mariadb/sql/item_sum.cc
unknown 9768dc84c8 Pack of changes about 'cleanup()'-s
Some errorneous code trimmed


sql/item.cc:
  initialization of the Item_type_holder::orig_item added
sql/item.h:
  No use to call cleanup() in ~Item
  this only calls Item::cleanup()
  
  We should use item->delete_self() instead of 'delete item' now
  
  Code added to restore Item_type_holder::item_type value
sql/item_row.h:
  this cleanup is wrong
sql/item_sum.cc:
  initialization added
sql/item_sum.h:
  Item_xxx& -> Item_xxx*
sql/sql_parse.cc:
  delete item -> item->delete_self()
2004-01-20 20:55:47 +04:00

1989 lines
42 KiB
C++

/* Copyright (C) 2000-2003 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/* Sum functions (COUNT, MIN...) */
#ifdef __GNUC__
#pragma implementation // gcc: Class implementation
#endif
#include "mysql_priv.h"
Item_sum::Item_sum(List<Item> &list)
{
arg_count=list.elements;
if ((args=(Item**) sql_alloc(sizeof(Item*)*arg_count)))
{
uint i=0;
List_iterator_fast<Item> li(list);
Item *item;
while ((item=li++))
{
args[i++]= item;
}
}
mark_as_sum_func();
list.empty(); // Fields are used
}
// Constructor used in processing select with temporary tebles
Item_sum::Item_sum(THD *thd, Item_sum *item):
Item_result_field(thd, item), quick_group(item->quick_group)
{
arg_count= item->arg_count;
if (arg_count <= 2)
args=tmp_args;
else
if (!(args=(Item**) sql_alloc(sizeof(Item*)*arg_count)))
return;
for (uint i= 0; i < arg_count; i++)
args[i]= item->args[i];
}
void Item_sum::mark_as_sum_func()
{
current_thd->lex->current_select->with_sum_func= 1;
with_sum_func= 1;
}
void Item_sum::make_field(Send_field *tmp_field)
{
if (args[0]->type() == Item::FIELD_ITEM && keep_field_type())
{
((Item_field*) args[0])->field->make_field(tmp_field);
tmp_field->db_name=(char*)"";
tmp_field->org_table_name=tmp_field->table_name=(char*)"";
tmp_field->org_col_name=tmp_field->col_name=name;
if (maybe_null)
tmp_field->flags&= ~NOT_NULL_FLAG;
}
else
init_make_field(tmp_field, field_type());
}
void Item_sum::print(String *str)
{
str->append(func_name());
str->append('(');
for (uint i=0 ; i < arg_count ; i++)
{
if (i)
str->append(',');
args[i]->print(str);
}
str->append(')');
}
void Item_sum::fix_num_length_and_dec()
{
decimals=0;
for (uint i=0 ; i < arg_count ; i++)
set_if_bigger(decimals,args[i]->decimals);
max_length=float_length(decimals);
}
Item *Item_sum::get_tmp_table_item(THD *thd)
{
Item_sum* sum_item= (Item_sum *) copy_or_same(thd);
if (sum_item && sum_item->result_field) // If not a const sum func
{
Field *result_field_tmp= sum_item->result_field;
for (uint i=0 ; i < sum_item->arg_count ; i++)
{
Item *arg= sum_item->args[i];
if (!arg->const_item())
{
if (arg->type() == Item::FIELD_ITEM)
((Item_field*) arg)->field= result_field_tmp++;
else
sum_item->args[i]= new Item_field(result_field_tmp++);
}
}
}
return sum_item;
}
bool Item_sum::walk (Item_processor processor, byte *argument)
{
if (arg_count)
{
Item **arg,**arg_end;
for (arg= args, arg_end= args+arg_count; arg != arg_end; arg++)
{
if ((*arg)->walk(processor, argument))
return 1;
}
}
return (this->*processor)(argument);
}
String *
Item_sum_num::val_str(String *str)
{
double nr=val();
if (null_value)
return 0;
str->set(nr,decimals, &my_charset_bin);
return str;
}
String *
Item_sum_int::val_str(String *str)
{
longlong nr= val_int();
if (null_value)
return 0;
if (unsigned_flag)
str->set((ulonglong) nr, &my_charset_bin);
else
str->set(nr, &my_charset_bin);
return str;
}
bool
Item_sum_num::fix_fields(THD *thd, TABLE_LIST *tables, Item **ref)
{
if (!thd->allow_sum_func)
{
my_error(ER_INVALID_GROUP_FUNC_USE,MYF(0));
return 1;
}
thd->allow_sum_func=0; // No included group funcs
decimals=0;
maybe_null=0;
for (uint i=0 ; i < arg_count ; i++)
{
if (args[i]->fix_fields(thd, tables, args + i) || args[i]->check_cols(1))
return 1;
if (decimals < args[i]->decimals)
decimals=args[i]->decimals;
maybe_null |= args[i]->maybe_null;
}
result_field=0;
max_length=float_length(decimals);
null_value=1;
fix_length_and_dec();
thd->allow_sum_func=1; // Allow group functions
fixed= 1;
return 0;
}
bool
Item_sum_hybrid::fix_fields(THD *thd, TABLE_LIST *tables, Item **ref)
{
Item *item=args[0];
if (!thd->allow_sum_func)
{
my_error(ER_INVALID_GROUP_FUNC_USE,MYF(0));
return 1;
}
thd->allow_sum_func=0; // No included group funcs
