mirror of
https://github.com/MariaDB/server.git
synced 2025-01-26 08:44:33 +01:00
0f47db8525
Signed-off-by: Kristian Nielsen <knielsen@knielsen-hq.org>
8020 lines
219 KiB
C++
8020 lines
219 KiB
C++
/* Copyright (c) 2000, 2013, Oracle and/or its affiliates.
|
|
Copyright (c) 2009, 2021, MariaDB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
|
|
|
|
|
|
/**
|
|
@file
|
|
|
|
@brief
|
|
This file defines all compare functions
|
|
*/
|
|
|
|
#ifdef USE_PRAGMA_IMPLEMENTATION
|
|
#pragma implementation // gcc: Class implementation
|
|
#endif
|
|
|
|
#include "mariadb.h"
|
|
#include "sql_priv.h"
|
|
#include <m_ctype.h>
|
|
#include "sql_select.h"
|
|
#include "sql_parse.h" // check_stack_overrun
|
|
#include "sql_base.h" // dynamic_column_error_message
|
|
|
|
#define PCRE2_STATIC 1 /* Important on Windows */
|
|
#include "pcre2.h" /* pcre2 header file */
|
|
#include "my_json_writer.h"
|
|
|
|
/*
|
|
Compare row signature of two expressions
|
|
|
|
SYNOPSIS:
|
|
cmp_row_type()
|
|
item1 the first expression
|
|
item2 the second expression
|
|
|
|
DESCRIPTION
|
|
The function checks that two expressions have compatible row signatures
|
|
i.e. that the number of columns they return are the same and that if they
|
|
are both row expressions then each component from the first expression has
|
|
a row signature compatible with the signature of the corresponding component
|
|
of the second expression.
|
|
|
|
RETURN VALUES
|
|
1 type incompatibility has been detected
|
|
0 otherwise
|
|
*/
|
|
|
|
static int cmp_row_type(Item* item1, Item* item2)
|
|
{
|
|
uint n= item1->cols();
|
|
if (item2->check_cols(n))
|
|
return 1;
|
|
for (uint i=0; i<n; i++)
|
|
{
|
|
if (item2->element_index(i)->check_cols(item1->element_index(i)->cols()) ||
|
|
(item1->element_index(i)->result_type() == ROW_RESULT &&
|
|
cmp_row_type(item1->element_index(i), item2->element_index(i))))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
Aggregates result types from the array of items.
|
|
|
|
This method aggregates comparison handler from the array of items.
|
|
The result handler is used later for comparison of values of these items.
|
|
|
|
aggregate_for_comparison()
|
|
funcname the function or operator name,
|
|
for error reporting
|
|
items array of items to aggregate the type from
|
|
nitems number of items in the array
|
|
int_uint_as_dec what to do when comparing INT to UINT:
|
|
set the comparison handler to decimal or int.
|
|
|
|
@retval true type incompatibility has been detected
|
|
@retval false otherwise
|
|
*/
|
|
|
|
bool Type_handler_hybrid_field_type::
|
|
aggregate_for_comparison(const LEX_CSTRING &funcname,
|
|
Item **items,
|
|
uint nitems,
|
|
bool int_uint_as_dec)
|
|
{
|
|
uint unsigned_count= items[0]->unsigned_flag;
|
|
/*
|
|
Convert sub-type to super-type (e.g. DATE to DATETIME, INT to BIGINT, etc).
|
|
Otherwise Predicant_to_list_comparator will treat sub-types of the same
|
|
super-type as different data types and won't be able to use bisection in
|
|
many cases.
|
|
*/
|
|
set_handler(items[0]->type_handler()->type_handler_for_comparison());
|
|
for (uint i= 1 ; i < nitems ; i++)
|
|
{
|
|
unsigned_count+= items[i]->unsigned_flag;
|
|
if (aggregate_for_comparison(items[i]->type_handler()->
|
|
type_handler_for_comparison()))
|
|
{
|
|
/*
|
|
For more precise error messages if aggregation failed on the first pair
|
|
{items[0],items[1]}, use the name of items[0]->data_handler().
|
|
Otherwise use the name of this->type_handler(), which is already a
|
|
result of aggregation for items[0]..items[i-1].
|
|
*/
|
|
my_error(ER_ILLEGAL_PARAMETER_DATA_TYPES2_FOR_OPERATION, MYF(0),
|
|
i == 1 ? items[0]->type_handler()->name().ptr() :
|
|
type_handler()->name().ptr(),
|
|
items[i]->type_handler()->name().ptr(),
|
|
funcname.str);
|
|
return true;
|
|
}
|
|
/*
|
|
When aggregating types of two row expressions we have to check
|
|
that they have the same cardinality and that each component
|
|
of the first row expression has a compatible row signature with
|
|
the signature of the corresponding component of the second row
|
|
expression.
|
|
*/
|
|
if (cmp_type() == ROW_RESULT && cmp_row_type(items[0], items[i]))
|
|
return true; // error found: invalid usage of rows
|
|
}
|
|
/**
|
|
If all arguments are of INT type but have different unsigned_flag values,
|
|
switch to DECIMAL_RESULT.
|
|
*/
|
|
if (int_uint_as_dec &&
|
|
cmp_type() == INT_RESULT &&
|
|
unsigned_count != nitems && unsigned_count != 0)
|
|
set_handler(&type_handler_newdecimal);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
Collects different types for comparison of first item with each other items
|
|
|
|
SYNOPSIS
|
|
collect_cmp_types()
|
|
items Array of items to collect types from
|
|
nitems Number of items in the array
|
|
skip_nulls Don't collect types of NULL items if TRUE
|
|
|
|
DESCRIPTION
|
|
This function collects different result types for comparison of the first
|
|
item in the list with each of the remaining items in the 'items' array.
|
|
|
|
RETURN
|
|
0 - if row type incompatibility has been detected (see cmp_row_type)
|
|
Bitmap of collected types - otherwise
|
|
*/
|
|
|
|
static uint collect_cmp_types(Item **items, uint nitems, bool skip_nulls= FALSE)
|
|
{
|
|
uint i;
|
|
uint found_types;
|
|
Item_result left_cmp_type= items[0]->cmp_type();
|
|
DBUG_ASSERT(nitems > 1);
|
|
found_types= 0;
|
|
for (i= 1; i < nitems ; i++)
|
|
{
|
|
if (skip_nulls && items[i]->type() == Item::NULL_ITEM)
|
|
continue; // Skip NULL constant items
|
|
if ((left_cmp_type == ROW_RESULT ||
|
|
items[i]->cmp_type() == ROW_RESULT) &&
|
|
cmp_row_type(items[0], items[i]))
|
|
return 0;
|
|
found_types|= 1U << (uint) item_cmp_type(left_cmp_type, items[i]);
|
|
}
|
|
/*
|
|
Even if all right-hand items are NULLs and we are skipping them all, we need
|
|
at least one type bit in the found_type bitmask.
|
|
*/
|
|
if (skip_nulls && !found_types)
|
|
found_types= 1U << (uint) left_cmp_type;
|
|
return found_types;
|
|
}
|
|
|
|
|
|
/*
|
|
Test functions
|
|
Most of these returns 0LL if false and 1LL if true and
|
|
NULL if some arg is NULL.
|
|
*/
|
|
|
|
bool Item_func_not::val_bool()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
bool value= args[0]->val_bool();
|
|
null_value=args[0]->null_value;
|
|
return ((!null_value && value == 0) ? 1 : 0);
|
|
}
|
|
|
|
void Item_func_not::print(String *str, enum_query_type query_type)
|
|
{
|
|
str->append('!');
|
|
args[0]->print_parenthesised(str, query_type, precedence());
|
|
}
|
|
|
|
/**
|
|
special NOT for ALL subquery.
|
|
*/
|
|
|
|
|
|
bool Item_func_not_all::val_bool()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
bool value= args[0]->val_bool();
|
|
|
|
/*
|
|
return TRUE if there was records in underlying select in max/min
|
|
optimization (ALL subquery)
|
|
*/
|
|
if (empty_underlying_subquery())
|
|
return 1;
|
|
|
|
null_value= args[0]->null_value;
|
|
return ((!null_value && value == 0) ? 1 : 0);
|
|
}
|
|
|
|
|
|
bool Item_func_not_all::empty_underlying_subquery()
|
|
{
|
|
return ((test_sum_item && !test_sum_item->any_value()) ||
|
|
(test_sub_item && !test_sub_item->any_value()));
|
|
}
|
|
|
|
void Item_func_not_all::print(String *str, enum_query_type query_type)
|
|
{
|
|
if (show)
|
|
Item_func::print(str, query_type);
|
|
else
|
|
args[0]->print(str, query_type);
|
|
}
|
|
|
|
|
|
/**
|
|
Special NOP (No OPeration) for ALL subquery. It is like
|
|
Item_func_not_all.
|
|
|
|
@return
|
|
(return TRUE if underlying subquery do not return rows) but if subquery
|
|
returns some rows it return same value as argument (TRUE/FALSE).
|
|
*/
|
|
|
|
bool Item_func_nop_all::val_bool()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
longlong value= args[0]->val_int();
|
|
|
|
/*
|
|
return FALSE if there was records in underlying select in max/min
|
|
optimization (SAME/ANY subquery)
|
|
*/
|
|
if (empty_underlying_subquery())
|
|
return 0;
|
|
|
|
null_value= args[0]->null_value;
|
|
return (null_value || value == 0) ? 0 : 1;
|
|
}
|
|
|
|
|
|
/**
|
|
Convert a constant item to an int and replace the original item.
|
|
|
|
The function converts a constant expression or string to an integer.
|
|
On successful conversion the original item is substituted for the
|
|
result of the item evaluation.
|
|
This is done when comparing DATE/TIME of different formats and
|
|
also when comparing bigint to strings (in which case strings
|
|
are converted to bigints).
|
|
|
|
@param thd thread handle
|
|
@param field item will be converted using the type of this field
|
|
@param[in,out] item reference to the item to convert
|
|
|
|
@note
|
|
This function is called only at prepare stage.
|
|
As all derived tables are filled only after all derived tables
|
|
are prepared we do not evaluate items with subselects here because
|
|
they can contain derived tables and thus we may attempt to use a
|
|
table that has not been populated yet.
|
|
|
|
@retval
|
|
0 Can't convert item
|
|
@retval
|
|
1 Item was replaced with an integer version of the item
|
|
*/
|
|
|
|
static bool convert_const_to_int(THD *thd, Item_field *field_item,
|
|
Item **item)
|
|
{
|
|
Field *field= field_item->field;
|
|
int result= 0;
|
|
|
|
/*
|
|
We don't need to convert an integer to an integer,
|
|
pretend it's already converted.
|
|
|
|
But we still convert it if it is compared with a Field_year,
|
|
as YEAR(2) may change the value of an integer when converting it
|
|
to an integer (say, 0 to 70).
|
|
*/
|
|
if ((*item)->cmp_type() == INT_RESULT &&
|
|
field_item->field_type() != MYSQL_TYPE_YEAR)
|
|
return 1;
|
|
|
|
/*
|
|
Replace (*item) with its value if the item can be computed.
|
|
|
|
Do not replace items that contain aggregate functions:
|
|
There can be such items that are constants, e.g. COLLATION(AVG(123)),
|
|
but this function is called at Name Resolution phase.
|
|
Removing aggregate functions may confuse query plan generation code, e.g.
|
|
the optimizer might conclude that the query doesn't need to do grouping
|
|
at all.
|
|
*/
|
|
if ((*item)->can_eval_in_optimize() &&
|
|
!(*item)->with_sum_func())
|
|
{
|
|
TABLE *table= field->table;
|
|
Use_relaxed_field_copy urfc(thd);
|
|
MY_BITMAP *old_maps[2] = { NULL, NULL };
|
|
ulonglong UNINIT_VAR(orig_field_val); /* original field value if valid */
|
|
bool save_field_value;
|
|
|
|
/* table->read_set may not be set if we come here from a CREATE TABLE */
|
|
if (table && table->read_set)
|
|
dbug_tmp_use_all_columns(table, old_maps,
|
|
&table->read_set, &table->write_set);
|
|
|
|
/*
|
|
Store the value of the field/constant because the call to save_in_field
|
|
below overrides that value. Don't save field value if no data has been
|
|
read yet.
|
|
*/
|
|
save_field_value= (field_item->const_item() ||
|
|
!(field->table->status & STATUS_NO_RECORD));
|
|
if (save_field_value)
|
|
orig_field_val= field->val_int();
|
|
if (!(*item)->save_in_field(field, 1) && !field->is_null())
|
|
{
|
|
int field_cmp= 0;
|
|
// If item is a decimal value, we must reject it if it was truncated.
|
|
if (field->type() == MYSQL_TYPE_LONGLONG)
|
|
{
|
|
field_cmp= stored_field_cmp_to_item(thd, field, *item);
|
|
DBUG_PRINT("info", ("convert_const_to_int %d", field_cmp));
|
|
}
|
|
|
|
if (0 == field_cmp)
|
|
{
|
|
Item *tmp= (new (thd->mem_root)
|
|
Item_int_with_ref(thd, field->val_int(), *item,
|
|
MY_TEST(field->flags & UNSIGNED_FLAG)));
|
|
if (tmp)
|
|
thd->change_item_tree(item, tmp);
|
|
result= 1; // Item was replaced
|
|
}
|
|
}
|
|
/* Restore the original field value. */
|
|
if (save_field_value)
|
|
{
|
|
result= field->store(orig_field_val, TRUE);
|
|
/* orig_field_val must be a valid value that can be restored back. */
|
|
DBUG_ASSERT(!result);
|
|
}
|
|
if (table && table->read_set)
|
|
dbug_tmp_restore_column_maps(&table->read_set, &table->write_set, old_maps);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
Make a special case of compare with fields to get nicer comparisons
|
|
of bigint numbers with constant string.
|
|
This directly contradicts the manual (number and a string should
|
|
be compared as doubles), but seems to provide more
|
|
"intuitive" behavior in some cases (but less intuitive in others).
|
|
|
|
This method should be moved to Type_handler::convert_item_for_comparison()
|
|
eventually.
|
|
*/
|
|
void Item_func::convert_const_compared_to_int_field(THD *thd)
|
|
{
|
|
DBUG_ASSERT(arg_count >= 2); // Item_func_nullif has arg_count == 3
|
|
if (!thd->lex->is_ps_or_view_context_analysis())
|
|
{
|
|
int field;
|
|
if (args[field= 0]->real_item()->type() == FIELD_ITEM ||
|
|
args[field= 1]->real_item()->type() == FIELD_ITEM)
|
|
{
|
|
Item_field *field_item= (Item_field*) (args[field]->real_item());
|
|
if (((field_item->field_type() == MYSQL_TYPE_LONGLONG &&
|
|
field_item->type_handler() != &type_handler_vers_trx_id) ||
|
|
field_item->field_type() == MYSQL_TYPE_YEAR))
|
|
convert_const_to_int(thd, field_item, &args[!field]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool Item_func::aggregate_args2_for_comparison_with_conversion(
|
|
THD *thd,
|
|
Type_handler_hybrid_field_type *th)
|
|
{
|
|
DBUG_ASSERT(arg_count >= 2);
|
|
for (bool done= false ; !done ; )
|
|
{
|
|
if (th->aggregate_for_comparison(func_name_cstring(), args, 2, false))
|
|
return true;
|
|
if (thd->lex->is_ps_or_view_context_analysis())
|
|
return false;
|
|
done= true;
|
|
for (uint subject= 0; subject < 2; subject++)
|
|
{
|
|
uint other_side= subject == 0 ? 1 : 0;
|
|
/* See comment in convert_const_to_int() */
|
|
if (!args[subject]->with_sum_func() &&
|
|
args[subject]->can_eval_in_optimize())
|
|
{
|
|
Item *item= th->type_handler()->convert_item_for_comparison(thd,
|
|
args[subject],
|
|
args[other_side]);
|
|
if (!item)
|
|
return true; // An error happened, e.g. EOM
|
|
if (item != args[subject])
|
|
{
|
|
thd->change_item_tree(&args[subject], item);
|
|
done= false; // Aggregate again, using the replacement item
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/*
|
|
Iterate through arguments and compare them to the original arguments
|
|
in "old_args". If some argument was replaced:
|
|
- from Item_field pointing to an indexed Field
|
|
- to something else (for example, Item_func_conv_charset)
|
|
then we cannot use Field's indexes for range access any more.
|
|
Raise a note in this case.
|
|
|
|
Note, the number of arguments in "old_args" can be smaller than arg_count.
|
|
For example, for LIKE, BETWEEN, IN we pass only args[0] in old_args.
|
|
|
|
For a comparison predicate we pass both args[0] and args[1] to cover both:
|
|
- WHERE field=expr
|
|
- WHERE expr=field
|
|
*/
|
|
|
|
void Item_bool_func::raise_note_if_key_become_unused(THD *thd, const Item_args &old_args)
|
|
{
|
|
if (!(thd->variables.note_verbosity & NOTE_VERBOSITY_UNUSABLE_KEYS))
|
|
return;
|
|
|
|
DBUG_ASSERT(old_args.argument_count() <= arg_count);
|
|
for (uint i= 0; i < old_args.argument_count(); i++)
|
|
{
|
|
if (args[i] != old_args.arguments()[i])
|
|
{
|
|
DBUG_ASSERT(old_args.arguments()[i]->fixed());
|
|
Item *real_item= old_args.arguments()[i]->real_item();
|
|
if (real_item->type() == Item::FIELD_ITEM)
|
|
{
|
|
Field *field= static_cast<Item_field*>(real_item)->field;
|
|
if (field->flags & PART_KEY_FLAG)
|
|
{
|
|
/*
|
|
It used to be Item_field (with indexes!) before the condition
|
|
rewrite. Now it's something else. Cannot use indexes any more.
|
|
*/
|
|
field->raise_note_key_become_unused(thd, Print(this, QT_EXPLAIN));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Comparison operators remove arguments' dependency on PAD_CHAR_TO_FULL_LENGTH
|
|
in case of PAD SPACE comparison collations: trailing spaces do not affect
|
|
the comparison result for such collations.
|
|
*/
|
|
Sql_mode_dependency
|
|
Item_bool_rowready_func2::value_depends_on_sql_mode() const
|
|
{
|
|
if (compare_collation()->state & MY_CS_NOPAD)
|
|
return Item_func::value_depends_on_sql_mode();
|
|
return ((args[0]->value_depends_on_sql_mode() |
|
|
args[1]->value_depends_on_sql_mode()) &
|
|
Sql_mode_dependency(~0, ~MODE_PAD_CHAR_TO_FULL_LENGTH)).
|
|
soft_to_hard();
|
|
}
|
|
|
|
|
|
bool Item_bool_rowready_func2::fix_length_and_dec(THD *thd)
|
|
{
|
|
max_length= 1; // Function returns 0 or 1
|
|
|
|
/*
|
|
As some compare functions are generated after sql_yacc,
|
|
we have to check for out of memory conditions here
|
|
*/
|
|
if (!args[0] || !args[1])
|
|
return FALSE;
|
|
Item_args old_args(args[0], args[1]);
|
|
convert_const_compared_to_int_field(thd);
|
|
Type_handler_hybrid_field_type tmp;
|
|
if (aggregate_args2_for_comparison_with_conversion(thd, &tmp) ||
|
|
tmp.type_handler()->Item_bool_rowready_func2_fix_length_and_dec(thd,
|
|
this))
|
|
{
|
|
DBUG_ASSERT(thd->is_error());
|
|
return true;
|
|
}
|
|
raise_note_if_key_become_unused(thd, old_args);
|
|
return false;
|
|
}
|
|
|
|
|
|
/**
|
|
Prepare the comparator (set the comparison function) for comparing
|
|
items *a1 and *a2 in the context of 'type'.
|
|
|
|
@param[in] owner_arg Item, peforming the comparison (e.g. Item_func_eq)
|
|
@param[in,out] a1 first argument to compare
|
|
@param[in,out] a2 second argument to compare
|
|
@param[in] type type context to compare in
|
|
|
|
Both *a1 and *a2 can be replaced by this method - typically by constant
|
|
items, holding the cached converted value of the original (constant) item.
|
|
*/
|
|
|
|
int Arg_comparator::set_cmp_func(THD *thd, Item_func_or_sum *owner_arg,
|
|
const Type_handler *compare_handler,
|
|
Item **a1, Item **a2)
|
|
{
|
|
owner= owner_arg;
|
|
set_null= set_null && owner_arg;
|
|
a= a1;
|
|
b= a2;
|
|
m_compare_handler= compare_handler;
|
|
return m_compare_handler->set_comparator_func(thd, this);
|
|
}
|
|
|
|
|
|
bool Arg_comparator::set_cmp_func_for_row_arguments(THD *thd)
|
|
{
|
|
uint n= (*a)->cols();
|
|
if (n != (*b)->cols())
|
|
{
|
|
my_error(ER_OPERAND_COLUMNS, MYF(0), n);
|
|
comparators= 0;
|
|
return true;
|
|
}
|
|
if (!(comparators= new (thd->mem_root) Arg_comparator[n]))
|
|
return true;
|
|
for (uint i=0; i < n; i++)
|
|
{
|
|
if ((*a)->element_index(i)->cols() != (*b)->element_index(i)->cols())
|
|
{
|
|
my_error(ER_OPERAND_COLUMNS, MYF(0), (*a)->element_index(i)->cols());
|
|
return true;
|
|
}
|
|
if (comparators[i].set_cmp_func(thd, owner, (*a)->addr(i),
|
|
(*b)->addr(i), set_null))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Arg_comparator::set_cmp_func_row(THD *thd)
|
|
{
|
|
func= is_owner_equal_func() ? &Arg_comparator::compare_e_row :
|
|
&Arg_comparator::compare_row;
|
|
return set_cmp_func_for_row_arguments(thd);
|
|
}
|
|
|
|
|
|
bool Arg_comparator::set_cmp_func_string(THD *thd)
|
|
{
|
|
func= is_owner_equal_func() ? &Arg_comparator::compare_e_string :
|
|
&Arg_comparator::compare_string;
|
|
if (compare_type() == STRING_RESULT &&
|
|
(*a)->result_type() == STRING_RESULT &&
|
|
(*b)->result_type() == STRING_RESULT)
|
|
{
|
|
/*
|
|
We must set cmp_collation here as we may be called from for an automatic
|
|
generated item, like in natural join.
|
|
Allow reinterpted superset as subset.
|
|
Use charset narrowing only for equalities, as that would allow
|
|
to construct ref access.
|
|
Non-equality comparisons with constants work without charset narrowing,
|
|
the constant gets converted.
|
|
Non-equality comparisons with non-constants would need narrowing to
|
|
enable range optimizer to handle e.g.
|
|
t1.mb3key_col <= const_table.mb4_col
|
|
But this doesn't look important.
|
|
*/
|
|
bool allow_narrowing= false;
|
|
if (owner->type() == Item::FUNC_ITEM)
|
|
{
|
|
Item_func::Functype ftype= ((Item_func*)owner)->functype();
|
|
if (ftype == Item_func::EQUAL_FUNC || ftype==Item_func::EQ_FUNC)
|
|
allow_narrowing= true;
|
|
}
|
|
|
|
if (owner->agg_arg_charsets_for_comparison(&m_compare_collation, a, b,
|
|
allow_narrowing))
|
|
return true;
|
|
|
|
if ((*a)->type() == Item::FUNC_ITEM &&
|
|
((Item_func *) (*a))->functype() == Item_func::JSON_EXTRACT_FUNC)
|
|
{
|
|
func= is_owner_equal_func() ? &Arg_comparator::compare_e_json_str:
|
|
&Arg_comparator::compare_json_str;
|
|
return 0;
|
|
}
|
|
else if ((*b)->type() == Item::FUNC_ITEM &&
|
|
((Item_func *) (*b))->functype() == Item_func::JSON_EXTRACT_FUNC)
|
|
{
|
|
func= is_owner_equal_func() ? &Arg_comparator::compare_e_json_str:
|
|
&Arg_comparator::compare_str_json;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
a= cache_converted_constant(thd, a, &a_cache, compare_type_handler());
|
|
b= cache_converted_constant(thd, b, &b_cache, compare_type_handler());
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Arg_comparator::set_cmp_func_time(THD *thd)
|
|
{
|
|
m_compare_collation= &my_charset_numeric;
|
|
func= is_owner_equal_func() ? &Arg_comparator::compare_e_time :
|
|
&Arg_comparator::compare_time;
|
|
a= cache_converted_constant(thd, a, &a_cache, compare_type_handler());
|
|
b= cache_converted_constant(thd, b, &b_cache, compare_type_handler());
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Arg_comparator::set_cmp_func_datetime(THD *thd)
|
|
{
|
|
m_compare_collation= &my_charset_numeric;
|
|
func= is_owner_equal_func() ? &Arg_comparator::compare_e_datetime :
|
|
&Arg_comparator::compare_datetime;
|
|
a= cache_converted_constant(thd, a, &a_cache, compare_type_handler());
|
|
b= cache_converted_constant(thd, b, &b_cache, compare_type_handler());
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Arg_comparator::set_cmp_func_native(THD *thd)
|
|
{
|
|
m_compare_collation= &my_charset_numeric;
|
|
func= is_owner_equal_func() ? &Arg_comparator::compare_e_native :
|
|
&Arg_comparator::compare_native;
|
|
a= cache_converted_constant(thd, a, &a_cache, compare_type_handler());
|
|
b= cache_converted_constant(thd, b, &b_cache, compare_type_handler());
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Arg_comparator::set_cmp_func_int(THD *thd)
|
|
{
|
|
func= is_owner_equal_func() ? &Arg_comparator::compare_e_int :
|
|
&Arg_comparator::compare_int_signed;
|
|
if ((*a)->field_type() == MYSQL_TYPE_YEAR &&
|
|
(*b)->field_type() == MYSQL_TYPE_YEAR)
|
|
{
|
|
func= is_owner_equal_func() ? &Arg_comparator::compare_e_datetime :
|
|
&Arg_comparator::compare_datetime;
|
|
}
|
|
else if (func == &Arg_comparator::compare_int_signed)
|
|
{
|
|
if ((*a)->unsigned_flag)
|
|
func= (((*b)->unsigned_flag)?
|
|
&Arg_comparator::compare_int_unsigned :
|
|
&Arg_comparator::compare_int_unsigned_signed);
|
|
else if ((*b)->unsigned_flag)
|
|
func= &Arg_comparator::compare_int_signed_unsigned;
|
|
}
|
|
else if (func== &Arg_comparator::compare_e_int)
|
|
{
|
|
if ((*a)->unsigned_flag ^ (*b)->unsigned_flag)
|
|
func= &Arg_comparator::compare_e_int_diff_signedness;
|
|
}
|
|
a= cache_converted_constant(thd, a, &a_cache, compare_type_handler());
|
|
b= cache_converted_constant(thd, b, &b_cache, compare_type_handler());
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Arg_comparator::set_cmp_func_real(THD *thd)
|
|
{
|
|
if ((((*a)->result_type() == DECIMAL_RESULT && !(*a)->const_item() &&
|
|
(*b)->result_type() == STRING_RESULT && (*b)->const_item()) ||
|
|
((*b)->result_type() == DECIMAL_RESULT && !(*b)->const_item() &&
|
|
(*a)->result_type() == STRING_RESULT && (*a)->const_item())))
|
|
{
|
|
/*
|
|
<non-const decimal expression> <cmp> <const string expression>
|
|
or
|
|
<const string expression> <cmp> <non-const decimal expression>
|
|
|
|
Do comparison as decimal rather than float, in order not to lose precision.
|
|
*/
|
|
m_compare_handler= &type_handler_newdecimal;
|
|
return set_cmp_func_decimal(thd);
|
|
}
|
|
|
|
func= is_owner_equal_func() ? &Arg_comparator::compare_e_real :
|
|
&Arg_comparator::compare_real;
|
|
if ((*a)->decimals < NOT_FIXED_DEC && (*b)->decimals < NOT_FIXED_DEC)
|
|
{
|
|
precision= 5 / log_10[MY_MAX((*a)->decimals, (*b)->decimals) + 1];
|
|
if (func == &Arg_comparator::compare_real)
|
|
func= &Arg_comparator::compare_real_fixed;
|
|
else if (func == &Arg_comparator::compare_e_real)
|
|
func= &Arg_comparator::compare_e_real_fixed;
|
|
}
|
|
a= cache_converted_constant(thd, a, &a_cache, compare_type_handler());
|
|
b= cache_converted_constant(thd, b, &b_cache, compare_type_handler());
|
|
return false;
|
|
}
|
|
|
|
bool Arg_comparator::set_cmp_func_decimal(THD *thd)
|
|
{
|
|
func= is_owner_equal_func() ? &Arg_comparator::compare_e_decimal :
|
|
&Arg_comparator::compare_decimal;
|
|
a= cache_converted_constant(thd, a, &a_cache, compare_type_handler());
|
|
b= cache_converted_constant(thd, b, &b_cache, compare_type_handler());
|
|
return false;
|
|
}
|
|
|
|
|
|
/**
|
|
Convert and cache a constant.
|
|
|
|
@param value [in] An item to cache
|
|
@param cache_item [out] Placeholder for the cache item
|
|
@param type [in] Comparison type
|
|
|
|
@details
|
|
When given item is a constant and its type differs from comparison type
|
|
then cache its value to avoid type conversion of this constant on each
|
|
evaluation. In this case the value is cached and the reference to the cache
|
|
is returned.
|
|
Original value is returned otherwise.
|
|
|
|
@return cache item or original value.
|
|
*/
|
|
|
|
Item** Arg_comparator::cache_converted_constant(THD *thd_arg, Item **value,
|
|
Item **cache_item,
|
|
const Type_handler *handler)
|
|
{
|
|
/*
|
|
Don't need cache if doing context analysis only.
|
|
*/
|
|
if (!thd_arg->lex->is_ps_or_view_context_analysis() &&
|
|
(*value)->const_item() &&
|
|
handler->type_handler_for_comparison() !=
|
|
(*value)->type_handler_for_comparison())
|
|
{
|
|
Item_cache *cache= handler->Item_get_cache(thd_arg, *value);
|
|
cache->setup(thd_arg, *value);
|
|
*cache_item= cache;
|
|
return cache_item;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
|
|
int Arg_comparator::compare_time()
|
|
{
|
|
THD *thd= current_thd;
|
|
longlong val1= (*a)->val_time_packed(thd);
|
|
if (!(*a)->null_value)
|
|
{
|
|
longlong val2= (*b)->val_time_packed(thd);
|
|
if (!(*b)->null_value)
|
|
return compare_not_null_values(val1, val2);
|
|
}
|
|
if (set_null)
|
|
owner->null_value= true;
|
|
return -1;
|
|
}
|
|
|
|
|
|
int Arg_comparator::compare_e_time()
|
|
{
|
|
THD *thd= current_thd;
|
|
longlong val1= (*a)->val_time_packed(thd);
|
|
longlong val2= (*b)->val_time_packed(thd);
|
|
if ((*a)->null_value || (*b)->null_value)
|
|
return MY_TEST((*a)->null_value && (*b)->null_value);
|
|
return MY_TEST(val1 == val2);
|
|
}
|
|
|
|
|
|
|
|
int Arg_comparator::compare_datetime()
|
|
{
|
|
THD *thd= current_thd;
|
|
longlong val1= (*a)->val_datetime_packed(thd);
|
|
if (!(*a)->null_value)
|
|
{
|
|
longlong val2= (*b)->val_datetime_packed(thd);
|
|
if (!(*b)->null_value)
|
|
return compare_not_null_values(val1, val2);
|
|
}
|
|
if (set_null)
|
|
owner->null_value= true;
|
|
return -1;
|
|
}
|
|
|
|
|
|
int Arg_comparator::compare_e_datetime()
|
|
{
|
|
THD *thd= current_thd;
|
|
longlong val1= (*a)->val_datetime_packed(thd);
|
|
longlong val2= (*b)->val_datetime_packed(thd);
|
|
if ((*a)->null_value || (*b)->null_value)
|
|
return MY_TEST((*a)->null_value && (*b)->null_value);
|
|
return MY_TEST(val1 == val2);
|
|
}
|
|
|
|
|
|
int Arg_comparator::compare_string()
|
|
{
|
|
String *res1,*res2;
|
|
if ((res1= (*a)->val_str(&value1)))
|
|
{
|
|
if ((res2= (*b)->val_str(&value2)))
|
|
{
|
|
if (set_null)
|
|
owner->null_value= 0;
|
|
return sortcmp(res1, res2, compare_collation());
|
|
}
|
|
}
|
|
if (set_null)
|
|
owner->null_value= 1;
|
|
return -1;
|
|
}
|
|
|
|
|
|
/**
|
|
Compare strings, but take into account that NULL == NULL.
