mariadb/buf/buf0flu.c
inaam 449e6af3c6 branches/zip rb://138
The current implementation is to try to flush the neighbors of every
page that we flush. This patch makes the following distinction:

1) If the flush is from flush_list AND
2) If the flush is intended to move the oldest_modification LSN ahead
(this happens when a user thread sees little space in the log file and
attempts to flush pages from the buffer pool so that a checkpoint can
be made)

THEN

Do not try to flush the neighbors. Just focus on flushing dirty pages at
the end of flush_list

Approved by: Heikki
2009-07-07 22:00:49 +00:00

1279 lines
35 KiB
C

/*****************************************************************************
Copyright (c) 1995, 2009, Innobase Oy. All Rights Reserved.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA
*****************************************************************************/
/**************************************************//**
@file buf/buf0flu.c
The database buffer buf_pool flush algorithm
Created 11/11/1995 Heikki Tuuri
*******************************************************/
#include "buf0flu.h"
#ifdef UNIV_NONINL
#include "buf0flu.ic"
#endif
#include "buf0buf.h"
#include "srv0srv.h"
#include "page0zip.h"
#ifndef UNIV_HOTBACKUP
#include "ut0byte.h"
#include "ut0lst.h"
#include "page0page.h"
#include "fil0fil.h"
#include "buf0lru.h"
#include "buf0rea.h"
#include "ibuf0ibuf.h"
#include "log0log.h"
#include "os0file.h"
#include "trx0sys.h"
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
/******************************************************************//**
Validates the flush list.
@return TRUE if ok */
static
ibool
buf_flush_validate_low(void);
/*========================*/
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
/********************************************************************//**
Inserts a modified block into the flush list. */
UNIV_INTERN
void
buf_flush_insert_into_flush_list(
/*=============================*/
buf_block_t* block) /*!< in/out: block which is modified */
{
ut_ad(buf_pool_mutex_own());
ut_ad((UT_LIST_GET_FIRST(buf_pool->flush_list) == NULL)
|| (UT_LIST_GET_FIRST(buf_pool->flush_list)->oldest_modification
<= block->page.oldest_modification));
ut_ad(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE);
ut_ad(block->page.in_LRU_list);
ut_ad(block->page.in_page_hash);
ut_ad(!block->page.in_zip_hash);
ut_ad(!block->page.in_flush_list);
ut_d(block->page.in_flush_list = TRUE);
UT_LIST_ADD_FIRST(list, buf_pool->flush_list, &block->page);
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
ut_a(buf_flush_validate_low());
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
}
/********************************************************************//**
Inserts a modified block into the flush list in the right sorted position.
This function is used by recovery, because there the modifications do not
necessarily come in the order of lsn's. */
UNIV_INTERN
void
buf_flush_insert_sorted_into_flush_list(
/*====================================*/
buf_block_t* block) /*!< in/out: block which is modified */
{
buf_page_t* prev_b;
buf_page_t* b;
ut_ad(buf_pool_mutex_own());
ut_ad(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE);
ut_ad(block->page.in_LRU_list);
ut_ad(block->page.in_page_hash);
ut_ad(!block->page.in_zip_hash);
ut_ad(!block->page.in_flush_list);
ut_d(block->page.in_flush_list = TRUE);
prev_b = NULL;
b = UT_LIST_GET_FIRST(buf_pool->flush_list);
while (b && b->oldest_modification > block->page.oldest_modification) {
ut_ad(b->in_flush_list);
prev_b = b;
b = UT_LIST_GET_NEXT(list, b);
}
if (prev_b == NULL) {
UT_LIST_ADD_FIRST(list, buf_pool->flush_list, &block->page);
} else {
UT_LIST_INSERT_AFTER(list, buf_pool->flush_list,
prev_b, &block->page);
}
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
ut_a(buf_flush_validate_low());
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
}
/********************************************************************//**
Returns TRUE if the file page block is immediately suitable for replacement,
i.e., the transition FILE_PAGE => NOT_USED allowed.
@return TRUE if can replace immediately */
UNIV_INTERN
ibool
buf_flush_ready_for_replace(
/*========================*/
buf_page_t* bpage) /*!< in: buffer control block, must be
buf_page_in_file(bpage) and in the LRU list */
{
ut_ad(buf_pool_mutex_own());
ut_ad(mutex_own(buf_page_get_mutex(bpage)));
ut_ad(bpage->in_LRU_list);
if (UNIV_LIKELY(buf_page_in_file(bpage))) {
return(bpage->oldest_modification == 0
&& buf_page_get_io_fix(bpage) == BUF_IO_NONE
&& bpage->buf_fix_count == 0);
}
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: Error: buffer block state %lu"
" in the LRU list!\n",
(ulong) buf_page_get_state(bpage));
ut_print_buf(stderr, bpage, sizeof(buf_page_t));
putc('\n', stderr);
return(FALSE);
}
/********************************************************************//**
Returns TRUE if the block is modified and ready for flushing.