if (!item->fixed &&
item->fix_fields(thd, tables, args) || item->check_cols(1))
return 1;
hybrid_type=item->result_type();
if (hybrid_type == INT_RESULT)
{
cmp_charset= &my_charset_bin;
max_length=20;
}
else if (hybrid_type == REAL_RESULT)
{
cmp_charset= &my_charset_bin;
max_length=float_length(decimals);
}else
{
cmp_charset= item->collation.collation;
max_length=item->max_length;
}
decimals=item->decimals;
/* MIN/MAX can return NULL for empty set indepedent of the used column */
maybe_null= 1;
unsigned_flag=item->unsigned_flag;
collation.set(item->collation);
result_field=0;
null_value=1;
fix_length_and_dec();
thd->allow_sum_func=1; // Allow group functions
if (item->type() == Item::FIELD_ITEM)
hybrid_field_type= ((Item_field*) item)->field->type();
else
hybrid_field_type= Item::field_type();
fixed= 1;
return 0;
}
/***********************************************************************
** reset and add of sum_func
***********************************************************************/
Item *Item_sum_sum::copy_or_same(THD* thd)
{
return new (&thd->mem_root) Item_sum_sum(thd, this);
}
void Item_sum_sum::clear()
{
null_value=1; sum=0.0;
}
bool Item_sum_sum::add()
{
sum+=args[0]->val();
if (!args[0]->null_value)
null_value= 0;
return 0;
}
double Item_sum_sum::val()
{
return sum;
}
Item *Item_sum_count::copy_or_same(THD* thd)
{
return new (&thd->mem_root) Item_sum_count(thd, this);
}
void Item_sum_count::clear()
{
count= 0;
}
bool Item_sum_count::add()
{
if (!args[0]->maybe_null)
count++;
else
{
(void) args[0]->val_int();
if (!args[0]->null_value)
count++;
}
return 0;
}
longlong Item_sum_count::val_int()
{
return (longlong) count;
}
/*
Avgerage
*/
Item *Item_sum_avg::copy_or_same(THD* thd)
{
return new (&thd->mem_root) Item_sum_avg(thd, this);
}
void Item_sum_avg::clear()
{
sum=0.0; count=0;
}
bool Item_sum_avg::add()
{
double nr=args[0]->val();
if (!args[0]->null_value)
{
sum+=nr;
count++;
}
return 0;
}
double Item_sum_avg::val()
{
if (!count)
{
null_value=1;
return 0.0;
}
null_value=0;
return sum/ulonglong2double(count);
}
/*
Standard deviation
*/
double Item_sum_std::val()
{
double tmp= Item_sum_variance::val();
return tmp <= 0.0 ? 0.0 : sqrt(tmp);
}
Item *Item_sum_std::copy_or_same(THD* thd)
{
return new (&thd->mem_root) Item_sum_std(thd, this);
}
/*
Variance
*/
Item *Item_sum_variance::copy_or_same(THD* thd)
{
return new (&thd->mem_root) Item_sum_variance(thd, this);
}
void Item_sum_variance::clear()
{
sum=sum_sqr=0.0;
count=0;
}
bool Item_sum_variance::add()
{
double nr=args[0]->val();
if (!args[0]->null_value)
{
sum+=nr;
sum_sqr+=nr*nr;
count++;
}
return 0;
}
double Item_sum_variance::val()
{
if (!count)
{
null_value=1;
return 0.0;
}
null_value=0;
/* Avoid problems when the precision isn't good enough */
double tmp=ulonglong2double(count);
double tmp2=(sum_sqr - sum*sum/tmp)/tmp;
return tmp2 <= 0.0 ? 0.0 : tmp2;
}
void Item_sum_variance::reset_field()
{
double nr=args[0]->val();
char *res=result_field->ptr;
if (args[0]->null_value)
bzero(res,sizeof(double)*2+sizeof(longlong));
else
{
float8store(res,nr);
nr*=nr;
float8store(res+sizeof(double),nr);
longlong tmp=1;
int8store(res+sizeof(double)*2,tmp);
}
}
void Item_sum_variance::update_field()
{
double nr,old_nr,old_sqr;
longlong field_count;
char *res=result_field->ptr;
float8get(old_nr, res);
float8get(old_sqr, res+sizeof(double));
field_count=sint8korr(res+sizeof(double)*2);
nr=args[0]->val();
if (!args[0]->null_value)
{
old_nr+=nr;
old_sqr+=nr*nr;
field_count++;
}
float8store(res,old_nr);
float8store(res+sizeof(double),old_sqr);
int8store(res+sizeof(double)*2,field_count);
}
/* min & max */
double Item_sum_hybrid::val()
{
int err;
if (null_value)
return 0.0;
switch (hybrid_type) {
case STRING_RESULT:
String *res; res=val_str(&str_value);
return (res ? my_strntod(res->charset(), (char*) res->ptr(),res->length(),
(char**) 0, &err) : 0.0);
case INT_RESULT:
if (unsigned_flag)
return ulonglong2double(sum_int);
return (double) sum_int;
case REAL_RESULT:
return sum;
case ROW_RESULT:
default:
// This case should never be choosen
DBUG_ASSERT(0);
return 0;
}
return 0; // Keep compiler happy
}
longlong Item_sum_hybrid::val_int()
{
if (null_value)
return 0;
if (hybrid_type == INT_RESULT)
return sum_int;
return (longlong) Item_sum_hybrid::val();
}
String *
Item_sum_hybrid::val_str(String *str)