|
|
*/
|
|
|
|
|
|
int Arg_comparator::compare_e_string()
|
|
{
|
|
String *res1,*res2;
|
|
res1= (*a)->val_str(&value1);
|
|
DBUG_ASSERT((res1 == NULL) == (*a)->null_value);
|
|
res2= (*b)->val_str(&value2);
|
|
DBUG_ASSERT((res2 == NULL) == (*b)->null_value);
|
|
if (!res1 || !res2)
|
|
return MY_TEST(res1 == res2);
|
|
return MY_TEST(sortcmp(res1, res2, compare_collation()) == 0);
|
|
}
|
|
|
|
|
|
int Arg_comparator::compare_native()
|
|
{
|
|
THD *thd= current_thd;
|
|
if (!(*a)->val_native_with_conversion(thd, &m_native1,
|
|
compare_type_handler()))
|
|
{
|
|
if (!(*b)->val_native_with_conversion(thd, &m_native2,
|
|
compare_type_handler()))
|
|
{
|
|
if (set_null)
|
|
owner->null_value= 0;
|
|
return compare_type_handler()->cmp_native(m_native1, m_native2);
|
|
}
|
|
}
|
|
if (set_null)
|
|
owner->null_value= 1;
|
|
return -1;
|
|
}
|
|
|
|
|
|
int Arg_comparator::compare_e_native()
|
|
{
|
|
THD *thd= current_thd;
|
|
bool res1= (*a)->val_native_with_conversion(thd, &m_native1,
|
|
compare_type_handler());
|
|
bool res2= (*b)->val_native_with_conversion(thd, &m_native2,
|
|
compare_type_handler());
|
|
if (res1 || res2)
|
|
return MY_TEST(res1 == res2);
|
|
return MY_TEST(compare_type_handler()->cmp_native(m_native1, m_native2) == 0);
|
|
}
|
|
|
|
|
|
int Arg_comparator::compare_real()
|
|
{
|
|
/*
|
|
Fix yet another manifestation of Bug#2338. 'Volatile' will instruct
|
|
gcc to flush double values out of 80-bit Intel FPU registers before
|
|
performing the comparison.
|
|
*/
|
|
volatile double val1, val2;
|
|
val1= (*a)->val_real();
|
|
if (!(*a)->null_value)
|
|
{
|
|
val2= (*b)->val_real();
|
|
if (!(*b)->null_value)
|
|
{
|
|
if (set_null)
|
|
owner->null_value= 0;
|
|
if (val1 < val2) return -1;
|
|
if (val1 == val2) return 0;
|
|
return 1;
|
|
}
|
|
}
|
|
if (set_null)
|
|
owner->null_value= 1;
|
|
return -1;
|
|
}
|
|
|
|
int Arg_comparator::compare_decimal()
|
|
{
|
|
VDec val1(*a);
|
|
if (!val1.is_null())
|
|
{
|
|
VDec val2(*b);
|
|
if (!val2.is_null())
|
|
{
|
|
if (set_null)
|
|
owner->null_value= 0;
|
|
val1.round_self_if_needed((*a)->decimals, HALF_UP);
|
|
val2.round_self_if_needed((*b)->decimals, HALF_UP);
|
|
return val1.cmp(val2);
|
|
}
|
|
}
|
|
if (set_null)
|
|
owner->null_value= 1;
|
|
return -1;
|
|
}
|
|
|
|
int Arg_comparator::compare_e_real()
|
|
{
|
|
double val1= (*a)->val_real();
|
|
double val2= (*b)->val_real();
|
|
if ((*a)->null_value || (*b)->null_value)
|
|
return MY_TEST((*a)->null_value && (*b)->null_value);
|
|
return MY_TEST(val1 == val2);
|
|
}
|
|
|
|
int Arg_comparator::compare_e_decimal()
|
|
{
|
|
VDec val1(*a), val2(*b);
|
|
if (val1.is_null() || val2.is_null())
|
|
return MY_TEST(val1.is_null() && val2.is_null());
|
|
val1.round_self_if_needed((*a)->decimals, HALF_UP);
|
|
val2.round_self_if_needed((*b)->decimals, HALF_UP);
|
|
return MY_TEST(val1.cmp(val2) == 0);
|
|
}
|
|
|
|
|
|
int Arg_comparator::compare_real_fixed()
|
|
{
|
|
/*
|
|
Fix yet another manifestation of Bug#2338. 'Volatile' will instruct
|
|
gcc to flush double values out of 80-bit Intel FPU registers before
|
|
performing the comparison.
|
|
*/
|
|
volatile double val1, val2;
|
|
val1= (*a)->val_real();
|
|
if (!(*a)->null_value)
|
|
{
|
|
val2= (*b)->val_real();
|
|
if (!(*b)->null_value)
|
|
{
|
|
if (set_null)
|
|
owner->null_value= 0;
|
|
if (val1 == val2 || fabs(val1 - val2) < precision)
|
|
return 0;
|
|
if (val1 < val2)
|
|
return -1;
|
|
return 1;
|
|
}
|
|
}
|
|
if (set_null)
|
|
owner->null_value= 1;
|
|
return -1;
|
|
}
|
|
|
|
|
|
int Arg_comparator::compare_e_real_fixed()
|
|
{
|
|
double val1= (*a)->val_real();
|
|
double val2= (*b)->val_real();
|
|
if ((*a)->null_value || (*b)->null_value)
|
|
return MY_TEST((*a)->null_value && (*b)->null_value);
|
|
return MY_TEST(val1 == val2 || fabs(val1 - val2) < precision);
|
|
}
|
|
|
|
|
|
int Arg_comparator::compare_int_signed()
|
|
{
|
|
longlong val1= (*a)->val_int();
|
|
if (!(*a)->null_value)
|
|
{
|
|
longlong val2= (*b)->val_int();
|
|
if (!(*b)->null_value)
|
|
return compare_not_null_values(val1, val2);
|
|
}
|
|
if (set_null)
|
|
owner->null_value= 1;
|
|
return -1;
|
|
}
|
|
|
|
|
|
/**
|
|
Compare values as BIGINT UNSIGNED.
|
|
*/
|
|
|
|
int Arg_comparator::compare_int_unsigned()
|
|
{
|
|
ulonglong val1= (*a)->val_int();
|
|
if (!(*a)->null_value)
|
|
{
|
|
ulonglong val2= (*b)->val_int();
|
|
if (!(*b)->null_value)
|
|
{
|
|
if (set_null)
|
|
owner->null_value= 0;
|
|
if (val1 < val2) return -1;
|
|
if (val1 == val2) return 0;
|
|
return 1;
|
|
}
|
|
}
|
|
if (set_null)
|
|
owner->null_value= 1;
|
|
return -1;
|
|
}
|
|
|
|
|
|
/**
|
|
Compare signed (*a) with unsigned (*B)
|
|
*/
|
|
|
|
int Arg_comparator::compare_int_signed_unsigned()
|
|
{
|
|
longlong sval1= (*a)->val_int();
|
|
if (!(*a)->null_value)
|
|
{
|
|
ulonglong uval2= (ulonglong)(*b)->val_int();
|
|
if (!(*b)->null_value)
|
|
{
|
|
if (set_null)
|
|
owner->null_value= 0;
|
|
if (sval1 < 0 || (ulonglong)sval1 < uval2)
|
|
return -1;
|
|
if ((ulonglong)sval1 == uval2)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
}
|
|
if (set_null)
|
|
owner->null_value= 1;
|
|
return -1;
|
|
}
|
|
|
|
|
|
/**
|
|
Compare unsigned (*a) with signed (*B)
|
|
*/
|
|
|
|
int Arg_comparator::compare_int_unsigned_signed()
|
|
{
|
|
ulonglong uval1= (ulonglong)(*a)->val_int();
|
|
if (!(*a)->null_value)
|
|
{
|
|
longlong sval2= (*b)->val_int();
|
|
if (!(*b)->null_value)
|
|
{
|
|
if (set_null)
|
|
owner->null_value= 0;
|
|
if (sval2 < 0)
|
|
return 1;
|
|
if (uval1 < (ulonglong)sval2)
|
|
return -1;
|
|
if (uval1 == (ulonglong)sval2)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
}
|
|
if (set_null)
|
|
owner->null_value= 1;
|
|
return -1;
|
|
}
|
|
|
|
|
|
int Arg_comparator::compare_e_int()
|
|
{
|
|
longlong val1= (*a)->val_int();
|
|
longlong val2= (*b)->val_int();
|
|
if ((*a)->null_value || (*b)->null_value)
|
|
return MY_TEST((*a)->null_value && (*b)->null_value);
|
|
return MY_TEST(val1 == val2);
|
|
}
|
|
|
|
/**
|
|
Compare unsigned *a with signed *b or signed *a with unsigned *b.
|
|
*/
|
|
int Arg_comparator::compare_e_int_diff_signedness()
|
|
{
|
|
longlong val1= (*a)->val_int();
|
|
longlong val2= (*b)->val_int();
|
|
if ((*a)->null_value || (*b)->null_value)
|
|
return MY_TEST((*a)->null_value && (*b)->null_value);
|
|
return (val1 >= 0) && MY_TEST(val1 == val2);
|
|
}
|
|
|
|
int Arg_comparator::compare_row()
|
|
{
|
|
int res= 0;
|
|
bool was_null= 0;
|
|
(*a)->bring_value();
|
|
(*b)->bring_value();
|
|
|
|
if ((*a)->null_value || (*b)->null_value)
|
|
{
|
|
owner->null_value= 1;
|
|
return -1;
|
|
}
|
|
|
|
uint n= (*a)->cols();
|
|
for (uint i= 0; i<n; i++)
|
|
{
|
|
res= comparators[i].compare();
|
|
/* Aggregate functions don't need special null handling. */
|
|
if (owner->null_value && owner->type() == Item::FUNC_ITEM)
|
|
{
|
|
// NULL was compared
|
|
switch (((Item_func*)owner)->functype()) {
|
|
case Item_func::NE_FUNC:
|
|
break; // NE never aborts on NULL
|
|
case Item_func::LT_FUNC:
|
|
case Item_func::LE_FUNC:
|
|
case Item_func::GT_FUNC:
|
|
case Item_func::GE_FUNC:
|
|
return -1; // <, <=, > and >= always fail on NULL
|
|
case Item_func::EQ_FUNC:
|
|
if (owner->is_top_level_item())
|
|
return -1; // We do not need correct NULL returning
|
|
break;
|
|
default:
|
|
DBUG_ASSERT(0);
|
|
break;
|
|
}
|
|
was_null= 1;
|
|
owner->null_value= 0;
|
|
res= 0; // continue comparison (maybe we will meet explicit difference)
|
|
}
|
|
else if (res)
|
|
return res;
|
|
}
|
|
if (was_null)
|
|
{
|
|
/*
|
|
There was NULL(s) in comparison in some parts, but there was no
|
|
explicit difference in other parts, so we have to return NULL.
|
|
*/
|
|
owner->null_value= 1;
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int Arg_comparator::compare_e_row()
|
|
{
|
|
(*a)->bring_value();
|
|
(*b)->bring_value();
|
|
uint n= (*a)->cols();
|
|
for (uint i= 0; i<n; i++)
|
|
{
|
|
if (!comparators[i].compare())
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
int Arg_comparator::compare_json_str()
|
|
{
|
|
return compare_json_str_basic(*a, *b);
|
|
}
|
|
|
|
|
|
int Arg_comparator::compare_str_json()
|
|
{
|
|
return -compare_json_str_basic(*b, *a);
|
|
}
|
|
|
|
|
|
int Arg_comparator::compare_e_json_str()
|
|
{
|
|
return compare_e_json_str_basic(*a, *b);
|
|
}
|
|
|
|
|
|
int Arg_comparator::compare_e_str_json()
|
|
{
|
|
return compare_e_json_str_basic(*b, *a);
|
|
}
|
|
|
|
|
|
bool Item_func_truth::fix_length_and_dec(THD *thd)
|
|
{
|
|
base_flags&= ~item_base_t::MAYBE_NULL;
|
|
null_value= 0;
|
|
decimals= 0;
|
|
max_length= 1;
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
void Item_func_truth::print(String *str, enum_query_type query_type)
|
|
{
|
|
args[0]->print_parenthesised(str, query_type, precedence());
|
|
str->append(STRING_WITH_LEN(" is "));
|
|
if (! affirmative)
|
|
str->append(STRING_WITH_LEN("not "));
|
|
if (value)
|
|
str->append(STRING_WITH_LEN("true"));
|
|
else
|
|
str->append(STRING_WITH_LEN("false"));
|
|
}
|
|
|
|
|
|
bool Item_func_truth::val_bool()
|
|
{
|
|
bool val= args[0]->val_bool();
|
|
if (args[0]->null_value)
|
|
{
|
|
/*
|
|
NULL val IS {TRUE, FALSE} --> FALSE
|
|
NULL val IS NOT {TRUE, FALSE} --> TRUE
|
|
*/
|
|
return (! affirmative);
|
|
}
|
|
|
|
if (affirmative)
|
|
{
|
|
/* {TRUE, FALSE} val IS {TRUE, FALSE} value */
|
|
return (val == value);
|
|
}
|
|
|
|
/* {TRUE, FALSE} val IS NOT {TRUE, FALSE} value */
|
|
return (val != value);
|
|
}
|
|
|
|
|
|
void Item_in_optimizer::fix_after_pullout(st_select_lex *new_parent,
|
|
Item **ref, bool merge)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
/* This will re-calculate attributes of our Item_in_subselect: */
|
|
Item_bool_func::fix_after_pullout(new_parent, ref, merge);
|
|
|
|
/* Then, re-calculate not_null_tables_cache: */
|
|
eval_not_null_tables(NULL);
|
|
}
|
|
|
|
|
|
bool Item_in_optimizer::eval_not_null_tables(void *opt_arg)
|
|
{
|
|
not_null_tables_cache= 0;
|
|
if (is_top_level_item())
|
|
{
|
|
/*
|
|
It is possible to determine NULL-rejectedness of the left arguments
|
|
of IN only if it is a top-level predicate.
|
|
*/
|
|
not_null_tables_cache= args[0]->not_null_tables();
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
bool Item_in_optimizer::find_not_null_fields(table_map allowed)
|
|
{
|
|
if (!(~allowed & used_tables()) && is_top_level_item())
|
|
{
|
|
return args[0]->find_not_null_fields(allowed);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Item_in_optimizer::print(String *str, enum_query_type query_type)
|
|
{
|
|
if (query_type & QT_PARSABLE)
|
|
args[1]->print(str, query_type);
|
|
else
|
|
{
|
|
restore_first_argument();
|
|
Item_func::print(str, query_type);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
"Restore" first argument before fix_fields() call (after it is harmless).
|
|
|
|
@Note: Main pointer to left part of IN/ALL/ANY subselect is subselect's
|
|
lest_expr (see Item_in_optimizer::fix_left) so changes made during
|
|
fix_fields will be rolled back there which can make
|
|
Item_in_optimizer::args[0] unusable on second execution before fix_left()
|
|
call. This call fix the pointer.
|
|
*/
|
|
|
|
void Item_in_optimizer::restore_first_argument()
|
|
{
|
|
Item_in_subselect *in_subs= args[1]->get_IN_subquery();
|
|
if (in_subs)
|
|
args[0]= in_subs->left_exp();
|
|
}
|
|
|
|
|
|
bool Item_in_optimizer::fix_left(THD *thd)
|
|
{
|
|
DBUG_ENTER("Item_in_optimizer::fix_left");
|
|
/*
|
|
Here we will store pointer on place of main storage of left expression.
|
|
For usual IN (ALL/ANY) it is subquery left_expr.
|
|
For other cases (MAX/MIN optimization, non-transformed EXISTS (10.0))
|
|
it is args[0].
|
|
*/
|
|
Item **ref0= args;
|
|
if (!invisible_mode())
|
|
{
|
|
/*
|
|
left_expr->fix_fields() may cause left_expr to be substituted for
|
|
another item. (e.g. an Item_field may be changed into Item_ref). This
|
|
transformation is undone at the end of statement execution (e.g. the
|
|
Item_ref is deleted). However, Item_in_optimizer::args[0] may keep
|
|
the pointer to the post-transformation item. Because of that, on the
|
|
next execution we need to copy args[1]->left_expr again.
|
|
*/
|
|
ref0= args[1]->get_IN_subquery()->left_exp_ptr();
|
|
args[0]= (*ref0);
|
|
}
|
|
if ((*ref0)->fix_fields_if_needed(thd, ref0))
|
|
DBUG_RETURN(1);
|
|
if (!cache)
|
|
{
|
|
Query_arena *arena, backup;
|
|
arena= thd->activate_stmt_arena_if_needed(&backup);
|
|
|
|
bool rc= !(cache= (*ref0)->get_cache(thd));
|
|
|
|
if (arena)
|
|
thd->restore_active_arena(arena, &backup);
|
|
|
|
if (rc)
|
|
DBUG_RETURN(1);
|
|
cache->keep_array();
|
|
}
|
|
/*
|
|
During fix_field() expression could be substituted.
|
|
So we copy changes before use
|
|
*/
|
|
if (args[0] != (*ref0))
|
|
args[0]= (*ref0);
|
|
DBUG_PRINT("info", ("actual fix fields"));
|
|
|
|
cache->setup(thd, args[0]);
|
|
if (cache->cols() == 1)
|
|
{
|
|
DBUG_ASSERT(args[0]->type() != ROW_ITEM);
|
|
/*
|
|
Note: there can be cases when used_tables()==0 && !const_item(). See
|
|
Item_sum::update_used_tables for details.
|
|
*/
|
|
if ((used_tables_cache= args[0]->used_tables()) || !args[0]->const_item())
|
|
cache->set_used_tables(OUTER_REF_TABLE_BIT);
|
|
else
|
|
cache->set_used_tables(0);
|
|
}
|
|
else
|
|
{
|
|
uint n= cache->cols();
|
|
for (uint i= 0; i < n; i++)
|
|
{
|
|
/* Check that the expression (part of row) do not contain a subquery */
|
|
if (args[0]->element_index(i)->walk(&Item::is_subquery_processor, 0, 0))
|
|
{
|
|
my_error(ER_NOT_SUPPORTED_YET, MYF(0),
|
|
"SUBQUERY in ROW in left expression of IN/ALL/ANY");
|
|
DBUG_RETURN(1);
|
|
}
|
|
Item *element=args[0]->element_index(i);
|
|
if (element->used_tables() || !element->const_item())
|
|
{
|
|
((Item_cache *)cache->element_index(i))->
|
|
set_used_tables(OUTER_REF_TABLE_BIT);
|
|
cache->set_used_tables(OUTER_REF_TABLE_BIT);
|
|
}
|
|
else
|
|
((Item_cache *)cache->element_index(i))->set_used_tables(0);
|
|
}
|
|
used_tables_cache= args[0]->used_tables();
|
|
}
|
|
eval_not_null_tables(NULL);
|
|
with_flags|= (args[0]->with_flags |
|
|
(args[1]->with_flags & item_with_t::SP_VAR));
|
|
|
|
/*
|
|
If left expression is a constant, cache its value.
|
|
But don't do that if that involves computing a subquery, as we are in a
|
|
prepare-phase rewrite.
|
|
*/
|
|
if ((const_item_cache= args[0]->const_item()) && !args[0]->with_subquery())
|
|
{
|
|
cache->store(args[0]);
|
|
cache->cache_value();
|
|
}
|
|
if (args[1]->fixed())
|
|
{
|
|
/* to avoid overriding is called to update left expression */
|
|
used_tables_and_const_cache_join(args[1]);
|
|
with_flags|= args[1]->with_flags & item_with_t::SUM_FUNC;
|
|
}
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
bool Item_in_optimizer::fix_fields(THD *thd, Item **ref)
|
|
{
|
|
DBUG_ASSERT(fixed() == 0);
|
|
Item_subselect *sub= 0;
|
|
uint col;
|
|
|
|
/*
|
|
MAX/MIN optimization can convert the subquery into
|
|
expr + Item_singlerow_subselect
|
|
*/
|
|
if (args[1]->type() == Item::SUBSELECT_ITEM)
|
|
sub= (Item_subselect *)args[1];
|
|
|
|
if (fix_left(thd))
|
|
return TRUE;
|
|
if (args[0]->maybe_null())
|
|
set_maybe_null();
|
|
|
|
if (args[1]->fix_fields_if_needed(thd, args + 1))
|
|
return TRUE;
|
|
if (!invisible_mode() &&
|
|
((sub && ((col= args[0]->cols()) != sub->engine->cols())) ||
|
|
(!sub && (args[1]->cols() != (col= 1)))))
|
|
{
|
|
my_error(ER_OPERAND_COLUMNS, MYF(0), col);
|
|
return TRUE;
|
|
}
|
|
|
|
base_flags|= (item_base_t::FIXED |
|
|
(args[1]->base_flags & (item_base_t::MAYBE_NULL |
|
|
item_base_t::AT_TOP_LEVEL)));
|
|
with_flags|= (item_with_t::SUBQUERY |
|
|
args[1]->with_flags |
|
|
(args[0]->with_flags &
|
|
(item_with_t::SP_VAR | item_with_t::WINDOW_FUNC)));
|
|
// The subquery cannot have window functions aggregated in this select
|
|
DBUG_ASSERT(!args[1]->with_window_func());
|
|
used_tables_and_const_cache_join(args[1]);
|
|
return FALSE;
|
|
}
|
|
|
|
/**
|
|
Check if Item_in_optimizer should work as a pass-through item for its
|
|
arguments.
|
|
|
|
@note
|
|
Item_in_optimizer should work as pass-through for
|
|
- subqueries that were processed by ALL/ANY->MIN/MAX rewrite
|
|
- subqueries that were originally EXISTS subqueries (and were coinverted by
|
|
the EXISTS->IN rewrite)
|
|
|
|
When Item_in_optimizer is not not working as a pass-through, it
|
|
- caches its "left argument", args[0].
|
|
- makes adjustments to subquery item's return value for proper NULL
|
|
value handling
|
|
*/
|
|
|
|
bool Item_in_optimizer::invisible_mode()
|
|
{
|
|
/* MAX/MIN transformed or EXISTS->IN prepared => do nothing */
|
|
return (args[1]->get_IN_subquery() == NULL);
|
|
}
|
|
|
|
|
|
bool Item_in_optimizer::walk(Item_processor processor,
|
|
bool walk_subquery,
|
|
void *arg)
|
|
{
|
|
bool res= FALSE;
|
|
if (args[1]->type() == Item::SUBSELECT_ITEM &&
|
|
((Item_subselect *)args[1])->substype() != Item_subselect::EXISTS_SUBS &&
|
|
!(((Item_subselect *)args[1])->substype() == Item_subselect::IN_SUBS &&
|
|
((Item_in_subselect *)args[1])->test_strategy(SUBS_IN_TO_EXISTS)))
|
|
res= args[0]->walk(processor, walk_subquery, arg);
|
|
if (!res)
|
|
res= args[1]->walk(processor, walk_subquery, arg);
|
|
|
|
return res || (this->*processor)(arg);
|
|
}
|
|
|
|
|
|
/**
|
|
Add an expression cache for this subquery if it is needed
|
|
|
|
@param thd_arg Thread handle
|
|
|
|
@details
|
|
The function checks whether an expression cache is needed for this item
|
|
and if if so wraps the item into an item of the class
|
|
Item_cache_wrapper with an appropriate expression cache set up there.
|
|
|
|
@note
|
|
used from Item::transform()
|
|
|
|
@return
|
|
new wrapper item if an expression cache is needed,
|
|
this item - otherwise
|
|
*/
|
|
|
|
Item *Item_in_optimizer::expr_cache_insert_transformer(THD *thd, uchar *unused)
|
|
{
|
|
DBUG_ENTER("Item_in_optimizer::expr_cache_insert_transformer");
|
|
DBUG_ASSERT(fixed());
|
|
|
|
if (invisible_mode())
|
|
DBUG_RETURN(this);
|
|
|
|
if (expr_cache)
|
|
DBUG_RETURN(expr_cache);
|
|
|
|
if (args[1]->expr_cache_is_needed(thd) &&
|
|
(expr_cache= set_expr_cache(thd)))
|
|
DBUG_RETURN(expr_cache);
|
|
|
|
DBUG_RETURN(this);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
Collect and add to the list cache parameters for this Item.
|
|
|
|
@param parameters The list where to add parameters
|
|
*/
|
|
|
|
void Item_in_optimizer::get_cache_parameters(List<Item> ¶meters)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
/* Add left expression to the list of the parameters of the subquery */
|
|
if (!invisible_mode())
|
|
{
|
|
if (args[0]->cols() == 1)
|
|
parameters.add_unique(args[0], &cmp_items);
|
|
else
|
|
{
|
|
for (uint i= 0; i < args[0]->cols(); i++)
|
|
{
|
|
parameters.add_unique(args[0]->element_index(i), &cmp_items);
|
|
}
|
|
}
|
|
}
|
|
args[1]->get_cache_parameters(parameters);
|
|
}
|
|
|
|
/**
|
|
The implementation of optimized \<outer expression\> [NOT] IN \<subquery\>
|
|
predicates. The implementation works as follows.
|
|
|
|
For the current value of the outer expression
|
|
|
|
- If it contains only NULL values, the original (before rewrite by the
|
|
Item_in_subselect rewrite methods) inner subquery is non-correlated and
|
|
was previously executed, there is no need to re-execute it, and the
|
|
previous return value is returned.
|
|
|
|
- If it contains NULL values, check if there is a partial match for the
|
|
inner query block by evaluating it. For clarity we repeat here the
|
|
transformation previously performed on the sub-query. The expression
|
|
|
|
<tt>
|
|
( oc_1, ..., oc_n )
|
|
\<in predicate\>
|
|
( SELECT ic_1, ..., ic_n
|
|
FROM \<table\>
|
|
WHERE \<inner where\>
|
|
)
|
|
</tt>
|
|
|
|
was transformed into
|
|
|
|
<tt>
|
|
( oc_1, ..., oc_n )
|
|
\<in predicate\>
|
|
( SELECT ic_1, ..., ic_n
|
|
FROM \<table\>
|
|
WHERE \<inner where\> AND ... ( ic_k = oc_k OR ic_k IS NULL )
|
|
HAVING ... NOT ic_k IS NULL
|
|
)
|
|
</tt>
|
|
|
|
The evaluation will now proceed according to special rules set up
|
|
elsewhere. These rules include:
|
|
|
|
- The HAVING NOT \<inner column\> IS NULL conditions added by the
|
|
aforementioned rewrite methods will detect whether they evaluated (and
|
|
rejected) a NULL value and if so, will cause the subquery to evaluate
|
|
to NULL.
|
|
|
|
- The added WHERE and HAVING conditions are present only for those inner
|
|
columns that correspond to outer column that are not NULL at the moment.
|
|
|
|
- If there is an eligible index for executing the subquery, the special
|
|
access method "Full scan on NULL key" is employed which ensures that
|
|
the inner query will detect if there are NULL values resulting from the
|
|
inner query. This access method will quietly resort to table scan if it
|
|
needs to find NULL values as well.
|
|
|
|
- Under these conditions, the sub-query need only be evaluated in order to
|
|
find out whether it produced any rows.
|
|
|
|
- If it did, we know that there was a partial match since there are
|
|
NULL values in the outer row expression.
|
|
|
|
- If it did not, the result is FALSE or UNKNOWN. If at least one of the
|
|
HAVING sub-predicates rejected a NULL value corresponding to an outer
|
|
non-NULL, and hence the inner query block returns UNKNOWN upon
|
|
evaluation, there was a partial match and the result is UNKNOWN.
|
|
|
|
- If it contains no NULL values, the call is forwarded to the inner query
|
|
block.
|
|
|
|
@see Item_in_subselect::val_bool()
|
|
@see Item_is_not_null_test::val_int()
|
|
*/
|
|
|
|
bool Item_in_optimizer::val_bool()
|
|
{
|
|
bool tmp;
|
|
DBUG_ASSERT(fixed());
|
|
cache->store(args[0]);
|
|
cache->cache_value();
|
|
DBUG_ENTER(" Item_in_optimizer::val_bool");
|
|
|
|
if (invisible_mode())
|
|
{
|
|
longlong res= args[1]->val_bool();
|
|
null_value= args[1]->null_value;
|
|
DBUG_PRINT("info", ("pass trough"));
|
|
DBUG_RETURN(res);
|
|
}
|
|
|
|
if (cache->null_value_inside)
|
|
{
|
|
DBUG_PRINT("info", ("Left NULL..."));
|
|
/*
|
|
We're evaluating
|
|
"<outer_value_list> [NOT] IN (SELECT <inner_value_list>...)"
|
|
where one or more of the outer values is NULL.
|
|
*/
|
|
if (args[1]->is_top_level_item())
|
|
{
|
|
/*
|
|
We're evaluating a top level item, e.g.
|
|
"<outer_value_list> IN (SELECT <inner_value_list>...)",
|
|
and in this case a NULL value in the outer_value_list means
|
|
that the result shall be NULL/FALSE (makes no difference for
|
|
top level items). The cached value is NULL, so just return
|
|
NULL.
|
|
*/
|
|
null_value= 1;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
We're evaluating an item where a NULL value in either the
|
|
outer or inner value list does not automatically mean that we
|
|
can return NULL/FALSE. An example of such a query is
|
|
"<outer_value_list> NOT IN (SELECT <inner_value_list>...)"
|
|
The result when there is at least one NULL value is: NULL if the
|
|
SELECT evaluated over the non-NULL values produces at least
|
|
one row, FALSE otherwise
|
|
*/
|
|
Item_in_subselect *item_subs= args[1]->get_IN_subquery();
|
|
bool all_left_cols_null= true;
|
|
const uint ncols= cache->cols();
|
|
|
|
/*
|
|
Turn off the predicates that are based on column compares for
|
|
which the left part is currently NULL
|
|
*/
|
|
for (uint i= 0; i < ncols; i++)
|
|
{
|
|
if (cache->element_index(i)->null_value)
|
|
item_subs->set_cond_guard_var(i, FALSE);
|
|
else
|
|
all_left_cols_null= false;
|
|
}
|
|
|
|
if (!item_subs->is_correlated &&
|
|
all_left_cols_null && result_for_null_param != UNKNOWN)
|
|
{
|
|
/*
|
|
This is a non-correlated subquery, all values in the outer
|
|
value list are NULL, and we have already evaluated the
|
|
subquery for all NULL values: Return the same result we
|
|
did last time without evaluating the subquery.
|
|
*/
|
|
null_value= result_for_null_param;
|
|
}
|
|
else
|
|
{
|
|
/* The subquery has to be evaluated */
|
|
(void) item_subs->val_bool_result();
|
|
if (item_subs->engine->no_rows())
|
|
null_value= item_subs->null_value;
|
|
else
|
|
null_value= TRUE;
|
|
if (all_left_cols_null)
|
|
result_for_null_param= null_value;
|
|
}
|
|
|
|
/* Turn all predicates back on */
|
|
for (uint i= 0; i < ncols; i++)
|
|
item_subs->set_cond_guard_var(i, TRUE);
|
|
}
|
|
DBUG_RETURN(0);
|
|
}
|
|
tmp= args[1]->val_bool_result();
|
|
null_value= args[1]->null_value;
|
|
DBUG_RETURN(tmp);
|
|
}
|
|
|
|
|
|
void Item_in_optimizer::cleanup()
|
|
{
|
|
DBUG_ENTER("Item_in_optimizer::cleanup");
|
|
Item_bool_func::cleanup();
|
|
expr_cache= 0;
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
bool Item_in_optimizer::is_null()
|
|
{
|
|
val_bool();
|
|
return null_value;
|
|
}
|
|
|
|
|
|
/**
|
|
Transform an Item_in_optimizer and its arguments with a callback function.
|
|
|
|
@param transformer the transformer callback function to be applied to the
|
|
nodes of the tree of the object
|
|
@param parameter to be passed to the transformer
|
|
|
|
@detail
|
|
Recursively transform the left and the right operand of this Item. The
|
|
Right operand is an Item_in_subselect or its subclass. To avoid the
|
|
creation of new Items, we use the fact the the left operand of the
|
|
Item_in_subselect is the same as the one of 'this', so instead of
|
|
transforming its operand, we just assign the left operand of the
|
|
Item_in_subselect to be equal to the left operand of 'this'.