@return TRUE if can flush immediately */
UNIV_INLINE
ibool
buf_flush_ready_for_flush(
/*======================*/
buf_page_t* bpage, /*!< in: buffer control block, must be
buf_page_in_file(bpage) */
enum buf_flush flush_type)/*!< in: BUF_FLUSH_LRU or BUF_FLUSH_LIST */
{
ut_a(buf_page_in_file(bpage));
ut_ad(buf_pool_mutex_own());
ut_ad(mutex_own(buf_page_get_mutex(bpage)));
ut_ad(flush_type == BUF_FLUSH_LRU || BUF_FLUSH_LIST);
if (bpage->oldest_modification != 0
&& buf_page_get_io_fix(bpage) == BUF_IO_NONE) {
ut_ad(bpage->in_flush_list);
if (flush_type != BUF_FLUSH_LRU) {
return(TRUE);
} else if (bpage->buf_fix_count == 0) {
/* If we are flushing the LRU list, to avoid deadlocks
we require the block not to be bufferfixed, and hence
not latched. */
return(TRUE);
}
}
return(FALSE);
}
/********************************************************************//**
Remove a block from the flush list of modified blocks. */
UNIV_INTERN
void
buf_flush_remove(
/*=============*/
buf_page_t* bpage) /*!< in: pointer to the block in question */
{
ut_ad(buf_pool_mutex_own());
ut_ad(mutex_own(buf_page_get_mutex(bpage)));
ut_ad(bpage->in_flush_list);
ut_d(bpage->in_flush_list = FALSE);
switch (buf_page_get_state(bpage)) {
case BUF_BLOCK_ZIP_PAGE:
/* clean compressed pages should not be on the flush list */
case BUF_BLOCK_ZIP_FREE:
case BUF_BLOCK_NOT_USED:
case BUF_BLOCK_READY_FOR_USE:
case BUF_BLOCK_MEMORY:
case BUF_BLOCK_REMOVE_HASH:
ut_error;
return;
case BUF_BLOCK_ZIP_DIRTY:
buf_page_set_state(bpage, BUF_BLOCK_ZIP_PAGE);
UT_LIST_REMOVE(list, buf_pool->flush_list, bpage);
buf_LRU_insert_zip_clean(bpage);
break;
case BUF_BLOCK_FILE_PAGE:
UT_LIST_REMOVE(list, buf_pool->flush_list, bpage);
break;
}
bpage->oldest_modification = 0;
ut_d(UT_LIST_VALIDATE(list, buf_page_t, buf_pool->flush_list,
ut_ad(ut_list_node_313->in_flush_list)));
}
/********************************************************************//**
Updates the flush system data structures when a write is completed. */
UNIV_INTERN
void
buf_flush_write_complete(
/*=====================*/
buf_page_t* bpage) /*!< in: pointer to the block in question */
{
enum buf_flush flush_type;
ut_ad(bpage);
buf_flush_remove(bpage);
flush_type = buf_page_get_flush_type(bpage);
buf_pool->n_flush[flush_type]--;
if (flush_type == BUF_FLUSH_LRU) {
/* Put the block to the end of the LRU list to wait to be
moved to the free list */
buf_LRU_make_block_old(bpage);
buf_pool->LRU_flush_ended++;
}
/* fprintf(stderr, "n pending flush %lu\n",
buf_pool->n_flush[flush_type]); */
if ((buf_pool->n_flush[flush_type] == 0)
&& (buf_pool->init_flush[flush_type] == FALSE)) {
/* The running flush batch has ended */
os_event_set(buf_pool->no_flush[flush_type]);
}
}
/********************************************************************//**
Flushes possible buffered writes from the doublewrite memory buffer to disk,
and also wakes up the aio thread if simulated aio is used. It is very
important to call this function after a batch of writes has been posted,
and also when we may have to wait for a page latch! Otherwise a deadlock
of threads can occur. */
static
void
buf_flush_buffered_writes(void)
/*===========================*/
{
byte* write_buf;
ulint len;
ulint len2;
ulint i;
if (!srv_use_doublewrite_buf || trx_doublewrite == NULL) {
os_aio_simulated_wake_handler_threads();
return;
}
mutex_enter(&(trx_doublewrite->mutex));
/* Write first to doublewrite buffer blocks. We use synchronous
aio and thus know that file write has been completed when the
control returns. */
if (trx_doublewrite->first_free == 0) {
mutex_exit(&(trx_doublewrite->mutex));
return;
}
for (i = 0; i < trx_doublewrite->first_free; i++) {
const buf_block_t* block;
block = (buf_block_t*) trx_doublewrite->buf_block_arr[i];
if (buf_block_get_state(block) != BUF_BLOCK_FILE_PAGE
|| block->page.zip.data) {
/* No simple validate for compressed pages exists. */
continue;
}
if (UNIV_UNLIKELY
(memcmp(block->frame + (FIL_PAGE_LSN + 4),
block->frame + (UNIV_PAGE_SIZE
- FIL_PAGE_END_LSN_OLD_CHKSUM + 4),
4))) {
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: ERROR: The page to be written"
" seems corrupt!\n"
"InnoDB: The lsn fields do not match!"
