**
@todo
check if the following assignments are really needed
*/
Item_sum_sum::Item_sum_sum(THD *thd, Item_sum_sum *item)
:Item_sum_num(thd, item), hybrid_type(item->hybrid_type),
curr_dec_buff(item->curr_dec_buff)
{
/* TODO: check if the following assignments are really needed */
if (hybrid_type == DECIMAL_RESULT)
{
my_decimal2decimal(item->dec_buffs, dec_buffs);
my_decimal2decimal(item->dec_buffs + 1, dec_buffs + 1);
}
else
sum= item->sum;
}
Item *Item_sum_sum::copy_or_same(THD* thd)
{
return new (thd->mem_root) Item_sum_sum(thd, this);
}
void Item_sum_sum::clear()
{
DBUG_ENTER("Item_sum_sum::clear");
null_value=1;
if (hybrid_type == DECIMAL_RESULT)
{
curr_dec_buff= 0;
my_decimal_set_zero(dec_buffs);
}
else
sum= 0.0;
DBUG_VOID_RETURN;
}
void Item_sum_sum::fix_length_and_dec()
{
DBUG_ENTER("Item_sum_sum::fix_length_and_dec");
maybe_null=null_value=1;
decimals= args[0]->decimals;
switch (args[0]->result_type()) {
case REAL_RESULT:
case STRING_RESULT:
hybrid_type= REAL_RESULT;
sum= 0.0;
break;
case INT_RESULT:
case DECIMAL_RESULT:
{
/* SUM result can't be longer than length(arg) + length(MAX_ROWS) */
int precision= args[0]->decimal_precision() + DECIMAL_LONGLONG_DIGITS;
max_length= my_decimal_precision_to_length_no_truncation(precision,
decimals,
unsigned_flag);
curr_dec_buff= 0;
hybrid_type= DECIMAL_RESULT;
my_decimal_set_zero(dec_buffs);
break;
}
case ROW_RESULT:
default:
DBUG_ASSERT(0);
}
DBUG_PRINT("info", ("Type: %s (%d, %d)",
(hybrid_type == REAL_RESULT ? "REAL_RESULT" :
hybrid_type == DECIMAL_RESULT ? "DECIMAL_RESULT" :
hybrid_type == INT_RESULT ? "INT_RESULT" :
"--ILLEGAL!!!--"),
max_length,
(int)decimals));
DBUG_VOID_RETURN;
}
bool Item_sum_sum::add()
{
DBUG_ENTER("Item_sum_sum::add");
if (hybrid_type == DECIMAL_RESULT)
{
my_decimal value, *val= args[0]->val_decimal(&value);
if (!args[0]->null_value)
{
my_decimal_add(E_DEC_FATAL_ERROR, dec_buffs + (curr_dec_buff^1),
val, dec_buffs + curr_dec_buff);
curr_dec_buff^= 1;
null_value= 0;
}
}
else
{
sum+= args[0]->val_real();
if (!args[0]->null_value)
null_value= 0;
}
DBUG_RETURN(0);
}
longlong Item_sum_sum::val_int()
{
DBUG_ASSERT(fixed == 1);
if (hybrid_type == DECIMAL_RESULT)
{
longlong result;
my_decimal2int(E_DEC_FATAL_ERROR, dec_buffs + curr_dec_buff, unsigned_flag,
&result);
return result;
}
return (longlong) rint(val_real());
}
double Item_sum_sum::val_real()
{
DBUG_ASSERT(fixed == 1);
if (hybrid_type == DECIMAL_RESULT)
my_decimal2double(E_DEC_FATAL_ERROR, dec_buffs + curr_dec_buff, &sum);
return sum;
}
String *Item_sum_sum::val_str(String *str)
{
if (hybrid_type == DECIMAL_RESULT)
return val_string_from_decimal(str);
return val_string_from_real(str);
}
my_decimal *Item_sum_sum::val_decimal(my_decimal *val)
{
if (hybrid_type == DECIMAL_RESULT)
return (dec_buffs + curr_dec_buff);
return val_decimal_from_real(val);
}
/***************************************************************************/
C_MODE_START
/* Declarations for auxilary C-callbacks */
static int simple_raw_key_cmp(void* arg, const void* key1, const void* key2)
{
return memcmp(key1, key2, *(uint *) arg);
}
static int item_sum_distinct_walk(void *element, element_count num_of_dups,
void *item)
{
return ((Item_sum_distinct*) (item))->unique_walk_function(element);
}
C_MODE_END
/* Item_sum_distinct */
Item_sum_distinct::Item_sum_distinct(Item *item_arg)
:Item_sum_num(item_arg), tree(0)
{
/*
quick_group is an optimizer hint, which means that GROUP BY can be
handled with help of index on grouped columns.
By setting quick_group to zero we force creation of temporary table
to perform GROUP BY.
*/
quick_group= 0;
}
Item_sum_distinct::Item_sum_distinct(THD *thd, Item_sum_distinct *original)
:Item_sum_num(thd, original), val(original->val), tree(0),
table_field_type(original->table_field_type)
{
quick_group= 0;
}
/**
Behaves like an Integer except to fix_length_and_dec().
Additionally div() converts val with this traits to a val with true
decimal traits along with conversion of integer value to decimal value.
This is to speedup SUM/AVG(DISTINCT) evaluation for 8-32 bit integer
values.
*/
struct Hybrid_type_traits_fast_decimal: public
Hybrid_type_traits_integer
{
virtual Item_result type() const { return DECIMAL_RESULT; }
virtual void fix_length_and_dec(Item *item, Item *arg) const
{ Hybrid_type_traits_decimal::instance()->fix_length_and_dec(item, arg); }
virtual void div(Hybrid_type *val, ulonglong u) const
{
int2my_decimal(E_DEC_FATAL_ERROR, val->integer, 0, val->dec_buf);
val->used_dec_buf_no= 0;
val->traits= Hybrid_type_traits_decimal::instance();
val->traits->div(val, u);
}
static const Hybrid_type_traits_fast_decimal *instance();
Hybrid_type_traits_fast_decimal() {};
};
static const Hybrid_type_traits_fast_decimal fast_decimal_traits_instance;
const Hybrid_type_traits_fast_decimal
*Hybrid_type_traits_fast_decimal::instance()
{
return &fast_decimal_traits_instance;
}
void Item_sum_distinct::fix_length_and_dec()
{
DBUG_ASSERT(args[0]->fixed);
table_field_type= args[0]->field_type();
/* Adjust tmp table type according to the chosen aggregation type */
switch (args[0]->result_type()) {
case STRING_RESULT:
case REAL_RESULT:
val.traits= Hybrid_type_traits::instance();
if (table_field_type != MYSQL_TYPE_FLOAT)
table_field_type= MYSQL_TYPE_DOUBLE;
break;
case INT_RESULT:
/*
Preserving int8, int16, int32 field types gives ~10% performance boost
as the size of result tree becomes significantly smaller.
Another speed up we gain by using longlong for intermediate
calculations. The range of int64 is enough to hold sum 2^32 distinct
integers each <= 2^32.
*/
if (table_field_type == MYSQL_TYPE_INT24 ||
(table_field_type >= MYSQL_TYPE_TINY &&
table_field_type <= MYSQL_TYPE_LONG))
{
val.traits= Hybrid_type_traits_fast_decimal::instance();
break;
}
table_field_type= MYSQL_TYPE_LONGLONG;
/* fallthrough */
case DECIMAL_RESULT:
val.traits= Hybrid_type_traits_decimal::instance();
if (table_field_type != MYSQL_TYPE_LONGLONG)
table_field_type= MYSQL_TYPE_NEWDECIMAL;
break;
case ROW_RESULT:
default:
DBUG_ASSERT(0);
}
val.traits->fix_length_and_dec(this, args[0]);
}
/**
@todo
check that the case of CHAR(0) works OK
*/
bool Item_sum_distinct::setup(THD *thd)
{
List<Create_field> field_list;
Create_field field_def; /* field definition */
DBUG_ENTER("Item_sum_distinct::setup");
/* It's legal to call setup() more than once when in a subquery */
if (tree)
DBUG_RETURN(FALSE);
/*
Virtual table and the tree are created anew on each re-execution of
PS/SP. Hence all further allocations are performed in the runtime
mem_root.
*/
if (field_list.push_back(&field_def))
DBUG_RETURN(TRUE);
null_value= maybe_null= 1;
quick_group= 0;
DBUG_ASSERT(args[0]->fixed);
field_def.init_for_tmp_table(table_field_type, args[0]->max_length,
args[0]->decimals, args[0]->maybe_null,
args[0]->unsigned_flag);
if (! (table= create_virtual_tmp_table(thd, field_list)))
DBUG_RETURN(TRUE);
/* XXX: check that the case of CHAR(0) works OK */
tree_key_length= table->s->reclength - table->s->null_bytes;
/*
Unique handles all unique elements in a tree until they can't fit
in. Then the tree is dumped to the temporary file. We can use
simple_raw_key_cmp because the table contains numbers only; decimals
are converted to binary representation as well.