{
if (null_value)
return 0;
switch (hybrid_type) {
case STRING_RESULT:
return &value;
case REAL_RESULT:
str->set(sum,decimals, &my_charset_bin);
break;
case INT_RESULT:
if (unsigned_flag)
str->set((ulonglong) sum_int, &my_charset_bin);
else
str->set((longlong) sum_int, &my_charset_bin);
break;
case ROW_RESULT:
default:
// This case should never be choosen
DBUG_ASSERT(0);
break;
}
return str; // Keep compiler happy
}
Item *Item_sum_min::copy_or_same(THD* thd)
{
return new (&thd->mem_root) Item_sum_min(thd, this);
}
bool Item_sum_min::add()
{
switch (hybrid_type) {
case STRING_RESULT:
{
String *result=args[0]->val_str(&tmp_value);
if (!args[0]->null_value &&
(null_value || sortcmp(&value,result,cmp_charset) > 0))
{
value.copy(*result);
null_value=0;
}
}
break;
case INT_RESULT:
{
longlong nr=args[0]->val_int();
if (!args[0]->null_value && (null_value ||
(unsigned_flag &&
(ulonglong) nr < (ulonglong) sum_int) ||
(!unsigned_flag && nr < sum_int)))
{
sum_int=nr;
null_value=0;
}
}
break;
case REAL_RESULT:
{
double nr=args[0]->val();
if (!args[0]->null_value && (null_value || nr < sum))
{
sum=nr;
null_value=0;
}
}
break;
case ROW_RESULT:
default:
// This case should never be choosen
DBUG_ASSERT(0);
break;
}
return 0;
}
Item *Item_sum_max::copy_or_same(THD* thd)
{
return new (&thd->mem_root) Item_sum_max(thd, this);
}
bool Item_sum_max::add()
{
switch (hybrid_type) {
case STRING_RESULT:
{
String *result=args[0]->val_str(&tmp_value);
if (!args[0]->null_value &&
(null_value || sortcmp(&value,result,cmp_charset) < 0))
{
value.copy(*result);
null_value=0;
}
}
break;
case INT_RESULT:
{
longlong nr=args[0]->val_int();
if (!args[0]->null_value && (null_value ||
(unsigned_flag &&
(ulonglong) nr > (ulonglong) sum_int) ||
(!unsigned_flag && nr > sum_int)))
{
sum_int=nr;
null_value=0;
}
}
break;
case REAL_RESULT:
{
double nr=args[0]->val();
if (!args[0]->null_value && (null_value || nr > sum))
{
sum=nr;
null_value=0;
}
}
break;
case ROW_RESULT:
default:
// This case should never be choosen
DBUG_ASSERT(0);
break;
}
return 0;
}
/* bit_or and bit_and */
longlong Item_sum_bit::val_int()
{
return (longlong) bits;
}
void Item_sum_bit::clear()
{
bits= reset_bits;
}
Item *Item_sum_or::copy_or_same(THD* thd)
{
return new (&thd->mem_root) Item_sum_or(thd, this);
}
bool Item_sum_or::add()
{
ulonglong value= (ulonglong) args[0]->val_int();
if (!args[0]->null_value)
bits|=value;
return 0;
}
Item *Item_sum_xor::copy_or_same(THD* thd)
{
return new (&thd->mem_root) Item_sum_xor(thd, this);
}
bool Item_sum_xor::add()
{
ulonglong value= (ulonglong) args[0]->val_int();
if (!args[0]->null_value)
bits^=value;
return 0;
}
Item *Item_sum_and::copy_or_same(THD* thd)
{
return new (&thd->mem_root) Item_sum_and(thd, this);
}
bool Item_sum_and::add()
{
ulonglong value= (ulonglong) args[0]->val_int();
if (!args[0]->null_value)
bits&=value;
return 0;
}
/************************************************************************
** reset result of a Item_sum with is saved in a tmp_table
*************************************************************************/
void Item_sum_num::reset_field()
{
double nr=args[0]->val();
char *res=result_field->ptr;
if (maybe_null)
{
if (args[0]->null_value)
{
nr=0.0;
result_field->set_null();
}
else
result_field->set_notnull();
}
float8store(res,nr);
}
void Item_sum_hybrid::reset_field()
{
if (hybrid_type == STRING_RESULT)
{
char buff[MAX_FIELD_WIDTH];
String tmp(buff,sizeof(buff),result_field->charset()),*res;
res=args[0]->val_str(&tmp);
if (args[0]->null_value)
{
result_field->set_null();
result_field->reset();
}
else
{
result_field->set_notnull();
result_field->store(res->ptr(),res->length(),tmp.charset());
}
}
else if (hybrid_type == INT_RESULT)
{
longlong nr=args[0]->val_int();
if (maybe_null)
{
if (args[0]->null_value)
{
nr=0;
result_field->set_null();
}
else
result_field->set_notnull();
}
result_field->store(nr);
}
else // REAL_RESULT
{
double nr=args[0]->val();
if (maybe_null)
{
if (args[0]->null_value)
{
nr=0.0;
result_field->set_null();
}
else
result_field->set_notnull();
}
result_field->store(nr);
}
}
void Item_sum_sum::reset_field()
{
double nr=args[0]->val(); // Nulls also return 0
float8store(result_field->ptr,nr);
if (args[0]->null_value)
result_field->set_null();
else
result_field->set_notnull();
}
void Item_sum_count::reset_field()
{