" Noticed in the buffer pool\n"
"InnoDB: before posting to the"
" doublewrite buffer.\n");
}
if (!block->check_index_page_at_flush) {
} else if (page_is_comp(block->frame)) {
if (UNIV_UNLIKELY
(!page_simple_validate_new(block->frame))) {
corrupted_page:
buf_page_print(block->frame, 0);
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: Apparent corruption of an"
" index page n:o %lu in space %lu\n"
"InnoDB: to be written to data file."
" We intentionally crash server\n"
"InnoDB: to prevent corrupt data"
" from ending up in data\n"
"InnoDB: files.\n",
(ulong) buf_block_get_page_no(block),
(ulong) buf_block_get_space(block));
ut_error;
}
} else if (UNIV_UNLIKELY
(!page_simple_validate_old(block->frame))) {
goto corrupted_page;
}
}
/* increment the doublewrite flushed pages counter */
srv_dblwr_pages_written+= trx_doublewrite->first_free;
srv_dblwr_writes++;
len = ut_min(TRX_SYS_DOUBLEWRITE_BLOCK_SIZE,
trx_doublewrite->first_free) * UNIV_PAGE_SIZE;
write_buf = trx_doublewrite->write_buf;
i = 0;
fil_io(OS_FILE_WRITE, TRUE, TRX_SYS_SPACE, 0,
trx_doublewrite->block1, 0, len,
(void*) write_buf, NULL);
for (len2 = 0; len2 + UNIV_PAGE_SIZE <= len;
len2 += UNIV_PAGE_SIZE, i++) {
const buf_block_t* block = (buf_block_t*)
trx_doublewrite->buf_block_arr[i];
if (UNIV_LIKELY(!block->page.zip.data)
&& UNIV_LIKELY(buf_block_get_state(block)
== BUF_BLOCK_FILE_PAGE)
&& UNIV_UNLIKELY
(memcmp(write_buf + len2 + (FIL_PAGE_LSN + 4),
write_buf + len2
+ (UNIV_PAGE_SIZE
- FIL_PAGE_END_LSN_OLD_CHKSUM + 4), 4))) {
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: ERROR: The page to be written"
" seems corrupt!\n"
"InnoDB: The lsn fields do not match!"
" Noticed in the doublewrite block1.\n");
}
}
if (trx_doublewrite->first_free <= TRX_SYS_DOUBLEWRITE_BLOCK_SIZE) {
goto flush;
}
len = (trx_doublewrite->first_free - TRX_SYS_DOUBLEWRITE_BLOCK_SIZE)
* UNIV_PAGE_SIZE;
write_buf = trx_doublewrite->write_buf
+ TRX_SYS_DOUBLEWRITE_BLOCK_SIZE * UNIV_PAGE_SIZE;
ut_ad(i == TRX_SYS_DOUBLEWRITE_BLOCK_SIZE);
fil_io(OS_FILE_WRITE, TRUE, TRX_SYS_SPACE, 0,
trx_doublewrite->block2, 0, len,
(void*) write_buf, NULL);
for (len2 = 0; len2 + UNIV_PAGE_SIZE <= len;
len2 += UNIV_PAGE_SIZE, i++) {
const buf_block_t* block = (buf_block_t*)
trx_doublewrite->buf_block_arr[i];
if (UNIV_LIKELY(!block->page.zip.data)
&& UNIV_LIKELY(buf_block_get_state(block)
== BUF_BLOCK_FILE_PAGE)
&& UNIV_UNLIKELY
(memcmp(write_buf + len2 + (FIL_PAGE_LSN + 4),
write_buf + len2
+ (UNIV_PAGE_SIZE
- FIL_PAGE_END_LSN_OLD_CHKSUM + 4), 4))) {
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: ERROR: The page to be"
" written seems corrupt!\n"
"InnoDB: The lsn fields do not match!"
" Noticed in"
" the doublewrite block2.\n");
}
}
flush:
/* Now flush the doublewrite buffer data to disk */
fil_flush(TRX_SYS_SPACE);
/* We know that the writes have been flushed to disk now
and in recovery we will find them in the doublewrite buffer
blocks. Next do the writes to the intended positions. */
for (i = 0; i < trx_doublewrite->first_free; i++) {
const buf_block_t* block = (buf_block_t*)
trx_doublewrite->buf_block_arr[i];
ut_a(buf_page_in_file(&block->page));
if (UNIV_LIKELY_NULL(block->page.zip.data)) {
fil_io(OS_FILE_WRITE | OS_AIO_SIMULATED_WAKE_LATER,
FALSE, buf_page_get_space(&block->page),
buf_page_get_zip_size(&block->page),
buf_page_get_page_no(&block->page), 0,
buf_page_get_zip_size(&block->page),
(void*)block->page.zip.data,
(void*)block);
/* Increment the counter of I/O operations used
for selecting LRU policy. */
buf_LRU_stat_inc_io();
continue;
}
ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE);
if (UNIV_UNLIKELY(memcmp(block->frame + (FIL_PAGE_LSN + 4),
block->frame
+ (UNIV_PAGE_SIZE
- FIL_PAGE_END_LSN_OLD_CHKSUM + 4),
4))) {
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: ERROR: The page to be written"
" seems corrupt!\n"
"InnoDB: The lsn fields do not match!"