*/
tree= new Unique(simple_raw_key_cmp, &tree_key_length, tree_key_length,
thd->variables.max_heap_table_size);
is_evaluated= FALSE;
DBUG_RETURN(tree == 0);
}
bool Item_sum_distinct::add()
{
args[0]->save_in_field(table->field[0], FALSE);
is_evaluated= FALSE;
if (!table->field[0]->is_null())
{
DBUG_ASSERT(tree);
null_value= 0;
/*
'0' values are also stored in the tree. This doesn't matter
for SUM(DISTINCT), but is important for AVG(DISTINCT)
*/
return tree->unique_add(table->field[0]->ptr);
}
return 0;
}
bool Item_sum_distinct::unique_walk_function(void *element)
{
memcpy(table->field[0]->ptr, element, tree_key_length);
++count;
val.traits->add(&val, table->field[0]);
return 0;
}
void Item_sum_distinct::clear()
{
DBUG_ENTER("Item_sum_distinct::clear");
DBUG_ASSERT(tree != 0); /* we always have a tree */
null_value= 1;
tree->reset();
is_evaluated= FALSE;
DBUG_VOID_RETURN;
}
void Item_sum_distinct::cleanup()
{
Item_sum_num::cleanup();
delete tree;
tree= 0;
table= 0;
is_evaluated= FALSE;
}
Item_sum_distinct::~Item_sum_distinct()
{
delete tree;
/* no need to free the table */
}
void Item_sum_distinct::calculate_val_and_count()
{
if (!is_evaluated)
{
count= 0;
val.traits->set_zero(&val);
/*
We don't have a tree only if 'setup()' hasn't been called;
this is the case of sql_select.cc:return_zero_rows.
*/
if (tree)
{
table->field[0]->set_notnull();
tree->walk(table, item_sum_distinct_walk, (void*) this);
}
is_evaluated= TRUE;
}
}
double Item_sum_distinct::val_real()
{
calculate_val_and_count();
return val.traits->val_real(&val);
}
my_decimal *Item_sum_distinct::val_decimal(my_decimal *to)
{
calculate_val_and_count();
if (null_value)
return 0;
return val.traits->val_decimal(&val, to);
}
longlong Item_sum_distinct::val_int()
{
calculate_val_and_count();
return val.traits->val_int(&val, unsigned_flag);
}
String *Item_sum_distinct::val_str(String *str)
{
calculate_val_and_count();
if (null_value)
return 0;
return val.traits->val_str(&val, str, decimals);
}
/* end of Item_sum_distinct */
/* Item_sum_avg_distinct */
void
Item_sum_avg_distinct::fix_length_and_dec()
{
Item_sum_distinct::fix_length_and_dec();
prec_increment= current_thd->variables.div_precincrement;
/*
AVG() will divide val by count. We need to reserve digits
after decimal point as the result can be fractional.
*/
decimals= min(decimals + prec_increment, NOT_FIXED_DEC);
}
void
Item_sum_avg_distinct::calculate_val_and_count()
{
if (!is_evaluated)
{
Item_sum_distinct::calculate_val_and_count();
if (count)
val.traits->div(&val, count);
is_evaluated= TRUE;
}
}
Item *Item_sum_count::copy_or_same(THD* thd)
{
return new (thd->mem_root) Item_sum_count(thd, this);
}
void Item_sum_count::clear()
{
count= 0;
}
bool Item_sum_count::add()
{
if (!args[0]->maybe_null || !args[0]->is_null())
count++;
return 0;
}
longlong Item_sum_count::val_int()
{
DBUG_ASSERT(fixed == 1);
return (longlong) count;
}
void Item_sum_count::cleanup()
{
DBUG_ENTER("Item_sum_count::cleanup");
count= 0;
Item_sum_int::cleanup();
DBUG_VOID_RETURN;
}
/*
Avgerage
*/
void Item_sum_avg::fix_length_and_dec()
{
Item_sum_sum::fix_length_and_dec();
maybe_null=null_value=1;
prec_increment= current_thd->variables.div_precincrement;
if (hybrid_type == DECIMAL_RESULT)
{
int precision= args[0]->decimal_precision() + prec_increment;
decimals= min(args[0]->decimals + prec_increment, DECIMAL_MAX_SCALE);
max_length= my_decimal_precision_to_length_no_truncation(precision,
decimals,
unsigned_flag);
f_precision= min(precision+DECIMAL_LONGLONG_DIGITS, DECIMAL_MAX_PRECISION);
f_scale= args[0]->decimals;
dec_bin_size= my_decimal_get_binary_size(f_precision, f_scale);
}
else {
decimals= min(args[0]->decimals + prec_increment, NOT_FIXED_DEC);
max_length= args[0]->max_length + prec_increment;
}
}
Item *Item_sum_avg::copy_or_same(THD* thd)
{
return new (thd->mem_root) Item_sum_avg(thd, this);
}
Field *Item_sum_avg::create_tmp_field(bool group, TABLE *table,
uint convert_blob_len)
{
Field *field;
if (group)
{
/*
We must store both value and counter in the temporary table in one field.
The easiest way is to do this is to store both value in a string
and unpack on access.
*/
field= new Field_string(((hybrid_type == DECIMAL_RESULT) ?
dec_bin_size : sizeof(double)) + sizeof(longlong),
0, name, &my_charset_bin);
}
else if (hybrid_type == DECIMAL_RESULT)
field= Field_new_decimal::create_from_item(this);
else
field= new Field_double(max_length, maybe_null, name, decimals, TRUE);
if (field)
field->init(table);
return field;
}
void Item_sum_avg::clear()
{
Item_sum_sum::clear();
count=0;
}
bool Item_sum_avg::add()
{
if (Item_sum_sum::add())
return TRUE;
if (!args[0]->null_value)
count++;
return FALSE;
}
double Item_sum_avg::val_real()
{
DBUG_ASSERT(fixed == 1);
if (!count)
{
null_value=1;
return 0.0;
}
return Item_sum_sum::val_real() / ulonglong2double(count);
}
my_decimal *Item_sum_avg::val_decimal(my_decimal *val)
{
my_decimal sum_buff, cnt;
const my_decimal *sum_dec;
DBUG_ASSERT(fixed == 1);
if (!count)
{
null_value=1;
return NULL;
}
/*
For non-DECIMAL hybrid_type the division will be done in
Item_sum_avg::val_real().
*/
if (hybrid_type != DECIMAL_RESULT)
return val_decimal_from_real(val);
sum_dec= dec_buffs + curr_dec_buff;
int2my_decimal(E_DEC_FATAL_ERROR, count, 0, &cnt);
my_decimal_div(E_DEC_FATAL_ERROR, val, sum_dec, &cnt, prec_increment);
return val;
}
String *Item_sum_avg::val_str(String *str)
{
if (hybrid_type == DECIMAL_RESULT)
return val_string_from_decimal(str);
return val_string_from_real(str);
}
/*
Standard deviation
*/
double Item_sum_std::val_real()
{
DBUG_ASSERT(fixed == 1);
double nr= Item_sum_variance::val_real();
DBUG_ASSERT(nr >= 0.0);
return sqrt(nr);
}
Item *Item_sum_std::copy_or_same(THD* thd)
{
return new (thd->mem_root) Item_sum_std(thd, this);
}
/*
Variance
*/
/**
Variance implementation for floating-point implementations, without
catastrophic cancellation, from Knuth's _TAoCP_, 3rd ed, volume 2, pg232.
This alters the value at m, s, and increments count.
*/
/*
These two functions are used by the Item_sum_variance and the
Item_variance_field classes, which are unrelated, and each need to calculate
variance. The difference between the two classes is that the first is used
for a mundane SELECT, while the latter is used in a GROUPing SELECT.