|
|
The transformation is not applied further to the subquery operand
|
|
if the IN predicate.
|
|
|
|
@returns
|
|
@retval pointer to the transformed item
|
|
@retval NULL if an error occurred
|
|
*/
|
|
|
|
Item *Item_in_optimizer::transform(THD *thd, Item_transformer transformer,
|
|
uchar *argument)
|
|
{
|
|
Item *new_item;
|
|
|
|
DBUG_ASSERT(fixed());
|
|
DBUG_ASSERT(!thd->stmt_arena->is_stmt_prepare());
|
|
DBUG_ASSERT(arg_count == 2);
|
|
|
|
/* Transform the left IN operand. */
|
|
new_item= (*args)->transform(thd, transformer, argument);
|
|
if (!new_item)
|
|
return 0;
|
|
/*
|
|
THD::change_item_tree() should be called only if the tree was
|
|
really transformed, i.e. when a new item has been created.
|
|
Otherwise we'll be allocating a lot of unnecessary memory for
|
|
change records at each execution.
|
|
*/
|
|
if ((*args) != new_item)
|
|
thd->change_item_tree(args, new_item);
|
|
|
|
if (invisible_mode())
|
|
{
|
|
/* MAX/MIN transformed => pass through */
|
|
new_item= args[1]->transform(thd, transformer, argument);
|
|
if (!new_item)
|
|
return 0;
|
|
if (args[1] != new_item)
|
|
thd->change_item_tree(args + 1, new_item);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
Transform the right IN operand which should be an Item_in_subselect or a
|
|
subclass of it. The left operand of the IN must be the same as the left
|
|
operand of this Item_in_optimizer, so in this case there is no further
|
|
transformation, we only make both operands the same.
|
|
TODO: is it the way it should be?
|
|
*/
|
|
DBUG_ASSERT((args[1])->type() == Item::SUBSELECT_ITEM &&
|
|
(((Item_subselect*)(args[1]))->substype() ==
|
|
Item_subselect::IN_SUBS ||
|
|
((Item_subselect*)(args[1]))->substype() ==
|
|
Item_subselect::ALL_SUBS ||
|
|
((Item_subselect*)(args[1]))->substype() ==
|
|
Item_subselect::ANY_SUBS));
|
|
|
|
thd->change_item_tree(args[1]->get_IN_subquery()->left_exp_ptr(), args[0]);
|
|
}
|
|
return (this->*transformer)(thd, argument);
|
|
}
|
|
|
|
|
|
bool Item_in_optimizer::is_expensive_processor(void *arg)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
return args[0]->is_expensive_processor(arg) ||
|
|
args[1]->is_expensive_processor(arg);
|
|
}
|
|
|
|
|
|
bool Item_in_optimizer::is_expensive()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
return args[0]->is_expensive() || args[1]->is_expensive();
|
|
}
|
|
|
|
|
|
bool Item_func_eq::val_bool()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
int value= cmp.compare();
|
|
return value == 0 ? 1 : 0;
|
|
}
|
|
|
|
|
|
Item *Item_func_eq::do_build_clone(THD *thd) const
|
|
{
|
|
/*
|
|
Clone the parent and cast to the child class since there is nothing
|
|
specific for Item_func_eq
|
|
*/
|
|
return (Item_func_eq*) Item_bool_rowready_func2::do_build_clone(thd);
|
|
}
|
|
|
|
|
|
/** Same as Item_func_eq, but NULL = NULL. */
|
|
|
|
bool Item_func_equal::fix_length_and_dec(THD *thd)
|
|
{
|
|
bool rc= Item_bool_rowready_func2::fix_length_and_dec(thd);
|
|
base_flags&= ~item_base_t::MAYBE_NULL;
|
|
null_value=0;
|
|
return rc;
|
|
}
|
|
|
|
bool Item_func_equal::val_bool()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
return cmp.compare();
|
|
}
|
|
|
|
bool Item_func_ne::val_bool()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
int value= cmp.compare();
|
|
return value != 0 && !null_value ? 1 : 0;
|
|
}
|
|
|
|
|
|
bool Item_func_ge::val_bool()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
int value= cmp.compare();
|
|
return value >= 0 ? 1 : 0;
|
|
}
|
|
|
|
|
|
bool Item_func_gt::val_bool()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
int value= cmp.compare();
|
|
return value > 0 ? 1 : 0;
|
|
}
|
|
|
|
bool Item_func_le::val_bool()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
int value= cmp.compare();
|
|
return value <= 0 && !null_value ? 1 : 0;
|
|
}
|
|
|
|
|
|
bool Item_func_lt::val_bool()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
int value= cmp.compare();
|
|
return value < 0 && !null_value ? 1 : 0;
|
|
}
|
|
|
|
|
|
longlong Item_func_strcmp::val_int()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
String *a= args[0]->val_str(&value1);
|
|
String *b= args[1]->val_str(&value2);
|
|
if (!a || !b)
|
|
{
|
|
null_value=1;
|
|
return 0;
|
|
}
|
|
int value= cmp_collation.sortcmp(a, b);
|
|
null_value=0;
|
|
return !value ? 0 : (value < 0 ? (longlong) -1 : (longlong) 1);
|
|
}
|
|
|
|
|
|
bool Item_func_opt_neg::eq(const Item *item, bool binary_cmp) const
|
|
{
|
|
/* Assume we don't have rtti */
|
|
if (this == item)
|
|
return 1;
|
|
if (item->type() != FUNC_ITEM)
|
|
return 0;
|
|
Item_func *item_func=(Item_func*) item;
|
|
if (arg_count != item_func->argument_count() ||
|
|
functype() != item_func->functype())
|
|
return 0;
|
|
if (negated != ((Item_func_opt_neg *) item_func)->negated)
|
|
return 0;
|
|
return Item_args::eq(item_func, binary_cmp);
|
|
}
|
|
|
|
|
|
bool Item_func_interval::fix_length_and_dec(THD *thd)
|
|
{
|
|
uint rows= row->cols();
|
|
|
|
for (uint i= 0 ; i < rows; i++)
|
|
{
|
|
if (row->element_index(i)->check_cols(1))
|
|
return true;
|
|
}
|
|
|
|
use_decimal_comparison= ((row->element_index(0)->result_type() ==
|
|
DECIMAL_RESULT) ||
|
|
(row->element_index(0)->result_type() ==
|
|
INT_RESULT));
|
|
if (rows > 8)
|
|
{
|
|
bool not_null_consts= TRUE;
|
|
|
|
for (uint i= 1; not_null_consts && i < rows; i++)
|
|
{
|
|
Item *el= row->element_index(i);
|
|
not_null_consts&= el->const_item() && !el->is_null();
|
|
}
|
|
|
|
if (not_null_consts)
|
|
{
|
|
intervals= (interval_range*) thd->alloc(sizeof *intervals * (rows - 1));
|
|
if (!intervals)
|
|
return true;
|
|
|
|
if (use_decimal_comparison)
|
|
{
|
|
for (uint i= 1; i < rows; i++)
|
|
{
|
|
Item *el= row->element_index(i);
|
|
interval_range *range= intervals + (i-1);
|
|
if ((el->result_type() == DECIMAL_RESULT) ||
|
|
(el->result_type() == INT_RESULT))
|
|
{
|
|
range->type= DECIMAL_RESULT;
|
|
range->dec.init();
|
|
my_decimal *dec= el->val_decimal(&range->dec);
|
|
if (dec != &range->dec)
|
|
{
|
|
range->dec= *dec;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
range->type= REAL_RESULT;
|
|
range->dbl= el->val_real();
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (uint i= 1; i < rows; i++)
|
|
{
|
|
intervals[i-1].dbl= row->element_index(i)->val_real();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
base_flags&= ~item_base_t::MAYBE_NULL;
|
|
max_length= 2;
|
|
used_tables_and_const_cache_join(row);
|
|
not_null_tables_cache= row->not_null_tables();
|
|
with_flags|= row->with_flags;
|
|
return false;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute Item_func_interval().
|
|
|
|
@note
|
|
If we are doing a decimal comparison, we are evaluating the first
|
|
item twice.
|
|
|
|
@return
|
|
- -1 if null value,
|
|
- 0 if lower than lowest
|
|
- 1 - arg_count-1 if between args[n] and args[n+1]
|
|
- arg_count if higher than biggest argument
|
|
*/
|
|
|
|
longlong Item_func_interval::val_int()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
double value;
|
|
my_decimal dec_buf, *dec= NULL;
|
|
uint i;
|
|
|
|
if (use_decimal_comparison)
|
|
{
|
|
dec= row->element_index(0)->val_decimal(&dec_buf);
|
|
if (row->element_index(0)->null_value)
|
|
return -1;
|
|
my_decimal2double(E_DEC_FATAL_ERROR, dec, &value);
|
|
}
|
|
else
|
|
{
|
|
value= row->element_index(0)->val_real();
|
|
if (row->element_index(0)->null_value)
|
|
return -1;
|
|
}
|
|
|
|
if (intervals)
|
|
{ // Use binary search to find interval
|
|
uint start,end;
|
|
start= 0;
|
|
end= row->cols()-2;
|
|
while (start != end)
|
|
{
|
|
uint mid= (start + end + 1) / 2;
|
|
interval_range *range= intervals + mid;
|
|
my_bool cmp_result;
|
|
/*
|
|
The values in the range interval may have different types,
|
|
Only do a decimal comparison if the first argument is a decimal
|
|
and we are comparing against a decimal
|
|
*/
|
|
if (dec && range->type == DECIMAL_RESULT)
|
|
cmp_result= my_decimal_cmp(&range->dec, dec) <= 0;
|
|
else
|
|
cmp_result= (range->dbl <= value);
|
|
if (cmp_result)
|
|
start= mid;
|
|
else
|
|
end= mid - 1;
|
|
}
|
|
interval_range *range= intervals+start;
|
|
return ((dec && range->type == DECIMAL_RESULT) ?
|
|
my_decimal_cmp(dec, &range->dec) < 0 :
|
|
value < range->dbl) ? 0 : start + 1;
|
|
}
|
|
|
|
for (i=1 ; i < row->cols() ; i++)
|
|
{
|
|
Item *el= row->element_index(i);
|
|
if (use_decimal_comparison &&
|
|
((el->result_type() == DECIMAL_RESULT) ||
|
|
(el->result_type() == INT_RESULT)))
|
|
{
|
|
VDec e_dec(el);
|
|
/* Skip NULL ranges. */
|
|
if (e_dec.is_null())
|
|
continue;
|
|
if (e_dec.cmp(dec) > 0)
|
|
return i - 1;
|
|
}
|
|
else
|
|
{
|
|
double val= el->val_real();
|
|
/* Skip NULL ranges. */
|
|
if (el->null_value)
|
|
continue;
|
|
if (val > value)
|
|
return i - 1;
|
|
}
|
|
}
|
|
return i-1;
|
|
}
|
|
|
|
|
|
/**
|
|
Perform context analysis of a BETWEEN item tree.
|
|
|
|
This function performs context analysis (name resolution) and calculates
|
|
various attributes of the item tree with Item_func_between as its root.
|
|
The function saves in ref the pointer to the item or to a newly created
|
|
item that is considered as a replacement for the original one.
|
|
|
|
@param thd reference to the global context of the query thread
|
|
@param ref pointer to Item* variable where pointer to resulting "fixed"
|
|
item is to be assigned
|
|
|
|
@note
|
|
Let T0(e)/T1(e) be the value of not_null_tables(e) when e is used on
|
|
a predicate/function level. Then it's easy to show that:
|
|
@verbatim
|
|
T0(e BETWEEN e1 AND e2) = union(T1(e),T1(e1),T1(e2))
|
|
T1(e BETWEEN e1 AND e2) = union(T1(e),intersection(T1(e1),T1(e2)))
|
|
T0(e NOT BETWEEN e1 AND e2) = union(T1(e),intersection(T1(e1),T1(e2)))
|
|
T1(e NOT BETWEEN e1 AND e2) = union(T1(e),intersection(T1(e1),T1(e2)))
|
|
@endverbatim
|
|
|
|
@retval
|
|
0 ok
|
|
@retval
|
|
1 got error
|
|
*/
|
|
|
|
|
|
bool Item_func_between::eval_not_null_tables(void *opt_arg)
|
|
{
|
|
if (Item_func_opt_neg::eval_not_null_tables(NULL))
|
|
return 1;
|
|
|
|
/* not_null_tables_cache == union(T1(e),T1(e1),T1(e2)) */
|
|
if (is_top_level_item() && !negated)
|
|
return 0;
|
|
|
|
/* not_null_tables_cache == union(T1(e), intersection(T1(e1),T1(e2))) */
|
|
not_null_tables_cache= (args[0]->not_null_tables() |
|
|
(args[1]->not_null_tables() &
|
|
args[2]->not_null_tables()));
|
|
return 0;
|
|
}
|
|
|
|
|
|
bool Item_func_between::find_not_null_fields(table_map allowed)
|
|
{
|
|
if (negated || !is_top_level_item() || (~allowed & used_tables()))
|
|
return false;
|
|
return args[0]->find_not_null_fields(allowed) ||
|
|
args[1]->find_not_null_fields(allowed) ||
|
|
args[2]->find_not_null_fields(allowed);
|
|
}
|
|
|
|
|
|
bool Item_func_between::count_sargable_conds(void *arg)
|
|
{
|
|
SELECT_LEX *sel= (SELECT_LEX *) arg;
|
|
sel->cond_count++;
|
|
sel->between_count++;
|
|
return 0;
|
|
}
|
|
|
|
|
|
void Item_func_between::fix_after_pullout(st_select_lex *new_parent,
|
|
Item **ref, bool merge)
|
|
{
|
|
/* This will re-calculate attributes of the arguments */
|
|
Item_func_opt_neg::fix_after_pullout(new_parent, ref, merge);
|
|
/* Then, re-calculate not_null_tables_cache according to our special rules */
|
|
eval_not_null_tables(NULL);
|
|
}
|
|
|
|
bool Item_func_between::fix_length_and_dec(THD *thd)
|
|
{
|
|
max_length= 1;
|
|
|
|
/*
|
|
As some compare functions are generated after sql_yacc,
|
|
we have to check for out of memory conditions here
|
|
*/
|
|
if (!args[0] || !args[1] || !args[2])
|
|
return TRUE;
|
|
Item_args old_predicant(args[0]);
|
|
if (m_comparator.aggregate_for_comparison(Item_func_between::
|
|
func_name_cstring(),
|
|
args, 3, false))
|
|
{
|
|
DBUG_ASSERT(thd->is_error());
|
|
return TRUE;
|
|
}
|
|
if (m_comparator.type_handler()->Item_func_between_fix_length_and_dec(this))
|
|
return true;
|
|
raise_note_if_key_become_unused(thd, old_predicant);
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Item_func_between::fix_length_and_dec_numeric(THD *thd)
|
|
{
|
|
/* See the comment about the similar block in Item_bool_func2 */
|
|
if (args[0]->real_item()->type() == FIELD_ITEM &&
|
|
!thd->lex->is_ps_or_view_context_analysis())
|
|
{
|
|
Item_field *field_item= (Item_field*) (args[0]->real_item());
|
|
if (field_item->field_type() == MYSQL_TYPE_LONGLONG ||
|
|
field_item->field_type() == MYSQL_TYPE_YEAR)
|
|
{
|
|
const bool cvt_arg1= convert_const_to_int(thd, field_item, &args[1]);
|
|
const bool cvt_arg2= convert_const_to_int(thd, field_item, &args[2]);
|
|
if (cvt_arg1 && cvt_arg2)
|
|
{
|
|
// Works for all types
|
|
m_comparator.set_handler(&type_handler_slonglong);
|
|
}
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
bool Item_func_between::fix_length_and_dec_temporal(THD *thd)
|
|
{
|
|
if (!thd->lex->is_ps_or_view_context_analysis())
|
|
{
|
|
for (uint i= 0; i < 3; i ++)
|
|
{
|
|
if (args[i]->const_item() &&
|
|
args[i]->type_handler_for_comparison() != m_comparator.type_handler())
|
|
{
|
|
Item_cache *cache= m_comparator.type_handler()->Item_get_cache(thd, args[i]);
|
|
if (!cache || cache->setup(thd, args[i]))
|
|
return true;
|
|
thd->change_item_tree(&args[i], cache);
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
longlong Item_func_between::val_int_cmp_datetime()
|
|
{
|
|
THD *thd= current_thd;
|
|
longlong value= args[0]->val_datetime_packed(thd), a, b;
|
|
if ((null_value= args[0]->null_value))
|
|
return 0;
|
|
a= args[1]->val_datetime_packed(thd);
|
|
b= args[2]->val_datetime_packed(thd);
|
|
return val_int_cmp_int_finalize(value, a, b);
|
|
}
|
|
|
|
|
|
longlong Item_func_between::val_int_cmp_time()
|
|
{
|
|
THD *thd= current_thd;
|
|
longlong value= args[0]->val_time_packed(thd), a, b;
|
|
if ((null_value= args[0]->null_value))
|
|
return 0;
|
|
a= args[1]->val_time_packed(thd);
|
|
b= args[2]->val_time_packed(thd);
|
|
return val_int_cmp_int_finalize(value, a, b);
|
|
}
|
|
|
|
|
|
longlong Item_func_between::val_int_cmp_native()
|
|
{
|
|
THD *thd= current_thd;
|
|
const Type_handler *h= m_comparator.type_handler();
|
|
NativeBuffer<STRING_BUFFER_USUAL_SIZE> value, a, b;
|
|
if (val_native_with_conversion_from_item(thd, args[0], &value, h))
|
|
return 0;
|
|
bool ra= args[1]->val_native_with_conversion(thd, &a, h);
|
|
bool rb= args[2]->val_native_with_conversion(thd, &b, h);
|
|
if (!ra && !rb)
|
|
return (longlong)
|
|
((h->cmp_native(value, a) >= 0 &&
|
|
h->cmp_native(value, b) <= 0) != negated);
|
|
if (ra && rb)
|
|
null_value= true;
|
|
else if (ra)
|
|
null_value= h->cmp_native(value, b) <= 0;
|
|
else
|
|
null_value= h->cmp_native(value, a) >= 0;
|
|
return (longlong) (!null_value && negated);
|
|
}
|
|
|
|
|
|
longlong Item_func_between::val_int_cmp_string()
|
|
{
|
|
String *value,*a,*b;
|
|
value=args[0]->val_str(&value0);
|
|
if ((null_value=args[0]->null_value))
|
|
return 0;
|
|
a= args[1]->val_str(&value1);
|
|
b= args[2]->val_str(&value2);
|
|
if (!args[1]->null_value && !args[2]->null_value)
|
|
return (longlong) ((sortcmp(value,a,cmp_collation.collation) >= 0 &&
|
|
sortcmp(value,b,cmp_collation.collation) <= 0) !=
|
|
negated);
|
|
if (args[1]->null_value && args[2]->null_value)
|
|
null_value= true;
|
|
else if (args[1]->null_value)
|
|
{
|
|
// Set to not null if false range.
|
|
null_value= sortcmp(value,b,cmp_collation.collation) <= 0;
|
|
}
|
|
else
|
|
{
|
|
// Set to not null if false range.
|
|
null_value= sortcmp(value,a,cmp_collation.collation) >= 0;
|
|
}
|
|
return (longlong) (!null_value && negated);
|
|
}
|
|
|
|
|
|
longlong Item_func_between::val_int_cmp_int()
|
|
{
|
|
Longlong_hybrid value= args[0]->to_longlong_hybrid();
|
|
if ((null_value= args[0]->null_value))
|
|
return 0; /* purecov: inspected */
|
|
Longlong_hybrid a= args[1]->to_longlong_hybrid();
|
|
Longlong_hybrid b= args[2]->to_longlong_hybrid();
|
|
if (!args[1]->null_value && !args[2]->null_value)
|
|
return (longlong) ((value.cmp(a) >= 0 && value.cmp(b) <= 0) != negated);
|
|
if (args[1]->null_value && args[2]->null_value)
|
|
null_value= true;
|
|
else if (args[1]->null_value)
|
|
null_value= value.cmp(b) <= 0; // not null if false range.
|
|
else
|
|
null_value= value.cmp(a) >= 0;
|
|
return (longlong) (!null_value && negated);
|
|
}
|
|
|
|
|
|
bool Item_func_between::val_int_cmp_int_finalize(longlong value,
|
|
longlong a,
|
|
longlong b)
|
|
{
|
|
if (!args[1]->null_value && !args[2]->null_value)
|
|
return (longlong) ((value >= a && value <= b) != negated);
|
|
if (args[1]->null_value && args[2]->null_value)
|
|
null_value= true;
|
|
else if (args[1]->null_value)
|
|
null_value= value <= b; // not null if false range.
|
|
else
|
|
null_value= value >= a;
|
|
return (longlong) (!null_value && negated);
|
|
}
|
|
|
|
|
|
longlong Item_func_between::val_int_cmp_decimal()
|
|
{
|
|
VDec dec(args[0]);
|
|
if ((null_value= dec.is_null()))
|
|
return 0; /* purecov: inspected */
|
|
VDec a_dec(args[1]), b_dec(args[2]);
|
|
if (!a_dec.is_null() && !b_dec.is_null())
|
|
return (longlong) ((dec.cmp(a_dec) >= 0 &&
|
|
dec.cmp(b_dec) <= 0) != negated);
|
|
if (a_dec.is_null() && b_dec.is_null())
|
|
null_value= true;
|
|
else if (a_dec.is_null())
|
|
null_value= (dec.cmp(b_dec) <= 0);
|
|
else
|
|
null_value= (dec.cmp(a_dec) >= 0);
|
|
return (longlong) (!null_value && negated);
|
|
}
|
|
|
|
|
|
longlong Item_func_between::val_int_cmp_real()
|
|
{
|
|
double value= args[0]->val_real(),a,b;
|
|
if ((null_value=args[0]->null_value))
|
|
return 0; /* purecov: inspected */
|
|
a= args[1]->val_real();
|
|
b= args[2]->val_real();
|
|
if (!args[1]->null_value && !args[2]->null_value)
|
|
return (longlong) ((value >= a && value <= b) != negated);
|
|
if (args[1]->null_value && args[2]->null_value)
|
|
null_value= true;
|
|
else if (args[1]->null_value)
|
|
{
|
|
null_value= value <= b; // not null if false range.
|
|
}
|
|
else
|
|
{
|
|
null_value= value >= a;
|
|
}
|
|
return (longlong) (!null_value && negated);
|
|
}
|
|
|
|
|
|
void Item_func_between::print(String *str, enum_query_type query_type)
|
|
{
|
|
args[0]->print_parenthesised(str, query_type, higher_precedence());
|
|
if (negated)
|
|
str->append(STRING_WITH_LEN(" not"));
|
|
str->append(STRING_WITH_LEN(" between "));
|
|
args[1]->print_parenthesised(str, query_type, precedence());
|
|
str->append(STRING_WITH_LEN(" and "));
|
|
args[2]->print_parenthesised(str, query_type, precedence());
|
|
}
|
|
|
|
|
|
double
|
|
Item_func_ifnull::real_op()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
double value= args[0]->val_real();
|
|
if (!args[0]->null_value)
|
|
{
|
|
null_value=0;
|
|
return value;
|
|
}
|
|
value= args[1]->val_real();
|
|
if ((null_value=args[1]->null_value))
|
|
return 0.0;
|
|
return value;
|
|
}
|
|
|
|
longlong
|
|
Item_func_ifnull::int_op()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
longlong value=args[0]->val_int();
|
|
if (!args[0]->null_value)
|
|
{
|
|
null_value=0;
|
|
return value;
|
|
}
|
|
value=args[1]->val_int();
|
|
if ((null_value=args[1]->null_value))
|
|
return 0;
|
|
return value;
|
|
}
|
|
|
|
|
|
my_decimal *Item_func_ifnull::decimal_op(my_decimal *decimal_value)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
my_decimal *value= args[0]->val_decimal(decimal_value);
|
|
if (!args[0]->null_value)
|
|
{
|
|
null_value= 0;
|
|
return value;
|
|
}
|
|
value= args[1]->val_decimal(decimal_value);
|
|
if ((null_value= args[1]->null_value))
|
|
return 0;
|
|
return value;
|
|
}
|
|
|
|
|
|
String *
|
|
Item_func_ifnull::str_op(String *str)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
String *res =args[0]->val_str(str);
|
|
if (!args[0]->null_value)
|
|
{
|
|
null_value=0;
|
|
res->set_charset(collation.collation);
|
|
return res;
|
|
}
|
|
res=args[1]->val_str(str);
|
|
if ((null_value=args[1]->null_value))
|
|
return 0;
|
|
res->set_charset(collation.collation);
|
|
return res;
|
|
}
|
|
|
|
|
|
bool Item_func_ifnull::native_op(THD *thd, Native *to)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
if (!val_native_with_conversion_from_item(thd, args[0], to, type_handler()))
|
|
return false;
|
|
return val_native_with_conversion_from_item(thd, args[1], to, type_handler());
|
|
}
|
|
|
|
|
|
bool Item_func_ifnull::date_op(THD *thd, MYSQL_TIME *ltime, date_mode_t fuzzydate)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
for (uint i= 0; i < 2; i++)
|
|
{
|
|
Datetime_truncation_not_needed dt(thd, args[i],
|
|
fuzzydate & ~TIME_FUZZY_DATES);
|
|
if (!(dt.copy_to_mysql_time(ltime, mysql_timestamp_type())))
|
|
return (null_value= false);
|
|
}
|
|
return (null_value= true);
|
|
}
|
|
|
|
|
|
bool Item_func_ifnull::time_op(THD *thd, MYSQL_TIME *ltime)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
for (uint i= 0; i < 2; i++)
|
|
{
|
|
if (!Time(thd, args[i]).copy_to_mysql_time(ltime))
|
|
return (null_value= false);
|
|
}
|
|
return (null_value= true);
|
|
}
|
|
|
|
|
|
/**
|
|
Perform context analysis of an IF item tree.
|
|
|
|
This function performs context analysis (name resolution) and calculates
|
|
various attributes of the item tree with Item_func_if as its root.
|
|
The function saves in ref the pointer to the item or to a newly created
|
|
item that is considered as a replacement for the original one.
|
|
|
|
@param thd reference to the global context of the query thread
|
|
@param ref pointer to Item* variable where pointer to resulting "fixed"
|
|
item is to be assigned
|
|
|
|
@note
|
|
Let T0(e)/T1(e) be the value of not_null_tables(e) when e is used on
|
|
a predicate/function level. Then it's easy to show that:
|
|
@verbatim
|
|
T0(IF(e,e1,e2) = T1(IF(e,e1,e2))
|
|
T1(IF(e,e1,e2)) = intersection(T1(e1),T1(e2))
|
|
@endverbatim
|
|
|
|
@retval
|
|
0 ok
|
|
@retval
|
|
1 got error
|
|
*/
|
|
|
|
bool
|
|
Item_func_if::fix_fields(THD *thd, Item **ref)
|
|
{
|
|
DBUG_ASSERT(fixed() == 0);
|
|
/*
|
|
Mark that we don't care if args[0] is NULL or FALSE, we regard both cases as
|
|
false.
|
|
*/
|
|
args[0]->top_level_item();
|
|
|
|
if (Item_func::fix_fields(thd, ref))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
bool
|
|
Item_func_if::eval_not_null_tables(void *opt_arg)
|
|
{
|
|
if (Item_func::eval_not_null_tables(NULL))
|
|
return 1;
|
|
|
|
not_null_tables_cache= (args[1]->not_null_tables() &
|
|
args[2]->not_null_tables());
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void Item_func_if::fix_after_pullout(st_select_lex *new_parent,
|
|
Item **ref, bool merge)
|
|
{
|
|
/* This will re-calculate attributes of the arguments */
|
|
Item_func::fix_after_pullout(new_parent, ref, merge);
|
|
/* Then, re-calculate not_null_tables_cache according to our special rules */
|
|
eval_not_null_tables(NULL);
|
|
}
|
|
|
|
|
|
void Item_func_nullif::split_sum_func(THD *thd, Ref_ptr_array ref_pointer_array,
|
|
List<Item> &fields, uint flags)
|
|
{
|
|
if (m_cache)
|
|
{
|
|
flags|= SPLIT_SUM_SKIP_REGISTERED; // See Item_func::split_sum_func
|
|
m_cache->split_sum_func2_example(thd, ref_pointer_array, fields, flags);
|
|
args[1]->split_sum_func2(thd, ref_pointer_array, fields, &args[1], flags);
|
|
}
|
|
else
|
|
{
|
|
Item_func::split_sum_func(thd, ref_pointer_array, fields, flags);
|
|
}
|
|
}
|
|
|
|
|
|
bool Item_func_nullif::walk(Item_processor processor,
|
|
bool walk_subquery, void *arg)
|
|
{
|
|
/*
|
|
No needs to iterate through args[2] when it's just a copy of args[0].
|
|
See MDEV-9712 Performance degradation of nested NULLIF
|
|
*/
|
|
uint tmp_count= arg_count == 2 || args[0] == args[2] ? 2 : 3;
|
|
for (uint i= 0; i < tmp_count; i++)
|
|
{
|
|
if (args[i]->walk(processor, walk_subquery, arg))
|
|
return true;
|
|
}
|
|
return (this->*processor)(arg);
|
|
}
|
|
|
|
|
|
void Item_func_nullif::update_used_tables()
|
|
{
|
|
if (m_cache)
|
|
{
|
|
used_tables_and_const_cache_init();
|
|
used_tables_and_const_cache_update_and_join(m_cache->get_example());
|
|
used_tables_and_const_cache_update_and_join(arg_count, args);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
MDEV-9712 Performance degradation of nested NULLIF
|
|
No needs to iterate through args[2] when it's just a copy of args[0].
|
|
*/
|
|
DBUG_ASSERT(arg_count == 3);
|
|
used_tables_and_const_cache_init();
|
|
used_tables_and_const_cache_update_and_join(args[0] == args[2] ? 2 : 3,
|
|
args);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
bool
|
|
Item_func_nullif::fix_length_and_dec(THD *thd)
|
|
{
|
|
/*
|
|
If this is the first invocation of fix_length_and_dec(), create the
|
|
third argument as a copy of the first. This cannot be done before
|
|
fix_fields(), because fix_fields() might replace items,
|
|
for exampe NOT x --> x==0, or (SELECT 1) --> 1.
|
|
See also class Item_func_nullif declaration.
|
|
*/
|
|
if (arg_count == 2)
|
|
args[arg_count++]= m_arg0 ? m_arg0 : args[0];
|
|
|
|
/*
|
|
At prepared statement EXECUTE time, args[0] can already
|
|
point to a different Item, created during PREPARE time fix_length_and_dec().
|
|
For example, if character set conversion was needed, arguments can look
|
|
like this:
|
|
|
|
args[0]= > Item_func_conv_charset \
|
|
l_expr
|
|
args[2]= >------------------------/
|
|
|
|
Otherwise (during PREPARE or convensional execution),
|
|
args[0] and args[2] should still point to the same original l_expr.
|
|
*/
|
|
DBUG_ASSERT(args[0] == args[2] || thd->stmt_arena->is_stmt_execute());
|
|
if (args[0]->type() == SUM_FUNC_ITEM &&
|
|
!thd->lex->is_ps_or_view_context_analysis())
|
|
{
|
|
/*
|
|
NULLIF(l_expr, r_expr)
|
|
|
|
is calculated in the way to return a result equal to:
|
|
|
|
CASE WHEN l_expr = r_expr THEN NULL ELSE r_expr END.
|
|
|
|
There's nothing special with r_expr, because it's referenced
|
|
only by args[1] and nothing else.
|
|
|
|
l_expr needs a special treatment, as it's referenced by both
|
|
args[0] and args[2] initially.
|
|
|
|
args[2] is used to return the value. Afrer all transformations
|
|
(e.g. in fix_length_and_dec(), equal field propagation, etc)
|
|
args[2] points to a an Item which preserves the exact data type and
|
|
attributes (e.g. collation) of the original l_expr.
|
|
It can point:
|
|
- to the original l_expr
|
|
- to an Item_cache pointing to l_expr
|
|
- to a constant of the same data type with l_expr.
|
|
|
|
args[0] is used for comparison. It can be replaced:
|
|
|
|
- to Item_func_conv_charset by character set aggregation routines
|
|
- to a constant Item by equal field propagation routines
|
|
(in case of Item_field)
|
|
|
|
The data type and/or the attributes of args[0] can differ from
|
|
the data type and the attributes of the original l_expr, to make
|
|
it comparable to args[1] (which points to r_expr or its replacement).