char *res=result_field->ptr;
longlong nr=0;
if (!args[0]->maybe_null)
nr=1;
else
{
(void) args[0]->val_int();
if (!args[0]->null_value)
nr=1;
}
int8store(res,nr);
}
void Item_sum_avg::reset_field()
{
double nr=args[0]->val();
char *res=result_field->ptr;
if (args[0]->null_value)
bzero(res,sizeof(double)+sizeof(longlong));
else
{
float8store(res,nr);
res+=sizeof(double);
longlong tmp=1;
int8store(res,tmp);
}
}
void Item_sum_bit::reset_field()
{
reset();
int8store(result_field->ptr, bits);
}
void Item_sum_bit::update_field()
{
char *res=result_field->ptr;
bits= uint8korr(res);
add();
int8store(res, bits);
}
/*
** calc next value and merge it with field_value
*/
void Item_sum_sum::update_field()
{
double old_nr,nr;
char *res=result_field->ptr;
float8get(old_nr,res);
nr=args[0]->val();
if (!args[0]->null_value)
{
old_nr+=nr;
result_field->set_notnull();
}
float8store(res,old_nr);
}
void Item_sum_count::update_field()
{
longlong nr;
char *res=result_field->ptr;
nr=sint8korr(res);
if (!args[0]->maybe_null)
nr++;
else
{
(void) args[0]->val_int();
if (!args[0]->null_value)
nr++;
}
int8store(res,nr);
}
void Item_sum_avg::update_field()
{
double nr,old_nr;
longlong field_count;
char *res=result_field->ptr;
float8get(old_nr,res);
field_count=sint8korr(res+sizeof(double));
nr=args[0]->val();
if (!args[0]->null_value)
{
old_nr+=nr;
field_count++;
}
float8store(res,old_nr);
res+=sizeof(double);
int8store(res,field_count);
}
void Item_sum_hybrid::update_field()
{
if (hybrid_type == STRING_RESULT)
min_max_update_str_field();
else if (hybrid_type == INT_RESULT)
min_max_update_int_field();
else
min_max_update_real_field();
}
void
Item_sum_hybrid::min_max_update_str_field()
{
String *res_str=args[0]->val_str(&value);
if (!args[0]->null_value)
{
res_str->strip_sp();
result_field->val_str(&tmp_value,&tmp_value);
if (result_field->is_null() ||
(cmp_sign * sortcmp(res_str,&tmp_value,cmp_charset)) < 0)
result_field->store(res_str->ptr(),res_str->length(),res_str->charset());
result_field->set_notnull();
}
}
void
Item_sum_hybrid::min_max_update_real_field()
{
double nr,old_nr;
old_nr=result_field->val_real();
nr=args[0]->val();
if (!args[0]->null_value)
{
if (result_field->is_null(0) ||
(cmp_sign > 0 ? old_nr > nr : old_nr < nr))
old_nr=nr;
result_field->set_notnull();
}
else if (result_field->is_null(0))
result_field->set_null();
result_field->store(old_nr);
}
void
Item_sum_hybrid::min_max_update_int_field()
{
longlong nr,old_nr;
old_nr=result_field->val_int();
nr=args[0]->val_int();
if (!args[0]->null_value)
{
if (result_field->is_null(0))
old_nr=nr;
else
{
bool res=(unsigned_flag ?
(ulonglong) old_nr > (ulonglong) nr :
old_nr > nr);
/* (cmp_sign > 0 && res) || (!(cmp_sign > 0) && !res) */
if ((cmp_sign > 0) ^ (!res))
old_nr=nr;
}
result_field->set_notnull();
}
else if (result_field->is_null(0))
result_field->set_null();
result_field->store(old_nr);
}
Item_avg_field::Item_avg_field(Item_sum_avg *item)
{
name=item->name;
decimals=item->decimals;
max_length=item->max_length;
field=item->result_field;
maybe_null=1;
}
double Item_avg_field::val()
{
double nr;
longlong count;
float8get(nr,field->ptr);
char *res=(field->ptr+sizeof(double));
count=sint8korr(res);
if (!count)
{
null_value=1;
return 0.0;
}
null_value=0;
return nr/(double) count;
}
String *Item_avg_field::val_str(String *str)
{
double nr=Item_avg_field::val();
if (null_value)
return 0;
str->set(nr,decimals, &my_charset_bin);
return str;
}
Item_std_field::Item_std_field(Item_sum_std *item)
: Item_variance_field(item)
{
}
double Item_std_field::val()
{
double tmp= Item_variance_field::val();
return tmp <= 0.0 ? 0.0 : sqrt(tmp);
}
Item_variance_field::Item_variance_field(Item_sum_variance *item)
{
name=item->name;
decimals=item->decimals;
max_length=item->max_length;
field=item->result_field;
maybe_null=1;
}
double Item_variance_field::val()
{
double sum,sum_sqr;
longlong count;
float8get(sum,field->ptr);
float8get(sum_sqr,(field->ptr+sizeof(double)));
count=sint8korr(field->ptr+sizeof(double)*2);
if (!count)
{
null_value=1;
return 0.0;
}
null_value=0;
double tmp= (double) count;
double tmp2=(sum_sqr - sum*sum/tmp)/tmp;
return tmp2 <= 0.0 ? 0.0 : tmp2;
}
String *Item_variance_field::val_str(String *str)
{
double nr=val();
if (null_value)
return 0;
str->set(nr,decimals, &my_charset_bin);
return str;