*/
static void variance_fp_recurrence_next(double *m, double *s, ulonglong *count, double nr)
{
*count += 1;
if (*count == 1)
{
*m= nr;
*s= 0;
}
else
{
double m_kminusone= *m;
*m= m_kminusone + (nr - m_kminusone) / (double) *count;
*s= *s + (nr - m_kminusone) * (nr - *m);
}
}
static double variance_fp_recurrence_result(double s, ulonglong count, bool is_sample_variance)
{
if (count == 1)
return 0.0;
if (is_sample_variance)
return s / (count - 1);
/* else, is a population variance */
return s / count;
}
Item_sum_variance::Item_sum_variance(THD *thd, Item_sum_variance *item):
Item_sum_num(thd, item), hybrid_type(item->hybrid_type),
count(item->count), sample(item->sample),
prec_increment(item->prec_increment)
{
recurrence_m= item->recurrence_m;
recurrence_s= item->recurrence_s;
}
void Item_sum_variance::fix_length_and_dec()
{
DBUG_ENTER("Item_sum_variance::fix_length_and_dec");
maybe_null= null_value= 1;
prec_increment= current_thd->variables.div_precincrement;
/*
According to the SQL2003 standard (Part 2, Foundations; sec 10.9,
aggregate function; paragraph 7h of Syntax Rules), "the declared
type of the result is an implementation-defined aproximate numeric
type.
*/
hybrid_type= REAL_RESULT;
switch (args[0]->result_type()) {
case REAL_RESULT:
case STRING_RESULT:
decimals= min(args[0]->decimals + 4, NOT_FIXED_DEC);
break;
case INT_RESULT:
case DECIMAL_RESULT:
{
int precision= args[0]->decimal_precision()*2 + prec_increment;
decimals= min(args[0]->decimals + prec_increment, DECIMAL_MAX_SCALE);
max_length= my_decimal_precision_to_length_no_truncation(precision,
decimals,
unsigned_flag);
break;
}
case ROW_RESULT:
default:
DBUG_ASSERT(0);
}
DBUG_PRINT("info", ("Type: REAL_RESULT (%d, %d)", max_length, (int)decimals));
DBUG_VOID_RETURN;
}
Item *Item_sum_variance::copy_or_same(THD* thd)
{
return new (thd->mem_root) Item_sum_variance(thd, this);
}
/**
Create a new field to match the type of value we're expected to yield.
If we're grouping, then we need some space to serialize variables into, to
pass around.
*/
Field *Item_sum_variance::create_tmp_field(bool group, TABLE *table,
uint convert_blob_len)
{
Field *field;
if (group)
{
/*
We must store both value and counter in the temporary table in one field.
The easiest way is to do this is to store both value in a string
and unpack on access.
*/
field= new Field_string(sizeof(double)*2 + sizeof(longlong), 0, name, &my_charset_bin);
}
else
field= new Field_double(max_length, maybe_null, name, decimals, TRUE);
if (field != NULL)
field->init(table);
return field;
}
void Item_sum_variance::clear()
{
count= 0;
}
bool Item_sum_variance::add()
{
/*
Why use a temporary variable? We don't know if it is null until we
evaluate it, which has the side-effect of setting null_value .
*/
double nr= args[0]->val_real();
if (!args[0]->null_value)
variance_fp_recurrence_next(&recurrence_m, &recurrence_s, &count, nr);
return 0;
}
double Item_sum_variance::val_real()
{
DBUG_ASSERT(fixed == 1);
/*
'sample' is a 1/0 boolean value. If it is 1/true, id est this is a sample
variance call, then we should set nullness when the count of the items
is one or zero. If it's zero, i.e. a population variance, then we only
set nullness when the count is zero.
Another way to read it is that 'sample' is the numerical threshhold, at and
below which a 'count' number of items is called NULL.
*/
DBUG_ASSERT((sample == 0) || (sample == 1));
if (count <= sample)
{
null_value=1;
return 0.0;
}
null_value=0;
return variance_fp_recurrence_result(recurrence_s, count, sample);
}
my_decimal *Item_sum_variance::val_decimal(my_decimal *dec_buf)
{
DBUG_ASSERT(fixed == 1);
return val_decimal_from_real(dec_buf);
}
void Item_sum_variance::reset_field()
{
double nr;
uchar *res= result_field->ptr;
nr= args[0]->val_real(); /* sets null_value as side-effect */
if (args[0]->null_value)
bzero(res,sizeof(double)*2+sizeof(longlong));
else
{
/* Serialize format is (double)m, (double)s, (longlong)count */
ulonglong tmp_count;
double tmp_s;
float8store(res, nr); /* recurrence variable m */
tmp_s= 0.0;
float8store(res + sizeof(double), tmp_s);
tmp_count= 1;
int8store(res + sizeof(double)*2, tmp_count);
}
}
void Item_sum_variance::update_field()
{
ulonglong field_count;
uchar *res=result_field->ptr;
double nr= args[0]->val_real(); /* sets null_value as side-effect */
if (args[0]->null_value)
return;
/* Serialize format is (double)m, (double)s, (longlong)count */
double field_recurrence_m, field_recurrence_s;
float8get(field_recurrence_m, res);
float8get(field_recurrence_s, res + sizeof(double));
field_count=sint8korr(res+sizeof(double)*2);
variance_fp_recurrence_next(&field_recurrence_m, &field_recurrence_s, &field_count, nr);
float8store(res, field_recurrence_m);
float8store(res + sizeof(double), field_recurrence_s);
res+= sizeof(double)*2;
int8store(res,field_count);
}
/* min & max */
void Item_sum_hybrid::clear()
{
value->null_value= 1;
null_value= 1;
}
double Item_sum_hybrid::val_real()
{
DBUG_ASSERT(fixed == 1);
if (null_value)
return 0.0;
return value->val_real();
}
longlong Item_sum_hybrid::val_int()
{
DBUG_ASSERT(fixed == 1);
if (null_value)
return 0;
return value->val_int();
}
my_decimal *Item_sum_hybrid::val_decimal(my_decimal *val)
{
DBUG_ASSERT(fixed == 1);
if (null_value)
return 0;
return value->val_decimal(val);
}
String *
Item_sum_hybrid::val_str(String *str)
{
DBUG_ASSERT(fixed == 1);
if (null_value)
return 0;
return value->val_str(str);
}
void Item_sum_hybrid::cleanup()
{
DBUG_ENTER("Item_sum_hybrid::cleanup");
Item_sum::cleanup();
forced_const= FALSE;
if (cmp)
delete cmp;
cmp= 0;
/*
by default it is TRUE to avoid TRUE reporting by
Item_func_not_all/Item_func_nop_all if this item was never called.
no_rows_in_result() set it to FALSE if was not results found.
If some results found it will be left unchanged.