|
|
|
|
For aggregate functions we have to wrap the original args[0]/args[2]
|
|
into Item_cache (see MDEV-9181). In this case the Item_cache
|
|
instance becomes the subject to character set conversion instead of
|
|
the original args[0]/args[2], while the original args[0]/args[2] get
|
|
hidden inside the cache.
|
|
|
|
Some examples of what NULLIF can end up with after argument
|
|
substitution (we don't mention args[1] in some cases for simplicity):
|
|
|
|
1. l_expr is not an aggregate function:
|
|
|
|
a. No conversion happened.
|
|
args[0] and args[2] were not replaced to something else
|
|
(i.e. neither by character set conversion, nor by propagation):
|
|
|
|
args[1] > r_expr
|
|
args[0] \
|
|
l_expr
|
|
args[2] /
|
|
|
|
b. Conversion of args[0] happened:
|
|
|
|
CREATE OR REPLACE TABLE t1 (
|
|
a CHAR(10) CHARACTER SET latin1,
|
|
b CHAR(10) CHARACTER SET utf8);
|
|
SELECT * FROM t1 WHERE NULLIF(a,b);
|
|
|
|
args[1] > r_expr (Item_field for t1.b)
|
|
args[0] > Item_func_conv_charset\
|
|
l_expr (Item_field for t1.a)
|
|
args[2] > ----------------------/
|
|
|
|
c. Conversion of args[1] happened:
|
|
|
|
CREATE OR REPLACE TABLE t1 (
|
|
a CHAR(10) CHARACTER SET utf8,
|
|
b CHAR(10) CHARACTER SET latin1);
|
|
SELECT * FROM t1 WHERE NULLIF(a,b);
|
|
|
|
args[1] > Item_func_conv_charset -> r_expr (Item_field for t1.b)
|
|
args[0] \
|
|
l_expr (Item_field for t1.a)
|
|
args[2] /
|
|
|
|
d. Conversion of only args[0] happened (by equal field proparation):
|
|
|
|
CREATE OR REPLACE TABLE t1 (
|
|
a CHAR(10),
|
|
b CHAR(10));
|
|
SELECT * FROM t1 WHERE NULLIF(a,b) AND a='a';
|
|
|
|
args[1] > r_expr (Item_field for t1.b)
|
|
args[0] > Item_string('a') (constant replacement for t1.a)
|
|
args[2] > l_expr (Item_field for t1.a)
|
|
|
|
e. Conversion of both args[0] and args[2] happened
|
|
(by equal field propagation):
|
|
|
|
CREATE OR REPLACE TABLE t1 (a INT,b INT);
|
|
SELECT * FROM t1 WHERE NULLIF(a,b) AND a=5;
|
|
|
|
args[1] > r_expr (Item_field for "b")
|
|
args[0] \
|
|
Item_int (5) (constant replacement for "a")
|
|
args[2] /
|
|
|
|
2. In case if l_expr is an aggregate function:
|
|
|
|
a. No conversion happened:
|
|
|
|
args[0] \
|
|
Item_cache > l_expr
|
|
args[2] /
|
|
|
|
b. Conversion of args[0] happened:
|
|
|
|
args[0] > Item_func_conv_charset \
|
|
Item_cache > l_expr
|
|
args[2] >------------------------/
|
|
|
|
c. Conversion of both args[0] and args[2] happened.
|
|
(e.g. by equal expression propagation)
|
|
TODO: check if it's possible (and add an example query if so).
|
|
*/
|
|
m_cache= args[0]->cmp_type() == STRING_RESULT ?
|
|
new (thd->mem_root) Item_cache_str_for_nullif(thd, args[0]) :
|
|
args[0]->get_cache(thd);
|
|
if (!m_cache)
|
|
return TRUE;
|
|
m_cache->setup(thd, args[0]);
|
|
m_cache->store(args[0]);
|
|
m_cache->set_used_tables(args[0]->used_tables());
|
|
thd->change_item_tree(&args[0], m_cache);
|
|
thd->change_item_tree(&args[2], m_cache);
|
|
}
|
|
set_handler(args[2]->type_handler());
|
|
collation.set(args[2]->collation);
|
|
decimals= args[2]->decimals;
|
|
unsigned_flag= args[2]->unsigned_flag;
|
|
fix_char_length(args[2]->max_char_length());
|
|
set_maybe_null();
|
|
m_arg0= args[0];
|
|
convert_const_compared_to_int_field(thd);
|
|
Type_handler_hybrid_field_type tmp;
|
|
if (aggregate_args2_for_comparison_with_conversion(thd, &tmp) ||
|
|
cmp.set_cmp_func(thd, this, tmp.type_handler(),
|
|
&args[0], &args[1], true/*set_null*/))
|
|
return true;
|
|
/*
|
|
A special code for EXECUTE..PREPARE.
|
|
|
|
If args[0] did not change, then we don't remember it, as it can point
|
|
to a temporary Item object which will be destroyed between PREPARE
|
|
and EXECUTE. EXECUTE time fix_length_and_dec() will correctly set args[2]
|
|
from args[0] again.
|
|
|
|
If args[0] changed, then it can be Item_func_conv_charset() for the
|
|
original args[0], which was permanently installed during PREPARE time
|
|
into the item tree as a wrapper for args[0], using change_item_tree(), i.e.
|
|
|
|
NULLIF(latin1_field, 'a' COLLATE utf8_bin)
|
|
|
|
was "rewritten" to:
|
|
|
|
CASE WHEN CONVERT(latin1_field USING utf8) = 'a' COLLATE utf8_bin
|
|
THEN NULL
|
|
ELSE latin1_field
|
|
|
|
- m_args0 points to Item_field corresponding to latin1_field
|
|
- args[0] points to Item_func_conv_charset
|
|
- args[0]->args[0] is equal to m_args0
|
|
- args[1] points to Item_func_set_collation
|
|
- args[2] points is eqial to m_args0
|
|
|
|
In this case we remember and reuse m_arg0 during EXECUTE time as args[2].
|
|
|
|
QQ: How to make sure that m_args0 does not point
|
|
to something temporary which will be destroyed between PREPARE and EXECUTE.
|
|
The condition below should probably be more strict and somehow check that:
|
|
- change_item_tree() was called for the new args[0]
|
|
- m_args0 is referenced from inside args[0], e.g. as a function argument,
|
|
and therefore it is also something that won't be destroyed between
|
|
PREPARE and EXECUTE.
|
|
Any ideas?
|
|
*/
|
|
if (args[0] == m_arg0)
|
|
m_arg0= NULL;
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
void Item_func_nullif::print(String *str, enum_query_type query_type)
|
|
{
|
|
/*
|
|
NULLIF(a,b) is implemented according to the SQL standard as a short for
|
|
CASE WHEN a=b THEN NULL ELSE a END
|
|
|
|
The constructor of Item_func_nullif sets args[0] and args[2] to the
|
|
same item "a", and sets args[1] to "b".
|
|
|
|
If "this" is a part of a WHERE or ON condition, then:
|
|
- the left "a" is a subject to equal field propagation with ANY_SUBST.
|
|
- the right "a" is a subject to equal field propagation with IDENTITY_SUBST.
|
|
Therefore, after equal field propagation args[0] and args[2] can point
|
|
to different items.
|
|
*/
|
|
if ((query_type & QT_ITEM_ORIGINAL_FUNC_NULLIF) ||
|
|
(arg_count == 2) ||
|
|
(args[0] == args[2]))
|
|
{
|
|
/*
|
|
If QT_ITEM_ORIGINAL_FUNC_NULLIF is requested,
|
|
that means we want the original NULLIF() representation,
|
|
e.g. when we are in:
|
|
SHOW CREATE {VIEW|FUNCTION|PROCEDURE}
|
|
|
|
The original representation is possible only if
|
|
args[0] and args[2] still point to the same Item.
|
|
|
|
The caller must never pass call print() with QT_ITEM_ORIGINAL_FUNC_NULLIF
|
|
if an expression has undergone some optimization
|
|
(e.g. equal field propagation done in optimize_cond()) already and
|
|
NULLIF() potentially has two different representations of "a":
|
|
- one "a" for comparison
|
|
- another "a" for the returned value!
|
|
*/
|
|
DBUG_ASSERT(arg_count == 2 ||
|
|
args[0] == args[2] || current_thd->lex->context_analysis_only);
|
|
str->append(func_name_cstring());
|
|
str->append('(');
|
|
if (arg_count == 2)
|
|
args[0]->print(str, query_type);
|
|
else
|
|
args[2]->print(str, query_type);
|
|
str->append(',');
|
|
args[1]->print(str, query_type);
|
|
str->append(')');
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
args[0] and args[2] are different items.
|
|
This is possible after WHERE optimization (equal fields propagation etc),
|
|
e.g. in EXPLAIN EXTENDED or EXPLAIN FORMAT=JSON.
|
|
As it's not possible to print as a function with 2 arguments any more,
|
|
do it in the CASE style.
|
|
*/
|
|
str->append(STRING_WITH_LEN("(case when "));
|
|
args[0]->print(str, query_type);
|
|
str->append(STRING_WITH_LEN(" = "));
|
|
args[1]->print(str, query_type);
|
|
str->append(STRING_WITH_LEN(" then NULL else "));
|
|
args[2]->print(str, query_type);
|
|
str->append(STRING_WITH_LEN(" end)"));
|
|
}
|
|
}
|
|
|
|
|
|
int Item_func_nullif::compare()
|
|
{
|
|
if (m_cache)
|
|
m_cache->cache_value();
|
|
return cmp.compare();
|
|
}
|
|
|
|
/**
|
|
@note
|
|
Note that we have to evaluate the first argument twice as the compare
|
|
may have been done with a different type than return value
|
|
@return
|
|
NULL if arguments are equal
|
|
@return
|
|
the first argument if not equal
|
|
*/
|
|
|
|
double
|
|
Item_func_nullif::real_op()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
double value;
|
|
if (!compare())
|
|
{
|
|
null_value=1;
|
|
return 0.0;
|
|
}
|
|
value= args[2]->val_real();
|
|
null_value= args[2]->null_value;
|
|
return value;
|
|
}
|
|
|
|
longlong
|
|
Item_func_nullif::int_op()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
longlong value;
|
|
if (!compare())
|
|
{
|
|
null_value=1;
|
|
return 0;
|
|
}
|
|
value= args[2]->val_int();
|
|
null_value= args[2]->null_value;
|
|
return value;
|
|
}
|
|
|
|
String *
|
|
Item_func_nullif::str_op(String *str)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
String *res;
|
|
if (!compare())
|
|
{
|
|
null_value=1;
|
|
return 0;
|
|
}
|
|
res= args[2]->val_str(str);
|
|
null_value= args[2]->null_value;
|
|
return res;
|
|
}
|
|
|
|
|
|
my_decimal *
|
|
Item_func_nullif::decimal_op(my_decimal * decimal_value)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
my_decimal *res;
|
|
if (!compare())
|
|
{
|
|
null_value=1;
|
|
return 0;
|
|
}
|
|
res= args[2]->val_decimal(decimal_value);
|
|
null_value= args[2]->null_value;
|
|
return res;
|
|
}
|
|
|
|
|
|
bool
|
|
Item_func_nullif::date_op(THD *thd, MYSQL_TIME *ltime, date_mode_t fuzzydate)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
if (!compare())
|
|
return (null_value= true);
|
|
Datetime_truncation_not_needed dt(thd, args[2], fuzzydate);
|
|
return (null_value= dt.copy_to_mysql_time(ltime, mysql_timestamp_type()));
|
|
}
|
|
|
|
|
|
bool
|
|
Item_func_nullif::time_op(THD *thd, MYSQL_TIME *ltime)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
if (!compare())
|
|
return (null_value= true);
|
|
return (null_value= Time(thd, args[2]).copy_to_mysql_time(ltime));
|
|
|
|
}
|
|
|
|
|
|
bool
|
|
Item_func_nullif::native_op(THD *thd, Native *to)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
if (!compare())
|
|
return (null_value= true);
|
|
return val_native_with_conversion_from_item(thd, args[2], to, type_handler());
|
|
}
|
|
|
|
|
|
bool
|
|
Item_func_nullif::is_null()
|
|
{
|
|
return (null_value= (!compare() ? 1 : args[2]->is_null()));
|
|
}
|
|
|
|
void Item_func_case::reorder_args(uint start)
|
|
{
|
|
/*
|
|
Reorder args, to have at first the optional CASE expression, then all WHEN
|
|
expressions, then all THEN expressions. And the optional ELSE expression
|
|
at the end.
|
|
|
|
We reorder an even number of arguments, starting from start.
|
|
*/
|
|
uint count = (arg_count - start) / 2;
|
|
const size_t size= sizeof(Item*) * count * 2;
|
|
Item **arg_buffer= (Item **)my_safe_alloca(size);
|
|
memcpy(arg_buffer, &args[start], size);
|
|
for (uint i= 0; i < count; i++)
|
|
{
|
|
args[start + i]= arg_buffer[i*2];
|
|
args[start + i + count]= arg_buffer[i*2 + 1];
|
|
}
|
|
my_safe_afree(arg_buffer, size);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
Find and return matching items for CASE or ELSE item if all compares
|
|
are failed or NULL if ELSE item isn't defined.
|
|
|
|
IMPLEMENTATION
|
|
In order to do correct comparisons of the CASE expression (the expression
|
|
between CASE and the first WHEN) with each WHEN expression several
|
|
comparators are used. One for each result type. CASE expression can be
|
|
evaluated up to # of different result types are used. To check whether
|
|
the CASE expression already was evaluated for a particular result type
|
|
a bit mapped variable value_added_map is used. Result types are mapped
|
|
to it according to their int values i.e. STRING_RESULT is mapped to bit
|
|
0, REAL_RESULT to bit 1, so on.
|
|
|
|
@retval
|
|
NULL Nothing found and there is no ELSE expression defined
|
|
@retval
|
|
item Found item or ELSE item if defined and all comparisons are
|
|
failed
|
|
*/
|
|
|
|
Item *Item_func_case_searched::find_item()
|
|
{
|
|
uint count= when_count();
|
|
for (uint i= 0 ; i < count ; i++)
|
|
{
|
|
if (args[i]->val_bool())
|
|
return args[i + count];
|
|
}
|
|
Item **pos= Item_func_case_searched::else_expr_addr();
|
|
return pos ? pos[0] : 0;
|
|
}
|
|
|
|
|
|
Item *Item_func_case_simple::find_item()
|
|
{
|
|
/* Compare every WHEN argument with it and return the first match */
|
|
uint idx;
|
|
if (!Predicant_to_list_comparator::cmp(this, &idx, NULL))
|
|
return args[idx + when_count()];
|
|
Item **pos= Item_func_case_simple::else_expr_addr();
|
|
return pos ? pos[0] : 0;
|
|
}
|
|
|
|
|
|
Item *Item_func_decode_oracle::find_item()
|
|
{
|
|
uint idx;
|
|
if (!Predicant_to_list_comparator::cmp_nulls_equal(current_thd, this, &idx))
|
|
return args[idx + when_count()];
|
|
Item **pos= Item_func_decode_oracle::else_expr_addr();
|
|
return pos ? pos[0] : 0;
|
|
}
|
|
|
|
|
|
String *Item_func_case::str_op(String *str)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
String *res;
|
|
Item *item= find_item();
|
|
|
|
if (!item)
|
|
{
|
|
null_value=1;
|
|
return 0;
|
|
}
|
|
null_value= 0;
|
|
if (!(res=item->val_str(str)))
|
|
null_value= 1;
|
|
return res;
|
|
}
|
|
|
|
|
|
longlong Item_func_case::int_op()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
Item *item= find_item();
|
|
longlong res;
|
|
|
|
if (!item)
|
|
{
|
|
null_value=1;
|
|
return 0;
|
|
}
|
|
res=item->val_int();
|
|
null_value=item->null_value;
|
|
return res;
|
|
}
|
|
|
|
double Item_func_case::real_op()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
Item *item= find_item();
|
|
double res;
|
|
|
|
if (!item)
|
|
{
|
|
null_value=1;
|
|
return 0;
|
|
}
|
|
res= item->val_real();
|
|
null_value=item->null_value;
|
|
return res;
|
|
}
|
|
|
|
|
|
my_decimal *Item_func_case::decimal_op(my_decimal *decimal_value)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
Item *item= find_item();
|
|
my_decimal *res;
|
|
|
|
if (!item)
|
|
{
|
|
null_value=1;
|
|
return 0;
|
|
}
|
|
|
|
res= item->val_decimal(decimal_value);
|
|
null_value= item->null_value;
|
|
return res;
|
|
}
|
|
|
|
|
|
bool Item_func_case::date_op(THD *thd, MYSQL_TIME *ltime, date_mode_t fuzzydate)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
Item *item= find_item();
|
|
if (!item)
|
|
return (null_value= true);
|
|
Datetime_truncation_not_needed dt(thd, item, fuzzydate);
|
|
return (null_value= dt.copy_to_mysql_time(ltime, mysql_timestamp_type()));
|
|
}
|
|
|
|
|
|
bool Item_func_case::time_op(THD *thd, MYSQL_TIME *ltime)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
Item *item= find_item();
|
|
if (!item)
|
|
return (null_value= true);
|
|
return (null_value= Time(thd, item).copy_to_mysql_time(ltime));
|
|
}
|
|
|
|
|
|
bool Item_func_case::native_op(THD *thd, Native *to)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
Item *item= find_item();
|
|
if (!item)
|
|
return (null_value= true);
|
|
return val_native_with_conversion_from_item(thd, item, to, type_handler());
|
|
}
|
|
|
|
|
|
bool Item_func_case::fix_fields(THD *thd, Item **ref)
|
|
{
|
|
bool res= Item_func::fix_fields(thd, ref);
|
|
|
|
Item **pos= else_expr_addr();
|
|
if (!pos || pos[0]->maybe_null())
|
|
set_maybe_null();
|
|
return res;
|
|
}
|
|
|
|
|
|
/**
|
|
Check if (*place) and new_value points to different Items and call
|
|
THD::change_item_tree() if needed.
|
|
*/
|
|
|
|
static void propagate_and_change_item_tree(THD *thd, Item **place,
|
|
COND_EQUAL *cond,
|
|
const Item::Context &ctx)
|
|
{
|
|
Item *new_value= (*place)->propagate_equal_fields(thd, ctx, cond);
|
|
if (new_value && *place != new_value)
|
|
thd->change_item_tree(place, new_value);
|
|
}
|
|
|
|
|
|
bool Item_func_case_simple::prepare_predicant_and_values(THD *thd,
|
|
uint *found_types,
|
|
bool nulls_equal)
|
|
{
|
|
bool have_null= false;
|
|
uint type_cnt;
|
|
Type_handler_hybrid_field_type tmp;
|
|
uint ncases= when_count();
|
|
add_predicant(this, 0);
|
|
for (uint i= 0 ; i < ncases; i++)
|
|
{
|
|
static LEX_CSTRING case_when= { STRING_WITH_LEN("case..when") };
|
|
if (nulls_equal ?
|
|
add_value(case_when, this, i + 1) :
|
|
add_value_skip_null(case_when, this, i + 1, &have_null))
|
|
return true;
|
|
}
|
|
all_values_added(&tmp, &type_cnt, &m_found_types);
|
|
#ifndef DBUG_OFF
|
|
Predicant_to_list_comparator::debug_print(thd);
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Item_func_case_searched::fix_length_and_dec(THD *thd)
|
|
{
|
|
return aggregate_then_and_else_arguments(thd, when_count());
|
|
}
|
|
|
|
|
|
bool Item_func_case_simple::fix_length_and_dec(THD *thd)
|
|
{
|
|
return (aggregate_then_and_else_arguments(thd, when_count() + 1) ||
|
|
aggregate_switch_and_when_arguments(thd, false));
|
|
}
|
|
|
|
|
|
bool Item_func_decode_oracle::fix_length_and_dec(THD *thd)
|
|
{
|
|
return (aggregate_then_and_else_arguments(thd, when_count() + 1) ||
|
|
aggregate_switch_and_when_arguments(thd, true));
|
|
}
|
|
|
|
|
|
/*
|
|
Aggregate all THEN and ELSE expression types
|
|
and collations when string result
|
|
|
|
@param THD - current thd
|
|
@param start - an element in args to start aggregating from
|
|
*/
|
|
bool Item_func_case::aggregate_then_and_else_arguments(THD *thd, uint start)
|
|
{
|
|
if (aggregate_for_result(func_name_cstring(), args + start,
|
|
arg_count - start, true))
|
|
return true;
|
|
|
|
if (fix_attributes(args + start, arg_count - start))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/*
|
|
Aggregate the predicant expression and all WHEN expression types
|
|
and collations when string comparison
|
|
*/
|
|
bool Item_func_case_simple::aggregate_switch_and_when_arguments(THD *thd,
|
|
bool nulls_eq)
|
|
{
|
|
uint ncases= when_count();
|
|
m_found_types= 0;
|
|
if (prepare_predicant_and_values(thd, &m_found_types, nulls_eq))
|
|
{
|
|
/*
|
|
If Predicant_to_list_comparator() fails to prepare components,
|
|
it must put an error into the diagnostics area. This is needed
|
|
to make fix_fields() catches such errors.
|
|
*/
|
|
DBUG_ASSERT(thd->is_error());
|
|
return true;
|
|
}
|
|
|
|
if (!(m_found_types= collect_cmp_types(args, ncases + 1)))
|
|
return true;
|
|
|
|
if (m_found_types & (1U << STRING_RESULT))
|
|
{
|
|
/*
|
|
If we'll do string comparison, we also need to aggregate
|
|
character set and collation for first/WHEN items and
|
|
install converters for some of them to cmp_collation when necessary.
|
|
This is done because cmp_item compatators cannot compare
|
|
strings in two different character sets.
|
|
Some examples when we install converters:
|
|
|
|
1. Converter installed for the first expression:
|
|
|
|
CASE latin1_item WHEN utf16_item THEN ... END
|
|
|
|
is replaced to:
|
|
|
|
CASE CONVERT(latin1_item USING utf16) WHEN utf16_item THEN ... END
|
|
|
|
2. Converter installed for the left WHEN item:
|
|
|
|
CASE utf16_item WHEN latin1_item THEN ... END
|
|
|
|
is replaced to:
|
|
|
|
CASE utf16_item WHEN CONVERT(latin1_item USING utf16) THEN ... END
|
|
*/
|
|
if (agg_arg_charsets_for_comparison(cmp_collation, args, ncases + 1))
|
|
return true;
|
|
}
|
|
|
|
if (make_unique_cmp_items(thd, cmp_collation.collation))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
Item* Item_func_case_simple::propagate_equal_fields(THD *thd,
|
|
const Context &ctx,
|
|
COND_EQUAL *cond)
|
|
{
|
|
const Type_handler *first_expr_cmp_handler;
|
|
|
|
first_expr_cmp_handler= args[0]->type_handler_for_comparison();
|
|
/*
|
|
Cannot replace the CASE (the switch) argument if
|
|
there are multiple comparison types were found, or found a single
|
|
comparison type that is not equal to args[0]->cmp_type().
|
|
|
|
- Example: multiple comparison types, can't propagate:
|
|
WHERE CASE str_column
|
|
WHEN 'string' THEN TRUE
|
|
WHEN 1 THEN TRUE
|
|
ELSE FALSE END;
|
|
|
|
- Example: a single incompatible comparison type, can't propagate:
|
|
WHERE CASE str_column
|
|
WHEN DATE'2001-01-01' THEN TRUE
|
|
ELSE FALSE END;
|
|
|
|
- Example: a single incompatible comparison type, can't propagate:
|
|
WHERE CASE str_column
|
|
WHEN 1 THEN TRUE
|
|
ELSE FALSE END;
|
|
|
|
- Example: a single compatible comparison type, ok to propagate:
|
|
WHERE CASE str_column
|
|
WHEN 'str1' THEN TRUE
|
|
WHEN 'str2' THEN TRUE
|
|
ELSE FALSE END;
|
|
*/
|
|
if (m_found_types == (1UL << first_expr_cmp_handler->cmp_type()))
|
|
propagate_and_change_item_tree(thd, &args[0], cond,
|
|
Context(ANY_SUBST, first_expr_cmp_handler, cmp_collation.collation));
|
|
|
|
/*
|
|
These arguments are in comparison.
|
|
Allow invariants of the same value during propagation.
|
|
Note, as we pass ANY_SUBST, none of the WHEN arguments will be
|
|
replaced to zero-filled constants (only IDENTITY_SUBST allows this).
|
|
Such a change for WHEN arguments would require rebuilding cmp_items.
|
|
*/
|
|
uint i, count= when_count();
|
|
for (i= 1; i <= count; i++)
|
|
{
|
|
Type_handler_hybrid_field_type tmp(first_expr_cmp_handler);
|
|
if (!tmp.aggregate_for_comparison(args[i]->type_handler_for_comparison()))
|
|
propagate_and_change_item_tree(thd, &args[i], cond,
|
|
Context(ANY_SUBST, tmp.type_handler(), cmp_collation.collation));
|
|
}
|
|
|
|
// THEN and ELSE arguments (they are not in comparison)
|
|
for (; i < arg_count; i++)
|
|
propagate_and_change_item_tree(thd, &args[i], cond, Context_identity());
|
|
|
|
return this;
|
|
}
|
|
|
|
|
|
inline void Item_func_case::print_when_then_arguments(String *str,
|
|
enum_query_type
|
|
query_type,
|
|
Item **items, uint count)
|
|
{
|
|
for (uint i= 0; i < count; i++)
|
|
{
|
|
str->append(STRING_WITH_LEN("when "));
|
|
items[i]->print(str, query_type);
|
|
str->append(STRING_WITH_LEN(" then "));
|
|
items[i + count]->print(str, query_type);
|
|
str->append(' ');
|
|
}
|
|
}
|
|
|
|
|
|
inline void Item_func_case::print_else_argument(String *str,
|
|
enum_query_type query_type,
|
|
Item *item)
|
|
{
|
|
str->append(STRING_WITH_LEN("else "));
|
|
item->print(str, query_type);
|
|
str->append(' ');
|
|
}
|
|
|
|
|
|
void Item_func_case_searched::print(String *str, enum_query_type query_type)
|
|
{
|
|
Item **pos;
|
|
str->append(STRING_WITH_LEN("case "));
|
|
print_when_then_arguments(str, query_type, &args[0], when_count());
|
|
if ((pos= Item_func_case_searched::else_expr_addr()))
|
|
print_else_argument(str, query_type, pos[0]);
|
|
str->append(STRING_WITH_LEN("end"));
|
|
}
|
|
|
|
|
|
void Item_func_case_simple::print(String *str, enum_query_type query_type)
|
|
{
|
|
Item **pos;
|
|
str->append(STRING_WITH_LEN("case "));
|
|
args[0]->print_parenthesised(str, query_type, precedence());
|
|
str->append(' ');
|
|
print_when_then_arguments(str, query_type, &args[1], when_count());
|
|
if ((pos= Item_func_case_simple::else_expr_addr()))
|
|
print_else_argument(str, query_type, pos[0]);
|
|
str->append(STRING_WITH_LEN("end"));
|
|
}
|
|
|
|
|
|
void Item_func_decode_oracle::print(String *str, enum_query_type query_type)
|
|
{
|
|
if (query_type & QT_FOR_FRM)
|
|
{
|
|
// 10.3 downgrade compatibility for FRM
|
|
str->append(STRING_WITH_LEN("decode_oracle"));
|
|
}
|
|
else
|
|
print_sql_mode_qualified_name(str, query_type);
|
|
str->append('(');
|
|
args[0]->print(str, query_type);
|
|
for (uint i= 1, count= when_count() ; i <= count; i++)
|
|
{
|
|
str->append(',');
|
|
args[i]->print(str, query_type);
|
|
str->append(',');
|
|
args[i+count]->print(str, query_type);
|
|
}
|
|
Item **else_expr= Item_func_case_simple::else_expr_addr();
|
|
if (else_expr)
|
|
{
|
|
str->append(',');
|
|
(*else_expr)->print(str, query_type);
|
|
}
|
|
str->append(')');
|
|
}
|
|
|
|
|
|
/**
|
|
Coalesce - return first not NULL argument.
|
|
*/
|
|
|
|
String *Item_func_coalesce::str_op(String *str)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
null_value=0;
|
|
for (uint i=0 ; i < arg_count ; i++)
|
|
{
|
|
String *res;
|
|
if ((res=args[i]->val_str(str)))
|
|
return res;
|
|
}
|
|
null_value=1;
|
|
return 0;
|
|
}
|
|
|
|
longlong Item_func_coalesce::int_op()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
null_value=0;
|
|
for (uint i=0 ; i < arg_count ; i++)
|
|
{
|
|
longlong res=args[i]->val_int();
|
|
if (!args[i]->null_value)
|
|
return res;
|
|
}
|
|
null_value=1;
|
|
return 0;
|
|
}
|
|
|
|
double Item_func_coalesce::real_op()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
null_value=0;
|
|
for (uint i=0 ; i < arg_count ; i++)
|
|
{
|
|
double res= args[i]->val_real();
|
|
if (!args[i]->null_value)
|
|
return res;
|
|
}
|
|
null_value=1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
bool Item_func_coalesce::date_op(THD *thd, MYSQL_TIME *ltime, date_mode_t fuzzydate)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
for (uint i= 0; i < arg_count; i++)
|
|
{
|
|
Datetime_truncation_not_needed dt(thd, args[i],
|
|
fuzzydate & ~TIME_FUZZY_DATES);
|
|
if (!dt.copy_to_mysql_time(ltime, mysql_timestamp_type()))
|
|
return (null_value= false);
|
|
}
|
|
return (null_value= true);
|
|
}
|
|
|
|
|
|
bool Item_func_coalesce::time_op(THD *thd, MYSQL_TIME *ltime)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
for (uint i= 0; i < arg_count; i++)
|
|
{
|
|
if (!Time(thd, args[i]).copy_to_mysql_time(ltime))
|
|
return (null_value= false);
|
|
}
|
|
return (null_value= true);
|
|
}
|
|
|
|
|
|
bool Item_func_coalesce::native_op(THD *thd, Native *to)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
for (uint i= 0; i < arg_count; i++)
|
|
{
|
|
if (!val_native_with_conversion_from_item(thd, args[i], to, type_handler()))
|
|
return false;
|
|
}
|
|
return (null_value= true);
|
|
}
|
|
|
|
|
|
my_decimal *Item_func_coalesce::decimal_op(my_decimal *decimal_value)
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
null_value= 0;
|
|
for (uint i= 0; i < arg_count; i++)
|
|
{
|
|
my_decimal *res= args[i]->val_decimal(decimal_value);
|
|
if (!args[i]->null_value)
|
|
return res;
|
|
}
|
|
null_value=1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
Classes and function for the IN operator
|
|
****************************************************************************/
|
|
|
|
/*
|
|
Determine which of the signed longlong arguments is bigger
|
|
|
|
SYNOPSIS
|
|
cmp_longs()
|
|
a_val left argument
|
|
b_val right argument
|
|
|
|
DESCRIPTION
|
|
This function will compare two signed longlong arguments
|
|
and will return -1, 0, or 1 if left argument is smaller than,
|
|
equal to or greater than the right argument.
|
|
|
|
RETURN VALUE
|
|
-1 left argument is smaller than the right argument.
|
|
0 left argument is equal to the right argument.
|
|
1 left argument is greater than the right argument.
|
|
*/
|
|
static inline int cmp_longs (longlong a_val, longlong b_val)
|
|
{
|
|
return a_val < b_val ? -1 : a_val == b_val ? 0 : 1;
|
|
}
|
|
|
|
|
|
/*
|
|
Determine which of the unsigned longlong arguments is bigger
|
|
|
|
SYNOPSIS
|
|
cmp_ulongs()
|
|
a_val left argument
|
|
b_val right argument
|
|
|
|
DESCRIPTION
|
|
This function will compare two unsigned longlong arguments
|
|
and will return -1, 0, or 1 if left argument is smaller than,
|
|
equal to or greater than the right argument.
|
|
|
|
RETURN VALUE
|
|
-1 left argument is smaller than the right argument.
|
|
0 left argument is equal to the right argument.
|
|
1 left argument is greater than the right argument.