}
/****************************************************************************
** COUNT(DISTINCT ...)
****************************************************************************/
#include "sql_select.h"
int simple_raw_key_cmp(void* arg, byte* key1, byte* key2)
{
return memcmp(key1, key2, *(uint*) arg);
}
int simple_str_key_cmp(void* arg, byte* key1, byte* key2)
{
Item_sum_count_distinct* item = (Item_sum_count_distinct*)arg;
CHARSET_INFO *cs=item->key_charset;
uint len=item->key_length;
return cs->coll->strnncollsp(cs,
(const uchar*) key1, len,
(const uchar*) key2, len);
}
/*
Did not make this one static - at least gcc gets confused when
I try to declare a static function as a friend. If you can figure
out the syntax to make a static function a friend, make this one
static
*/
int composite_key_cmp(void* arg, byte* key1, byte* key2)
{
Item_sum_count_distinct* item = (Item_sum_count_distinct*)arg;
Field **field = item->table->field;
Field **field_end= field + item->table->fields;
uint32 *lengths=item->field_lengths;
for (; field < field_end; ++field)
{
Field* f = *field;
int len = *lengths++;
int res = f->key_cmp(key1, key2);
if (res)
return res;
key1 += len;
key2 += len;
}
return 0;
}
/*
helper function for walking the tree when we dump it to MyISAM -
tree_walk will call it for each leaf
*/
int dump_leaf(byte* key, uint32 count __attribute__((unused)),
Item_sum_count_distinct* item)
{
byte* buf = item->table->record[0];
int error;
/*
The first item->rec_offset bytes are taken care of with
restore_record(table,default_values) in setup()
*/
memcpy(buf + item->rec_offset, key, item->tree->size_of_element);
if ((error = item->table->file->write_row(buf)))
{
if (error != HA_ERR_FOUND_DUPP_KEY &&
error != HA_ERR_FOUND_DUPP_UNIQUE)
return 1;
}
return 0;
}
void Item_sum_count_distinct::cleanup()
{
Item_sum_int::cleanup();
/*
Free table and tree if they belong to this item (if item have not pointer
to original item from which was made copy => it own its objects )
*/
if (!original)
{
if (table)
free_tmp_table(current_thd, table);
delete tmp_table_param;
if (use_tree)
delete_tree(tree);
table= 0;
use_tree= 0;
}
}
bool Item_sum_count_distinct::fix_fields(THD *thd, TABLE_LIST *tables,
Item **ref)
{
if (Item_sum_num::fix_fields(thd, tables, ref))
return 1;
return 0;
}
/* This is used by rollup to create a separate usable copy of the function */
void Item_sum_count_distinct::make_unique()
{
table=0;
original= 0;
use_tree= 0; // to prevent delete_tree call on uninitialized tree
tree= &tree_base;
}
bool Item_sum_count_distinct::setup(THD *thd)
{
List<Item> list;
SELECT_LEX *select_lex= thd->lex->current_select;
if (select_lex->linkage == GLOBAL_OPTIONS_TYPE)
return 1;
if (!(tmp_table_param= new TMP_TABLE_PARAM))
return 1;
/* Create a table with an unique key over all parameters */
for (uint i=0; i < arg_count ; i++)
{
Item *item=args[i];
if (list.push_back(item))
return 1; // End of memory
if (item->const_item())
{
(void) item->val_int();
if (item->null_value)
always_null=1;
}
}
if (always_null)
return 0;
count_field_types(tmp_table_param,list,0);
if (table)
{
free_tmp_table(thd, table);
tmp_table_param->cleanup();
}
if (!(table= create_tmp_table(thd, tmp_table_param, list, (ORDER*) 0, 1,
0,
select_lex->options | thd->options,
HA_POS_ERROR, (char*)"")))
return 1;
table->file->extra(HA_EXTRA_NO_ROWS); // Don't update rows
table->no_rows=1;
// no blobs, otherwise it would be MyISAM
if (table->db_type == DB_TYPE_HEAP)
{
qsort_cmp2 compare_key;
void* cmp_arg;
// to make things easier for dump_leaf if we ever have to dump to MyISAM
restore_record(table,default_values);
if (table->fields == 1)
{
/*
If we have only one field, which is the most common use of
count(distinct), it is much faster to use a simpler key
compare method that can take advantage of not having to worry
about other fields
*/
Field* field = table->field[0];
switch(field->type())
{
case FIELD_TYPE_STRING:
case FIELD_TYPE_VAR_STRING:
if (field->binary())
{
compare_key = (qsort_cmp2)simple_raw_key_cmp;
cmp_arg = (void*) &key_length;
}
else
{
/*
If we have a string, we must take care of charsets and case
sensitivity
*/
compare_key = (qsort_cmp2)simple_str_key_cmp;
cmp_arg = (void*) this;
}
break;
default:
/*
Since at this point we cannot have blobs anything else can
be compared with memcmp
*/
compare_key = (qsort_cmp2)simple_raw_key_cmp;
cmp_arg = (void*) &key_length;
break;
}
key_charset = field->charset();
key_length = field->pack_length();
rec_offset = 1;
}
else // too bad, cannot cheat - there is more than one field
{
bool all_binary = 1;
Field** field, **field_end;
field_end = (field = table->field) + table->fields;
uint32 *lengths;
if (!(field_lengths=
(uint32*) thd->alloc(sizeof(uint32) * table->fields)))
return 1;
for (key_length = 0, lengths=field_lengths; field < field_end; ++field)
{
uint32 length= (*field)->pack_length();
key_length += length;
*lengths++ = length;
if (!(*field)->binary())
all_binary = 0; // Can't break loop here
}
rec_offset = table->reclength - key_length;
if (all_binary)
{
compare_key = (qsort_cmp2)simple_raw_key_cmp;
cmp_arg = (void*) &key_length;
}
else
{
compare_key = (qsort_cmp2) composite_key_cmp ;
cmp_arg = (void*) this;
}
}
if (use_tree)
delete_tree(tree);
init_tree(tree, min(thd->variables.max_heap_table_size,
thd->variables.sortbuff_size/16), 0,
key_length, compare_key, 0, NULL, cmp_arg);
use_tree = 1;
/*
The only time key_length could be 0 is if someone does
count(distinct) on a char(0) field - stupid thing to do,
but this has to be handled - otherwise someone can crash
the server with a DoS attack
*/
max_elements_in_tree = ((key_length) ?
thd->variables.max_heap_table_size/key_length : 1);
}
if (original)
{
original->table= table;
original->use_tree= use_tree;
}
return 0;
}
int Item_sum_count_distinct::tree_to_myisam()
{
if (create_myisam_from_heap(current_thd, table, tmp_table_param,
HA_ERR_RECORD_FILE_FULL, 1) ||
tree_walk(tree, (tree_walk_action)&dump_leaf, (void*)this,
left_root_right))
return 1;
delete_tree(tree);
use_tree = 0;
return 0;
}
Item *Item_sum_count_distinct::copy_or_same(THD* thd)
{
return new (&thd->mem_root) Item_sum_count_distinct(thd, this);
}
void Item_sum_count_distinct::clear()
{
if (use_tree)
reset_tree(tree);
else if (table)
{
table->file->extra(HA_EXTRA_NO_CACHE);
table->file->delete_all_rows();
table->file->extra(HA_EXTRA_WRITE_CACHE);
}
}
bool Item_sum_count_distinct::add()
{
int error;
if (always_null)
return 0;
copy_fields(tmp_table_param);
copy_funcs(tmp_table_param->items_to_copy);
for (Field **field=table->field ; *field ; field++)
if ((*field)->is_real_null(0))
return 0; // Don't count NULL
if (use_tree)
{
/*
If the tree got too big, convert to MyISAM, otherwise insert into the
tree.