*/
was_values= TRUE;
DBUG_VOID_RETURN;
}
void Item_sum_hybrid::no_rows_in_result()
{
/* We may be called here twice in case of ref field in function */
if (was_values)
{
was_values= FALSE;
was_null_value= value->null_value;
clear();
}
}
void Item_sum_hybrid::restore_to_before_no_rows_in_result()
{
if (!was_values)
{
was_values= TRUE;
null_value= value->null_value= was_null_value;
}
}
Item *Item_sum_min::copy_or_same(THD* thd)
{
Item_sum_min *item= new (thd->mem_root) Item_sum_min(thd, this);
item->setup_hybrid(args[0], value);
return item;
}
bool Item_sum_min::add()
{
/* args[0] < value */
arg_cache->cache_value();
if (!arg_cache->null_value &&
(null_value || cmp->compare() < 0))
{
value->store(arg_cache);
value->cache_value();
null_value= 0;
}
return 0;
}
Item *Item_sum_max::copy_or_same(THD* thd)
{
Item_sum_max *item= new (thd->mem_root) Item_sum_max(thd, this);
item->setup_hybrid(args[0], value);
return item;
}
bool Item_sum_max::add()
{
/* args[0] > value */
arg_cache->cache_value();
if (!arg_cache->null_value &&
(null_value || cmp->compare() > 0))
{
value->store(arg_cache);
value->cache_value();
null_value= 0;
}
return 0;
}
/* bit_or and bit_and */
longlong Item_sum_bit::val_int()
{
DBUG_ASSERT(fixed == 1);
return (longlong) bits;
}
void Item_sum_bit::clear()
{
bits= reset_bits;
}
Item *Item_sum_or::copy_or_same(THD* thd)
{
return new (thd->mem_root) Item_sum_or(thd, this);
}
bool Item_sum_or::add()
{
ulonglong value= (ulonglong) args[0]->val_int();
if (!args[0]->null_value)
bits|=value;
return 0;
}
Item *Item_sum_xor::copy_or_same(THD* thd)
{
return new (thd->mem_root) Item_sum_xor(thd, this);
}
bool Item_sum_xor::add()
{
ulonglong value= (ulonglong) args[0]->val_int();
if (!args[0]->null_value)
bits^=value;
return 0;
}
Item *Item_sum_and::copy_or_same(THD* thd)
{
return new (thd->mem_root) Item_sum_and(thd, this);
}
bool Item_sum_and::add()
{
ulonglong value= (ulonglong) args[0]->val_int();
if (!args[0]->null_value)
bits&=value;
return 0;
}
/************************************************************************
** reset result of a Item_sum with is saved in a tmp_table
*************************************************************************/
void Item_sum_num::reset_field()
{
double nr= args[0]->val_real();
uchar *res=result_field->ptr;
if (maybe_null)
{
if (args[0]->null_value)
{
nr=0.0;
result_field->set_null();
}
else
result_field->set_notnull();
}
float8store(res,nr);
}
void Item_sum_hybrid::reset_field()
{
switch(hybrid_type) {
case STRING_RESULT:
{
char buff[MAX_FIELD_WIDTH];
String tmp(buff,sizeof(buff),result_field->charset()),*res;
res=args[0]->val_str(&tmp);
if (args[0]->null_value)
{
result_field->set_null();
result_field->reset();
}
else
{
result_field->set_notnull();
result_field->store(res->ptr(),res->length(),tmp.charset());
}
break;
}
case INT_RESULT:
{
longlong nr=args[0]->val_int();
if (maybe_null)
{
if (args[0]->null_value)
{
nr=0;
result_field->set_null();
}
else
result_field->set_notnull();
}
result_field->store(nr, unsigned_flag);
break;
}
case REAL_RESULT:
{
double nr= args[0]->val_real();
if (maybe_null)
{
if (args[0]->null_value)
{
nr=0.0;
result_field->set_null();
}
else
result_field->set_notnull();
}
result_field->store(nr);
break;
}
case DECIMAL_RESULT:
{
my_decimal value_buff, *arg_dec= args[0]->val_decimal(&value_buff);
if (maybe_null)
{
if (args[0]->null_value)
result_field->set_null();
else
result_field->set_notnull();
}
/*
We must store zero in the field as we will use the field value in
add()
*/
if (!arg_dec) // Null
arg_dec= &decimal_zero;
result_field->store_decimal(arg_dec);
break;
}
case ROW_RESULT:
default:
DBUG_ASSERT(0);
}
}
void Item_sum_sum::reset_field()
{
if (hybrid_type == DECIMAL_RESULT)
{
my_decimal value, *arg_val= args[0]->val_decimal(&value);
if (!arg_val) // Null
arg_val= &decimal_zero;
result_field->store_decimal(arg_val);
}
else
{
DBUG_ASSERT(hybrid_type == REAL_RESULT);
double nr= args[0]->val_real(); // Nulls also return 0
float8store(result_field->ptr, nr);
}
if (args[0]->null_value)
result_field->set_null();
else
result_field->set_notnull();
}
void Item_sum_count::reset_field()
{
uchar *res=result_field->ptr;
longlong nr=0;
if (!args[0]->maybe_null || !args[0]->is_null())
nr=1;
int8store(res,nr);
}
void Item_sum_avg::reset_field()
{
uchar *res=result_field->ptr;
if (hybrid_type == DECIMAL_RESULT)
{
longlong tmp;
my_decimal value, *arg_dec= args[0]->val_decimal(&value);
if (args[0]->null_value)
{
arg_dec= &decimal_zero;
tmp= 0;
}
else
tmp= 1;
my_decimal2binary(E_DEC_FATAL_ERROR, arg_dec, res, f_precision, f_scale);
res+= dec_bin_size;
int8store(res, tmp);
}
else
{
double nr= args[0]->val_real();
if (args[0]->null_value)
bzero(res,sizeof(double)+sizeof(longlong));
else
{
longlong tmp= 1;
float8store(res,nr);
res+=sizeof(double);
int8store(res,tmp);
}
}
}
void Item_sum_bit::reset_field()
{
reset();
int8store(result_field->ptr, bits);
}
void Item_sum_bit::update_field()
{
uchar *res=result_field->ptr;
bits= uint8korr(res);
add();
int8store(res, bits);
}
/**
calc next value and merge it with field_value.
*/
void Item_sum_sum::update_field()
{
if (hybrid_type == DECIMAL_RESULT)
{
my_decimal value, *arg_val= args[0]->val_decimal(&value);
if (!args[0]->null_value)
{
if (!result_field->is_null())
{
my_decimal field_value,
*field_val= result_field->val_decimal(&field_value);
my_decimal_add(E_DEC_FATAL_ERROR, dec_buffs, arg_val, field_val);
result_field->store_decimal(dec_buffs);
}
else
{
result_field->store_decimal(arg_val);
result_field->set_notnull();
}
}
}
else
{
double old_nr,nr;
uchar *res=result_field->ptr;
float8get(old_nr,res);
nr= args[0]->val_real();
if (!args[0]->null_value)
{
old_nr+=nr;
result_field->set_notnull();
}
float8store(res,old_nr);
}
}
void Item_sum_count::update_field()
{
longlong nr;
uchar *res=result_field->ptr;
nr=sint8korr(res);
if (!args[0]->maybe_null || !args[0]->is_null())
nr++;
int8store(res,nr);
}
void Item_sum_avg::update_field()
{
longlong field_count;
uchar *res=result_field->ptr;
if (hybrid_type == DECIMAL_RESULT)
{
my_decimal value, *arg_val= args[0]->val_decimal(&value);
if (!args[0]->null_value)
{
binary2my_decimal(E_DEC_FATAL_ERROR, res,
dec_buffs + 1, f_precision, f_scale);
field_count= sint8korr(res + dec_bin_size);
my_decimal_add(E_DEC_FATAL_ERROR, dec_buffs, arg_val, dec_buffs + 1);
my_decimal2binary(E_DEC_FATAL_ERROR, dec_buffs,
res, f_precision, f_scale);
res+= dec_bin_size;
field_count++;
int8store(res, field_count);
}
}
else
{
double nr;
nr= args[0]->val_real();
if (!args[0]->null_value)
{
double old_nr;
float8get(old_nr, res);
field_count= sint8korr(res + sizeof(double));
old_nr+= nr;
float8store(res,old_nr);
res+= sizeof(double);
field_count++;
int8store(res, field_count);
}
}
}
void Item_sum_hybrid::update_field()
{
switch (hybrid_type) {
case STRING_RESULT:
min_max_update_str_field();
break;
case INT_RESULT:
min_max_update_int_field();
break;
case DECIMAL_RESULT:
min_max_update_decimal_field();
break;
default:
min_max_update_real_field();
}
}
void
Item_sum_hybrid::min_max_update_str_field()
{
DBUG_ASSERT(cmp);
String *res_str=args[0]->val_str(&cmp->value1);
if (!args[0]->null_value)
{
result_field->val_str(&cmp->value2);
if (result_field->is_null() ||
(cmp_sign * sortcmp(res_str,&cmp->value2,collation.collation)) < 0)
result_field->store(res_str->ptr(),res_str->length(),res_str->charset());
result_field->set_notnull();
}
}
void
Item_sum_hybrid::min_max_update_real_field()
{
double nr,old_nr;
old_nr=result_field->val_real();
nr= args[0]->val_real();
if (!args[0]->null_value)
{
if (result_field->is_null(0) ||
(cmp_sign > 0 ? old_nr > nr : old_nr < nr))
old_nr=nr;
result_field->set_notnull();
}
else if (result_field->is_null(0))
result_field->set_null();
result_field->store(old_nr);
}
void
Item_sum_hybrid::min_max_update_int_field()
{
longlong nr,old_nr;
old_nr=result_field->val_int();
nr=args[0]->val_int();
if (!args[0]->null_value)
{
if (result_field->is_null(0))
old_nr=nr;
else
{
bool res=(unsigned_flag ?