" Noticed in the buffer pool\n"
"InnoDB: after posting and flushing"
" the doublewrite buffer.\n"
"InnoDB: Page buf fix count %lu,"
" io fix %lu, state %lu\n",
(ulong)block->page.buf_fix_count,
(ulong)buf_block_get_io_fix(block),
(ulong)buf_block_get_state(block));
}
fil_io(OS_FILE_WRITE | OS_AIO_SIMULATED_WAKE_LATER,
FALSE, buf_block_get_space(block), 0,
buf_block_get_page_no(block), 0, UNIV_PAGE_SIZE,
(void*)block->frame, (void*)block);
/* Increment the counter of I/O operations used
for selecting LRU policy. */
buf_LRU_stat_inc_io();
}
/* Wake possible simulated aio thread to actually post the
writes to the operating system */
os_aio_simulated_wake_handler_threads();
/* Wait that all async writes to tablespaces have been posted to
the OS */
os_aio_wait_until_no_pending_writes();
/* Now we flush the data to disk (for example, with fsync) */
fil_flush_file_spaces(FIL_TABLESPACE);
/* We can now reuse the doublewrite memory buffer: */
trx_doublewrite->first_free = 0;
mutex_exit(&(trx_doublewrite->mutex));
}
/********************************************************************//**
Posts a buffer page for writing. If the doublewrite memory buffer is
full, calls buf_flush_buffered_writes and waits for for free space to
appear. */
static
void
buf_flush_post_to_doublewrite_buf(
/*==============================*/
buf_page_t* bpage) /*!< in: buffer block to write */
{
ulint zip_size;
try_again:
mutex_enter(&(trx_doublewrite->mutex));
ut_a(buf_page_in_file(bpage));
if (trx_doublewrite->first_free
>= 2 * TRX_SYS_DOUBLEWRITE_BLOCK_SIZE) {
mutex_exit(&(trx_doublewrite->mutex));
buf_flush_buffered_writes();
goto try_again;
}
zip_size = buf_page_get_zip_size(bpage);
if (UNIV_UNLIKELY(zip_size)) {
/* Copy the compressed page and clear the rest. */
memcpy(trx_doublewrite->write_buf
+ UNIV_PAGE_SIZE * trx_doublewrite->first_free,
bpage->zip.data, zip_size);
memset(trx_doublewrite->write_buf
+ UNIV_PAGE_SIZE * trx_doublewrite->first_free
+ zip_size, 0, UNIV_PAGE_SIZE - zip_size);
} else {
ut_a(buf_page_get_state(bpage) == BUF_BLOCK_FILE_PAGE);
memcpy(trx_doublewrite->write_buf
+ UNIV_PAGE_SIZE * trx_doublewrite->first_free,
((buf_block_t*) bpage)->frame, UNIV_PAGE_SIZE);
}
trx_doublewrite->buf_block_arr[trx_doublewrite->first_free] = bpage;
trx_doublewrite->first_free++;
if (trx_doublewrite->first_free
>= 2 * TRX_SYS_DOUBLEWRITE_BLOCK_SIZE) {
mutex_exit(&(trx_doublewrite->mutex));
buf_flush_buffered_writes();
return;
}
mutex_exit(&(trx_doublewrite->mutex));
}
#endif /* !UNIV_HOTBACKUP */
/********************************************************************//**
Initializes a page for writing to the tablespace. */
UNIV_INTERN
void
buf_flush_init_for_writing(
/*=======================*/
byte* page, /*!< in/out: page */
void* page_zip_, /*!< in/out: compressed page, or NULL */
ib_uint64_t newest_lsn) /*!< in: newest modification lsn
to the page */
{
ut_ad(page);
if (page_zip_) {
page_zip_des_t* page_zip = page_zip_;
ulint zip_size = page_zip_get_size(page_zip);
ut_ad(zip_size);
ut_ad(ut_is_2pow(zip_size));
ut_ad(zip_size <= UNIV_PAGE_SIZE);
switch (UNIV_EXPECT(fil_page_get_type(page), FIL_PAGE_INDEX)) {
case FIL_PAGE_TYPE_ALLOCATED:
case FIL_PAGE_INODE:
case FIL_PAGE_IBUF_BITMAP:
case FIL_PAGE_TYPE_FSP_HDR:
case FIL_PAGE_TYPE_XDES:
/* These are essentially uncompressed pages. */
memcpy(page_zip->data, page, zip_size);
/* fall through */
case FIL_PAGE_TYPE_ZBLOB:
case FIL_PAGE_TYPE_ZBLOB2:
case FIL_PAGE_INDEX:
mach_write_ull(page_zip->data
+ FIL_PAGE_LSN, newest_lsn);
memset(page_zip->data + FIL_PAGE_FILE_FLUSH_LSN, 0, 8);
mach_write_to_4(page_zip->data
+ FIL_PAGE_SPACE_OR_CHKSUM,
srv_use_checksums
? page_zip_calc_checksum(
page_zip->data, zip_size)
: BUF_NO_CHECKSUM_MAGIC);
return;
}
ut_print_timestamp(stderr);