|
|
*/
|
|
static inline int cmp_ulongs (ulonglong a_val, ulonglong b_val)
|
|
{
|
|
return a_val < b_val ? -1 : a_val == b_val ? 0 : 1;
|
|
}
|
|
|
|
|
|
/*
|
|
Compare two integers in IN value list format (packed_longlong)
|
|
|
|
SYNOPSIS
|
|
cmp_longlong()
|
|
cmp_arg an argument passed to the calling function (my_qsort2)
|
|
a left argument
|
|
b right argument
|
|
|
|
DESCRIPTION
|
|
This function will compare two integer arguments in the IN value list
|
|
format and will return -1, 0, or 1 if left argument is smaller than,
|
|
equal to or greater than the right argument.
|
|
It's used in sorting the IN values list and finding an element in it.
|
|
Depending on the signedness of the arguments cmp_longlong() will
|
|
compare them as either signed (using cmp_longs()) or unsigned (using
|
|
cmp_ulongs()).
|
|
|
|
RETURN VALUE
|
|
-1 left argument is smaller than the right argument.
|
|
0 left argument is equal to the right argument.
|
|
1 left argument is greater than the right argument.
|
|
*/
|
|
int cmp_longlong(void *, const void *a_, const void *b_)
|
|
{
|
|
auto a= static_cast<const in_longlong::packed_longlong *>(a_);
|
|
auto b= static_cast<const in_longlong::packed_longlong *>(b_);
|
|
if (a->unsigned_flag != b->unsigned_flag)
|
|
{
|
|
/*
|
|
One of the args is unsigned and is too big to fit into the
|
|
positive signed range. Report no match.
|
|
*/
|
|
if ((a->unsigned_flag && ((ulonglong) a->val) > (ulonglong) LONGLONG_MAX)
|
|
||
|
|
(b->unsigned_flag && ((ulonglong) b->val) > (ulonglong) LONGLONG_MAX))
|
|
return a->unsigned_flag ? 1 : -1;
|
|
/*
|
|
Although the signedness differs both args can fit into the signed
|
|
positive range. Make them signed and compare as usual.
|
|
*/
|
|
return cmp_longs(a->val, b->val);
|
|
}
|
|
if (a->unsigned_flag)
|
|
return cmp_ulongs((ulonglong) a->val, (ulonglong) b->val);
|
|
return cmp_longs(a->val, b->val);
|
|
}
|
|
|
|
static int cmp_double(void *, const void *a_, const void *b_)
|
|
{
|
|
const double *a= static_cast<const double *>(a_);
|
|
const double *b= static_cast<const double *>(b_);
|
|
return *a < *b ? -1 : *a == *b ? 0 : 1;
|
|
}
|
|
|
|
static int cmp_row(void *, const void *a_, const void *b_)
|
|
{
|
|
const cmp_item_row *a= static_cast<const cmp_item_row *>(a_);
|
|
const cmp_item_row *b= static_cast<const cmp_item_row *>(b_);
|
|
return a->compare(b);
|
|
}
|
|
|
|
|
|
static int cmp_decimal(void *, const void *a_, const void *b_)
|
|
{
|
|
my_decimal *a= const_cast<my_decimal *>(static_cast<const my_decimal *>(a_));
|
|
my_decimal *b= const_cast<my_decimal *>(static_cast<const my_decimal *>(b_));
|
|
|
|
/*
|
|
We need call of fixing buffer pointer, because fast sort just copy
|
|
decimal buffers in memory and pointers left pointing on old buffer place
|
|
*/
|
|
a->fix_buffer_pointer();
|
|
b->fix_buffer_pointer();
|
|
return my_decimal_cmp(a, b);
|
|
}
|
|
|
|
|
|
bool in_vector::find(Item *item)
|
|
{
|
|
uchar *result=get_value(item);
|
|
if (!result || !used_count)
|
|
return false; // Null value
|
|
|
|
uint start,end;
|
|
start=0; end=used_count-1;
|
|
while (start != end)
|
|
{
|
|
uint mid=(start+end+1)/2;
|
|
int res;
|
|
if ((res= (*compare)(const_cast<charset_info_st *>(collation),
|
|
base + mid * size, result)) == 0)
|
|
return true;
|
|
if (res < 0)
|
|
start=mid;
|
|
else
|
|
end=mid-1;
|
|
}
|
|
return ((*compare)(const_cast<charset_info_st *>(collation),
|
|
base + start * size, result) == 0);
|
|
}
|
|
|
|
in_string::in_string(THD *thd, uint elements, qsort_cmp2 cmp_func,
|
|
CHARSET_INFO *cs)
|
|
:in_vector(thd, elements, sizeof(String), cmp_func, cs),
|
|
tmp(buff, sizeof(buff), &my_charset_bin)
|
|
{}
|
|
|
|
in_string::~in_string()
|
|
{
|
|
if (base)
|
|
{
|
|
// base was allocated on THD::mem_root => following is OK
|
|
for (uint i=0 ; i < count ; i++)
|
|
((String*) base)[i].free();
|
|
}
|
|
}
|
|
|
|
bool in_string::set(uint pos, Item *item)
|
|
{
|
|
String *str=((String*) base)+pos;
|
|
String *res=item->val_str(str);
|
|
if (res && res != str)
|
|
{
|
|
if (res->uses_buffer_owned_by(str))
|
|
res->copy();
|
|
if (item->type() == Item::FUNC_ITEM)
|
|
str->copy(*res);
|
|
else
|
|
*str= *res;
|
|
}
|
|
if (!str->charset())
|
|
{
|
|
CHARSET_INFO *cs;
|
|
if (!(cs= item->collation.collation))
|
|
cs= &my_charset_bin; // Should never happen for STR items
|
|
str->set_charset(cs);
|
|
}
|
|
return res == NULL;
|
|
}
|
|
|
|
|
|
uchar *in_string::get_value(Item *item)
|
|
{
|
|
return (uchar*) item->val_str(&tmp);
|
|
}
|
|
|
|
Item *in_string::create_item(THD *thd)
|
|
{
|
|
return new (thd->mem_root) Item_string_for_in_vector(thd, collation);
|
|
}
|
|
|
|
|
|
in_row::in_row(THD *thd, uint elements, Item * item)
|
|
{
|
|
base= (char*) new (thd->mem_root) cmp_item_row[count= elements];
|
|
size= sizeof(cmp_item_row);
|
|
compare= cmp_row;
|
|
/*
|
|
We need to reset these as otherwise we will call sort() with
|
|
uninitialized (even if not used) elements
|
|
*/
|
|
used_count= elements;
|
|
collation= 0;
|
|
}
|
|
|
|
in_row::~in_row()
|
|
{
|
|
if (base)
|
|
delete [] (cmp_item_row*) base;
|
|
}
|
|
|
|
uchar *in_row::get_value(Item *item)
|
|
{
|
|
tmp.store_value(item);
|
|
if (item->is_null())
|
|
return 0;
|
|
return (uchar *)&tmp;
|
|
}
|
|
|
|
bool in_row::set(uint pos, Item *item)
|
|
{
|
|
DBUG_ENTER("in_row::set");
|
|
DBUG_PRINT("enter", ("pos: %u item: %p", pos,item));
|
|
DBUG_RETURN(((cmp_item_row*) base)[pos].store_value_by_template(current_thd,
|
|
&tmp, item));
|
|
}
|
|
|
|
in_longlong::in_longlong(THD *thd, uint elements)
|
|
: in_vector(thd, elements, sizeof(packed_longlong), cmp_longlong, 0)
|
|
{}
|
|
|
|
bool in_longlong::set(uint pos, Item *item)
|
|
{
|
|
struct packed_longlong *buff= &((packed_longlong*) base)[pos];
|
|
|
|
buff->val= item->val_int();
|
|
buff->unsigned_flag= item->unsigned_flag;
|
|
return item->null_value;
|
|
}
|
|
|
|
uchar *in_longlong::get_value(Item *item)
|
|
{
|
|
tmp.val= item->val_int();
|
|
if (item->null_value)
|
|
return 0;
|
|
tmp.unsigned_flag= item->unsigned_flag;
|
|
return (uchar*) &tmp;
|
|
}
|
|
|
|
Item *in_longlong::create_item(THD *thd)
|
|
{
|
|
/*
|
|
We're created a signed INT, this may not be correct in
|
|
general case (see BUG#19342).
|
|
*/
|
|
return new (thd->mem_root) Item_int(thd, (longlong)0);
|
|
}
|
|
|
|
|
|
static int cmp_timestamp(void *, const void *a_, const void *b_)
|
|
{
|
|
auto a= static_cast<const Timestamp_or_zero_datetime *>(a_);
|
|
auto b= static_cast<const Timestamp_or_zero_datetime *>(b_);
|
|
return a->cmp(*b);
|
|
}
|
|
|
|
|
|
in_timestamp::in_timestamp(THD *thd, uint elements)
|
|
:in_vector(thd, elements, sizeof(Value), cmp_timestamp, 0)
|
|
{}
|
|
|
|
|
|
bool in_timestamp::set(uint pos, Item *item)
|
|
{
|
|
Timestamp_or_zero_datetime *buff= &((Timestamp_or_zero_datetime *) base)[pos];
|
|
Timestamp_or_zero_datetime_native_null native(current_thd, item, true);
|
|
if (native.is_null())
|
|
{
|
|
*buff= Timestamp_or_zero_datetime();
|
|
return true;
|
|
}
|
|
*buff= Timestamp_or_zero_datetime(native);
|
|
return false;
|
|
}
|
|
|
|
|
|
uchar *in_timestamp::get_value(Item *item)
|
|
{
|
|
Timestamp_or_zero_datetime_native_null native(current_thd, item, true);
|
|
if (native.is_null())
|
|
return 0;
|
|
tmp= Timestamp_or_zero_datetime(native);
|
|
return (uchar*) &tmp;
|
|
}
|
|
|
|
|
|
Item *in_timestamp::create_item(THD *thd)
|
|
{
|
|
return new (thd->mem_root) Item_timestamp_literal(thd);
|
|
}
|
|
|
|
|
|
void in_timestamp::value_to_item(uint pos, Item *item)
|
|
{
|
|
const Timestamp_or_zero_datetime &buff= (((Timestamp_or_zero_datetime*) base)[pos]);
|
|
static_cast<Item_timestamp_literal*>(item)->set_value(buff);
|
|
}
|
|
|
|
|
|
bool in_datetime::set(uint pos, Item *item)
|
|
{
|
|
struct packed_longlong *buff= &((packed_longlong*) base)[pos];
|
|
|
|
buff->val= item->val_datetime_packed(current_thd);
|
|
buff->unsigned_flag= 1L;
|
|
return item->null_value;
|
|
}
|
|
|
|
bool in_time::set(uint pos, Item *item)
|
|
{
|
|
struct packed_longlong *buff= &((packed_longlong*) base)[pos];
|
|
|
|
buff->val= item->val_time_packed(current_thd);
|
|
buff->unsigned_flag= 1L;
|
|
return item->null_value;
|
|
}
|
|
|
|
uchar *in_datetime::get_value(Item *item)
|
|
{
|
|
tmp.val= item->val_datetime_packed(current_thd);
|
|
if (item->null_value)
|
|
return 0;
|
|
tmp.unsigned_flag= 1L;
|
|
return (uchar*) &tmp;
|
|
}
|
|
|
|
uchar *in_time::get_value(Item *item)
|
|
{
|
|
tmp.val= item->val_time_packed(current_thd);
|
|
if (item->null_value)
|
|
return 0;
|
|
tmp.unsigned_flag= 1L;
|
|
return (uchar*) &tmp;
|
|
}
|
|
|
|
Item *in_temporal::create_item(THD *thd)
|
|
{
|
|
return new (thd->mem_root) Item_datetime(thd);
|
|
}
|
|
|
|
|
|
in_double::in_double(THD *thd, uint elements)
|
|
:in_vector(thd, elements, sizeof(double), cmp_double, 0)
|
|
{}
|
|
|
|
bool in_double::set(uint pos, Item *item)
|
|
{
|
|
((double*) base)[pos]= item->val_real();
|
|
return item->null_value;
|
|
}
|
|
|
|
uchar *in_double::get_value(Item *item)
|
|
{
|
|
tmp= item->val_real();
|
|
if (item->null_value)
|
|
return 0; /* purecov: inspected */
|
|
return (uchar*) &tmp;
|
|
}
|
|
|
|
Item *in_double::create_item(THD *thd)
|
|
{
|
|
return new (thd->mem_root) Item_float(thd, 0.0, 0);
|
|
}
|
|
|
|
|
|
in_decimal::in_decimal(THD *thd, uint elements)
|
|
:in_vector(thd, elements, sizeof(my_decimal), cmp_decimal, 0)
|
|
{}
|
|
|
|
|
|
bool in_decimal::set(uint pos, Item *item)
|
|
{
|
|
/* as far as 'item' is constant, we can store reference on my_decimal */
|
|
my_decimal *dec= ((my_decimal *)base) + pos;
|
|
dec->len= DECIMAL_BUFF_LENGTH;
|
|
dec->fix_buffer_pointer();
|
|
my_decimal *res= item->val_decimal(dec);
|
|
/* if item->val_decimal() is evaluated to NULL then res == 0 */
|
|
if (!item->null_value && res != dec)
|
|
my_decimal2decimal(res, dec);
|
|
return item->null_value;
|
|
}
|
|
|
|
|
|
uchar *in_decimal::get_value(Item *item)
|
|
{
|
|
my_decimal *result= item->val_decimal(&val);
|
|
if (item->null_value)
|
|
return 0;
|
|
return (uchar *)result;
|
|
}
|
|
|
|
Item *in_decimal::create_item(THD *thd)
|
|
{
|
|
return new (thd->mem_root) Item_decimal(thd, 0, FALSE);
|
|
}
|
|
|
|
|
|
bool Predicant_to_list_comparator::alloc_comparators(THD *thd, uint nargs)
|
|
{
|
|
size_t nbytes= sizeof(Predicant_to_value_comparator) * nargs;
|
|
if (!(m_comparators= (Predicant_to_value_comparator *) thd->alloc(nbytes)))
|
|
return true;
|
|
memset(m_comparators, 0, nbytes);
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Predicant_to_list_comparator::add_value(const LEX_CSTRING &funcname,
|
|
Item_args *args,
|
|
uint value_index)
|
|
{
|
|
DBUG_ASSERT(m_predicant_index < args->argument_count());
|
|
DBUG_ASSERT(value_index < args->argument_count());
|
|
Type_handler_hybrid_field_type tmp;
|
|
Item *tmpargs[2];
|
|
tmpargs[0]= args->arguments()[m_predicant_index];
|
|
tmpargs[1]= args->arguments()[value_index];
|
|
if (tmp.aggregate_for_comparison(funcname, tmpargs, 2, true))
|
|
{
|
|
DBUG_ASSERT(current_thd->is_error());
|
|
return true;
|
|
}
|
|
m_comparators[m_comparator_count].m_handler= tmp.type_handler();
|
|
m_comparators[m_comparator_count].m_arg_index= value_index;
|
|
m_comparator_count++;
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Predicant_to_list_comparator::
|
|
add_value_skip_null(const LEX_CSTRING &funcname,
|
|
Item_args *args,
|
|
uint value_index,
|
|
bool *nulls_found)
|
|
{
|
|
/*
|
|
Skip explicit NULL constant items.
|
|
Using real_item() to correctly detect references to explicit NULLs
|
|
in HAVING clause, e.g. in this example "b" is skipped:
|
|
SELECT a,NULL AS b FROM t1 GROUP BY a HAVING 'A' IN (b,'A');
|
|
*/
|
|
if (args->arguments()[value_index]->real_item()->type() == Item::NULL_ITEM)
|
|
{
|
|
*nulls_found= true;
|
|
return false;
|
|
}
|
|
return add_value(funcname, args, value_index);
|
|
}
|
|
|
|
|
|
void Predicant_to_list_comparator::
|
|
detect_unique_handlers(Type_handler_hybrid_field_type *compatible,
|
|
uint *unique_count,
|
|
uint *found_types)
|
|
{
|
|
*unique_count= 0;
|
|
*found_types= 0;
|
|
for (uint i= 0; i < m_comparator_count; i++)
|
|
{
|
|
uint idx;
|
|
if (find_handler(&idx, m_comparators[i].m_handler, i))
|
|
{
|
|
m_comparators[i].m_handler_index= i; // New unique handler
|
|
(*unique_count)++;
|
|
(*found_types)|= 1U << m_comparators[i].m_handler->cmp_type();
|
|
compatible->set_handler(m_comparators[i].m_handler);
|
|
}
|
|
else
|
|
{
|
|
m_comparators[i].m_handler_index= idx; // Non-unique handler
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool Predicant_to_list_comparator::make_unique_cmp_items(THD *thd,
|
|
CHARSET_INFO *cs)
|
|
{
|
|
for (uint i= 0; i < m_comparator_count; i++)
|
|
{
|
|
if (m_comparators[i].m_handler && // Skip implicit NULLs
|
|
m_comparators[i].m_handler_index == i && // Skip non-unuque
|
|
!(m_comparators[i].m_cmp_item=
|
|
m_comparators[i].m_handler->make_cmp_item(thd, cs)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
cmp_item* cmp_item_sort_string::make_same(THD *thd)
|
|
{
|
|
return new (thd->mem_root) cmp_item_sort_string_in_static(cmp_charset);
|
|
}
|
|
|
|
cmp_item* cmp_item_int::make_same(THD *thd)
|
|
{
|
|
return new (thd->mem_root) cmp_item_int();
|
|
}
|
|
|
|
cmp_item* cmp_item_real::make_same(THD *thd)
|
|
{
|
|
return new (thd->mem_root) cmp_item_real();
|
|
}
|
|
|
|
cmp_item* cmp_item_row::make_same(THD *thd)
|
|
{
|
|
return new (thd->mem_root) cmp_item_row();
|
|
}
|
|
|
|
|
|
cmp_item_row::~cmp_item_row()
|
|
{
|
|
DBUG_ENTER("~cmp_item_row");
|
|
DBUG_PRINT("enter",("this: %p", this));
|
|
if (comparators)
|
|
{
|
|
for (uint i= 0; i < n; i++)
|
|
{
|
|
if (comparators[i])
|
|
delete comparators[i];
|
|
}
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
bool cmp_item_row::alloc_comparators(THD *thd, uint cols)
|
|
{
|
|
if (comparators)
|
|
{
|
|
DBUG_ASSERT(cols == n);
|
|
return false;
|
|
}
|
|
return
|
|
!(comparators= (cmp_item **) thd->calloc(sizeof(cmp_item *) * (n= cols)));
|
|
}
|
|
|
|
|
|
void cmp_item_row::store_value(Item *item)
|
|
{
|
|
DBUG_ENTER("cmp_item_row::store_value");
|
|
DBUG_ASSERT(comparators);
|
|
DBUG_ASSERT(n == item->cols());
|
|
item->bring_value();
|
|
item->null_value= 0;
|
|
for (uint i=0; i < n; i++)
|
|
{
|
|
DBUG_ASSERT(comparators[i]);
|
|
comparators[i]->store_value(item->element_index(i));
|
|
item->null_value|= item->element_index(i)->null_value;
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
bool cmp_item_row::store_value_by_template(THD *thd, cmp_item *t, Item *item)
|
|
{
|
|
cmp_item_row *tmpl= (cmp_item_row*) t;
|
|
if (tmpl->n != item->cols())
|
|
{
|
|
my_error(ER_OPERAND_COLUMNS, MYF(0), tmpl->n);
|
|
return 1;
|
|
}
|
|
n= tmpl->n;
|
|
bool rc= false;
|
|
if ((comparators= (cmp_item **) thd->alloc(sizeof(cmp_item *)*n)))
|
|
{
|
|
item->bring_value();
|
|
item->null_value= 0;
|
|
for (uint i=0; i < n; i++)
|
|
{
|
|
if (!(comparators[i]= tmpl->comparators[i]->make_same(thd)))
|
|
break; // new failed
|
|
rc|= comparators[i]->store_value_by_template(thd, tmpl->comparators[i],
|
|
item->element_index(i));
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
int cmp_item_row::cmp(Item *arg)
|
|
{
|
|
arg->null_value= 0;
|
|
if (arg->cols() != n)
|
|
{
|
|
my_error(ER_OPERAND_COLUMNS, MYF(0), n);
|
|
return 1;
|
|
}
|
|
bool was_null= 0;
|
|
arg->bring_value();
|
|
for (uint i=0; i < n; i++)
|
|
{
|
|
const int rc= comparators[i]->cmp(arg->element_index(i));
|
|
switch (rc)
|
|
{
|
|
case UNKNOWN:
|
|
was_null= true;
|
|
break;
|
|
case TRUE:
|
|
return TRUE;
|
|
case FALSE:
|
|
break; // elements #i are equal
|
|
}
|
|
arg->null_value|= arg->element_index(i)->null_value;
|
|
}
|
|
return was_null ? UNKNOWN : FALSE;
|
|
}
|
|
|
|
|
|
int cmp_item_row::compare(const cmp_item *c) const
|
|
{
|
|
auto l_cmp= static_cast<const cmp_item_row *>(c);
|
|
for (uint i=0; i < n; i++)
|
|
{
|
|
int res;
|
|
if ((res= comparators[i]->compare(l_cmp->comparators[i])))
|
|
return res;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
void cmp_item_decimal::store_value(Item *item)
|
|
{
|
|
my_decimal *val= item->val_decimal(&value);
|
|
/* val may be zero if item is nnull */
|
|
if (val && val != &value)
|
|
my_decimal2decimal(val, &value);
|
|
m_null_value= item->null_value;
|
|
}
|
|
|
|
|
|
int cmp_item_decimal::cmp_not_null(const Value *val)
|
|
{
|
|
DBUG_ASSERT(!val->is_null());
|
|
DBUG_ASSERT(val->is_decimal());
|
|
return my_decimal_cmp(&value, &val->m_decimal);
|
|
}
|
|
|
|
|
|
int cmp_item_decimal::cmp(Item *arg)
|
|
{
|
|
VDec tmp(arg);
|
|
return m_null_value || tmp.is_null() ? UNKNOWN : (tmp.cmp(&value) != 0);
|
|
}
|
|
|
|
|
|
int cmp_item_decimal::compare(const cmp_item *arg) const
|
|
{
|
|
auto l_cmp= static_cast<const cmp_item_decimal *>(arg);
|
|
return my_decimal_cmp(&value, &l_cmp->value);
|
|
}
|
|
|
|
|
|
cmp_item* cmp_item_decimal::make_same(THD *thd)
|
|
{
|
|
return new (thd->mem_root) cmp_item_decimal();
|
|
}
|
|
|
|
|
|
int cmp_item_datetime::cmp_not_null(const Value *val)
|
|
{
|
|
DBUG_ASSERT(!val->is_null());
|
|
DBUG_ASSERT(val->is_temporal());
|
|
return value != pack_time(&val->value.m_time);
|
|
}
|
|
|
|
|
|
int cmp_item_datetime::cmp(Item *arg)
|
|
{
|
|
const bool rc= value != arg->val_datetime_packed(current_thd);
|
|
return (m_null_value || arg->null_value) ? UNKNOWN : rc;
|
|
}
|
|
|
|
|
|
int cmp_item_time::cmp_not_null(const Value *val)
|
|
{
|
|
DBUG_ASSERT(!val->is_null());
|
|
DBUG_ASSERT(val->is_temporal());
|
|
return value != pack_time(&val->value.m_time);
|
|
}
|
|
|
|
|
|
int cmp_item_time::cmp(Item *arg)
|
|
{
|
|
const bool rc= value != arg->val_time_packed(current_thd);
|
|
return (m_null_value || arg->null_value) ? UNKNOWN : rc;
|
|
}
|
|
|
|
|
|
int cmp_item_temporal::compare(const cmp_item *ci) const
|
|
{
|
|
auto l_cmp= static_cast<const cmp_item_temporal *>(ci);
|
|
return (value < l_cmp->value) ? -1 : ((value == l_cmp->value) ? 0 : 1);
|
|
}
|
|
|
|
|
|
cmp_item *cmp_item_datetime::make_same(THD *thd)
|
|
{
|
|
return new (thd->mem_root) cmp_item_datetime();
|
|
}
|
|
|
|
|
|
cmp_item *cmp_item_time::make_same(THD *thd)
|
|
{
|
|
return new (thd->mem_root) cmp_item_time();
|
|
}
|
|
|
|
|
|
void cmp_item_timestamp::store_value(Item *item)
|
|
{
|
|
item->val_native_with_conversion(current_thd, &m_native,
|
|
&type_handler_timestamp2);
|
|
m_null_value= item->null_value;
|
|
}
|
|
|
|
|
|
int cmp_item_timestamp::cmp_not_null(const Value *val)
|
|
{
|
|
/*
|
|
This method will be implemented when we add this syntax:
|
|
SELECT TIMESTAMP WITH LOCAL TIME ZONE '2001-01-01 10:20:30'
|
|
For now TIMESTAMP is compared to non-TIMESTAMP using DATETIME.
|
|
*/
|
|
DBUG_ASSERT(0);
|
|
return 0;
|
|
}
|
|
|
|
|
|
int cmp_item_timestamp::cmp(Item *arg)
|
|
{
|
|
THD *thd= current_thd;
|
|
Timestamp_or_zero_datetime_native_null tmp(thd, arg, true);
|
|
return m_null_value || tmp.is_null() ? UNKNOWN :
|
|
type_handler_timestamp2.cmp_native(m_native, tmp) != 0;
|
|
}
|
|
|
|
|
|
int cmp_item_timestamp::compare(const cmp_item *arg) const
|
|
{
|
|
auto tmp= static_cast<const cmp_item_timestamp *>(arg);
|
|
return type_handler_timestamp2.cmp_native(m_native, tmp->m_native);
|
|
}
|
|
|
|
|
|
cmp_item* cmp_item_timestamp::make_same(THD *thd)
|
|
{
|
|
return new (thd->mem_root) cmp_item_timestamp();
|
|
}
|
|
|
|
|
|
|
|
bool Item_func_in::count_sargable_conds(void *arg)
|
|
{
|
|
((SELECT_LEX*) arg)->cond_count++;
|
|
return 0;
|
|
}
|
|
|
|
|
|
bool Item_func_in::list_contains_null()
|
|
{
|
|
Item **arg,**arg_end;
|
|
for (arg= args + 1, arg_end= args+arg_count; arg != arg_end ; arg++)
|
|
{
|
|
if ((*arg)->null_inside())
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
Perform context analysis of an IN item tree.
|
|
|
|
This function performs context analysis (name resolution) and calculates
|
|
various attributes of the item tree with Item_func_in as its root.
|
|
The function saves in ref the pointer to the item or to a newly created
|
|
item that is considered as a replacement for the original one.
|
|
|
|
@param thd reference to the global context of the query thread
|
|
@param ref pointer to Item* variable where pointer to resulting "fixed"
|
|
item is to be assigned
|
|
|
|
@note
|
|
Let T0(e)/T1(e) be the value of not_null_tables(e) when e is used on
|
|
a predicate/function level. Then it's easy to show that:
|
|
@verbatim
|
|
T0(e IN(e1,...,en)) = union(T1(e),intersection(T1(ei)))
|
|
T1(e IN(e1,...,en)) = union(T1(e),intersection(T1(ei)))
|
|
T0(e NOT IN(e1,...,en)) = union(T1(e),union(T1(ei)))
|
|
T1(e NOT IN(e1,...,en)) = union(T1(e),intersection(T1(ei)))
|
|
@endverbatim
|
|
|
|
@retval
|
|
0 ok
|
|
@retval
|
|
1 got error
|
|
*/
|
|
|
|
bool
|
|
Item_func_in::fix_fields(THD *thd, Item **ref)
|
|
{
|
|
|
|
if (Item_func_opt_neg::fix_fields(thd, ref))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
Item *Item_func_in::in_predicate_to_equality_transformer(THD *thd, uchar *arg)
|
|
{
|
|
if (!array || have_null || !all_items_are_consts(args + 1, arg_count - 1))
|
|
return this; /* Transformation is not applicable */
|
|
|
|
/*
|
|
If all elements in the array of constant values are equal and there are
|
|
no NULLs in the list then clause
|
|
- "a IN (e1,..,en)" can be converted to "a = e1"
|
|
- "a NOT IN (e1,..,en)" can be converted to "a != e1".
|
|
This means an object of Item_func_in can be replaced with an object of
|
|
Item_func_eq for IN (e1,..,en) clause or Item_func_ne for
|
|
NOT IN (e1,...,en).
|
|
*/
|
|
|
|
/*
|
|
Since the array is sorted it's enough to compare the first and the last
|
|
elements to tell whether all elements are equal
|
|
*/
|
|
if (array->compare_elems(0, array->used_count - 1))
|
|
{
|
|
/* Not all elements are equal, transformation is not possible */
|
|
return this;
|
|
}
|
|
|
|
Json_writer_object trace_wrapper(thd);
|
|
trace_wrapper.add("transformation", "in_predicate_to_equality")
|
|
.add("before", this);
|
|
|
|
Item *new_item= nullptr;
|
|
if (negated)
|
|
new_item= new (thd->mem_root) Item_func_ne(thd, args[0], args[1]);
|
|
else
|
|
new_item= new (thd->mem_root) Item_func_eq(thd, args[0], args[1]);
|
|
if (new_item)
|
|
{
|
|
new_item->set_name(thd, name);
|
|
if (new_item->fix_fields(thd, &new_item))
|
|
{
|
|
/*
|
|
If there are any problems during fixing fields, there is no need to
|
|
return an error, just discard the transformation
|
|
*/
|
|
new_item= this;
|
|
}
|
|
}
|
|
trace_wrapper.add("after", new_item);
|
|
return new_item;
|
|
}
|
|
|
|
bool
|
|
Item_func_in::eval_not_null_tables(void *opt_arg)
|
|
{
|
|
Item **arg, **arg_end;
|
|
|
|
if (Item_func_opt_neg::eval_not_null_tables(NULL))
|
|
return 1;
|
|
|
|
/* not_null_tables_cache == union(T1(e),union(T1(ei))) */
|
|
if (is_top_level_item() && negated)
|
|
return 0;
|
|
|
|
/* not_null_tables_cache = union(T1(e),intersection(T1(ei))) */
|
|
not_null_tables_cache= ~(table_map) 0;
|
|
for (arg= args + 1, arg_end= args + arg_count; arg != arg_end; arg++)
|
|
not_null_tables_cache&= (*arg)->not_null_tables();
|
|
not_null_tables_cache|= (*args)->not_null_tables();
|
|
return 0;
|
|
}
|
|
|
|
|
|
bool
|
|
Item_func_in::find_not_null_fields(table_map allowed)
|
|
{
|
|
if (negated || !is_top_level_item() || (~allowed & used_tables()))
|
|
return 0;
|
|
return args[0]->find_not_null_fields(allowed);
|
|
}
|
|
|
|
|
|
void Item_func_in::fix_after_pullout(st_select_lex *new_parent, Item **ref,
|
|
bool merge)
|
|
{
|
|
/* This will re-calculate attributes of the arguments */
|
|
Item_func_opt_neg::fix_after_pullout(new_parent, ref, merge);
|
|
/* Then, re-calculate not_null_tables_cache according to our special rules */
|
|
eval_not_null_tables(NULL);
|
|
}
|
|
|
|
|
|
bool Item_func_in::prepare_predicant_and_values(THD *thd, uint *found_types)
|
|
{
|
|
uint type_cnt;
|
|
have_null= false;
|
|
|
|
add_predicant(this, 0);
|
|
for (uint i= 1 ; i < arg_count; i++)
|
|
{
|
|
if (add_value_skip_null(Item_func_in::func_name_cstring(), this, i,
|
|
&have_null))
|
|
return true;
|
|
}
|
|
all_values_added(&m_comparator, &type_cnt, found_types);
|
|
arg_types_compatible= type_cnt < 2;
|
|
|
|
#ifndef DBUG_OFF
|
|
Predicant_to_list_comparator::debug_print(thd);
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Item_func_in::fix_length_and_dec(THD *thd)
|
|
{
|
|
Item_args old_predicant(args[0]);
|
|
uint found_types;
|
|
m_comparator.set_handler(type_handler_varchar.type_handler_for_comparison());
|
|
max_length= 1;
|
|
|
|
if (prepare_predicant_and_values(thd, &found_types))
|
|
{
|
|
DBUG_ASSERT(thd->is_error()); // Must set error
|
|
return TRUE;
|
|
}
|
|
|
|
if (!arg_types_compatible && comparator_count() == 2)
|
|
{
|
|
/*
|
|
Catch a special case: a mixture of signed and unsigned integer types.
|
|
in_longlong can handle such cases.