(ulonglong) old_nr > (ulonglong) nr :
old_nr > nr);
/* (cmp_sign > 0 && res) || (!(cmp_sign > 0) && !res) */
if ((cmp_sign > 0) ^ (!res))
old_nr=nr;
}
result_field->set_notnull();
}
else if (result_field->is_null(0))
result_field->set_null();
result_field->store(old_nr, unsigned_flag);
}
/**
@todo
optimize: do not get result_field in case of args[0] is NULL
*/
void
Item_sum_hybrid::min_max_update_decimal_field()
{
/* TODO: optimize: do not get result_field in case of args[0] is NULL */
my_decimal old_val, nr_val;
const my_decimal *old_nr= result_field->val_decimal(&old_val);
const my_decimal *nr= args[0]->val_decimal(&nr_val);
if (!args[0]->null_value)
{
if (result_field->is_null(0))
old_nr=nr;
else
{
bool res= my_decimal_cmp(old_nr, nr) > 0;
/* (cmp_sign > 0 && res) || (!(cmp_sign > 0) && !res) */
if ((cmp_sign > 0) ^ (!res))
old_nr=nr;
}
result_field->set_notnull();
}
else if (result_field->is_null(0))
result_field->set_null();
result_field->store_decimal(old_nr);
}
Item_avg_field::Item_avg_field(Item_result res_type, Item_sum_avg *item)
{
name=item->name;
decimals=item->decimals;
max_length= item->max_length;
unsigned_flag= item->unsigned_flag;
field=item->result_field;
maybe_null=1;
hybrid_type= res_type;
prec_increment= item->prec_increment;
if (hybrid_type == DECIMAL_RESULT)
{
f_scale= item->f_scale;
f_precision= item->f_precision;
dec_bin_size= item->dec_bin_size;
}
}
double Item_avg_field::val_real()
{
// fix_fields() never calls for this Item
double nr;
longlong count;
uchar *res;
if (hybrid_type == DECIMAL_RESULT)
return val_real_from_decimal();
float8get(nr,field->ptr);
res= (field->ptr+sizeof(double));
count= sint8korr(res);
if ((null_value= !count))
return 0.0;
return nr/(double) count;
}
longlong Item_avg_field::val_int()
{
return (longlong) rint(val_real());
}
my_decimal *Item_avg_field::val_decimal(my_decimal *dec_buf)
{
// fix_fields() never calls for this Item
if (hybrid_type == REAL_RESULT)
return val_decimal_from_real(dec_buf);
longlong count= sint8korr(field->ptr + dec_bin_size);
if ((null_value= !count))
return 0;
my_decimal dec_count, dec_field;
binary2my_decimal(E_DEC_FATAL_ERROR,
field->ptr, &dec_field, f_precision, f_scale);
int2my_decimal(E_DEC_FATAL_ERROR, count, 0, &dec_count);
my_decimal_div(E_DEC_FATAL_ERROR, dec_buf,
&dec_field, &dec_count, prec_increment);
return dec_buf;
}
String *Item_avg_field::val_str(String *str)
{
// fix_fields() never calls for this Item
if (hybrid_type == DECIMAL_RESULT)
return val_string_from_decimal(str);
return val_string_from_real(str);
}
Item_std_field::Item_std_field(Item_sum_std *item)
: Item_variance_field(item)
{
}
double Item_std_field::val_real()
{
double nr;
// fix_fields() never calls for this Item
nr= Item_variance_field::val_real();
DBUG_ASSERT(nr >= 0.0);
return sqrt(nr);
}
my_decimal *Item_std_field::val_decimal(my_decimal *dec_buf)
{
/*
We can't call val_decimal_from_real() for DECIMAL_RESULT as
Item_variance_field::val_real() would cause an infinite loop
*/
my_decimal tmp_dec, *dec;
double nr;
if (hybrid_type == REAL_RESULT)
return val_decimal_from_real(dec_buf);
dec= Item_variance_field::val_decimal(dec_buf);
if (!dec)
return 0;
my_decimal2double(E_DEC_FATAL_ERROR, dec, &nr);
DBUG_ASSERT(nr >= 0.0);
nr= sqrt(nr);
double2my_decimal(E_DEC_FATAL_ERROR, nr, &tmp_dec);
my_decimal_round(E_DEC_FATAL_ERROR, &tmp_dec, decimals, FALSE, dec_buf);
return dec_buf;
}
Item_variance_field::Item_variance_field(Item_sum_variance *item)
{
name=item->name;
decimals=item->decimals;
max_length=item->max_length;
unsigned_flag= item->unsigned_flag;
field=item->result_field;
maybe_null=1;
sample= item->sample;
prec_increment= item->prec_increment;
if ((hybrid_type= item->hybrid_type) == DECIMAL_RESULT)
{
f_scale0= item->f_scale0;
f_precision0= item->f_precision0;
dec_bin_size0= item->dec_bin_size0;
f_scale1= item->f_scale1;
f_precision1= item->f_precision1;
dec_bin_size1= item->dec_bin_size1;
}
}
double Item_variance_field::val_real()
{
// fix_fields() never calls for this Item
if (hybrid_type == DECIMAL_RESULT)
return val_real_from_decimal();
double recurrence_s;
ulonglong count;
float8get(recurrence_s, (field->ptr + sizeof(double)));
count=sint8korr(field->ptr+sizeof(double)*2);
if ((null_value= (count <= sample)))
return 0.0;
return variance_fp_recurrence_result(recurrence_s, count, sample);
}
/****************************************************************************
** COUNT(DISTINCT ...)
****************************************************************************/
int simple_str_key_cmp(void* arg, uchar* key1, uchar* key2)
{
Field *f= (Field*) arg;
return f->cmp(key1, key2);
}
/**
Did not make this one static - at least gcc gets confused when
I try to declare a static function as a friend. If you can figure
out the syntax to make a static function a friend, make this one
static
*/
int composite_key_cmp(void* arg, uchar* key1, uchar* key2)
{
Item_sum_count_distinct* item = (Item_sum_count_distinct*)arg;
Field **field = item->table->field;
Field **field_end= field + item->table->s->fields;
uint32 *lengths=item->field_lengths;
for (; field < field_end; ++field)
{
Field* f = *field;
int len = *lengths++;
int res = f->cmp(key1, key2);
if (res)
return res;
key1 += len;
key2 += len;
}
return 0;
}
C_MODE_START
static int count_distinct_walk(void *elem, element_count count, void *arg)
{
(*((ulonglong*)arg))++;
return 0;
}
C_MODE_END
void Item_sum_count_distinct::cleanup()
{
DBUG_ENTER("Item_sum_count_distinct::cleanup");
Item_sum_int::cleanup();
/* Free objects only if we own them. */
if (!original)
{
/*
We need to delete the table and the tree in cleanup() as
they were allocated in the runtime memroot. Using the runtime
memroot reduces memory footprint for PS/SP and simplifies setup().
*/
delete tree;
tree= 0;
is_evaluated= FALSE;
if (table)
{
free_tmp_table(table->in_use, table);
table= 0;
}
delete tmp_table_param;
tmp_table_param= 0;
}
always_null= FALSE;
DBUG_VOID_RETURN;
}
/**
This is used by rollup to create a separate usable copy of
the function.
*/
void Item_sum_count_distinct::make_unique()
{
table=0;
original= 0;
force_copy_fields= 1;
tree= 0;
is_evaluated= FALSE;
tmp_table_param= 0;
always_null= FALSE;
}
Item_sum_count_distinct::~Item_sum_count_distinct()
{
cleanup();
}
bool Item_sum_count_distinct::setup(THD *thd)
{
List<Item> list;
SELECT_LEX *select_lex= thd->lex->current_select;
/*
Setup can be called twice for ROLLUP items. This is a bug.
Please add DBUG_ASSERT(tree == 0) here when it's fixed.
It's legal to call setup() more than once when in a subquery
*/
if (tree || table || tmp_table_param)
return FALSE;
if (!(tmp_table_param= new TMP_TABLE_PARAM))
return TRUE;
/* Create a table with an unique key over all parameters */
for (uint i=0; i < arg_count ; i++)
{
Item *item=args[i];
if (list.push_back(item))
return TRUE; // End of memory
if (item->const_item() && item->is_null())
always_null= 1;
}
if (always_null)
return FALSE;
count_field_types(select_lex, tmp_table_param, list, 0);
tmp_table_param->force_copy_fields= force_copy_fields;
DBUG_ASSERT(table == 0);
/*
Make create_tmp_table() convert BIT columns to BIGINT.
This is needed because BIT fields store parts of their data in table's
null bits, and we don't have methods to compare two table records, which
is needed by Unique which is used when HEAP table is used.
*/
{
List_iterator_fast<Item> li(list);
Item *item;
while ((item= li++))
{
if (item->type() == Item::FIELD_ITEM &&
((Item_field*)item)->field->type() == FIELD_TYPE_BIT)
item->marker=4;
}
}
if (!(table= create_tmp_table(thd, tmp_table_param, list, (ORDER*) 0, 1,
0,
(select_lex->options | thd->options),
HA_POS_ERROR, (char*)"")))
return TRUE;
table->file->extra(HA_EXTRA_NO_ROWS); // Don't update rows
table->no_rows=1;
if (table->s->db_type() == heap_hton)
{
/*
No blobs, otherwise it would have been MyISAM: set up a compare
function and its arguments to use with Unique.
*/
qsort_cmp2 compare_key;
void* cmp_arg;
Field **field= table->field;
Field **field_end= field + table->s->fields;
bool all_binary= TRUE;
for (tree_key_length= 0; field < field_end; ++field)
{
Field *f= *field;
enum enum_field_types f_type= f->type();
tree_key_length+= f->pack_length();
if ((f_type == MYSQL_TYPE_VARCHAR) ||
(!f->binary() && (f_type == MYSQL_TYPE_STRING ||
f_type == MYSQL_TYPE_VAR_STRING)))
{
all_binary= FALSE;
break;
}
}
if (all_binary)
{
cmp_arg= (void*) &tree_key_length;
compare_key= (qsort_cmp2) simple_raw_key_cmp;
}
else
{
if (table->s->fields == 1)
{
/*
If we have only one field, which is the most common use of
count(distinct), it is much faster to use a simpler key
compare method that can take advantage of not having to worry
about other fields.