fputs(" InnoDB: ERROR: The compressed page to be written"
" seems corrupt:", stderr);
ut_print_buf(stderr, page, zip_size);
fputs("\nInnoDB: Possibly older version of the page:", stderr);
ut_print_buf(stderr, page_zip->data, zip_size);
putc('\n', stderr);
ut_error;
}
/* Write the newest modification lsn to the page header and trailer */
mach_write_ull(page + FIL_PAGE_LSN, newest_lsn);
mach_write_ull(page + UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM,
newest_lsn);
/* Store the new formula checksum */
mach_write_to_4(page + FIL_PAGE_SPACE_OR_CHKSUM,
srv_use_checksums
? buf_calc_page_new_checksum(page)
: BUF_NO_CHECKSUM_MAGIC);
/* We overwrite the first 4 bytes of the end lsn field to store
the old formula checksum. Since it depends also on the field
FIL_PAGE_SPACE_OR_CHKSUM, it has to be calculated after storing the
new formula checksum. */
mach_write_to_4(page + UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM,
srv_use_checksums
? buf_calc_page_old_checksum(page)
: BUF_NO_CHECKSUM_MAGIC);
}
#ifndef UNIV_HOTBACKUP
/********************************************************************//**
Does an asynchronous write of a buffer page. NOTE: in simulated aio and
also when the doublewrite buffer is used, we must call
buf_flush_buffered_writes after we have posted a batch of writes! */
static
void
buf_flush_write_block_low(
/*======================*/
buf_page_t* bpage) /*!< in: buffer block to write */
{
ulint zip_size = buf_page_get_zip_size(bpage);
page_t* frame = NULL;
#ifdef UNIV_LOG_DEBUG
static ibool univ_log_debug_warned;
#endif /* UNIV_LOG_DEBUG */
ut_ad(buf_page_in_file(bpage));
/* We are not holding buf_pool_mutex or block_mutex here.
Nevertheless, it is safe to access bpage, because it is
io_fixed and oldest_modification != 0. Thus, it cannot be
relocated in the buffer pool or removed from flush_list or
LRU_list. */
ut_ad(!buf_pool_mutex_own());
ut_ad(!mutex_own(buf_page_get_mutex(bpage)));
ut_ad(buf_page_get_io_fix(bpage) == BUF_IO_WRITE);
ut_ad(bpage->oldest_modification != 0);
#ifdef UNIV_IBUF_COUNT_DEBUG
ut_a(ibuf_count_get(bpage->space, bpage->offset) == 0);
#endif
ut_ad(bpage->newest_modification != 0);
#ifdef UNIV_LOG_DEBUG
if (!univ_log_debug_warned) {
univ_log_debug_warned = TRUE;
fputs("Warning: cannot force log to disk if"
" UNIV_LOG_DEBUG is defined!\n"
"Crash recovery will not work!\n",
stderr);
}
#else
/* Force the log to the disk before writing the modified block */
log_write_up_to(bpage->newest_modification, LOG_WAIT_ALL_GROUPS, TRUE);
#endif
switch (buf_page_get_state(bpage)) {
case BUF_BLOCK_ZIP_FREE:
case BUF_BLOCK_ZIP_PAGE: /* The page should be dirty. */
case BUF_BLOCK_NOT_USED:
case BUF_BLOCK_READY_FOR_USE:
case BUF_BLOCK_MEMORY:
case BUF_BLOCK_REMOVE_HASH:
ut_error;
break;
case BUF_BLOCK_ZIP_DIRTY:
frame = bpage->zip.data;
if (UNIV_LIKELY(srv_use_checksums)) {
ut_a(mach_read_from_4(frame + FIL_PAGE_SPACE_OR_CHKSUM)
== page_zip_calc_checksum(frame, zip_size));
}
mach_write_ull(frame + FIL_PAGE_LSN,
bpage->newest_modification);
memset(frame + FIL_PAGE_FILE_FLUSH_LSN, 0, 8);
break;
case BUF_BLOCK_FILE_PAGE:
frame = bpage->zip.data;
if (!frame) {
frame = ((buf_block_t*) bpage)->frame;
}
buf_flush_init_for_writing(((buf_block_t*) bpage)->frame,
bpage->zip.data
? &bpage->zip : NULL,
bpage->newest_modification);
break;
}
if (!srv_use_doublewrite_buf || !trx_doublewrite) {
fil_io(OS_FILE_WRITE | OS_AIO_SIMULATED_WAKE_LATER,
FALSE, buf_page_get_space(bpage), zip_size,
buf_page_get_page_no(bpage), 0,
zip_size ? zip_size : UNIV_PAGE_SIZE,
frame, bpage);
} else {
buf_flush_post_to_doublewrite_buf(bpage);
}
}
/********************************************************************//**
Writes a flushable page asynchronously from the buffer pool to a file.