|
|
|
|
Note, prepare_predicant_and_values() aggregates this mixture as follows:
|
|
- signed+unsigned produce &type_handler_newdecimal.
|
|
- signed+signed or unsigned+unsigned produce &type_handler_slonglong
|
|
So we have extactly two distinct handlers.
|
|
|
|
The code below assumes that unsigned longlong is handled
|
|
by &type_handler_slonglong in comparison context,
|
|
which may change in the future to &type_handler_ulonglong.
|
|
The DBUG_ASSERT is needed to address this change here properly.
|
|
*/
|
|
DBUG_ASSERT(type_handler_ulonglong.type_handler_for_comparison() ==
|
|
&type_handler_slonglong);
|
|
// Let's check if all arguments are of integer types
|
|
uint found_int_args= 0;
|
|
for (uint i= 0; i < arg_count; i++, found_int_args++)
|
|
{
|
|
if (args[i]->type_handler_for_comparison() != &type_handler_slonglong)
|
|
break;
|
|
}
|
|
if (found_int_args == arg_count)
|
|
{
|
|
// All arguments are integers. Switch to integer comparison.
|
|
arg_types_compatible= true;
|
|
DBUG_EXECUTE_IF("Item_func_in",
|
|
push_warning_printf(thd, Sql_condition::WARN_LEVEL_NOTE,
|
|
ER_UNKNOWN_ERROR, "DBUG: found a mix of UINT and SINT"););
|
|
m_comparator.set_handler(&type_handler_slonglong);
|
|
}
|
|
}
|
|
|
|
if (arg_types_compatible) // Bisection condition #1
|
|
{
|
|
if (m_comparator.type_handler()->
|
|
Item_func_in_fix_comparator_compatible_types(thd, this))
|
|
return TRUE;
|
|
}
|
|
else
|
|
{
|
|
DBUG_ASSERT(m_comparator.cmp_type() != ROW_RESULT);
|
|
if (fix_for_scalar_comparison_using_cmp_items(thd, found_types))
|
|
return TRUE;
|
|
}
|
|
|
|
DBUG_EXECUTE_IF("Item_func_in",
|
|
push_warning_printf(thd, Sql_condition::WARN_LEVEL_NOTE,
|
|
ER_UNKNOWN_ERROR, "DBUG: types_compatible=%s bisect=%s",
|
|
arg_types_compatible ? "yes" : "no",
|
|
array != NULL ? "yes" : "no"););
|
|
raise_note_if_key_become_unused(thd, old_predicant);
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
Populate Item_func_in::array with constant not-NULL arguments and sort them.
|
|
|
|
Sets "have_null" to true if some of the values appeared to be NULL.
|
|
Note, explicit NULLs were found during prepare_predicant_and_values().
|
|
So "have_null" can already be true before the fix_in_vector() call.
|
|
Here we additionally catch implicit NULLs.
|
|
*/
|
|
void Item_func_in::fix_in_vector()
|
|
{
|
|
DBUG_ASSERT(array);
|
|
uint j=0;
|
|
for (uint i=1 ; i < arg_count ; i++)
|
|
{
|
|
if (!array->set(j,args[i]))
|
|
j++; // include this cell in the array.
|
|
else
|
|
{
|
|
/*
|
|
We don't put NULL values in array, to avoid erronous matches in
|
|
bisection.
|
|
*/
|
|
have_null= 1;
|
|
}
|
|
}
|
|
if ((array->used_count= j))
|
|
array->sort();
|
|
}
|
|
|
|
|
|
/**
|
|
Convert all items in <in value list> to INT.
|
|
|
|
IN must compare INT columns and constants as int values (the same
|
|
way as equality does).
|
|
So we must check here if the column on the left and all the constant
|
|
values on the right can be compared as integers and adjust the
|
|
comparison type accordingly.
|
|
|
|
See the comment about the similar block in Item_bool_func2
|
|
*/
|
|
bool Item_func_in::value_list_convert_const_to_int(THD *thd)
|
|
{
|
|
if (args[0]->real_item()->type() == FIELD_ITEM &&
|
|
!thd->lex->is_view_context_analysis())
|
|
{
|
|
Item_field *field_item= (Item_field*) (args[0]->real_item());
|
|
if (field_item->field_type() == MYSQL_TYPE_LONGLONG ||
|
|
field_item->field_type() == MYSQL_TYPE_YEAR)
|
|
{
|
|
bool all_converted= true;
|
|
Item **arg, **arg_end;
|
|
for (arg=args+1, arg_end=args+arg_count; arg != arg_end ; arg++)
|
|
{
|
|
/*
|
|
Explicit NULLs should not affect data cmp_type resolution:
|
|
- we ignore NULLs when calling collect_cmp_type()
|
|
- we ignore NULLs here
|
|
So this expression:
|
|
year_column IN (DATE'2001-01-01', NULL)
|
|
switches from TIME_RESULT to INT_RESULT.
|
|
*/
|
|
if (arg[0]->type() != Item::NULL_ITEM &&
|
|
!convert_const_to_int(thd, field_item, &arg[0]))
|
|
all_converted= false;
|
|
}
|
|
if (all_converted)
|
|
m_comparator.set_handler(&type_handler_slonglong);
|
|
}
|
|
}
|
|
return thd->is_fatal_error; // Catch errrors in convert_const_to_int
|
|
}
|
|
|
|
|
|
bool cmp_item_row::
|
|
aggregate_row_elements_for_comparison(THD *thd,
|
|
Type_handler_hybrid_field_type *cmp,
|
|
Item_args *tmp,
|
|
const LEX_CSTRING &funcname,
|
|
uint col,
|
|
uint level)
|
|
{
|
|
DBUG_EXECUTE_IF("cmp_item",
|
|
{
|
|
for (uint i= 0 ; i < tmp->argument_count(); i++)
|
|
{
|
|
Item *arg= tmp->arguments()[i];
|
|
push_warning_printf(thd, Sql_condition::WARN_LEVEL_NOTE,
|
|
ER_UNKNOWN_ERROR, "DBUG: %*s[%d,%d] handler=%s",
|
|
level, "", col, i,
|
|
arg->type_handler()->name().ptr());
|
|
}
|
|
}
|
|
);
|
|
bool err= cmp->aggregate_for_comparison(funcname, tmp->arguments(),
|
|
tmp->argument_count(), true);
|
|
DBUG_EXECUTE_IF("cmp_item",
|
|
{
|
|
if (!err)
|
|
push_warning_printf(thd, Sql_condition::WARN_LEVEL_NOTE,
|
|
ER_UNKNOWN_ERROR, "DBUG: %*s=> handler=%s",
|
|
level,"",
|
|
cmp->type_handler()->name().ptr());
|
|
}
|
|
);
|
|
return err;
|
|
}
|
|
|
|
|
|
bool cmp_item_row::prepare_comparators(THD *thd, const LEX_CSTRING &funcname,
|
|
const Item_args *args, uint level)
|
|
{
|
|
DBUG_EXECUTE_IF("cmp_item",
|
|
push_warning_printf(thd, Sql_condition::WARN_LEVEL_NOTE,
|
|
ER_UNKNOWN_ERROR, "DBUG: %*sROW(%d args) level=%d",
|
|
level,"",
|
|
args->argument_count(), level););
|
|
DBUG_ASSERT(args->argument_count() > 0);
|
|
if (alloc_comparators(thd, args->arguments()[0]->cols()))
|
|
return true;
|
|
DBUG_ASSERT(n == args->arguments()[0]->cols());
|
|
for (uint col= 0; col < n; col++)
|
|
{
|
|
Item_args tmp;
|
|
Type_handler_hybrid_field_type cmp;
|
|
|
|
if (tmp.alloc_and_extract_row_elements(thd, args, col) ||
|
|
aggregate_row_elements_for_comparison(thd, &cmp, &tmp,
|
|
funcname, col, level + 1))
|
|
return true;
|
|
|
|
/*
|
|
There is a legacy bug (MDEV-11511) in the code below,
|
|
which should be fixed eventually.
|
|
When performing:
|
|
(predicant0,predicant1) IN ((value00,value01),(value10,value11))
|
|
It uses only the data type and the collation of the predicant
|
|
elements only. It should be fixed to take into account the data type and
|
|
the collation for all elements at the N-th positions of the
|
|
predicate and all values:
|
|
- predicate0, value00, value01
|
|
- predicate1, value10, value11
|
|
*/
|
|
Item *item0= args->arguments()[0]->element_index(col);
|
|
CHARSET_INFO *collation= item0->collation.collation;
|
|
if (!(comparators[col]= cmp.type_handler()->make_cmp_item(thd, collation)))
|
|
return true;
|
|
if (cmp.type_handler() == &type_handler_row)
|
|
{
|
|
// Prepare comparators for ROW elements recursively
|
|
cmp_item_row *row= static_cast<cmp_item_row*>(comparators[col]);
|
|
if (row->prepare_comparators(thd, funcname, &tmp, level + 1))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Item_func_in::fix_for_row_comparison_using_bisection(THD *thd)
|
|
{
|
|
if (unlikely(!(array= new (thd->mem_root) in_row(thd, arg_count-1, 0))))
|
|
return true;
|
|
cmp_item_row *cmp= &((in_row*)array)->tmp;
|
|
if (cmp->prepare_comparators(thd, func_name_cstring(), this, 0))
|
|
return true;
|
|
fix_in_vector();
|
|
return false;
|
|
}
|
|
|
|
|
|
/**
|
|
This method is called for scalar data types when bisection is not possible,
|
|
for example:
|
|
- Some of args[1..arg_count] are not constants.
|
|
- args[1..arg_count] are constants, but pairs {args[0],args[1..arg_count]}
|
|
are compared by different data types, e.g.:
|
|
WHERE decimal_expr IN (1, 1e0)
|
|
The pair {args[0],args[1]} is compared by type_handler_decimal.
|
|
The pair {args[0],args[2]} is compared by type_handler_double.
|
|
*/
|
|
bool Item_func_in::fix_for_scalar_comparison_using_cmp_items(THD *thd,
|
|
uint found_types)
|
|
{
|
|
if (found_types & (1U << STRING_RESULT) &&
|
|
agg_arg_charsets_for_comparison(cmp_collation, args, arg_count))
|
|
return true;
|
|
if (make_unique_cmp_items(thd, cmp_collation.collation))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
/**
|
|
This method is called for the ROW data type when bisection is not possible.
|
|
*/
|
|
bool Item_func_in::fix_for_row_comparison_using_cmp_items(THD *thd)
|
|
{
|
|
if (make_unique_cmp_items(thd, cmp_collation.collation))
|
|
return true;
|
|
DBUG_ASSERT(get_comparator_type_handler(0) == &type_handler_row);
|
|
DBUG_ASSERT(get_comparator_cmp_item(0));
|
|
cmp_item_row *cmp_row= (cmp_item_row*) get_comparator_cmp_item(0);
|
|
return cmp_row->prepare_comparators(thd, func_name_cstring(), this, 0);
|
|
}
|
|
|
|
|
|
void Item_func_in::print(String *str, enum_query_type query_type)
|
|
{
|
|
args[0]->print_parenthesised(str, query_type, precedence());
|
|
if (negated)
|
|
str->append(STRING_WITH_LEN(" not"));
|
|
str->append(STRING_WITH_LEN(" in ("));
|
|
print_args(str, 1, query_type);
|
|
str->append(STRING_WITH_LEN(")"));
|
|
}
|
|
|
|
|
|
/*
|
|
Evaluate the function and return its value.
|
|
|
|
SYNOPSIS
|
|
val_int()
|
|
|
|
DESCRIPTION
|
|
Evaluate the function and return its value.
|
|
|
|
IMPLEMENTATION
|
|
If the array object is defined then the value of the function is
|
|
calculated by means of this array.
|
|
Otherwise several cmp_item objects are used in order to do correct
|
|
comparison of left expression and an expression from the values list.
|
|
One cmp_item object correspond to one used comparison type. Left
|
|
expression can be evaluated up to number of different used comparison
|
|
types. A bit mapped variable value_added_map is used to check whether
|
|
the left expression already was evaluated for a particular result type.
|
|
Result types are mapped to it according to their integer values i.e.
|
|
STRING_RESULT is mapped to bit 0, REAL_RESULT to bit 1, so on.
|
|
|
|
RETURN
|
|
Value of the function
|
|
*/
|
|
|
|
bool Item_func_in::val_bool()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
if (array)
|
|
{
|
|
bool tmp=array->find(args[0]);
|
|
/*
|
|
NULL on left -> UNKNOWN.
|
|
Found no match, and NULL on right -> UNKNOWN.
|
|
NULL on right can never give a match, as it is not stored in
|
|
array.
|
|
See also the 'bisection_possible' variable in fix_length_and_dec().
|
|
*/
|
|
null_value=args[0]->null_value || (!tmp && have_null);
|
|
return (longlong) (!null_value && tmp != negated);
|
|
}
|
|
|
|
if ((null_value= args[0]->real_item()->type() == NULL_ITEM))
|
|
return 0;
|
|
|
|
null_value= have_null;
|
|
uint idx;
|
|
if (!Predicant_to_list_comparator::cmp(this, &idx, &null_value))
|
|
{
|
|
null_value= false;
|
|
return (longlong) (!negated);
|
|
}
|
|
return (longlong) (!null_value && negated);
|
|
}
|
|
|
|
|
|
void Item_func_in::mark_as_condition_AND_part(TABLE_LIST *embedding)
|
|
{
|
|
THD *thd= current_thd;
|
|
|
|
Query_arena *arena, backup;
|
|
arena= thd->activate_stmt_arena_if_needed(&backup);
|
|
|
|
if (!transform_into_subq_checked)
|
|
{
|
|
if ((transform_into_subq= to_be_transformed_into_in_subq(thd)))
|
|
thd->lex->current_select->in_funcs.push_back(this, thd->mem_root);
|
|
transform_into_subq_checked= true;
|
|
}
|
|
|
|
if (arena)
|
|
thd->restore_active_arena(arena, &backup);
|
|
|
|
emb_on_expr_nest= embedding;
|
|
}
|
|
|
|
|
|
class Func_handler_bit_or_int_to_ulonglong:
|
|
public Item_handled_func::Handler_ulonglong
|
|
{
|
|
public:
|
|
Longlong_null to_longlong_null(Item_handled_func *item) const override
|
|
{
|
|
DBUG_ASSERT(item->fixed());
|
|
Longlong_null a= item->arguments()[0]->to_longlong_null();
|
|
return a.is_null() ? a : a | item->arguments()[1]->to_longlong_null();
|
|
}
|
|
};
|
|
|
|
|
|
class Func_handler_bit_or_dec_to_ulonglong:
|
|
public Item_handled_func::Handler_ulonglong
|
|
{
|
|
public:
|
|
Longlong_null to_longlong_null(Item_handled_func *item) const override
|
|
{
|
|
DBUG_ASSERT(item->fixed());
|
|
VDec a(item->arguments()[0]);
|
|
return a.is_null() ? Longlong_null() :
|
|
a.to_xlonglong_null() | VDec(item->arguments()[1]).to_xlonglong_null();
|
|
}
|
|
};
|
|
|
|
|
|
bool Item_func_bit_or::fix_length_and_dec(THD *thd)
|
|
{
|
|
static Func_handler_bit_or_int_to_ulonglong ha_int_to_ull;
|
|
static Func_handler_bit_or_dec_to_ulonglong ha_dec_to_ull;
|
|
return fix_length_and_dec_op2_std(&ha_int_to_ull, &ha_dec_to_ull);
|
|
}
|
|
|
|
|
|
class Func_handler_bit_and_int_to_ulonglong:
|
|
public Item_handled_func::Handler_ulonglong
|
|
{
|
|
public:
|
|
Longlong_null to_longlong_null(Item_handled_func *item) const override
|
|
{
|
|
DBUG_ASSERT(item->fixed());
|
|
Longlong_null a= item->arguments()[0]->to_longlong_null();
|
|
return a.is_null() ? a : a & item->arguments()[1]->to_longlong_null();
|
|
}
|
|
};
|
|
|
|
|
|
class Func_handler_bit_and_dec_to_ulonglong:
|
|
public Item_handled_func::Handler_ulonglong
|
|
{
|
|
public:
|
|
Longlong_null to_longlong_null(Item_handled_func *item) const override
|
|
{
|
|
DBUG_ASSERT(item->fixed());
|
|
VDec a(item->arguments()[0]);
|
|
return a.is_null() ? Longlong_null() :
|
|
a.to_xlonglong_null() & VDec(item->arguments()[1]).to_xlonglong_null();
|
|
}
|
|
};
|
|
|
|
|
|
bool Item_func_bit_and::fix_length_and_dec(THD *thd)
|
|
{
|
|
static Func_handler_bit_and_int_to_ulonglong ha_int_to_ull;
|
|
static Func_handler_bit_and_dec_to_ulonglong ha_dec_to_ull;
|
|
return fix_length_and_dec_op2_std(&ha_int_to_ull, &ha_dec_to_ull);
|
|
}
|
|
|
|
Item_cond::Item_cond(THD *thd, Item_cond *item)
|
|
:Item_bool_func(thd, item),
|
|
and_tables_cache(item->and_tables_cache)
|
|
{
|
|
base_flags|= (item->base_flags & item_base_t::AT_TOP_LEVEL);
|
|
|
|
/*
|
|
item->list will be copied by copy_andor_arguments() call
|
|
*/
|
|
}
|
|
|
|
|
|
Item_cond::Item_cond(THD *thd, Item *i1, Item *i2):
|
|
Item_bool_func(thd)
|
|
{
|
|
list.push_back(i1, thd->mem_root);
|
|
list.push_back(i2, thd->mem_root);
|
|
}
|
|
|
|
|
|
Item *Item_cond_and::copy_andor_structure(THD *thd)
|
|
{
|
|
Item_cond_and *item;
|
|
if ((item= new (thd->mem_root) Item_cond_and(thd, this)))
|
|
item->copy_andor_arguments(thd, this);
|
|
return item;
|
|
}
|
|
|
|
|
|
void Item_cond::copy_andor_arguments(THD *thd, Item_cond *item)
|
|
{
|
|
List_iterator_fast<Item> li(item->list);
|
|
while (Item *it= li++)
|
|
list.push_back(it->copy_andor_structure(thd), thd->mem_root);
|
|
}
|
|
|
|
|
|
bool
|
|
Item_cond::fix_fields(THD *thd, Item **ref)
|
|
{
|
|
DBUG_ASSERT(fixed() == 0);
|
|
List_iterator<Item> li(list);
|
|
Item *item;
|
|
uchar buff[sizeof(char*)]; // Max local vars in function
|
|
|
|
not_null_tables_cache= 0;
|
|
used_tables_and_const_cache_init();
|
|
|
|
/*
|
|
and_table_cache is the value that Item_cond_or() returns for
|
|
not_null_tables()
|
|
*/
|
|
and_tables_cache= ~(table_map) 0;
|
|
|
|
if (check_stack_overrun(thd, STACK_MIN_SIZE, buff))
|
|
return TRUE; // Fatal error flag is set!
|
|
|
|
while (li++)
|
|
{
|
|
merge_sub_condition(li);
|
|
item= *li.ref();
|
|
if (is_top_level_item())
|
|
item->top_level_item();
|
|
|
|
/*
|
|
replace degraded condition:
|
|
was: <field>
|
|
become: <field> != 0
|
|
*/
|
|
Item::Type type= item->type();
|
|
if (type == Item::FIELD_ITEM || type == Item::REF_ITEM)
|
|
{
|
|
Query_arena backup, *arena;
|
|
Item *new_item;
|
|
arena= thd->activate_stmt_arena_if_needed(&backup);
|
|
if ((new_item= new (thd->mem_root) Item_func_ne(thd, item, new (thd->mem_root) Item_int(thd, 0, 1))))
|
|
li.replace(item= new_item);
|
|
if (arena)
|
|
thd->restore_active_arena(arena, &backup);
|
|
}
|
|
|
|
if (item->fix_fields_if_needed_for_bool(thd, li.ref()))
|
|
return TRUE; /* purecov: inspected */
|
|
merge_sub_condition(li);
|
|
item= *li.ref(); // may be substituted in fix_fields/merge_item_if_possible
|
|
|
|
used_tables_and_const_cache_join(item);
|
|
base_flags|= item->base_flags & item_base_t::MAYBE_NULL;
|
|
with_flags|= item->with_flags;
|
|
}
|
|
(void) eval_not_null_tables((void*) 0);
|
|
|
|
/*
|
|
We have to set fixed as some other items will check it and fail if we
|
|
do not. This can be changed when we properly check if fix_fields()
|
|
fails in call cases.
|
|
*/
|
|
base_flags|= item_base_t::FIXED;
|
|
if (fix_length_and_dec(thd) || thd->is_error())
|
|
return TRUE;
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Merge a lower-level condition pointed by the iterator into this Item_cond
|
|
if possible
|
|
|
|
@param li list iterator pointing to condition that must be
|
|
examined and merged if possible.
|
|
|
|
@details
|
|
If an item pointed by the iterator is an instance of Item_cond with the
|
|
same functype() as this Item_cond (i.e. both are Item_cond_and or both are
|
|
Item_cond_or) then the arguments of that lower-level item can be merged
|
|
into the list of arguments of this upper-level Item_cond.
|
|
|
|
This optimization reduces the depth of an AND-OR tree.
|
|
E.g. a WHERE clause like
|
|
F1 AND (F2 AND (F2 AND F4))
|
|
is parsed into a tree with the same nested structure as defined
|
|
by braces. This optimization will transform such tree into
|
|
AND (F1, F2, F3, F4).
|
|
Trees of OR items are flattened as well:
|
|
((F1 OR F2) OR (F3 OR F4)) => OR (F1, F2, F3, F4)
|
|
Items for removed AND/OR levels will dangle until the death of the
|
|
entire statement.
|
|
|
|
The optimization is currently prepared statements and stored procedures
|
|
friendly as it doesn't allocate any memory and its effects are durable
|
|
(i.e. do not depend on PS/SP arguments).
|
|
*/
|
|
void Item_cond::merge_sub_condition(List_iterator<Item>& li)
|
|
{
|
|
Item *item= *li.ref();
|
|
|
|
/*
|
|
The check for list.is_empty() is to catch empty Item_cond_and() items.
|
|
We may encounter Item_cond_and with an empty list, because optimizer code
|
|
strips multiple equalities, combines items, then adds multiple equalities
|
|
back
|
|
*/
|
|
while (item->type() == Item::COND_ITEM &&
|
|
((Item_cond*) item)->functype() == functype() &&
|
|
!((Item_cond*) item)->list.is_empty())
|
|
{
|
|
li.replace(((Item_cond*) item)->list);
|
|
((Item_cond*) item)->list.empty();
|
|
item= *li.ref();
|
|
}
|
|
}
|
|
|
|
/*
|
|
Calculate not_null_tables_cache and and_tables_cache.
|
|
*/
|
|
|
|
bool
|
|
Item_cond::eval_not_null_tables(void *opt_arg)
|
|
{
|
|
Item *item;
|
|
bool is_and_cond= functype() == Item_func::COND_AND_FUNC;
|
|
List_iterator<Item> li(list);
|
|
bool found= 0;
|
|
|
|
not_null_tables_cache= (table_map) 0;
|
|
and_tables_cache= ~(table_map) 0;
|
|
while ((item=li++))
|
|
{
|
|
if (item->can_eval_in_optimize() &&
|
|
!item->with_sp_var() && !item->with_param() &&
|
|
!cond_has_datetime_is_null(item) && is_top_level_item())
|
|
{
|
|
if (item->eval_const_cond() == is_and_cond)
|
|
{
|
|
/*
|
|
a. This is "... AND true_cond AND ..."
|
|
In this case, true_cond has no effect on cond_and->not_null_tables()
|
|
b. This is "... OR false_cond/null cond OR ..."
|
|
In this case, false_cond has no effect on cond_or->not_null_tables()
|
|
*/
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
a. This is "... AND false_cond/null_cond AND ..."
|
|
The whole condition is FALSE/UNKNOWN.
|
|
b. This is "... OR const_cond OR ..."
|
|
In this case, cond_or->not_null_tables()=0, because the condition
|
|
const_cond might evaluate to true (regardless of whether some tables
|
|
were NULL-complemented).
|
|
*/
|
|
found= 1;
|
|
not_null_tables_cache= (table_map) 0;
|
|
and_tables_cache= (table_map) 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
table_map tmp_table_map= item->not_null_tables();
|
|
if (!found)
|
|
{
|
|
/* We should not depend on the order of items */
|
|
not_null_tables_cache|= tmp_table_map;
|
|
}
|
|
and_tables_cache&= tmp_table_map;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
@note
|
|
This implementation of the virtual function find_not_null_fields()
|
|
infers null-rejectedness if fields from tables marked in 'allowed' from
|
|
this condition.
|
|
Currently only top level AND conjuncts that are not disjunctions are used
|
|
for the inference. Usage of any top level and-or formula with l OR levels
|
|
would require a stack of bitmaps for fields of the height h=2*l+1 So we
|
|
would have to allocate h-1 additional field bitmaps for each table marked
|
|
in 'allowed'.
|
|
*/
|
|
|
|
bool
|
|
Item_cond::find_not_null_fields(table_map allowed)
|
|
{
|
|
Item *item;
|
|
bool is_and_cond= functype() == Item_func::COND_AND_FUNC;
|
|
if (!is_and_cond)
|
|
{
|
|
/* Now only fields of top AND level conjuncts are taken into account */
|
|
return false;
|
|
}
|
|
uint isnull_func_cnt= 0;
|
|
List_iterator<Item> li(list);
|
|
while ((item=li++))
|
|
{
|
|
bool is_mult_eq= item->type() == Item::FUNC_ITEM &&
|
|
((Item_func *) item)->functype() == Item_func::MULT_EQUAL_FUNC;
|
|
if (is_mult_eq)
|
|
{
|
|
if (!item->find_not_null_fields(allowed))
|
|
continue;
|
|
}
|
|
|
|
if (~allowed & item->used_tables())
|
|
continue;
|
|
|
|
/* It is assumed that all constant conjuncts are already eliminated */
|
|
|
|
/*
|
|
First infer null-rejectedness of fields from all conjuncts but
|
|
IS NULL predicates
|
|
*/
|
|
bool isnull_func= item->type() == Item::FUNC_ITEM &&
|
|
((Item_func *) item)->functype() == Item_func::ISNULL_FUNC;
|
|
if (isnull_func)
|
|
{
|
|
isnull_func_cnt++;
|
|
continue;
|
|
}
|
|
if (!item->find_not_null_fields(allowed))
|
|
continue;
|
|
}
|
|
|
|
/* Now try no get contradictions using IS NULL conjuncts */
|
|
if (isnull_func_cnt)
|
|
{
|
|
li.rewind();
|
|
while ((item=li++) && isnull_func_cnt)
|
|
{
|
|
if (~allowed & item->used_tables())
|
|
continue;
|
|
|
|
bool isnull_func= item->type() == Item::FUNC_ITEM &&
|
|
((Item_func *) item)->functype() == Item_func::ISNULL_FUNC;
|
|
if (isnull_func)
|
|
{
|
|
if (item->find_not_null_fields(allowed))
|
|
return true;
|
|
isnull_func_cnt--;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Item_cond::fix_after_pullout(st_select_lex *new_parent, Item **ref,
|
|
bool merge)
|
|
{
|
|
List_iterator<Item> li(list);
|
|
Item *item;
|
|
|
|
used_tables_and_const_cache_init();
|
|
|
|
and_tables_cache= ~(table_map) 0; // Here and below we do as fix_fields does
|
|
not_null_tables_cache= 0;
|
|
|
|
while ((item=li++))
|
|
{
|
|
table_map tmp_table_map;
|
|
item->fix_after_pullout(new_parent, li.ref(), merge);
|
|
item= *li.ref();
|
|
used_tables_and_const_cache_join(item);
|
|
|
|
if (item->const_item())
|
|
and_tables_cache= (table_map) 0;
|
|
else
|
|
{
|
|
tmp_table_map= item->not_null_tables();
|
|
not_null_tables_cache|= tmp_table_map;
|
|
and_tables_cache&= tmp_table_map;
|
|
const_item_cache= FALSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool Item_cond::walk(Item_processor processor, bool walk_subquery, void *arg)
|
|
{
|
|
List_iterator_fast<Item> li(list);
|
|
Item *item;
|
|
while ((item= li++))
|
|
if (item->walk(processor, walk_subquery, arg))
|
|
return 1;
|
|
return Item_func::walk(processor, walk_subquery, arg);
|
|
}
|
|
|
|
/**
|
|
Transform an Item_cond object with a transformer callback function.
|
|
|
|
The function recursively applies the transform method to each
|
|
member item of the condition list.
|
|
If the call of the method for a member item returns a new item
|
|
the old item is substituted for a new one.
|
|
After this the transformer is applied to the root node
|
|
of the Item_cond object.
|
|
|
|
@param transformer the transformer callback function to be applied to
|
|
the nodes of the tree of the object
|
|
@param arg parameter to be passed to the transformer
|
|
|
|
@return
|
|
Item returned as the result of transformation of the root node
|
|
*/
|
|
|
|
Item *Item_cond::do_transform(THD *thd, Item_transformer transformer, uchar *arg,
|
|
bool toplevel)
|
|
{
|
|
DBUG_ASSERT(!thd->stmt_arena->is_stmt_prepare());
|
|
|
|
List_iterator<Item> li(list);
|
|
Item *item;
|
|
while ((item= li++))
|
|
{
|
|
Item *new_item= toplevel ? item->top_level_transform(thd, transformer, arg)
|
|
: item->transform(thd, transformer, arg);
|
|
if (!new_item)
|
|
return 0;
|
|
|
|
/*
|
|
THD::change_item_tree() should be called only if the tree was
|
|
really transformed, i.e. when a new item has been created.
|
|
Otherwise we'll be allocating a lot of unnecessary memory for
|
|
change records at each execution.
|
|
*/
|
|
if (toplevel)
|
|
*li.ref()= new_item;
|
|
else if (new_item != item)
|
|
thd->change_item_tree(li.ref(), new_item);
|
|
}
|
|
return Item_func::transform(thd, transformer, arg);
|
|
}
|
|
|
|
|
|
/**
|
|
Compile Item_cond object with a processor and a transformer
|
|
callback functions.
|
|
|
|
First the function applies the analyzer to the root node of
|
|
the Item_func object. Then if the analyzer succeeeds (returns TRUE)
|
|
the function recursively applies the compile method to member
|
|
item of the condition list.
|
|
If the call of the method for a member item returns a new item
|
|
the old item is substituted for a new one.
|
|
After this the transformer is applied to the root node
|
|
of the Item_cond object.
|
|
|
|
@param analyzer the analyzer callback function to be applied to the
|
|
nodes of the tree of the object
|
|
@param[in,out] arg_p parameter to be passed to the analyzer
|
|
@param transformer the transformer callback function to be applied to the
|
|
nodes of the tree of the object
|
|
@param arg_t parameter to be passed to the transformer
|
|
|
|
@return
|
|
Item returned as the result of transformation of the root node
|
|
*/
|
|
|
|
Item *Item_cond::do_compile(THD *thd, Item_analyzer analyzer, uchar **arg_p,
|
|
Item_transformer transformer, uchar *arg_t, bool toplevel)
|
|
{
|
|
if (!(this->*analyzer)(arg_p))
|
|
return 0;
|
|
|
|
List_iterator<Item> li(list);
|
|
Item *item;
|
|
while ((item= li++))
|
|
{
|
|
/*
|
|
The same parameter value of arg_p must be passed
|
|
to analyze any argument of the condition formula.
|
|
*/
|
|
uchar *arg_v= *arg_p;
|
|
Item *new_item= item->compile(thd, analyzer, &arg_v, transformer, arg_t);
|
|
if (!new_item || new_item == item)
|
|
continue;
|
|
if (toplevel)
|
|
*li.ref()= new_item;
|
|
else
|
|
thd->change_item_tree(li.ref(), new_item);
|
|
}
|
|
return Item_func::transform(thd, transformer, arg_t);
|
|
}
|
|
|
|
|
|
Item *Item_cond::propagate_equal_fields(THD *thd,
|
|
const Context &ctx,
|
|
COND_EQUAL *cond)
|
|
{
|
|
DBUG_ASSERT(!thd->stmt_arena->is_stmt_prepare());
|
|
DBUG_ASSERT(arg_count == 0);
|
|
List_iterator<Item> li(list);
|
|
while (li++)
|
|
{
|
|
/*
|
|
The exact value of the last parameter to propagate_and_change_item_tree()
|
|
is not important at this point. Item_func derivants will create and
|
|
pass their own context to the arguments.