*/
compare_key= (qsort_cmp2) simple_str_key_cmp;
cmp_arg= (void*) table->field[0];
/* tree_key_length has been set already */
}
else
{
uint32 *length;
compare_key= (qsort_cmp2) composite_key_cmp;
cmp_arg= (void*) this;
field_lengths= (uint32*) thd->alloc(table->s->fields * sizeof(uint32));
for (tree_key_length= 0, length= field_lengths, field= table->field;
field < field_end; ++field, ++length)
{
*length= (*field)->pack_length();
tree_key_length+= *length;
}
}
}
DBUG_ASSERT(tree == 0);
tree= new Unique(compare_key, cmp_arg, tree_key_length,
thd->variables.max_heap_table_size);
/*
The only time tree_key_length could be 0 is if someone does
count(distinct) on a char(0) field - stupid thing to do,
but this has to be handled - otherwise someone can crash
the server with a DoS attack
*/
is_evaluated= FALSE;
if (! tree)
return TRUE;
}
return FALSE;
}
Item *Item_sum_count_distinct::copy_or_same(THD* thd)
{
return new (thd->mem_root) Item_sum_count_distinct(thd, this);
}
void Item_sum_count_distinct::clear()
{
/* tree and table can be both null only if always_null */
is_evaluated= FALSE;
if (tree)
{
tree->reset();
}
else if (table)
{
table->file->extra(HA_EXTRA_NO_CACHE);
table->file->ha_delete_all_rows();
table->file->extra(HA_EXTRA_WRITE_CACHE);
}
}
bool Item_sum_count_distinct::add()
{
int error;
if (always_null)
return 0;
copy_fields(tmp_table_param);
if (copy_funcs(tmp_table_param->items_to_copy, table->in_use))
return TRUE;
for (Field **field=table->field ; *field ; field++)
if ((*field)->is_real_null(0))
return 0; // Don't count NULL
is_evaluated= FALSE;
if (tree)
{
/*
The first few bytes of record (at least one) are just markers
for deleted and NULLs. We want to skip them since they will
bloat the tree without providing any valuable info. Besides,
key_length used to initialize the tree didn't include space for them.
*/
return tree->unique_add(table->record[0] + table->s->null_bytes);
}
if ((error= table->file->ha_write_row(table->record[0])) &&
table->file->is_fatal_error(error, HA_CHECK_DUP))
return TRUE;
return FALSE;
}
longlong Item_sum_count_distinct::val_int()
{
int error;
DBUG_ASSERT(fixed == 1);
if (!table) // Empty query
return LL(0);
if (tree)
{
if (is_evaluated)
return count;
if (tree->elements == 0)
return (longlong) tree->elements_in_tree(); // everything fits in memory
count= 0;
tree->walk(table, count_distinct_walk, (void*) &count);
is_evaluated= TRUE;
return (longlong) count;
}
error= table->file->info(HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK);
if(error)
{
table->file->print_error(error, MYF(0));
}
return table->file->stats.records;
}
/****************************************************************************
** Functions to handle dynamic loadable aggregates
** Original source by: Alexis Mikhailov <root@medinf.chuvashia.su>
** Adapted for UDAs by: Andreas F. Bobak <bobak@relog.ch>.
** Rewritten by: Monty.
****************************************************************************/
#ifdef HAVE_DLOPEN
void Item_udf_sum::clear()
{
DBUG_ENTER("Item_udf_sum::clear");
udf.clear();
DBUG_VOID_RETURN;
}
bool Item_udf_sum::add()
{
my_bool tmp_null_value;
DBUG_ENTER("Item_udf_sum::add");
udf.add(&tmp_null_value);
null_value= tmp_null_value;
DBUG_RETURN(0);
}
void Item_udf_sum::cleanup()
{
/*
udf_handler::cleanup() nicely handles case when we have not
original item but one created by copy_or_same() method.
*/
udf.cleanup();
Item_sum::cleanup();
}
void Item_udf_sum::print(String *str, enum_query_type query_type)
{
str->append(func_name());
str->append('(');
for (uint i=0 ; i < arg_count ; i++)
{
if (i)
str->append(',');
args[i]->print(str, query_type);
}
str->append(')');
}
Item *Item_sum_udf_float::copy_or_same(THD* thd)
{
return new (thd->mem_root) Item_sum_udf_float(thd, this);
}
double Item_sum_udf_float::val_real()
{
my_bool tmp_null_value;
double res;
DBUG_ASSERT(fixed == 1);
DBUG_ENTER("Item_sum_udf_float::val");
DBUG_PRINT("info",("result_type: %d arg_count: %d",
args[0]->result_type(), arg_count));
res= udf.val(&tmp_null_value);
null_value= tmp_null_value;
DBUG_RETURN(res);
}
String *Item_sum_udf_float::val_str(String *str)
{
return val_string_from_real(str);
}
my_decimal *Item_sum_udf_float::val_decimal(my_decimal *dec)
{
return val_decimal_from_real(dec);
}
String *Item_sum_udf_decimal::val_str(String *str)
{
return val_string_from_decimal(str);
}
double Item_sum_udf_decimal::val_real()
{
return val_real_from_decimal();
}
longlong Item_sum_udf_decimal::val_int()
{
return val_int_from_decimal();
}
my_decimal *Item_sum_udf_decimal::val_decimal(my_decimal *dec_buf)
{
my_decimal *res;
my_bool tmp_null_value;
DBUG_ASSERT(fixed == 1);
DBUG_ENTER("Item_func_udf_decimal::val_decimal");
DBUG_PRINT("info",("result_type: %d arg_count: %d",
args[0]->result_type(), arg_count));
res= udf.val_decimal(&tmp_null_value, dec_buf);
null_value= tmp_null_value;
DBUG_RETURN(res);
}
Item *Item_sum_udf_decimal::copy_or_same(THD* thd)
{
return new (thd->mem_root) Item_sum_udf_decimal(thd, this);
}
Item *Item_sum_udf_int::copy_or_same(THD* thd)
{
return new (thd->mem_root) Item_sum_udf_int(thd, this);
}
longlong Item_sum_udf_int::val_int()
{
my_bool tmp_null_value;
longlong res;
DBUG_ASSERT(fixed == 1);
DBUG_ENTER("Item_sum_udf_int::val_int");
DBUG_PRINT("info",("result_type: %d arg_count: %d",
args[0]->result_type(), arg_count));
res= udf.val_int(&tmp_null_value);
null_value= tmp_null_value;
DBUG_RETURN(res);
}
String *Item_sum_udf_int::val_str(String *str)
{
return val_string_from_int(str);
}
my_decimal *Item_sum_udf_int::val_decimal(my_decimal *dec)
{
return val_decimal_from_int(dec);
}
/** Default max_length is max argument length. */
void Item_sum_udf_str::fix_length_and_dec()
{
DBUG_ENTER("Item_sum_udf_str::fix_length_and_dec");
max_length=0;
for (uint i = 0; i < arg_count; i++)
set_if_bigger(max_length,args[i]->max_length);
DBUG_VOID_RETURN;
}
Item *Item_sum_udf_str::copy_or_same(THD* thd)
{
return new (thd->mem_root) Item_sum_udf_str(thd, this);
}
my_decimal *Item_sum_udf_str::val_decimal(my_decimal *dec)
{
return val_decimal_from_string(dec);
}
String *Item_sum_udf_str::val_str(String *str)
{
DBUG_ASSERT(fixed == 1);
DBUG_ENTER("Item_sum_udf_str::str");
String *res=udf.val_str(str,&str_value);
null_value = !res;
DBUG_RETURN(res);
}
#endif /* HAVE_DLOPEN */
/*****************************************************************************
GROUP_CONCAT function
SQL SYNTAX:
GROUP_CONCAT([DISTINCT] expr,... [ORDER BY col [ASC|DESC],...]
[SEPARATOR str_const])
concat of values from "group by" operation
BUGS
Blobs doesn't work with DISTINCT or ORDER BY
*****************************************************************************/
/**
Compares the values for fields in expr list of GROUP_CONCAT.
@note
GROUP_CONCAT([DISTINCT] expr [,expr ...]
[ORDER BY {unsigned_integer | col_name | expr}
[ASC | DESC] [,col_name ...]]