NOTE: in simulated aio we must call
os_aio_simulated_wake_handler_threads after we have posted a batch of
writes! NOTE: buf_pool_mutex and buf_page_get_mutex(bpage) must be
held upon entering this function, and they will be released by this
function. */
static
void
buf_flush_page(
/*===========*/
buf_page_t* bpage, /*!< in: buffer control block */
enum buf_flush flush_type) /*!< in: BUF_FLUSH_LRU
or BUF_FLUSH_LIST */
{
mutex_t* block_mutex;
ibool is_uncompressed;
ut_ad(flush_type == BUF_FLUSH_LRU || flush_type == BUF_FLUSH_LIST);
ut_ad(buf_pool_mutex_own());
ut_ad(buf_page_in_file(bpage));
block_mutex = buf_page_get_mutex(bpage);
ut_ad(mutex_own(block_mutex));
ut_ad(buf_flush_ready_for_flush(bpage, flush_type));
buf_page_set_io_fix(bpage, BUF_IO_WRITE);
buf_page_set_flush_type(bpage, flush_type);
if (buf_pool->n_flush[flush_type] == 0) {
os_event_reset(buf_pool->no_flush[flush_type]);
}
buf_pool->n_flush[flush_type]++;
is_uncompressed = (buf_page_get_state(bpage) == BUF_BLOCK_FILE_PAGE);
ut_ad(is_uncompressed == (block_mutex != &buf_pool_zip_mutex));
switch (flush_type) {
ibool is_s_latched;
case BUF_FLUSH_LIST:
/* If the simulated aio thread is not running, we must
not wait for any latch, as we may end up in a deadlock:
if buf_fix_count == 0, then we know we need not wait */
is_s_latched = (bpage->buf_fix_count == 0);
if (is_s_latched && is_uncompressed) {
rw_lock_s_lock_gen(&((buf_block_t*) bpage)->lock,
BUF_IO_WRITE);
}
mutex_exit(block_mutex);
buf_pool_mutex_exit();
/* Even though bpage is not protected by any mutex at
this point, it is safe to access bpage, because it is
io_fixed and oldest_modification != 0. Thus, it
cannot be relocated in the buffer pool or removed from
flush_list or LRU_list. */
if (!is_s_latched) {
buf_flush_buffered_writes();
if (is_uncompressed) {
rw_lock_s_lock_gen(&((buf_block_t*) bpage)
->lock, BUF_IO_WRITE);
}
}
break;
case BUF_FLUSH_LRU:
/* VERY IMPORTANT:
Because any thread may call the LRU flush, even when owning
locks on pages, to avoid deadlocks, we must make sure that the
s-lock is acquired on the page without waiting: this is
accomplished because buf_flush_ready_for_flush() must hold,
and that requires the page not to be bufferfixed. */
if (is_uncompressed) {
rw_lock_s_lock_gen(&((buf_block_t*) bpage)->lock,
BUF_IO_WRITE);
}
/* Note that the s-latch is acquired before releasing the
buf_pool mutex: this ensures that the latch is acquired
immediately. */
mutex_exit(block_mutex);
buf_pool_mutex_exit();
break;
default:
ut_error;
}
/* Even though bpage is not protected by any mutex at this
point, it is safe to access bpage, because it is io_fixed and
oldest_modification != 0. Thus, it cannot be relocated in the
buffer pool or removed from flush_list or LRU_list. */
#ifdef UNIV_DEBUG
if (buf_debug_prints) {
fprintf(stderr,
"Flushing %u space %u page %u\n",
flush_type, bpage->space, bpage->offset);
}
#endif /* UNIV_DEBUG */
buf_flush_write_block_low(bpage);
}
/***********************************************************//**
Flushes to disk all flushable pages within the flush area.
@return number of pages flushed */
static
ulint
buf_flush_try_neighbors(
/*====================*/
ulint space, /*!< in: space id */
ulint offset, /*!< in: page offset */
enum buf_flush flush_type) /*!< in: BUF_FLUSH_LRU or
BUF_FLUSH_LIST */
{
buf_page_t* bpage;
ulint low, high;
ulint count = 0;
ulint i;
ut_ad(flush_type == BUF_FLUSH_LRU || flush_type == BUF_FLUSH_LIST);
if (UT_LIST_GET_LEN(buf_pool->LRU) < BUF_LRU_OLD_MIN_LEN) {
/* If there is little space, it is better not to flush any
block except from the end of the LRU list */
low = offset;
high = offset + 1;
} else {
/* When flushed, dirty blocks are searched in neighborhoods of
this size, and flushed along with the original page. */
ulint buf_flush_area = ut_min(BUF_READ_AHEAD_AREA,
buf_pool->curr_size / 16);
low = (offset / buf_flush_area) * buf_flush_area;
high = (offset / buf_flush_area + 1) * buf_flush_area;
}
/* fprintf(stderr, "Flush area: low %lu high %lu\n", low, high); */
if (high > fil_space_get_size(space)) {
high = fil_space_get_size(space);
}
buf_pool_mutex_enter();
for (i = low; i < high; i++) {
bpage = buf_page_hash_get(space, i);
if (!bpage) {
continue;
}
ut_a(buf_page_in_file(bpage));
/* We avoid flushing 'non-old' blocks in an LRU flush,
because the flushed blocks are soon freed */
if (flush_type != BUF_FLUSH_LRU
|| i == offset
|| buf_page_is_old(bpage)) {
mutex_t* block_mutex = buf_page_get_mutex(bpage);
mutex_enter(block_mutex);
if (buf_flush_ready_for_flush(bpage, flush_type)
&& (i == offset || !bpage->buf_fix_count)) {
/* We only try to flush those
neighbors != offset where the buf fix count is
zero, as we then know that we probably can
latch the page without a semaphore wait.