|
|
*/
|
|
propagate_and_change_item_tree(thd, li.ref(), cond, Context_boolean());
|
|
}
|
|
return this;
|
|
}
|
|
|
|
void Item_cond::traverse_cond(Cond_traverser traverser,
|
|
void *arg, traverse_order order)
|
|
{
|
|
List_iterator<Item> li(list);
|
|
Item *item;
|
|
|
|
switch(order) {
|
|
case(PREFIX):
|
|
(*traverser)(this, arg);
|
|
while ((item= li++))
|
|
{
|
|
item->traverse_cond(traverser, arg, order);
|
|
}
|
|
(*traverser)(NULL, arg);
|
|
break;
|
|
case(POSTFIX):
|
|
while ((item= li++))
|
|
{
|
|
item->traverse_cond(traverser, arg, order);
|
|
}
|
|
(*traverser)(this, arg);
|
|
}
|
|
}
|
|
|
|
/**
|
|
Move SUM items out from item tree and replace with reference.
|
|
|
|
The split is done to get an unique item for each SUM function
|
|
so that we can easily find and calculate them.
|
|
(Calculation done by update_sum_func() and copy_sum_funcs() in
|
|
sql_select.cc)
|
|
|
|
@param thd Thread handler
|
|
@param ref_pointer_array Pointer to array of reference fields
|
|
@param fields All fields in select
|
|
|
|
@note
|
|
This function is run on all expression (SELECT list, WHERE, HAVING etc)
|
|
that have or refer (HAVING) to a SUM expression.
|
|
*/
|
|
|
|
void Item_cond::split_sum_func(THD *thd, Ref_ptr_array ref_pointer_array,
|
|
List<Item> &fields, uint flags)
|
|
{
|
|
List_iterator<Item> li(list);
|
|
Item *item;
|
|
while ((item= li++))
|
|
item->split_sum_func2(thd, ref_pointer_array, fields, li.ref(),
|
|
flags | SPLIT_SUM_SKIP_REGISTERED);
|
|
}
|
|
|
|
|
|
table_map
|
|
Item_cond::used_tables() const
|
|
{ // This caches used_tables
|
|
return used_tables_cache;
|
|
}
|
|
|
|
|
|
void Item_cond::print(String *str, enum_query_type query_type)
|
|
{
|
|
List_iterator_fast<Item> li(list);
|
|
Item *item;
|
|
if ((item=li++))
|
|
item->print_parenthesised(str, query_type, precedence());
|
|
while ((item=li++))
|
|
{
|
|
str->append(' ');
|
|
str->append(func_name_cstring());
|
|
str->append(' ');
|
|
item->print_parenthesised(str, query_type, precedence());
|
|
}
|
|
}
|
|
|
|
|
|
void Item_cond::neg_arguments(THD *thd)
|
|
{
|
|
List_iterator<Item> li(list);
|
|
Item *item;
|
|
while ((item= li++)) /* Apply not transformation to the arguments */
|
|
{
|
|
Item *new_item= item->neg_transformer(thd);
|
|
if (!new_item)
|
|
{
|
|
if (!(new_item= new (thd->mem_root) Item_func_not(thd, item)))
|
|
return; // Fatal OEM error
|
|
}
|
|
(void) li.replace(new_item);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Building clone for Item_cond
|
|
|
|
@param thd thread handle
|
|
@param mem_root part of the memory for the clone
|
|
|
|
@details
|
|
This method gets copy of the current item and also
|
|
build clones for its elements. For this elements
|
|
build_copy is called again.
|
|
|
|
@retval
|
|
clone of the item
|
|
0 if an error occurred
|
|
*/
|
|
|
|
Item *Item_cond::do_build_clone(THD *thd) const
|
|
{
|
|
Item_cond *copy= (Item_cond *) get_copy(thd);
|
|
if (!copy)
|
|
return 0;
|
|
copy->list.empty();
|
|
|
|
for (const Item &item : list)
|
|
{
|
|
Item *arg_clone= item.build_clone(thd);
|
|
if (!arg_clone)
|
|
return 0;
|
|
if (copy->list.push_back(arg_clone, thd->mem_root))
|
|
return 0;
|
|
}
|
|
return copy;
|
|
}
|
|
|
|
|
|
bool Item_cond::excl_dep_on_table(table_map tab_map)
|
|
{
|
|
if (used_tables() & (OUTER_REF_TABLE_BIT | RAND_TABLE_BIT))
|
|
return false;
|
|
if (!(used_tables() & ~tab_map))
|
|
return true;
|
|
List_iterator_fast<Item> li(list);
|
|
Item *item;
|
|
while ((item= li++))
|
|
{
|
|
if (!item->excl_dep_on_table(tab_map))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Item_cond::excl_dep_on_grouping_fields(st_select_lex *sel)
|
|
{
|
|
if (has_rand_bit())
|
|
return false;
|
|
List_iterator_fast<Item> li(list);
|
|
Item *item;
|
|
while ((item= li++))
|
|
{
|
|
if (!item->excl_dep_on_grouping_fields(sel))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
void Item_cond_and::mark_as_condition_AND_part(TABLE_LIST *embedding)
|
|
{
|
|
List_iterator<Item> li(list);
|
|
Item *item;
|
|
while ((item=li++))
|
|
{
|
|
item->mark_as_condition_AND_part(embedding);
|
|
}
|
|
}
|
|
|
|
/**
|
|
Evaluation of AND(expr, expr, expr ...).
|
|
|
|
@note
|
|
There are AND expressions for which we don't care if the
|
|
result is NULL or 0. This is the case for:
|
|
- WHERE clause
|
|
- HAVING clause
|
|
- IF(expression)
|
|
For these we mark them as "top_level_items"
|
|
|
|
@retval
|
|
1 If all expressions are true
|
|
@retval
|
|
0 If any of the expressions are false or if we find a NULL expression and
|
|
this is a top_level_item.
|
|
@retval
|
|
NULL if all expression are either 1 or NULL
|
|
*/
|
|
|
|
|
|
bool Item_cond_and::val_bool()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
List_iterator_fast<Item> li(list);
|
|
Item *item;
|
|
null_value= 0;
|
|
while ((item=li++))
|
|
{
|
|
if (!item->val_bool())
|
|
{
|
|
if (is_top_level_item() || !(null_value= item->null_value))
|
|
return 0;
|
|
}
|
|
}
|
|
return null_value ? 0 : 1;
|
|
}
|
|
|
|
|
|
bool Item_cond_or::val_bool()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
List_iterator_fast<Item> li(list);
|
|
Item *item;
|
|
null_value=0;
|
|
while ((item=li++))
|
|
{
|
|
if (item->val_bool())
|
|
{
|
|
null_value=0;
|
|
return 1;
|
|
}
|
|
if (item->null_value)
|
|
null_value=1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
Item *Item_cond_or::copy_andor_structure(THD *thd)
|
|
{
|
|
Item_cond_or *item;
|
|
if ((item= new (thd->mem_root) Item_cond_or(thd, this)))
|
|
item->copy_andor_arguments(thd, this);
|
|
return item;
|
|
}
|
|
|
|
|
|
/**
|
|
Create an AND expression from two expressions.
|
|
|
|
@param a expression or NULL
|
|
@param b expression.
|
|
@param org_item Don't modify a if a == *org_item.
|
|
If a == NULL, org_item is set to point at b,
|
|
to ensure that future calls will not modify b.
|
|
|
|
@note
|
|
This will not modify item pointed to by org_item or b
|
|
The idea is that one can call this in a loop and create and
|
|
'and' over all items without modifying any of the original items.
|
|
|
|
@retval
|
|
NULL Error
|
|
@retval
|
|
Item
|
|
*/
|
|
|
|
Item *and_expressions(THD *thd, Item *a, Item *b, Item **org_item)
|
|
{
|
|
if (!a)
|
|
return (*org_item= (Item*) b);
|
|
if (a == *org_item)
|
|
{
|
|
Item_cond *res;
|
|
if ((res= new (thd->mem_root) Item_cond_and(thd, a, (Item*) b)))
|
|
{
|
|
res->used_tables_cache= a->used_tables() | b->used_tables();
|
|
res->not_null_tables_cache= a->not_null_tables() | b->not_null_tables();
|
|
}
|
|
return res;
|
|
}
|
|
if (((Item_cond_and*) a)->add((Item*) b, thd->mem_root))
|
|
return 0;
|
|
((Item_cond_and*) a)->used_tables_cache|= b->used_tables();
|
|
((Item_cond_and*) a)->not_null_tables_cache|= b->not_null_tables();
|
|
return a;
|
|
}
|
|
|
|
|
|
bool Item_func_null_predicate::count_sargable_conds(void *arg)
|
|
{
|
|
((SELECT_LEX*) arg)->cond_count++;
|
|
return 0;
|
|
}
|
|
|
|
|
|
bool Item_func_isnull::val_bool()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
if (const_item() && !args[0]->maybe_null())
|
|
return 0;
|
|
return args[0]->is_null() ? 1: 0;
|
|
}
|
|
|
|
|
|
bool Item_func_isnull::find_not_null_fields(table_map allowed)
|
|
{
|
|
if (!(~allowed & used_tables()) &&
|
|
args[0]->real_item()->type() == Item::FIELD_ITEM)
|
|
{
|
|
Field *field= ((Item_field *)(args[0]->real_item()))->field;
|
|
if (bitmap_is_set(&field->table->tmp_set, field->field_index))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void Item_func_isnull::print(String *str, enum_query_type query_type)
|
|
{
|
|
if (const_item() && !args[0]->maybe_null() &&
|
|
!(query_type & (QT_NO_DATA_EXPANSION | QT_VIEW_INTERNAL)))
|
|
str->append(STRING_WITH_LEN("/*always not null*/ 1"));
|
|
else
|
|
args[0]->print_parenthesised(str, query_type, precedence());
|
|
str->append(STRING_WITH_LEN(" is null"));
|
|
}
|
|
|
|
|
|
bool Item_is_not_null_test::val_bool()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
DBUG_ENTER("Item_is_not_null_test::val_int");
|
|
if (const_item() && !args[0]->maybe_null())
|
|
DBUG_RETURN(1);
|
|
if (args[0]->is_null())
|
|
{
|
|
DBUG_PRINT("info", ("null"));
|
|
owner->was_null|= 1;
|
|
DBUG_RETURN(0);
|
|
}
|
|
else
|
|
DBUG_RETURN(1);
|
|
}
|
|
|
|
/**
|
|
Optimize case of not_null_column IS NULL.
|
|
*/
|
|
void Item_is_not_null_test::update_used_tables()
|
|
{
|
|
if (!args[0]->maybe_null())
|
|
used_tables_cache= 0; /* is always true */
|
|
else
|
|
args[0]->update_used_tables();
|
|
}
|
|
|
|
|
|
bool Item_func_isnotnull::val_bool()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
return args[0]->is_null() ? 0 : 1;
|
|
}
|
|
|
|
|
|
void Item_func_isnotnull::print(String *str, enum_query_type query_type)
|
|
{
|
|
args[0]->print_parenthesised(str, query_type, precedence());
|
|
str->append(STRING_WITH_LEN(" is not null"));
|
|
}
|
|
|
|
|
|
bool Item_bool_func2::count_sargable_conds(void *arg)
|
|
{
|
|
((SELECT_LEX*) arg)->cond_count++;
|
|
return 0;
|
|
}
|
|
|
|
void Item_func_like::print(String *str, enum_query_type query_type)
|
|
{
|
|
args[0]->print_parenthesised(str, query_type, precedence());
|
|
str->append(' ');
|
|
if (negated)
|
|
str->append(STRING_WITH_LEN(" not "));
|
|
str->append(func_name_cstring());
|
|
str->append(' ');
|
|
if (escape_used_in_parsing)
|
|
{
|
|
args[1]->print_parenthesised(str, query_type, precedence());
|
|
str->append(STRING_WITH_LEN(" escape "));
|
|
escape_item->print_parenthesised(str, query_type, higher_precedence());
|
|
}
|
|
else
|
|
args[1]->print_parenthesised(str, query_type, higher_precedence());
|
|
}
|
|
|
|
|
|
bool Item_func_like::val_bool()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
DBUG_ASSERT(escape != ESCAPE_NOT_INITIALIZED);
|
|
String* res= args[0]->val_str(&cmp_value1);
|
|
if (args[0]->null_value)
|
|
{
|
|
null_value=1;
|
|
return 0;
|
|
}
|
|
String* res2= args[1]->val_str(&cmp_value2);
|
|
if (args[1]->null_value)
|
|
{
|
|
null_value=1;
|
|
return 0;
|
|
}
|
|
null_value=0;
|
|
if (canDoTurboBM)
|
|
return turboBM_matches(res->ptr(), res->length()) ? !negated : negated;
|
|
return cmp_collation.collation->wildcmp(
|
|
res->ptr(),res->ptr()+res->length(),
|
|
res2->ptr(),res2->ptr()+res2->length(),
|
|
escape,wild_one,wild_many) ? negated : !negated;
|
|
}
|
|
|
|
|
|
/**
|
|
We can optimize a where if first character isn't a wildcard
|
|
*/
|
|
|
|
bool Item_func_like::with_sargable_pattern() const
|
|
{
|
|
if (negated)
|
|
return false;
|
|
|
|
if (!args[1]->can_eval_in_optimize())
|
|
return false;
|
|
|
|
String* res2= args[1]->val_str((String *) &cmp_value2);
|
|
if (!res2)
|
|
return false;
|
|
|
|
if (!res2->length()) // Can optimize empty wildcard: column LIKE ''
|
|
return true;
|
|
|
|
DBUG_ASSERT(res2->ptr());
|
|
char first= res2->ptr()[0];
|
|
return first != wild_many && first != wild_one;
|
|
}
|
|
|
|
|
|
/*
|
|
subject LIKE pattern
|
|
removes subject's dependency on PAD_CHAR_TO_FULL_LENGTH
|
|
if pattern ends with the '%' wildcard.
|
|
*/
|
|
Sql_mode_dependency Item_func_like::value_depends_on_sql_mode() const
|
|
{
|
|
if (!args[1]->value_depends_on_sql_mode_const_item())
|
|
return Item_func::value_depends_on_sql_mode();
|
|
StringBuffer<64> patternbuf;
|
|
String *pattern= args[1]->val_str_ascii(&patternbuf);
|
|
if (!pattern || !pattern->length())
|
|
return Sql_mode_dependency(); // Will return NULL or 0
|
|
DBUG_ASSERT(pattern->charset()->mbminlen == 1);
|
|
if (pattern->ptr()[pattern->length() - 1] != '%')
|
|
return Item_func::value_depends_on_sql_mode();
|
|
return ((args[0]->value_depends_on_sql_mode() |
|
|
args[1]->value_depends_on_sql_mode()) &
|
|
Sql_mode_dependency(~0, ~MODE_PAD_CHAR_TO_FULL_LENGTH)).
|
|
soft_to_hard();
|
|
}
|
|
|
|
|
|
SEL_TREE *Item_func_like::get_mm_tree(RANGE_OPT_PARAM *param, Item **cond_ptr)
|
|
{
|
|
MEM_ROOT *tmp_root= param->mem_root;
|
|
param->thd->mem_root= param->old_root;
|
|
bool sargable_pattern= with_sargable_pattern();
|
|
param->thd->mem_root= tmp_root;
|
|
return sargable_pattern ?
|
|
Item_bool_func2::get_mm_tree(param, cond_ptr) :
|
|
Item_func::get_mm_tree(param, cond_ptr);
|
|
}
|
|
|
|
|
|
bool fix_escape_item(THD *thd, Item *escape_item, String *tmp_str,
|
|
bool escape_used_in_parsing, CHARSET_INFO *cmp_cs,
|
|
int *escape)
|
|
{
|
|
/*
|
|
ESCAPE clause accepts only constant arguments and Item_param.
|
|
|
|
Subqueries during context_analysis_only might decide they're
|
|
const_during_execution, but not quite const yet, not evaluate-able.
|
|
This is fine, as most of context_analysis_only modes will never
|
|
reach val_int(), so we won't need the value.
|
|
CONTEXT_ANALYSIS_ONLY_DERIVED being a notable exception here.
|
|
*/
|
|
if (!escape_item->const_during_execution() ||
|
|
(!escape_item->const_item() &&
|
|
!(thd->lex->context_analysis_only & ~CONTEXT_ANALYSIS_ONLY_DERIVED)))
|
|
{
|
|
my_error(ER_WRONG_ARGUMENTS,MYF(0),"ESCAPE");
|
|
return TRUE;
|
|
}
|
|
|
|
IF_DBUG(*escape= ESCAPE_NOT_INITIALIZED,);
|
|
|
|
if (escape_item->const_item())
|
|
{
|
|
/* If we are on execution stage */
|
|
/* XXX is it safe to evaluate is_expensive() items here? */
|
|
String *escape_str= escape_item->val_str(tmp_str);
|
|
if (escape_str)
|
|
{
|
|
const char *escape_str_ptr= escape_str->ptr();
|
|
if (escape_used_in_parsing && (
|
|
(((thd->variables.sql_mode & MODE_NO_BACKSLASH_ESCAPES) &&
|
|
escape_str->numchars() != 1) ||
|
|
escape_str->numchars() > 1)))
|
|
{
|
|
my_error(ER_WRONG_ARGUMENTS,MYF(0),"ESCAPE");
|
|
return TRUE;
|
|
}
|
|
|
|
if (cmp_cs->use_mb())
|
|
{
|
|
CHARSET_INFO *cs= escape_str->charset();
|
|
my_wc_t wc;
|
|
int rc= cs->mb_wc(&wc,
|
|
(const uchar*) escape_str_ptr,
|
|
(const uchar*) escape_str_ptr +
|
|
escape_str->length());
|
|
*escape= (int) (rc > 0 ? wc : '\\');
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
In the case of 8bit character set, we pass native
|
|
code instead of Unicode code as "escape" argument.
|
|
Convert to "cs" if charset of escape differs.
|
|
*/
|
|
uint32 unused;
|
|
if (escape_str->needs_conversion(escape_str->length(),
|
|
escape_str->charset(),cmp_cs,&unused))
|
|
{
|
|
char ch;
|
|
uint errors;
|
|
uint32 cnvlen= copy_and_convert(&ch, 1, cmp_cs, escape_str_ptr,
|
|
escape_str->length(),
|
|
escape_str->charset(), &errors);
|
|
*escape= cnvlen ? ch : '\\';
|
|
}
|
|
else
|
|
*escape= escape_str_ptr ? *escape_str_ptr : '\\';
|
|
}
|
|
}
|
|
else
|
|
*escape= '\\';
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
bool Item_func_like::fix_fields(THD *thd, Item **ref)
|
|
{
|
|
DBUG_ASSERT(fixed() == 0);
|
|
if (Item_bool_func2::fix_fields(thd, ref) ||
|
|
escape_item->fix_fields_if_needed_for_scalar(thd, &escape_item) ||
|
|
fix_escape_item(thd, escape_item, &cmp_value1, escape_used_in_parsing,
|
|
cmp_collation.collation, &escape))
|
|
return TRUE;
|
|
|
|
if (escape_item->const_item())
|
|
{
|
|
/*
|
|
We could also do boyer-more for non-const items, but as we would have to
|
|
recompute the tables for each row it's not worth it.
|
|
*/
|
|
if (args[1]->can_eval_in_optimize() && !use_strnxfrm(collation.collation))
|
|
{
|
|
String* res2= args[1]->val_str(&cmp_value2);
|
|
if (!res2)
|
|
return FALSE; // Null argument
|
|
|
|
const size_t len= res2->length();
|
|
|
|
/*
|
|
len must be > 2 ('%pattern%')
|
|
heuristic: only do TurboBM for pattern_len > 2
|
|
*/
|
|
if (len <= 2)
|
|
return FALSE;
|
|
|
|
const char* first= res2->ptr();
|
|
const char* last= first + len - 1;
|
|
|
|
if (len > MIN_TURBOBM_PATTERN_LEN + 2 &&
|
|
*first == wild_many &&
|
|
*last == wild_many)
|
|
{
|
|
const char* tmp = first + 1;
|
|
for (; *tmp != wild_many && *tmp != wild_one && *tmp != escape; tmp++) ;
|
|
canDoTurboBM = (tmp == last) && !args[0]->collation.collation->use_mb();
|
|
}
|
|
if (canDoTurboBM)
|
|
{
|
|
pattern_len = (int) len - 2;
|
|
pattern = thd->strmake(first + 1, pattern_len);
|
|
DBUG_PRINT("info", ("Initializing pattern: '%s'", first));
|
|
int *suff = (int*) thd->alloc((int) (sizeof(int)*
|
|
((pattern_len + 1)*2+
|
|
alphabet_size)));
|
|
bmGs = suff + pattern_len + 1;
|
|
bmBc = bmGs + pattern_len + 1;
|
|
turboBM_compute_good_suffix_shifts(suff);
|
|
turboBM_compute_bad_character_shifts();
|
|
DBUG_PRINT("info",("done"));
|
|
}
|
|
use_sampling= (len > 2 && (*first == wild_many || *first == wild_one));
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
void Item_func_like::cleanup()
|
|
{
|
|
canDoTurboBM= FALSE;
|
|
Item_bool_func2::cleanup();
|
|
}
|
|
|
|
|
|
bool Item_func_like::find_selective_predicates_list_processor(void *arg)
|
|
{
|
|
find_selective_predicates_list_processor_data *data=
|
|
(find_selective_predicates_list_processor_data *) arg;
|
|
if (use_sampling && used_tables() == data->table->map)
|
|
{
|
|
THD *thd= data->table->in_use;
|
|
COND_STATISTIC *stat;
|
|
Item *arg0;
|
|
if (!(stat= (COND_STATISTIC *) thd->alloc(sizeof(COND_STATISTIC))))
|
|
return TRUE;
|
|
stat->cond= this;
|
|
arg0= args[0]->real_item();
|
|
if (args[1]->const_item() && arg0->type() == FIELD_ITEM)
|
|
stat->field_arg= ((Item_field *)arg0)->field;
|
|
else
|
|
stat->field_arg= NULL;
|
|
data->list.push_back(stat, thd->mem_root);
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
int Regexp_processor_pcre::default_regex_flags()
|
|
{
|
|
return default_regex_flags_pcre(current_thd);
|
|
}
|
|
|
|
void Regexp_processor_pcre::cleanup()
|
|
{
|
|
pcre2_match_data_free(m_pcre_match_data);
|
|
pcre2_code_free(m_pcre);
|
|
reset();
|
|
}
|
|
|
|
void Regexp_processor_pcre::init(CHARSET_INFO *data_charset, int extra_flags)
|
|
{
|
|
m_library_flags= default_regex_flags() | extra_flags |
|
|
(data_charset != &my_charset_bin ?
|
|
(PCRE2_UTF | PCRE2_UCP) : 0) |
|
|
((data_charset->state &
|
|
(MY_CS_BINSORT | MY_CS_CSSORT)) ? 0 : PCRE2_CASELESS);
|
|
|
|
// Convert text data to utf-8.
|
|
m_library_charset= data_charset == &my_charset_bin ?
|
|
&my_charset_bin : &my_charset_utf8mb4_general_ci;
|
|
|
|
m_conversion_is_needed= (data_charset != &my_charset_bin) &&
|
|
!my_charset_same(data_charset, m_library_charset);
|
|
}
|
|
|
|
/**
|
|
Convert string to lib_charset, if needed.
|
|
*/
|
|
String *Regexp_processor_pcre::convert_if_needed(String *str, String *converter)
|
|
{
|
|
if (m_conversion_is_needed)
|
|
{
|
|
uint dummy_errors;
|
|
if (converter->copy(str->ptr(), str->length(), str->charset(),
|
|
m_library_charset, &dummy_errors))
|
|
return NULL;
|
|
str= converter;
|
|
}
|
|
return str;
|
|
}
|
|
|
|
|
|
/**
|
|
@brief Compile regular expression.
|
|
|
|
@param[in] pattern the pattern to compile from.
|
|
@param[in] send_error send error message if any.
|
|
|
|
@details Make necessary character set conversion then
|
|
compile regular expression passed in the args[1].
|
|
|
|
@retval false success.
|
|
@retval true error occurred.
|
|
*/
|
|
|
|
bool Regexp_processor_pcre::compile(String *pattern, bool send_error)
|
|
{
|
|
int pcreErrorNumber;
|
|
PCRE2_SIZE pcreErrorOffset;
|
|
|
|
if (is_compiled())
|
|
{
|
|
if (!stringcmp(pattern, &m_prev_pattern))
|
|
return false;
|
|
cleanup();
|
|
}
|
|
m_prev_pattern.copy(*pattern);
|
|
|
|
if (!(pattern= convert_if_needed(pattern, &pattern_converter)))
|
|
return true;
|
|
|
|
pcre2_compile_context *cctx= NULL;
|
|
#ifndef pcre2_set_depth_limit
|
|
// old pcre2 uses stack - put a limit on that (new pcre2 prefers heap)
|
|
cctx= pcre2_compile_context_create(NULL);
|
|
pcre2_set_compile_recursion_guard(cctx, [](uint32_t cur, void *end) -> int
|
|
{ return available_stack_size(&cur, end) < STACK_MIN_SIZE; },
|
|
current_thd->mysys_var->stack_ends_here);
|
|
#endif
|
|
m_pcre= pcre2_compile((PCRE2_SPTR8) pattern->ptr(), pattern->length(),
|
|
m_library_flags,
|
|
&pcreErrorNumber, &pcreErrorOffset, cctx);
|
|
pcre2_compile_context_free(cctx); // NULL is ok here
|
|
|
|
if (unlikely(m_pcre == NULL))
|
|
{
|
|
if (send_error)
|
|
{
|
|
char buff[MAX_FIELD_WIDTH];
|
|
int lmsg= pcre2_get_error_message(pcreErrorNumber,
|
|
(PCRE2_UCHAR8 *)buff, sizeof(buff));
|
|
if (lmsg >= 0)
|
|
my_snprintf(buff+lmsg, sizeof(buff)-lmsg,
|
|
" at offset %zu", pcreErrorOffset);
|
|
my_error(ER_REGEXP_ERROR, MYF(0), buff);
|
|
}
|
|
return true;
|
|
}
|
|
m_pcre_match_data= pcre2_match_data_create_from_pattern(m_pcre, NULL);
|
|
if (m_pcre_match_data == NULL)
|
|
{
|
|
my_error(ER_OUT_OF_RESOURCES, MYF(0));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Regexp_processor_pcre::compile(Item *item, bool send_error)
|
|
{
|
|
char buff[MAX_FIELD_WIDTH];
|
|
String tmp(buff, sizeof(buff), &my_charset_bin);
|
|
String *pattern= item->val_str(&tmp);
|
|
if (unlikely(item->null_value) || (unlikely(compile(pattern, send_error))))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
/**
|
|
Send a warning explaining an error code returned by pcre_exec().
|
|
*/
|
|
void Regexp_processor_pcre::pcre_exec_warn(int rc) const
|
|
{
|
|
PCRE2_UCHAR8 buf[128];
|
|
THD *thd= current_thd;
|
|
|
|
int errlen= pcre2_get_error_message(rc, buf, sizeof(buf));
|
|
if (errlen <= 0)
|
|
{
|
|
my_snprintf((char *)buf, sizeof(buf), "pcre_exec: Internal error (%d)", rc);
|
|
}
|
|
push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN,
|
|
ER_REGEXP_ERROR, ER_THD(thd, ER_REGEXP_ERROR), buf);
|
|
}
|
|
|
|
|
|
/**
|
|
Call pcre_exec() and send a warning if pcre_exec() returned with an error.
|
|
*/
|
|
int Regexp_processor_pcre::pcre_exec_with_warn(const pcre2_code *code,
|
|
pcre2_match_data *data,
|
|
const char *subject,
|
|
int length, int startoffset,
|
|
int options)
|
|
{
|
|
pcre2_match_context *mctx= NULL;
|
|
#ifndef pcre2_set_depth_limit
|
|
// old pcre2 uses stack - put a limit on that (new pcre2 prefers heap)
|
|
mctx= pcre2_match_context_create(NULL);
|
|
pcre2_set_recursion_limit(mctx,
|
|
available_stack_size(&mctx, current_thd->mysys_var->stack_ends_here)/544);
|
|
#endif
|
|
int rc= pcre2_match(code, (PCRE2_SPTR8) subject, (PCRE2_SIZE) length,
|
|
(PCRE2_SIZE) startoffset, options, data, mctx);
|
|
pcre2_match_context_free(mctx); // NULL is ok here
|
|
DBUG_EXECUTE_IF("pcre_exec_error_123", rc= -123;);
|
|
if (unlikely(rc < PCRE2_ERROR_NOMATCH))
|
|
{
|
|
m_SubStrVec= NULL;
|
|
pcre_exec_warn(rc);
|
|
}
|
|
else
|
|
m_SubStrVec= pcre2_get_ovector_pointer(data);
|
|
return rc;
|
|
}
|
|
|
|
|
|
bool Regexp_processor_pcre::exec(const char *str, size_t length, size_t offset)
|
|
{
|
|
m_pcre_exec_rc= pcre_exec_with_warn(m_pcre, m_pcre_match_data,
|
|
str, (int)length, (int)offset, 0);
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Regexp_processor_pcre::exec(String *str, int offset,
|
|
uint n_result_offsets_to_convert)
|
|
{
|
|
if (!(str= convert_if_needed(str, &subject_converter)))
|
|
return true;
|
|
m_pcre_exec_rc= pcre_exec_with_warn(m_pcre, m_pcre_match_data,
|
|
str->ptr(), str->length(), offset, 0);
|
|
if (m_pcre_exec_rc > 0)
|
|
{
|
|
uint i;
|
|
for (i= 0; i < n_result_offsets_to_convert; i++)
|
|
{
|
|
/*
|
|
Convert byte offset into character offset.
|
|
*/
|
|
m_SubStrVec[i]= (int) str->charset()->numchars(str->ptr(),
|
|
str->ptr() +
|
|
m_SubStrVec[i]);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Regexp_processor_pcre::exec(Item *item, int offset,
|
|
uint n_result_offsets_to_convert)
|
|
{
|
|
char buff[MAX_FIELD_WIDTH];
|
|
String tmp(buff,sizeof(buff),&my_charset_bin);
|
|
String *res= item->val_str(&tmp);
|
|
if (item->null_value)
|
|
return true;
|
|
return exec(res, offset, n_result_offsets_to_convert);
|
|
}
|
|
|
|
|
|
/*
|
|
This method determines the owner's maybe_null flag.
|
|
Generally, the result is NULL-able. However, in case
|
|
of a constant pattern and a NOT NULL subject, the
|
|
result can also be NOT NULL.
|
|
@return true - in case if the constant regex compilation failed
|
|
(e.g. due to a wrong regex syntax in the pattern).
|
|
The compilation error message is put to the DA in this case.
|
|
false - otherwise.
|
|
*/
|
|
bool Regexp_processor_pcre::fix_owner(Item_func *owner,
|
|
Item *subject_arg,
|
|
Item *pattern_arg)
|
|
{
|
|
if (!is_compiled() &&
|
|
pattern_arg->const_item() &&
|
|
!pattern_arg->is_expensive())
|
|
{
|
|
if (compile(pattern_arg, true/* raise errors to DA, e.g. on bad syntax */))
|
|
{
|
|
owner->set_maybe_null(); // Will always return NULL
|
|
if (pattern_arg->null_value)
|
|
{
|
|
/*
|
|
The pattern evaluated to NULL. Regex compilation did not happen.
|
|
No errors were put to DA. Continue with maybe_null==true.
|
|
The function will return NULL per row.
|
|
*/
|
|
return false;
|
|
}
|
|
/*
|
|
A syntax error in the pattern, an error was raised to the DA.
|
|
Let's abort the query. The caller will send the error to the client.