[SEPARATOR str_val])
@return
@retval -1 : key1 < key2
@retval 0 : key1 = key2
@retval 1 : key1 > key2
*/
int group_concat_key_cmp_with_distinct(void* arg, const void* key1,
const void* key2)
{
Item_func_group_concat *item_func= (Item_func_group_concat*)arg;
TABLE *table= item_func->table;
for (uint i= 0; i < item_func->arg_count_field; i++)
{
Item *item= item_func->args[i];
/*
If field_item is a const item then either get_tp_table_field returns 0
or it is an item over a const table.
*/
if (item->const_item())
continue;
/*
We have to use get_tmp_table_field() instead of
real_item()->get_tmp_table_field() because we want the field in
the temporary table, not the original field
*/
Field *field= item->get_tmp_table_field();
int res;
uint offset= field->offset(field->table->record[0])-table->s->null_bytes;
if((res= field->cmp((uchar*)key1 + offset, (uchar*)key2 + offset)))
return res;
}
return 0;
}
/**
function of sort for syntax: GROUP_CONCAT(expr,... ORDER BY col,... )
*/
int group_concat_key_cmp_with_order(void* arg, const void* key1,
const void* key2)
{
Item_func_group_concat* grp_item= (Item_func_group_concat*) arg;
ORDER **order_item, **end;
TABLE *table= grp_item->table;
for (order_item= grp_item->order, end=order_item+ grp_item->arg_count_order;
order_item < end;
order_item++)
{
Item *item= *(*order_item)->item;
/*
We have to use get_tmp_table_field() instead of
real_item()->get_tmp_table_field() because we want the field in
the temporary table, not the original field
*/
Field *field= item->get_tmp_table_field();
/*
If item is a const item then either get_tp_table_field returns 0
or it is an item over a const table.
*/
if (field && !item->const_item())
{
int res;
uint offset= (field->offset(field->table->record[0]) -
table->s->null_bytes);
if ((res= field->cmp((uchar*)key1 + offset, (uchar*)key2 + offset)))
return (*order_item)->asc ? res : -res;
}
}
/*
We can't return 0 because in that case the tree class would remove this
item as double value. This would cause problems for case-changes and
if the returned values are not the same we do the sort on.
*/
return 1;
}
/**
Append data from current leaf to item->result.
*/
int dump_leaf_key(uchar* key, element_count count __attribute__((unused)),
Item_func_group_concat *item)
{
TABLE *table= item->table;
String tmp((char *)table->record[1], table->s->reclength,
default_charset_info);
String tmp2;
String *result= &item->result;
Item **arg= item->args, **arg_end= item->args + item->arg_count_field;
uint old_length= result->length();
if (item->no_appended)
item->no_appended= FALSE;
else
result->append(*item->separator);
tmp.length(0);
for (; arg < arg_end; arg++)
{
String *res;
if (! (*arg)->const_item())
{
/*
We have to use get_tmp_table_field() instead of
real_item()->get_tmp_table_field() because we want the field in
the temporary table, not the original field
We also can't use table->field array to access the fields
because it contains both order and arg list fields.
*/
Field *field= (*arg)->get_tmp_table_field();
uint offset= (field->offset(field->table->record[0]) -
table->s->null_bytes);
DBUG_ASSERT(offset < table->s->reclength);
res= field->val_str(&tmp, key + offset);
}
else
res= (*arg)->val_str(&tmp);
if (res)
result->append(*res);
}
/* stop if length of result more than max_length */
if (result->length() > item->max_length)
{
int well_formed_error;
CHARSET_INFO *cs= item->collation.collation;
const char *ptr= result->ptr();
uint add_length;
/*
It's ok to use item->result.length() as the fourth argument
as this is never used to limit the length of the data.
Cut is done with the third argument.
*/
add_length= cs->cset->well_formed_len(cs,
ptr + old_length,
ptr + item->max_length,
result->length(),
&well_formed_error);
result->length(old_length + add_length);
item->count_cut_values++;
item->warning_for_row= TRUE;
return 1;
}
return 0;
}
/**
Constructor of Item_func_group_concat.
@param distinct_arg distinct
@param select_list list of expression for show values
@param order_list list of sort columns
@param separator_arg string value of separator.
*/
Item_func_group_concat::
Item_func_group_concat(Name_resolution_context *context_arg,
bool distinct_arg, List<Item> *select_list,
SQL_I_List<ORDER> *order_list, String *separator_arg)
:tmp_table_param(0), warning(0),
separator(separator_arg), tree(0), unique_filter(NULL), table(0),
order(0), context(context_arg),
arg_count_order(order_list ? order_list->elements : 0),
arg_count_field(select_list->elements),
count_cut_values(0),
distinct(distinct_arg),
warning_for_row(FALSE),
force_copy_fields(0), original(0)
{
Item *item_select;
Item **arg_ptr;
quick_group= FALSE;
arg_count= arg_count_field + arg_count_order;
/*
We need to allocate:
args - arg_count_field+arg_count_order
(for possible order items in temporare tables)
order - arg_count_order
*/
if (!(args= (Item**) sql_alloc(sizeof(Item*) * arg_count +
sizeof(ORDER*)*arg_count_order)))
return;
if (!(orig_args= (Item **) sql_alloc(sizeof(Item *) * arg_count)))
{
args= NULL;
return;
}
order= (ORDER**)(args + arg_count);
/* fill args items of show and sort */
List_iterator_fast<Item> li(*select_list);
for (arg_ptr=args ; (item_select= li++) ; arg_ptr++)
*arg_ptr= item_select;
if (arg_count_order)
{
ORDER **order_ptr= order;
for (ORDER *order_item= order_list->first;
order_item != NULL;
order_item= order_item->next)
{
(*order_ptr++)= order_item;
*arg_ptr= *order_item->item;
order_item->item= arg_ptr++;
}
}
memcpy(orig_args, args, sizeof(Item*) * arg_count);
}
Item_func_group_concat::Item_func_group_concat(THD *thd,
Item_func_group_concat *item)
:Item_sum(thd, item),
tmp_table_param(item->tmp_table_param),
warning(item->warning),
separator(item->separator),
tree(item->tree),
unique_filter(item->unique_filter),
table(item->table),
context(item->context),
arg_count_order(item->arg_count_order),
arg_count_field(item->arg_count_field),
count_cut_values(item->count_cut_values),
distinct(item->distinct),
warning_for_row(item->warning_for_row),
always_null(item->always_null),
force_copy_fields(item->force_copy_fields),
original(item)
{
quick_group= item->quick_group;
result.set_charset(collation.collation);
/*
Since the ORDER structures pointed to by the elements of the 'order' array
may be modified in find_order_in_list() called from
Item_func_group_concat::setup(), create a copy of those structures so that
such modifications done in this object would not have any effect on the
object being copied.
*/
ORDER *tmp;
if (!(tmp= (ORDER *) thd->alloc(sizeof(ORDER *) * arg_count_order +
sizeof(ORDER) * arg_count_order)))
return;
order= (ORDER **)(tmp + arg_count_order);
for (uint i= 0; i < arg_count_order; i++, tmp++)
{
memcpy(tmp, item->order[i], sizeof(ORDER));
order[i]= tmp;
}
}
void Item_func_group_concat::cleanup()
{
DBUG_ENTER("Item_func_group_concat::cleanup");
Item_sum::cleanup();
/* Adjust warning message to include total number of cut values */
if (warning)
{
char warn_buff[MYSQL_ERRMSG_SIZE];
sprintf(warn_buff, ER(ER_CUT_VALUE_GROUP_CONCAT), count_cut_values);
warning->set_msg(current_thd, warn_buff);
warning= 0;
}
/*
Free table and tree if they belong to this item (if item have not pointer
to original item from which was made copy => it own its objects )
*/
if (!original)
{
delete tmp_table_param;
tmp_table_param= 0;
if (table)
{
THD *thd= table->in_use;
free_tmp_table(thd, table);
table= 0;
if (tree)
{
delete_tree(tree);
tree= 0;
}
if (unique_filter)
{
delete unique_filter;
unique_filter= NULL;
}
if (warning)
{
char warn_buff[MYSQL_ERRMSG_SIZE];
sprintf(warn_buff, ER(ER_CUT_VALUE_GROUP_CONCAT), count_cut_values);
warning->set_msg(thd, warn_buff);
warning= 0;
}
}
DBUG_ASSERT(tree == 0 && warning == 0);
}
DBUG_VOID_RETURN;
}
Item *Item_func_group_concat::copy_or_same(THD* thd)
{
return new (thd->mem_root) Item_func_group_concat(thd, this);
}
void Item_func_group_concat::clear()
{
result.length(0);
result.copy();
null_value= TRUE;
warning_for_row= FALSE;
no_appended= TRUE;
if (tree)
reset_tree(tree);
if (unique_filter)
unique_filter->reset();
/* No need to reset the table as we never call write_row */
}
bool Item_func_group_concat::add()
{
if (always_null)
return 0;
copy_fields(tmp_table_param);
if (copy_funcs(tmp_table_param->items_to_copy, table->in_use))
return TRUE;
for (uint i= 0; i < arg_count_field; i++)
{
Item *show_item= args[i];
if (!show_item->const_item())
{
Field *f= show_item->get_tmp_table_field();
if (f->is_null_in_record((const uchar*) table->record[0]))
return 0; // Skip row if it contains null
}
}
null_value= FALSE;
bool row_eligible= TRUE;
if (distinct)
{
/* Filter out duplicate rows. */
uint count= unique_filter->elements_in_tree();
unique_filter->unique_add(table->record[0] + table->s->null_bytes);
if (count == unique_filter->elements_in_tree())
row_eligible= FALSE;
}
TREE_ELEMENT *el= 0; // Only for safety
if (row_eligible && tree)
{
el= tree_insert(tree, table->record[0] + table->s->null_bytes, 0,
tree->custom_arg);
/* check if there was enough memory to insert the row */
if (!el)
return 1;
}
/*
If the row is not a duplicate (el->count == 1)
we can dump the row here in case of GROUP_CONCAT(DISTINCT...)
instead of doing tree traverse later.