*/
if (tree->elements_in_tree > max_elements_in_tree)
{
if (tree_to_myisam())
return 1;
}
else if (!tree_insert(tree, table->record[0] + rec_offset, 0,
tree->custom_arg))
return 1;
}
else if ((error=table->file->write_row(table->record[0])))
{
if (error != HA_ERR_FOUND_DUPP_KEY &&
error != HA_ERR_FOUND_DUPP_UNIQUE)
{
if (create_myisam_from_heap(current_thd, table, tmp_table_param, error,
1))
return 1; // Not a table_is_full error
}
}
return 0;
}
longlong Item_sum_count_distinct::val_int()
{
if (!table) // Empty query
return LL(0);
if (use_tree)
return tree->elements_in_tree;
table->file->info(HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK);
return table->file->records;
}
void Item_sum_count_distinct::print(String *str)
{
str->append("count(distinct ", 15);
args[0]->print(str);
str->append(')');
}
/****************************************************************************
** Functions to handle dynamic loadable aggregates
** Original source by: Alexis Mikhailov <root@medinf.chuvashia.su>
** Adapted for UDAs by: Andreas F. Bobak <bobak@relog.ch>.
** Rewritten by: Monty.
****************************************************************************/
#ifdef HAVE_DLOPEN
void Item_udf_sum::clear()
{
DBUG_ENTER("Item_udf_sum::clear");
udf.clear();
DBUG_VOID_RETURN;
}
bool Item_udf_sum::add()
{
DBUG_ENTER("Item_udf_sum::add");
udf.add(&null_value);
DBUG_RETURN(0);
}
Item *Item_sum_udf_float::copy_or_same(THD* thd)
{
return new (&thd->mem_root) Item_sum_udf_float(thd, this);
}
double Item_sum_udf_float::val()
{
DBUG_ENTER("Item_sum_udf_float::val");
DBUG_PRINT("info",("result_type: %d arg_count: %d",
args[0]->result_type(), arg_count));
DBUG_RETURN(udf.val(&null_value));
}
String *Item_sum_udf_float::val_str(String *str)
{
double nr=val();
if (null_value)
return 0; /* purecov: inspected */
str->set(nr,decimals, &my_charset_bin);
return str;
}
Item *Item_sum_udf_int::copy_or_same(THD* thd)
{
return new (&thd->mem_root) Item_sum_udf_int(thd, this);
}
longlong Item_sum_udf_int::val_int()
{
DBUG_ENTER("Item_sum_udf_int::val_int");
DBUG_PRINT("info",("result_type: %d arg_count: %d",
args[0]->result_type(), arg_count));
DBUG_RETURN(udf.val_int(&null_value));
}
String *Item_sum_udf_int::val_str(String *str)
{
longlong nr=val_int();
if (null_value)
return 0;
str->set(nr, &my_charset_bin);
return str;
}
/* Default max_length is max argument length */
void Item_sum_udf_str::fix_length_and_dec()
{
DBUG_ENTER("Item_sum_udf_str::fix_length_and_dec");
max_length=0;
for (uint i = 0; i < arg_count; i++)
set_if_bigger(max_length,args[i]->max_length);
DBUG_VOID_RETURN;
}
Item *Item_sum_udf_str::copy_or_same(THD* thd)
{
return new (&thd->mem_root) Item_sum_udf_str(thd, this);
}
String *Item_sum_udf_str::val_str(String *str)
{
DBUG_ENTER("Item_sum_udf_str::str");
String *res=udf.val_str(str,&str_value);
null_value = !res;
DBUG_RETURN(res);
}
#endif /* HAVE_DLOPEN */
/*****************************************************************************
GROUP_CONCAT function
Syntax:
GROUP_CONCAT([DISTINCT] expr,... [ORDER BY col [ASC|DESC],...]
[SEPARATOR str_const])
concat of values from "group by" operation
*****************************************************************************/
/*
function of sort for syntax:
GROUP_CONCAT(DISTINCT expr,...)
*/
int group_concat_key_cmp_with_distinct(void* arg, byte* key1,
byte* key2)
{
Item_func_group_concat* item= (Item_func_group_concat*)arg;
for (uint i= 0; i < item->arg_count_field; i++)
{
Item *field_item= item->args[i];
Field *field= field_item->real_item()->get_tmp_table_field();
if (field)
{
uint offset= field->abs_offset;
int res= field->key_cmp(key1 + offset, key2 + offset);
/*
if key1 and key2 is not equal than field->key_cmp return offset. This
function must return value 1 for this case.
*/
if (res)
return 1;
}
}
return 0;
}
/*
function of sort for syntax:
GROUP_CONCAT(expr,... ORDER BY col,... )
*/
int group_concat_key_cmp_with_order(void* arg, byte* key1, byte* key2)
{
Item_func_group_concat* item= (Item_func_group_concat*)arg;
for (uint i=0; i < item->arg_count_order; i++)
{
ORDER *order_item= item->order[i];
Item *item= *order_item->item;
Field *field= item->real_item()->get_tmp_table_field();
if (field)
{
uint offset= field->abs_offset;
bool dir= order_item->asc;
int res= field->key_cmp(key1 + offset, key2 + offset);
if (res)
return dir ? res : -res;
}
}
/*
We can't return 0 because tree class remove this item as double value.