Semaphore waits are expensive because we must
flush the doublewrite buffer before we start
waiting. */
buf_flush_page(bpage, flush_type);
ut_ad(!mutex_own(block_mutex));
count++;
buf_pool_mutex_enter();
} else {
mutex_exit(block_mutex);
}
}
}
buf_pool_mutex_exit();
return(count);
}
/*******************************************************************//**
This utility flushes dirty blocks from the end of the LRU list or flush_list.
NOTE 1: in the case of an LRU flush the calling thread may own latches to
pages: to avoid deadlocks, this function must be written so that it cannot
end up waiting for these latches! NOTE 2: in the case of a flush list flush,
the calling thread is not allowed to own any latches on pages!
@return number of blocks for which the write request was queued;
ULINT_UNDEFINED if there was a flush of the same type already running */
UNIV_INTERN
ulint
buf_flush_batch(
/*============*/
enum buf_flush flush_type, /*!< in: BUF_FLUSH_LRU or
BUF_FLUSH_LIST; if BUF_FLUSH_LIST,
then the caller must not own any
latches on pages */
ulint min_n, /*!< in: wished minimum mumber of blocks
flushed (it is not guaranteed that the
actual number is that big, though) */
ib_uint64_t lsn_limit) /*!< in the case BUF_FLUSH_LIST all
blocks whose oldest_modification is
smaller than this should be flushed
(if their number does not exceed
min_n), otherwise ignored */
{
buf_page_t* bpage;
ulint page_count = 0;
ulint old_page_count;
ulint space;
ulint offset;
ibool try_neighbors = TRUE;
ut_ad((flush_type == BUF_FLUSH_LRU)
|| (flush_type == BUF_FLUSH_LIST));
#ifdef UNIV_SYNC_DEBUG
ut_ad((flush_type != BUF_FLUSH_LIST)
|| sync_thread_levels_empty_gen(TRUE));
#endif /* UNIV_SYNC_DEBUG */
/* If we are being asked to do a BUF_FLUSH_LIST flush and
min_n is ULINT_MAX and lsn_limit is provided then we are doing
this flush from within a query thread i.e.: not in background
and therefore we should not try to flush the neighbors and just
focus on getting the flushed LSN to the lsn_limit. */
if (flush_type == BUF_FLUSH_LIST && min_n == ULINT_MAX
&& lsn_limit != IB_ULONGLONG_MAX) {
try_neighbors = FALSE;
}
buf_pool_mutex_enter();
if ((buf_pool->n_flush[flush_type] > 0)
|| (buf_pool->init_flush[flush_type] == TRUE)) {
/* There is already a flush batch of the same type running */
buf_pool_mutex_exit();
return(ULINT_UNDEFINED);
}
buf_pool->init_flush[flush_type] = TRUE;
for (;;) {
flush_next:
/* If we have flushed enough, leave the loop */
if (page_count >= min_n) {
break;
}
/* Start from the end of the list looking for a suitable
block to be flushed. */
if (flush_type == BUF_FLUSH_LRU) {
bpage = UT_LIST_GET_LAST(buf_pool->LRU);
} else {
ut_ad(flush_type == BUF_FLUSH_LIST);
bpage = UT_LIST_GET_LAST(buf_pool->flush_list);
if (!bpage
|| bpage->oldest_modification >= lsn_limit) {
/* We have flushed enough */
break;
}
ut_ad(bpage->in_flush_list);
}
/* Note that after finding a single flushable page, we try to
flush also all its neighbors, and after that start from the
END of the LRU list or flush list again: the list may change
during the flushing and we cannot safely preserve within this
function a pointer to a block in the list! */
do {
mutex_t*block_mutex = buf_page_get_mutex(bpage);
ibool ready;
ut_a(buf_page_in_file(bpage));
mutex_enter(block_mutex);
ready = buf_flush_ready_for_flush(bpage, flush_type);
mutex_exit(block_mutex);
if (ready) {
space = buf_page_get_space(bpage);
offset = buf_page_get_page_no(bpage);
old_page_count = page_count;
if (try_neighbors) {
buf_pool_mutex_exit();
/* Try to flush also all the
neighbors */
page_count += buf_flush_try_neighbors(
space, offset, flush_type);
/* fprintf(stderr,
"Flush type %lu, page no %lu,"
" neighb %lu\n",
flush_type, offset,
page_count - old_page_count); */
} else {
/* Just flush this page. */
mutex_enter(block_mutex);
ut_a(buf_page_in_file(bpage));
ut_ad(bpage->in_page_hash);
/* buf_pool and block mutexes are
released inside the following
function. */
buf_flush_page(bpage, flush_type);
++page_count;
}
buf_pool_mutex_enter();
goto flush_next;
} else if (flush_type == BUF_FLUSH_LRU) {
bpage = UT_LIST_GET_PREV(LRU, bpage);