*/
if (row_eligible && !warning_for_row &&
(!tree || (el->count == 1 && distinct && !arg_count_order)))
dump_leaf_key(table->record[0] + table->s->null_bytes, 1, this);
return 0;
}
bool
Item_func_group_concat::fix_fields(THD *thd, Item **ref)
{
uint i; /* for loop variable */
DBUG_ASSERT(fixed == 0);
if (init_sum_func_check(thd))
return TRUE;
maybe_null= 1;
/*
Fix fields for select list and ORDER clause
*/
for (i=0 ; i < arg_count ; i++)
{
if ((!args[i]->fixed &&
args[i]->fix_fields(thd, args + i)) ||
args[i]->check_cols(1))
return TRUE;
with_subselect|= args[i]->with_subselect;
}
if (agg_item_charsets(collation, func_name(),
args,
/* skip charset aggregation for order columns */
arg_count - arg_count_order,
MY_COLL_ALLOW_CONV, 1))
return 1;
result.set_charset(collation.collation);
result_field= 0;
null_value= 1;
max_length= thd->variables.group_concat_max_len;
uint32 offset;
if (separator->needs_conversion(separator->length(), separator->charset(),
collation.collation, &offset))
{
uint32 buflen= collation.collation->mbmaxlen * separator->length();
uint errors, conv_length;
char *buf;
String *new_separator;
if (!(buf= (char*) thd->stmt_arena->alloc(buflen)) ||
!(new_separator= new(thd->stmt_arena->mem_root)
String(buf, buflen, collation.collation)))
return TRUE;
conv_length= copy_and_convert(buf, buflen, collation.collation,
separator->ptr(), separator->length(),
separator->charset(), &errors);
new_separator->length(conv_length);
separator= new_separator;
}
if (check_sum_func(thd, ref))
return TRUE;
fixed= 1;
return FALSE;
}
bool Item_func_group_concat::setup(THD *thd)
{
List<Item> list;
SELECT_LEX *select_lex= thd->lex->current_select;
DBUG_ENTER("Item_func_group_concat::setup");
/*
Currently setup() can be called twice. Please add
assertion here when this is fixed.
*/
if (table || tree)
DBUG_RETURN(FALSE);
if (!(tmp_table_param= new TMP_TABLE_PARAM))
DBUG_RETURN(TRUE);
/* We'll convert all blobs to varchar fields in the temporary table */
tmp_table_param->convert_blob_length= max_length *
collation.collation->mbmaxlen;
/* Push all not constant fields to the list and create a temp table */
always_null= 0;
for (uint i= 0; i < arg_count_field; i++)
{
Item *item= args[i];
if (list.push_back(item))
DBUG_RETURN(TRUE);
if (item->const_item())
{
if (item->is_null())
{
always_null= 1;
DBUG_RETURN(FALSE);
}
}
}
List<Item> all_fields(list);
/*
Try to find every ORDER expression in the list of GROUP_CONCAT
arguments. If an expression is not found, prepend it to
"all_fields". The resulting field list is used as input to create
tmp table columns.
*/
if (arg_count_order &&
setup_order(thd, args, context->table_list, list, all_fields, *order))
DBUG_RETURN(TRUE);
count_field_types(select_lex, tmp_table_param, all_fields, 0);
tmp_table_param->force_copy_fields= force_copy_fields;
DBUG_ASSERT(table == 0);
if (arg_count_order > 0 || distinct)
{
/*
Currently we have to force conversion of BLOB values to VARCHAR's
if we are to store them in TREE objects used for ORDER BY and
DISTINCT. This leads to truncation if the BLOB's size exceeds
Field_varstring::MAX_SIZE.
*/
set_if_smaller(tmp_table_param->convert_blob_length,
Field_varstring::MAX_SIZE);
/*
Force the create_tmp_table() to convert BIT columns to INT
as we cannot compare two table records containg BIT fields
stored in the the tree used for distinct/order by.
Moreover we don't even save in the tree record null bits
where BIT fields store parts of their data.
*/
List_iterator_fast<Item> li(all_fields);
Item *item;
while ((item= li++))
{
if (item->type() == Item::FIELD_ITEM &&
((Item_field*) item)->field->type() == FIELD_TYPE_BIT)
item->marker= 4;
}
}
/*
We have to create a temporary table to get descriptions of fields
(types, sizes and so on).
Note that in the table, we first have the ORDER BY fields, then the
field list.
*/
if (!(table= create_tmp_table(thd, tmp_table_param, all_fields,
(ORDER*) 0, 0, TRUE,
(select_lex->options | thd->options),
HA_POS_ERROR, (char*) "")))
DBUG_RETURN(TRUE);
table->file->extra(HA_EXTRA_NO_ROWS);
table->no_rows= 1;
/*
Need sorting or uniqueness: init tree and choose a function to sort.
Don't reserve space for NULLs: if any of gconcat arguments is NULL,
the row is not added to the result.
*/
uint tree_key_length= table->s->reclength - table->s->null_bytes;
if (arg_count_order)
{
tree= &tree_base;
/*
Create a tree for sorting. The tree is used to sort (according to the
syntax of this function). If there is no ORDER BY clause, we don't
create this tree.
*/
init_tree(tree, (uint) min(thd->variables.max_heap_table_size,
thd->variables.sortbuff_size/16), 0,
tree_key_length,
group_concat_key_cmp_with_order , 0, NULL, (void*) this);
}
if (distinct)
unique_filter= new Unique(group_concat_key_cmp_with_distinct,
(void*)this,
tree_key_length,
thd->variables.max_heap_table_size);
DBUG_RETURN(FALSE);
}
/* This is used by rollup to create a separate usable copy of the function */
void Item_func_group_concat::make_unique()
{
tmp_table_param= 0;
table=0;
original= 0;
force_copy_fields= 1;
tree= 0;
}
String* Item_func_group_concat::val_str(String* str)
{
DBUG_ASSERT(fixed == 1);
if (null_value)
return 0;
if (no_appended && tree)
/* Tree is used for sorting as in ORDER BY */
tree_walk(tree, (tree_walk_action)&dump_leaf_key, (void*)this,
left_root_right);
if (count_cut_values && !warning)
{
/*
ER_CUT_VALUE_GROUP_CONCAT needs an argument, but this gets set in
Item_func_group_concat::cleanup().
*/
DBUG_ASSERT(table);
warning= push_warning(table->in_use, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_CUT_VALUE_GROUP_CONCAT,
ER(ER_CUT_VALUE_GROUP_CONCAT));
}
return &result;
}
void Item_func_group_concat::print(String *str, enum_query_type query_type)
{
str->append(STRING_WITH_LEN("group_concat("));
if (distinct)
str->append(STRING_WITH_LEN("distinct "));
for (uint i= 0; i < arg_count_field; i++)
{
if (i)
str->append(',');
orig_args[i]->print(str, query_type);
}
if (arg_count_order)
{
str->append(STRING_WITH_LEN(" order by "));
for (uint i= 0 ; i < arg_count_order ; i++)
{
if (i)
str->append(',');
orig_args[i + arg_count_field]->print(str, query_type);
if (order[i]->asc)
str->append(STRING_WITH_LEN(" ASC"));
else
str->append(STRING_WITH_LEN(" DESC"));
}
}
str->append(STRING_WITH_LEN(" separator \'"));
str->append(*separator);
str->append(STRING_WITH_LEN("\')"));
}
Item_func_group_concat::~Item_func_group_concat()
{
if (!original && unique_filter)
delete unique_filter;
}