*/
return 1;
}
/*
function of sort for syntax:
GROUP_CONCAT(DISTINCT expr,... ORDER BY col,... )
*/
int group_concat_key_cmp_with_distinct_and_order(void* arg,byte* key1,
byte* key2)
{
if (!group_concat_key_cmp_with_distinct(arg,key1,key2))
return 0;
return(group_concat_key_cmp_with_order(arg,key1,key2));
}
/*
create result
item is pointer to Item_func_group_concat
*/
int dump_leaf_key(byte* key, uint32 count __attribute__((unused)),
Item_func_group_concat *group_concat_item)
{
char buff[MAX_FIELD_WIDTH];
String tmp((char *)&buff,sizeof(buff),default_charset_info);
String tmp2((char *)&buff,sizeof(buff),default_charset_info);
tmp.length(0);
for (uint i= 0; i < group_concat_item->arg_show_fields; i++)
{
Item *show_item= group_concat_item->args[i];
if (!show_item->const_item())
{
Field *f= show_item->real_item()->get_tmp_table_field();
char *sv= f->ptr;
f->ptr= (char *)key + f->abs_offset;
String *res= f->val_str(&tmp,&tmp2);
group_concat_item->result.append(*res);
f->ptr= sv;
}
else
{
String *res= show_item->val_str(&tmp);
if (res)
group_concat_item->result.append(*res);
}
}
if (group_concat_item->tree_mode) // Last item of tree
{
group_concat_item->show_elements++;
if (group_concat_item->show_elements <
group_concat_item->tree->elements_in_tree)
group_concat_item->result.append(*group_concat_item->separator);
}
else
{
group_concat_item->result.append(*group_concat_item->separator);
}
/*
if length of result more than group_concat_max_len - stop !
*/
if (group_concat_item->result.length() >
group_concat_item->group_concat_max_len)
{
group_concat_item->count_cut_values++;
group_concat_item->result.length(group_concat_item->group_concat_max_len);
group_concat_item->warning_for_row= TRUE;
return 1;
}
return 0;
}
/*
Constructor of Item_func_group_concat
is_distinct - distinct
is_select - list of expression for show values
is_order - list of sort columns
is_separator - string value of separator
*/
Item_func_group_concat::Item_func_group_concat(bool is_distinct,
List<Item> *is_select,
SQL_LIST *is_order,
String *is_separator)
:Item_sum(), tmp_table_param(0), max_elements_in_tree(0), warning(0),
warning_available(0), key_length(0), rec_offset(0),
tree_mode(0), distinct(is_distinct), warning_for_row(0),
separator(is_separator), tree(&tree_base), table(0),
order(0), tables_list(0),
show_elements(0), arg_count_order(0), arg_count_field(0),
arg_show_fields(0), count_cut_values(0)
{
original= 0;
quick_group= 0;
mark_as_sum_func();
order= 0;
group_concat_max_len= current_thd->variables.group_concat_max_len;
arg_show_fields= arg_count_field= is_select->elements;
arg_count_order= is_order ? is_order->elements : 0;
arg_count= arg_count_field;
/*
We need to allocate:
args - arg_count+arg_count_order (for possible order items in temporare
tables)
order - arg_count_order
*/
args= (Item**) sql_alloc(sizeof(Item*)*(arg_count+arg_count_order)+
sizeof(ORDER*)*arg_count_order);
if (!args)
return;
/* fill args items of show and sort */
int i= 0;
List_iterator_fast<Item> li(*is_select);
Item *item_select;
for ( ; (item_select= li++) ; i++)
args[i]= item_select;
if (arg_count_order)
{
i= 0;
order= (ORDER**)(args + arg_count + arg_count_order);
for (ORDER *order_item= (ORDER*) is_order->first;
order_item != NULL;
order_item= order_item->next)
{
order[i++]= order_item;
}
}
}
void Item_func_group_concat::cleanup()
{
/*
Free table and tree if they belong to this item (if item have not pointer
to original item from which was made copy => it own its objects )
*/
if (!original)
{
THD *thd= current_thd;
if (table)
free_tmp_table(thd, table);
delete tmp_table_param;
if (tree_mode)
delete_tree(tree);
}
}
Item_func_group_concat::~Item_func_group_concat()
{
/*
Free table and tree if they belong to this item (if item have not pointer
to original item from which was made copy => it own its objects )
*/
if (!original)
{
THD *thd= current_thd;
if (warning_available)
{
char warn_buff[MYSQL_ERRMSG_SIZE];
sprintf(warn_buff, ER(ER_CUT_VALUE_GROUP_CONCAT), count_cut_values);
warning->set_msg(thd, warn_buff);
}
}
}
Item *Item_func_group_concat::copy_or_same(THD* thd)
{
return new (&thd->mem_root) Item_func_group_concat(thd, this);
}
void Item_func_group_concat::clear()
{
result.length(0);
result.copy();
null_value= TRUE;
warning_for_row= false;
if (table)
{
table->file->extra(HA_EXTRA_NO_CACHE);
table->file->delete_all_rows();
table->file->extra(HA_EXTRA_WRITE_CACHE);
}
if (tree_mode)
reset_tree(tree);
}
bool Item_func_group_concat::add()
{
if (always_null)
return 0;
copy_fields(tmp_table_param);
copy_funcs(tmp_table_param->items_to_copy);
bool record_is_null= TRUE;
for (uint i= 0; i < arg_show_fields; i++)
{
Item *show_item= args[i];
if (!show_item->const_item())
{
Field *f= show_item->real_item()->get_tmp_table_field();
if (!f->is_null())
{
record_is_null= FALSE;
break;
}
}
}
if (record_is_null)
return 0;
null_value= FALSE;
if (tree_mode)
{
if (!tree_insert(tree, table->record[0] + rec_offset, 0, tree->custom_arg))