} else {
ut_ad(flush_type == BUF_FLUSH_LIST);
bpage = UT_LIST_GET_PREV(list, bpage);
ut_ad(!bpage || bpage->in_flush_list);
}
} while (bpage != NULL);
/* If we could not find anything to flush, leave the loop */
break;
}
buf_pool->init_flush[flush_type] = FALSE;
if (buf_pool->n_flush[flush_type] == 0) {
/* The running flush batch has ended */
os_event_set(buf_pool->no_flush[flush_type]);
}
buf_pool_mutex_exit();
buf_flush_buffered_writes();
#ifdef UNIV_DEBUG
if (buf_debug_prints && page_count > 0) {
ut_a(flush_type == BUF_FLUSH_LRU
|| flush_type == BUF_FLUSH_LIST);
fprintf(stderr, flush_type == BUF_FLUSH_LRU
? "Flushed %lu pages in LRU flush\n"
: "Flushed %lu pages in flush list flush\n",
(ulong) page_count);
}
#endif /* UNIV_DEBUG */
srv_buf_pool_flushed += page_count;
return(page_count);
}
/******************************************************************//**
Waits until a flush batch of the given type ends */
UNIV_INTERN
void
buf_flush_wait_batch_end(
/*=====================*/
enum buf_flush type) /*!< in: BUF_FLUSH_LRU or BUF_FLUSH_LIST */
{
ut_ad((type == BUF_FLUSH_LRU) || (type == BUF_FLUSH_LIST));
os_event_wait(buf_pool->no_flush[type]);
}
/******************************************************************//**
Gives a recommendation of how many blocks should be flushed to establish
a big enough margin of replaceable blocks near the end of the LRU list
and in the free list.
@return number of blocks which should be flushed from the end of the
LRU list */
static
ulint
buf_flush_LRU_recommendation(void)
/*==============================*/
{
buf_page_t* bpage;
ulint n_replaceable;
ulint distance = 0;
buf_pool_mutex_enter();
n_replaceable = UT_LIST_GET_LEN(buf_pool->free);
bpage = UT_LIST_GET_LAST(buf_pool->LRU);
while ((bpage != NULL)
&& (n_replaceable < BUF_FLUSH_FREE_BLOCK_MARGIN
+ BUF_FLUSH_EXTRA_MARGIN)
&& (distance < BUF_LRU_FREE_SEARCH_LEN)) {
mutex_t* block_mutex = buf_page_get_mutex(bpage);
mutex_enter(block_mutex);
if (buf_flush_ready_for_replace(bpage)) {
n_replaceable++;
}
mutex_exit(block_mutex);
distance++;
bpage = UT_LIST_GET_PREV(LRU, bpage);
}
buf_pool_mutex_exit();
if (n_replaceable >= BUF_FLUSH_FREE_BLOCK_MARGIN) {
return(0);
}
return(BUF_FLUSH_FREE_BLOCK_MARGIN + BUF_FLUSH_EXTRA_MARGIN
- n_replaceable);
}
/*********************************************************************//**
Flushes pages from the end of the LRU list if there is too small a margin
of replaceable pages there or in the free list. VERY IMPORTANT: this function
is called also by threads which have locks on pages. To avoid deadlocks, we
flush only pages such that the s-lock required for flushing can be acquired
immediately, without waiting. */
UNIV_INTERN
void
buf_flush_free_margin(void)
/*=======================*/
{
ulint n_to_flush;
ulint n_flushed;
n_to_flush = buf_flush_LRU_recommendation();
if (n_to_flush > 0) {
n_flushed = buf_flush_batch(BUF_FLUSH_LRU, n_to_flush, 0);
if (n_flushed == ULINT_UNDEFINED) {
/* There was an LRU type flush batch already running;
let us wait for it to end */
buf_flush_wait_batch_end(BUF_FLUSH_LRU);
}
}
}
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
/******************************************************************//**
Validates the flush list.
@return TRUE if ok */
static
ibool
buf_flush_validate_low(void)
/*========================*/
{
buf_page_t* bpage;
UT_LIST_VALIDATE(list, buf_page_t, buf_pool->flush_list,
ut_ad(ut_list_node_313->in_flush_list));
bpage = UT_LIST_GET_FIRST(buf_pool->flush_list);
while (bpage != NULL) {
const ib_uint64_t om = bpage->oldest_modification;
ut_ad(bpage->in_flush_list);
ut_a(buf_page_in_file(bpage));
ut_a(om > 0);
bpage = UT_LIST_GET_NEXT(list, bpage);
ut_a(!bpage || om >= bpage->oldest_modification);
}
return(TRUE);
}
/******************************************************************//**
Validates the flush list.
@return TRUE if ok */
UNIV_INTERN
ibool
buf_flush_validate(void)
/*====================*/
{
ibool ret;
buf_pool_mutex_enter();
ret = buf_flush_validate_low();
buf_pool_mutex_exit();
return(ret);
}
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
#endif /* !UNIV_HOTBACKUP */