return 1;
}
else
{
if (result.length() <= group_concat_max_len && !warning_for_row)
dump_leaf_key(table->record[0] + rec_offset, 1,
(Item_func_group_concat*)this);
}
return 0;
}
void Item_func_group_concat::reset_field()
{
if (tree_mode)
reset_tree(tree);
}
bool
Item_func_group_concat::fix_fields(THD *thd, TABLE_LIST *tables, Item **ref)
{
uint i; /* for loop variable */
if (!thd->allow_sum_func)
{
my_error(ER_INVALID_GROUP_FUNC_USE,MYF(0));
return 1;
}
thd->allow_sum_func= 0;
maybe_null= 0;
item_thd= thd;
for (i= 0 ; i < arg_count ; i++)
{
if (args[i]->fix_fields(thd, tables, args + i) || args[i]->check_cols(1))
return 1;
maybe_null |= args[i]->maybe_null;
}
/*
Fix fields for order clause in function:
GROUP_CONCAT(expr,... ORDER BY col,... )
*/
for (i= 0 ; i < arg_count_order ; i++)
{
// order_item->item can be changed by fix_fields() call
ORDER *order_item= order[i];
if ((*order_item->item)->fix_fields(thd, tables, order_item->item) ||
(*order_item->item)->check_cols(1))
return 1;
}
result_field= 0;
null_value= 1;
max_length= group_concat_max_len;
thd->allow_sum_func= 1;
if (!(tmp_table_param= new TMP_TABLE_PARAM))
return 1;
tables_list= tables;
fixed= 1;
return 0;
}
bool Item_func_group_concat::setup(THD *thd)
{
DBUG_ENTER("Item_func_group_concat::setup");
List<Item> list;
SELECT_LEX *select_lex= thd->lex->current_select;
if (select_lex->linkage == GLOBAL_OPTIONS_TYPE)
DBUG_RETURN(1);
/*
push all not constant fields to list and create temp table
*/
always_null= 0;
for (uint i= 0; i < arg_count; i++)
{
Item *item= args[i];
if (list.push_back(item))
DBUG_RETURN(1);
if (item->const_item())
{
(void) item->val_int();
if (item->null_value)
always_null= 1;
}
}
if (always_null)
DBUG_RETURN(0);
List<Item> all_fields(list);
if (arg_count_order)
{
bool hidden_group_fields;
setup_group(thd, args, tables_list, list, all_fields, *order,
&hidden_group_fields);
}
count_field_types(tmp_table_param,all_fields,0);
if (table)
{
free_tmp_table(thd, table);
tmp_table_param->cleanup();
}
/*
We have to create a temporary table for that we get descriptions of fields
(types, sizes and so on).
*/
if (!(table=create_tmp_table(thd, tmp_table_param, all_fields, 0,
0, 0, 0,select_lex->options | thd->options,
(char *) "")))
DBUG_RETURN(1);
table->file->extra(HA_EXTRA_NO_ROWS);
table->no_rows= 1;
Field** field, **field_end;
field_end = (field = table->field) + table->fields;
uint offset = 0;
for (key_length = 0; field < field_end; ++field)
{
uint32 length= (*field)->pack_length();
(*field)->abs_offset= offset;
offset+= length;
key_length += length;
}
rec_offset = table->reclength - key_length;
if (tree_mode)
delete_tree(tree);
/*
choise function of sort
*/
tree_mode= distinct || arg_count_order;
qsort_cmp2 compare_key;
if (tree_mode)
{
if (arg_count_order)
{
if (distinct)
compare_key= (qsort_cmp2) group_concat_key_cmp_with_distinct_and_order;
else
compare_key= (qsort_cmp2) group_concat_key_cmp_with_order;
}
else
{
if (distinct)
compare_key= (qsort_cmp2) group_concat_key_cmp_with_distinct;
else
compare_key= NULL;
}
/*
Create a tree of sort. Tree is used for a sort and a remove dubl
values (according with syntax of the function). If function does't
contain DISTINCT and ORDER BY clauses, we don't create this tree.
*/
init_tree(tree, min(thd->variables.max_heap_table_size,
thd->variables.sortbuff_size/16), 0,
key_length, compare_key, 0, NULL, (void*) this);
max_elements_in_tree= ((key_length) ?
thd->variables.max_heap_table_size/key_length : 1);
};
/*
Copy table and tree_mode if they belong to this item (if item have not
pointer to original item from which was made copy => it own its objects)
*/
if (original)
{
original->table= table;
original->tree_mode= tree_mode;
}
DBUG_RETURN(0);
}
/* This is used by rollup to create a separate usable copy of the function */
void Item_func_group_concat::make_unique()
{
table=0;
original= 0;
tree_mode= 0; // to prevent delete_tree call on uninitialized tree
tree= &tree_base;
}
String* Item_func_group_concat::val_str(String* str)
{
if (null_value)
return 0;
if (tree_mode)
{
show_elements= 0;
tree_walk(tree, (tree_walk_action)&dump_leaf_key, (void*)this,
left_root_right);
}
else
{
if (!warning_for_row)
result.length(result.length()-separator->length());
}
if (count_cut_values && !warning_available)
{
warning_available= TRUE;
warning= push_warning(item_thd, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_CUT_VALUE_GROUP_CONCAT, NULL);
}
return &result;
}
void Item_func_group_concat::print(String *str)
{
str->append("group_concat(", 13);
if (distinct)
str->append("distinct ", 9);
for (uint i= 0; i < arg_count; i++)
{
if (i)
str->append(',');
args[i]->print(str);
}
if (arg_count_order)
{
str->append(" order by ", 10);
for (uint i= 0 ; i < arg_count_order ; i++)
{
if (i)
str->append(',');
(*order[i]->item)->print(str);
}
}
str->append(" seperator \'", 12);
str->append(*separator);
str->append("\')", 2);
}