|
|
*/
|
|
return true;
|
|
}
|
|
set_const(true);
|
|
owner->base_flags|= subject_arg->base_flags & item_base_t::MAYBE_NULL;
|
|
}
|
|
else
|
|
owner->set_maybe_null();
|
|
return false;
|
|
}
|
|
|
|
|
|
bool
|
|
Item_func_regex::fix_length_and_dec(THD *thd)
|
|
{
|
|
if (Item_bool_func::fix_length_and_dec(thd) ||
|
|
agg_arg_charsets_for_comparison(cmp_collation, args, 2))
|
|
return TRUE;
|
|
|
|
re.init(cmp_collation.collation, 0);
|
|
return re.fix_owner(this, args[0], args[1]);
|
|
}
|
|
|
|
|
|
bool Item_func_regex::val_bool()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
if ((null_value= re.recompile(args[1])))
|
|
return 0;
|
|
|
|
if ((null_value= re.exec(args[0], 0, 0)))
|
|
return 0;
|
|
|
|
return re.match();
|
|
}
|
|
|
|
|
|
bool
|
|
Item_func_regexp_instr::fix_length_and_dec(THD *thd)
|
|
{
|
|
if (agg_arg_charsets_for_comparison(cmp_collation, args, 2))
|
|
return TRUE;
|
|
|
|
re.init(cmp_collation.collation, 0);
|
|
max_length= MY_INT32_NUM_DECIMAL_DIGITS; // See also Item_func_locate
|
|
return re.fix_owner(this, args[0], args[1]);
|
|
}
|
|
|
|
|
|
longlong Item_func_regexp_instr::val_int()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
if ((null_value= re.recompile(args[1])))
|
|
return 0;
|
|
|
|
if ((null_value= re.exec(args[0], 0, 1)))
|
|
return 0;
|
|
|
|
return re.match() ? (longlong) (re.subpattern_start(0) + 1) : 0;
|
|
}
|
|
|
|
|
|
#ifdef LIKE_CMP_TOUPPER
|
|
#define likeconv(cs,A) (uchar) (cs)->toupper(A)
|
|
#else
|
|
#define likeconv(cs,A) (uchar) (cs)->sort_order[(uchar) (A)]
|
|
#endif
|
|
|
|
|
|
/**
|
|
Precomputation dependent only on pattern_len.
|
|
*/
|
|
|
|
void Item_func_like::turboBM_compute_suffixes(int *suff)
|
|
{
|
|
const int plm1 = pattern_len - 1;
|
|
int f = 0;
|
|
int g = plm1;
|
|
int *const splm1 = suff + plm1;
|
|
CHARSET_INFO *cs= cmp_collation.collation;
|
|
|
|
*splm1 = pattern_len;
|
|
|
|
if (!cs->sort_order)
|
|
{
|
|
int i;
|
|
for (i = pattern_len - 2; i >= 0; i--)
|
|
{
|
|
int tmp = *(splm1 + i - f);
|
|
if (g < i && tmp < i - g)
|
|
suff[i] = tmp;
|
|
else
|
|
{
|
|
if (i < g)
|
|
g = i; // g = MY_MIN(i, g)
|
|
f = i;
|
|
while (g >= 0 && pattern[g] == pattern[g + plm1 - f])
|
|
g--;
|
|
suff[i] = f - g;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int i;
|
|
for (i = pattern_len - 2; 0 <= i; --i)
|
|
{
|
|
int tmp = *(splm1 + i - f);
|
|
if (g < i && tmp < i - g)
|
|
suff[i] = tmp;
|
|
else
|
|
{
|
|
if (i < g)
|
|
g = i; // g = MY_MIN(i, g)
|
|
f = i;
|
|
while (g >= 0 &&
|
|
likeconv(cs, pattern[g]) == likeconv(cs, pattern[g + plm1 - f]))
|
|
g--;
|
|
suff[i] = f - g;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Precomputation dependent only on pattern_len.
|
|
*/
|
|
|
|
void Item_func_like::turboBM_compute_good_suffix_shifts(int *suff)
|
|
{
|
|
turboBM_compute_suffixes(suff);
|
|
|
|
int *end = bmGs + pattern_len;
|
|
int *k;
|
|
for (k = bmGs; k < end; k++)
|
|
*k = pattern_len;
|
|
|
|
int tmp;
|
|
int i;
|
|
int j = 0;
|
|
const int plm1 = pattern_len - 1;
|
|
for (i = plm1; i > -1; i--)
|
|
{
|
|
if (suff[i] == i + 1)
|
|
{
|
|
for (tmp = plm1 - i; j < tmp; j++)
|
|
{
|
|
int *tmp2 = bmGs + j;
|
|
if (*tmp2 == pattern_len)
|
|
*tmp2 = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
int *tmp2;
|
|
for (tmp = plm1 - i; j < tmp; j++)
|
|
{
|
|
tmp2 = bmGs + j;
|
|
if (*tmp2 == pattern_len)
|
|
*tmp2 = tmp;
|
|
}
|
|
|
|
tmp2 = bmGs + plm1;
|
|
for (i = 0; i <= pattern_len - 2; i++)
|
|
*(tmp2 - suff[i]) = plm1 - i;
|
|
}
|
|
|
|
|
|
/**
|
|
Precomputation dependent on pattern_len.
|
|
*/
|
|
|
|
void Item_func_like::turboBM_compute_bad_character_shifts()
|
|
{
|
|
int *i;
|
|
int *end = bmBc + alphabet_size;
|
|
int j;
|
|
const int plm1 = pattern_len - 1;
|
|
CHARSET_INFO *cs= cmp_collation.collation;
|
|
|
|
for (i = bmBc; i < end; i++)
|
|
*i = pattern_len;
|
|
|
|
if (!cs->sort_order)
|
|
{
|
|
for (j = 0; j < plm1; j++)
|
|
bmBc[(uint) (uchar) pattern[j]] = plm1 - j;
|
|
}
|
|
else
|
|
{
|
|
for (j = 0; j < plm1; j++)
|
|
bmBc[(uint) likeconv(cs,pattern[j])] = plm1 - j;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Search for pattern in text.
|
|
|
|
@return
|
|
returns true/false for match/no match
|
|
*/
|
|
|
|
bool Item_func_like::turboBM_matches(const char* text, int text_len) const
|
|
{
|
|
int bcShift;
|
|
int turboShift;
|
|
int shift = pattern_len;
|
|
int j = 0;
|
|
int u = 0;
|
|
CHARSET_INFO *cs= cmp_collation.collation;
|
|
|
|
const int plm1= pattern_len - 1;
|
|
const int tlmpl= text_len - pattern_len;
|
|
|
|
/* Searching */
|
|
if (!cs->sort_order)
|
|
{
|
|
while (j <= tlmpl)
|
|
{
|
|
int i= plm1;
|
|
while (i >= 0 && pattern[i] == text[i + j])
|
|
{
|
|
i--;
|
|
if (i == plm1 - shift)
|
|
i-= u;
|
|
}
|
|
if (i < 0)
|
|
return 1;
|
|
|
|
const int v= plm1 - i;
|
|
turboShift = u - v;
|
|
bcShift = bmBc[(uint) (uchar) text[i + j]] - plm1 + i;
|
|
shift = MY_MAX(turboShift, bcShift);
|
|
shift = MY_MAX(shift, bmGs[i]);
|
|
if (shift == bmGs[i])
|
|
u = MY_MIN(pattern_len - shift, v);
|
|
else
|
|
{
|
|
if (turboShift < bcShift)
|
|
shift = MY_MAX(shift, u + 1);
|
|
u = 0;
|
|
}
|
|
j+= shift;
|
|
}
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
while (j <= tlmpl)
|
|
{
|
|
int i= plm1;
|
|
while (i >= 0 && likeconv(cs,pattern[i]) == likeconv(cs,text[i + j]))
|
|
{
|
|
i--;
|
|
if (i == plm1 - shift)
|
|
i-= u;
|
|
}
|
|
if (i < 0)
|
|
return 1;
|
|
|
|
const int v= plm1 - i;
|
|
turboShift = u - v;
|
|
bcShift = bmBc[(uint) likeconv(cs, text[i + j])] - plm1 + i;
|
|
shift = MY_MAX(turboShift, bcShift);
|
|
shift = MY_MAX(shift, bmGs[i]);
|
|
if (shift == bmGs[i])
|
|
u = MY_MIN(pattern_len - shift, v);
|
|
else
|
|
{
|
|
if (turboShift < bcShift)
|
|
shift = MY_MAX(shift, u + 1);
|
|
u = 0;
|
|
}
|
|
j+= shift;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Make a logical XOR of the arguments.
|
|
|
|
If either operator is NULL, return NULL.
|
|
|
|
@todo
|
|
(low priority) Change this to be optimized as: @n
|
|
A XOR B -> (A) == 1 AND (B) <> 1) OR (A <> 1 AND (B) == 1) @n
|
|
To be able to do this, we would however first have to extend the MySQL
|
|
range optimizer to handle OR better.
|
|
|
|
@note
|
|
As we don't do any index optimization on XOR this is not going to be
|
|
very fast to use.
|
|
*/
|
|
|
|
bool Item_func_xor::val_bool()
|
|
{
|
|
DBUG_ASSERT(fixed());
|
|
int result= 0;
|
|
null_value= false;
|
|
for (uint i= 0; i < arg_count; i++)
|
|
{
|
|
result^= (args[i]->val_int() != 0);
|
|
if (args[i]->null_value)
|
|
{
|
|
null_value= true;
|
|
return 0;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
Apply NOT transformation to the item and return a new one.
|
|
|
|
|
|
Transform the item using next rules:
|
|
@verbatim
|
|
a AND b AND ... -> NOT(a) OR NOT(b) OR ...
|
|
a OR b OR ... -> NOT(a) AND NOT(b) AND ...
|
|
NOT(a) -> a
|
|
a = b -> a != b
|
|
a != b -> a = b
|
|
a < b -> a >= b
|
|
a >= b -> a < b
|
|
a > b -> a <= b
|
|
a <= b -> a > b
|
|
IS NULL(a) -> IS NOT NULL(a)
|
|
IS NOT NULL(a) -> IS NULL(a)
|
|
@endverbatim
|
|
|
|
@param thd thread handler
|
|
|
|
@return
|
|
New item or
|
|
NULL if we cannot apply NOT transformation (see Item::neg_transformer()).
|
|
*/
|
|
|
|
Item *Item_func_not::neg_transformer(THD *thd) /* NOT(x) -> x */
|
|
{
|
|
return args[0];
|
|
}
|
|
|
|
|
|
bool Item_func_not::fix_fields(THD *thd, Item **ref)
|
|
{
|
|
args[0]->under_not(this);
|
|
if (args[0]->type() == FIELD_ITEM)
|
|
{
|
|
/* replace "NOT <field>" with "<field> == 0" */
|
|
Query_arena backup, *arena;
|
|
Item *new_item;
|
|
bool rc= TRUE;
|
|
arena= thd->activate_stmt_arena_if_needed(&backup);
|
|
if ((new_item= new (thd->mem_root) Item_func_eq(thd, args[0], new (thd->mem_root) Item_int(thd, 0, 1))))
|
|
{
|
|
new_item->name= name;
|
|
rc= (*ref= new_item)->fix_fields(thd, ref);
|
|
}
|
|
if (arena)
|
|
thd->restore_active_arena(arena, &backup);
|
|
return rc;
|
|
}
|
|
return Item_func::fix_fields(thd, ref);
|
|
}
|
|
|
|
|
|
Item *Item_bool_rowready_func2::neg_transformer(THD *thd)
|
|
{
|
|
Item *item= negated_item(thd);
|
|
return item;
|
|
}
|
|
|
|
/**
|
|
XOR can be negated by negating one of the operands:
|
|
|
|
NOT (a XOR b) => (NOT a) XOR b
|
|
=> a XOR (NOT b)
|
|
|
|
@param thd Thread handle
|
|
@return New negated item
|
|
*/
|
|
Item *Item_func_xor::neg_transformer(THD *thd)
|
|
{
|
|
Item *neg_operand;
|
|
Item_func_xor *new_item;
|
|
if ((neg_operand= args[0]->neg_transformer(thd)))
|
|
// args[0] has neg_tranformer
|
|
new_item= new(thd->mem_root) Item_func_xor(thd, neg_operand, args[1]);
|
|
else if ((neg_operand= args[1]->neg_transformer(thd)))
|
|
// args[1] has neg_tranformer
|
|
new_item= new(thd->mem_root) Item_func_xor(thd, args[0], neg_operand);
|
|
else
|
|
{
|
|
neg_operand= new(thd->mem_root) Item_func_not(thd, args[0]);
|
|
new_item= new(thd->mem_root) Item_func_xor(thd, neg_operand, args[1]);
|
|
}
|
|
return new_item;
|
|
}
|
|
|
|
|
|
/**
|
|
a IS NULL -> a IS NOT NULL.
|
|
*/
|
|
Item *Item_func_isnull::neg_transformer(THD *thd)
|
|
{
|
|
Item *item= new (thd->mem_root) Item_func_isnotnull(thd, args[0]);
|
|
return item;
|
|
}
|
|
|
|
|
|
/**
|
|
a IS NOT NULL -> a IS NULL.
|
|
*/
|
|
Item *Item_func_isnotnull::neg_transformer(THD *thd)
|
|
{
|
|
Item *item= new (thd->mem_root) Item_func_isnull(thd, args[0]);
|
|
return item;
|
|
}
|
|
|
|
|
|
Item *Item_cond_and::neg_transformer(THD *thd) /* NOT(a AND b AND ...) -> */
|
|
/* NOT a OR NOT b OR ... */
|
|
{
|
|
neg_arguments(thd);
|
|
Item *item= new (thd->mem_root) Item_cond_or(thd, list);
|
|
return item;
|
|
}
|
|
|
|
|
|
bool
|
|
Item_cond_and::set_format_by_check_constraint(
|
|
Send_field_extended_metadata *to) const
|
|
{
|
|
List_iterator_fast<Item> li(const_cast<List<Item>&>(list));
|
|
Item *item;
|
|
while ((item= li++))
|
|
{
|
|
if (item->set_format_by_check_constraint(to))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
Item *Item_cond_or::neg_transformer(THD *thd) /* NOT(a OR b OR ...) -> */
|
|
/* NOT a AND NOT b AND ... */
|
|
{
|
|
neg_arguments(thd);
|
|
Item *item= new (thd->mem_root) Item_cond_and(thd, list);
|
|
return item;
|
|
}
|
|
|
|
|
|
Item *Item_func_nop_all::neg_transformer(THD *thd)
|
|
{
|
|
/* "NOT (e $cmp$ ANY (SELECT ...)) -> e $rev_cmp$" ALL (SELECT ...) */
|
|
Item_func_not_all *new_item= new (thd->mem_root) Item_func_not_all(thd, args[0]);
|
|
Item_allany_subselect *allany= (Item_allany_subselect*)args[0];
|
|
allany->create_comp_func(FALSE);
|
|
allany->all= !allany->all;
|
|
allany->upper_item= new_item;
|
|
return new_item;
|
|
}
|
|
|
|
Item *Item_func_not_all::neg_transformer(THD *thd)
|
|
{
|
|
/* "NOT (e $cmp$ ALL (SELECT ...)) -> e $rev_cmp$" ANY (SELECT ...) */
|
|
Item_func_nop_all *new_item= new (thd->mem_root) Item_func_nop_all(thd, args[0]);
|
|
Item_allany_subselect *allany= (Item_allany_subselect*)args[0];
|
|
allany->all= !allany->all;
|
|
allany->create_comp_func(TRUE);
|
|
allany->upper_item= new_item;
|
|
return new_item;
|
|
}
|
|
|
|
Item *Item_func_eq::negated_item(THD *thd) /* a = b -> a != b */
|
|
{
|
|
return new (thd->mem_root) Item_func_ne(thd, args[0], args[1]);
|
|
}
|
|
|
|
|
|
Item *Item_func_ne::negated_item(THD *thd) /* a != b -> a = b */
|
|
{
|
|
return new (thd->mem_root) Item_func_eq(thd, args[0], args[1]);
|
|
}
|
|
|
|
|
|
Item *Item_func_lt::negated_item(THD *thd) /* a < b -> a >= b */
|
|
{
|
|
return new (thd->mem_root) Item_func_ge(thd, args[0], args[1]);
|
|
}
|
|
|
|
|
|
Item *Item_func_ge::negated_item(THD *thd) /* a >= b -> a < b */
|
|
{
|
|
return new (thd->mem_root) Item_func_lt(thd, args[0], args[1]);
|
|
}
|
|
|
|
|
|
Item *Item_func_gt::negated_item(THD *thd) /* a > b -> a <= b */
|
|
{
|
|
return new (thd->mem_root) Item_func_le(thd, args[0], args[1]);
|
|
}
|
|
|
|
|
|
Item *Item_func_le::negated_item(THD *thd) /* a <= b -> a > b */
|
|
{
|
|
return new (thd->mem_root) Item_func_gt(thd, args[0], args[1]);
|
|
}
|
|
|
|
/**
|
|
just fake method, should never be called.
|
|
*/
|
|
Item *Item_bool_rowready_func2::negated_item(THD *thd)
|
|
{
|
|
DBUG_ASSERT(0);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
Construct a minimal multiple equality item
|
|
|
|
@param f1 the first equal item
|
|
@param f2 the second equal item
|
|
@param with_const_item TRUE if the first item is constant
|
|
|
|
@details
|
|
The constructor builds a new item equal object for the equality f1=f2.
|
|
One of the equal items can be constant. If this is the case it is passed
|
|
always as the first parameter and the parameter with_const_item serves
|
|
as an indicator of this case.
|
|
Currently any non-constant parameter items must point to an item of the
|
|
of the type Item_field or Item_direct_view_ref(Item_field).
|
|
*/
|
|
|
|
Item_equal::Item_equal(THD *thd, const Type_handler *handler,
|
|
Item *f1, Item *f2, bool with_const_item):
|
|
Item_bool_func(thd), eval_item(0), cond_false(0), cond_true(0),
|
|
context_field(NULL), link_equal_fields(FALSE),
|
|
m_compare_handler(handler),
|
|
m_compare_collation(f2->collation.collation)
|
|
{
|
|
const_item_cache= 0;
|
|
with_const= with_const_item;
|
|
equal_items.push_back(f1, thd->mem_root);
|
|
equal_items.push_back(f2, thd->mem_root);
|
|
upper_levels= NULL;
|
|
}
|
|
|
|
|
|
/**
|
|
Copy constructor for a multiple equality
|
|
|
|
@param item_equal source item for the constructor
|
|
|
|
@details
|
|
The function creates a copy of an Item_equal object.
|
|
This constructor is used when an item belongs to a multiple equality
|
|
of an upper level (an upper AND/OR level or an upper level of a nested
|
|
outer join).
|
|
*/
|
|
|
|
Item_equal::Item_equal(THD *thd, Item_equal *item_equal):
|
|
Item_bool_func(thd), eval_item(0), cond_false(0), cond_true(0),
|
|
context_field(NULL), link_equal_fields(FALSE),
|
|
m_compare_handler(item_equal->m_compare_handler),
|
|
m_compare_collation(item_equal->m_compare_collation)
|
|
{
|
|
const_item_cache= 0;
|
|
List_iterator_fast<Item> li(item_equal->equal_items);
|
|
Item *item;
|
|
while ((item= li++))
|
|
{
|
|
equal_items.push_back(item, thd->mem_root);
|
|
}
|
|
with_const= item_equal->with_const;
|
|
cond_false= item_equal->cond_false;
|
|
upper_levels= item_equal->upper_levels;
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Add a constant item to the Item_equal object
|
|
|
|
@param[in] c the constant to add
|
|
@param[in] f item from the list equal_items the item c is equal to
|
|
(this parameter is optional)
|
|
|
|
@details
|
|
The method adds the constant item c to the equal_items list. If the list
|
|
doesn't have any constant item yet the item c is just put in the front
|
|
the list. Otherwise the value of c is compared with the value of the
|
|
constant item from equal_items. If they are not equal cond_false is set
|
|
to TRUE. This serves as an indicator that this Item_equal is always FALSE.
|
|
*/
|
|
|
|
void Item_equal::add_const(THD *thd, Item *c)
|
|
{
|
|
if (cond_false)
|
|
return;
|
|
if (!with_const)
|
|
{
|
|
with_const= TRUE;
|
|
equal_items.push_front(c, thd->mem_root);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
Suppose we have an expression (with a string type field) like this:
|
|
WHERE field=const1 AND field=const2 ...
|
|
|
|
For all pairs field=constXXX we know that:
|
|
|
|
- Item_func_eq::fix_length_and_dec() performed collation and character
|
|
set aggregation and added character set converters when needed.
|
|
Note, the case like:
|
|
WHERE field=const1 COLLATE latin1_bin AND field=const2
|
|
is not handled here, because the field would be replaced to
|
|
Item_func_set_collation, which cannot get into Item_equal.
|
|
So all constXXX that are handled by Item_equal
|
|
already have compatible character sets with "field".
|
|
|
|
- Also, Field_str::test_if_equality_guarantees_uniqueness() guarantees
|
|
that the comparison collation of all equalities handled by Item_equal
|
|
match the the collation of the field.
|
|
|
|
Therefore, at Item_equal::add_const() time all constants constXXX
|
|
should be directly comparable to each other without an additional
|
|
character set conversion.
|
|
It's safe to do val_str() for "const_item" and "c" and compare
|
|
them according to the collation of the *field*.
|
|
|
|
So in a script like this:
|
|
CREATE TABLE t1 (a VARCHAR(10) COLLATE xxx);
|
|
INSERT INTO t1 VALUES ('a'),('A');
|
|
SELECT * FROM t1 WHERE a='a' AND a='A';
|
|
Item_equal::add_const() effectively rewrites the condition to:
|
|
SELECT * FROM t1 WHERE a='a' AND 'a' COLLATE xxx='A';
|
|
and then to:
|
|
SELECT * FROM t1 WHERE a='a'; // if the two constants were equal
|
|
// e.g. in case of latin1_swedish_ci
|
|
or to:
|
|
SELECT * FROM t1 WHERE FALSE; // if the two constants were not equal
|
|
// e.g. in case of latin1_bin
|
|
|
|
Note, both "const_item" and "c" can return NULL, e.g.:
|
|
SELECT * FROM t1 WHERE a=NULL AND a='const';
|
|
SELECT * FROM t1 WHERE a='const' AND a=NULL;
|
|
SELECT * FROM t1 WHERE a='const' AND a=(SELECT MAX(a) FROM t2)
|
|
*/
|
|
|
|
cond_false= !Item_equal::compare_type_handler()->Item_eq_value(thd, this, c,
|
|
get_const());
|
|
if (with_const && equal_items.elements == 1)
|
|
cond_true= TRUE;
|
|
if (cond_false || cond_true)
|
|
const_item_cache= 1;
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Check whether a field is referred to in the multiple equality
|
|
|
|
@param field field whose occurrence is to be checked
|
|
|
|
@details
|
|
The function checks whether field is referred to by one of the
|
|
items from the equal_items list.
|
|
|
|
@retval
|
|
1 if multiple equality contains a reference to field
|
|
@retval
|
|
0 otherwise
|
|
*/
|
|
|
|
bool Item_equal::contains(Field *field)
|
|
{
|
|
Item_equal_fields_iterator it(*this);
|
|
while (it++)
|
|
{
|
|
if (field->eq(it.get_curr_field()))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Join members of another Item_equal object
|
|
|
|
@param item multiple equality whose members are to be joined
|
|
|
|
@details
|
|
The function actually merges two multiple equalities. After this operation
|
|
the Item_equal object additionally contains the field items of another item of
|
|
the type Item_equal.
|
|
If the optional constant items are not equal the cond_false flag is set to TRUE.
|
|
|
|
@notes
|
|
The function is called for any equality f1=f2 such that f1 and f2 are items
|
|
of the type Item_field or Item_direct_view_ref(Item_field), and, f1->field is
|
|
referred to in the list this->equal_items, while the list item->equal_items
|
|
contains a reference to f2->field.
|
|
*/
|
|
|
|
void Item_equal::merge(THD *thd, Item_equal *item)
|
|
{
|
|
Item *c= item->get_const();
|
|
if (c)
|
|
item->equal_items.pop();
|
|
equal_items.append(&item->equal_items);
|
|
if (c)
|
|
{
|
|
/*
|
|
The flag cond_false will be set to TRUE after this if
|
|
the multiple equality already contains a constant and its
|
|
value is not equal to the value of c.
|
|
*/
|
|
add_const(thd, c);
|
|
}
|
|
cond_false|= item->cond_false;
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Merge members of another Item_equal object into this one
|
|
|
|
@param item multiple equality whose members are to be merged
|
|
@param save_merged keep the list of equalities in 'item' intact
|
|
(e.g. for other merges)
|
|
|
|
@details
|
|
If the Item_equal 'item' happens to have some elements of the list
|
|
of equal items belonging to 'this' object then the function merges
|
|
the equal items from 'item' into this list.
|
|
If both lists contains constants and they are different then
|
|
the value of the cond_false flag is set to TRUE.
|
|
|
|
@retval
|
|
1 the lists of equal items in 'item' and 'this' contain common elements
|
|
@retval
|
|
0 otherwise
|
|
|
|
@notes
|
|
The method 'merge' just joins the list of equal items belonging to 'item'
|
|
to the list of equal items belonging to this object assuming that the lists
|
|
are disjoint. It would be more correct to call the method 'join'.
|
|
The method 'merge_into_with_check' really merges two lists of equal items if
|
|
they have common members.
|
|
*/
|
|
|
|
bool Item_equal::merge_with_check(THD *thd, Item_equal *item, bool save_merged)
|
|
{
|
|
bool intersected= FALSE;
|
|
Item_equal_fields_iterator_slow fi(*item);
|
|
|
|
while (fi++)
|
|
{
|
|
if (contains(fi.get_curr_field()))
|
|
{
|
|
intersected= TRUE;
|
|
if (!save_merged)
|
|
fi.remove();
|
|
}
|
|
}
|
|
if (intersected)
|
|
{
|
|
if (!save_merged)
|
|
merge(thd, item);
|
|
else
|
|
{
|
|
Item *c= item->get_const();
|
|
if (c)
|
|
add_const(thd, c);
|
|
if (!cond_false)
|
|
{
|
|
Item *item;
|
|
fi.rewind();
|
|
while ((item= fi++))
|
|
{
|
|
if (!contains(fi.get_curr_field()))
|
|
add(item, thd->mem_root);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return intersected;
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Merge this object into a list of Item_equal objects
|
|
|
|
@param list the list of Item_equal objects to merge into
|
|
@param save_merged keep the list of equalities in 'this' intact
|
|
(e.g. for other merges)
|
|
@param only_intersected do not merge if there are no common members
|
|
in any of Item_equal objects from the list
|
|
and this Item_equal
|
|
|
|
@details
|
|
If the list of equal items from 'this' object contains common members
|
|
with the lists of equal items belonging to Item_equal objects from 'list'
|
|
then all involved Item_equal objects e1,...,ek are merged into one
|
|
Item equal that replaces e1,...,ek in the 'list'. Otherwise, in the case
|
|
when the value of the parameter only_if_intersected is false, this
|
|
Item_equal is joined to the 'list'.
|
|
*/
|
|
|
|
void Item_equal::merge_into_list(THD *thd, List<Item_equal> *list,
|
|
bool save_merged,
|
|
bool only_intersected)
|
|
{
|
|
Item_equal *item;
|
|
List_iterator<Item_equal> it(*list);
|
|
Item_equal *merge_into= NULL;
|
|
while((item= it++))
|
|
{
|
|
if (!merge_into)
|
|
{
|
|
if (item->merge_with_check(thd, this, save_merged))
|
|
merge_into= item;
|
|
}
|
|
else
|
|
{
|
|
if (merge_into->merge_with_check(thd, item, false))
|
|
it.remove();
|
|
}
|
|
}
|
|
if (!only_intersected && !merge_into)
|
|
list->push_back(this, thd->mem_root);
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Order equal items of the multiple equality according to a sorting criteria
|
|
|
|
@param compare function to compare items from the equal_items list
|
|
@param arg context extra parameter for the cmp function
|
|
|
|
@details
|
|
The function performs ordering of the items from the equal_items list
|
|
according to the criteria determined by the cmp callback parameter.
|
|
If cmp(item1,item2,arg)<0 than item1 must be placed after item2.
|
|
|
|
@notes
|
|
The function sorts equal items by the bubble sort algorithm.
|
|
The list of field items is looked through and whenever two neighboring
|
|
members follow in a wrong order they are swapped. This is performed
|
|
again and again until we get all members in a right order.
|
|
*/
|
|
|
|
void Item_equal::sort(Item_field_cmpfunc compare, void *arg)
|
|
{
|
|
bubble_sort<Item>(&equal_items, compare, arg);
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Check appearance of new constant items in the multiple equality object
|
|
|
|
@details
|
|
The function checks appearance of new constant items among the members
|
|
of the equal_items list. Each new constant item is compared with
|
|
the constant item from the list if there is any. If there is none the first
|
|
new constant item is placed at the very beginning of the list and
|
|
with_const is set to TRUE. If it happens that the compared constant items
|
|
are unequal then the flag cond_false is set to TRUE.
|
|
|
|
@notes
|
|
Currently this function is called only after substitution of constant tables.
|
|
*/
|
|
|
|
void Item_equal::update_const(THD *thd)
|
|
{
|
|
List_iterator<Item> it(equal_items);
|
|
if (with_const)
|
|
it++;
|
|
Item *item;
|
|
while ((item= it++))
|
|
{
|
|
if (item->can_eval_in_optimize() &&
|
|
/*
|
|
Don't propagate constant status of outer-joined column.
|
|
Such a constant status here is a result of:
|
|
a) empty outer-joined table: in this case such a column has a
|
|
value of NULL; but at the same time other arguments of
|
|
Item_equal don't have to be NULLs and the value of the whole
|
|
multiple equivalence expression doesn't have to be NULL or FALSE
|
|
because of the outer join nature;
|
|
or
|
|
b) outer-joined table contains only 1 row: the result of
|
|
this column is equal to a row field value *or* NULL.
|
|
Both values are inacceptable as Item_equal constants.
|
|
*/
|
|
!item->is_outer_field())
|
|
{
|
|
if (item == equal_items.head())
|
|
with_const= TRUE;
|
|
else
|
|
{
|
|
it.remove();
|
|
add_const(thd, item);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Fix fields in a completely built multiple equality
|
|
|
|
@param thd currently not used thread handle
|
|
@param ref not used
|
|
|
|
@details
|
|
This function is called once the multiple equality has been built out of
|
|
the WHERE/ON condition and no new members are expected to be added to the
|
|
equal_items list anymore.
|
|
As any implementation of the virtual fix_fields method the function
|
|
calculates the cached values of not_null_tables_cache, used_tables_cache,
|
|
const_item_cache and calls fix_length_and_dec().
|
|
Additionally the function sets a reference to the Item_equal object in
|
|
the non-constant items of the equal_items list unless such a reference has
|
|
been already set.
|
|
|
|
@notes
|
|
Currently this function is called only in the function
|
|
build_equal_items_for_cond.
|
|
|
|
@retval
|
|
FALSE always
|
|
*/
|
|
|
|
bool Item_equal::fix_fields(THD *thd, Item **ref)
|
|
{
|
|
DBUG_ASSERT(fixed() == 0);
|
|
Item_equal_fields_iterator it(*this);
|
|
Item *item;
|
|
Field *first_equal_field= NULL;
|
|
Field *last_equal_field= NULL;
|
|
Field *prev_equal_field= NULL;
|
|
not_null_tables_cache= used_tables_cache= 0;
|
|
const_item_cache= 0;
|
|
while ((item= it++))
|
|
{
|
|
table_map tmp_table_map;
|
|
used_tables_cache|= item->used_tables();
|
|
tmp_table_map= item->not_null_tables();
|
|
not_null_tables_cache|= tmp_table_map;
|
|
DBUG_ASSERT(!item->with_sum_func() && !item->with_subquery());
|
|
if (item->maybe_null())
|
|
set_maybe_null();
|
|
if (!item->get_item_equal())
|
|
item->set_item_equal(this);
|
|
if (link_equal_fields && item->real_item()->type() == FIELD_ITEM)
|
|
{
|
|
last_equal_field= ((Item_field *) (item->real_item()))->field;
|
|
if (!prev_equal_field)
|
|
first_equal_field= last_equal_field;
|
|
else
|
|
prev_equal_field->next_equal_field= last_equal_field;
|
|
prev_equal_field= last_equal_field;
|
|
}
|
|
}
|
|
if (prev_equal_field && last_equal_field != first_equal_field)
|
|
last_equal_field->next_equal_field= first_equal_field;
|
|
if (fix_length_and_dec(thd))
|
|
return TRUE;
|
|
base_flags|= item_base_t::FIXED;
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
Update the value of the used table attribute and other attributes
|
|
*/
|
|
|
|
void Item_equal::update_used_tables()
|
|
{
|
|
not_null_tables_cache= used_tables_cache= 0;
|
|
if ((const_item_cache= cond_false || cond_true))
|
|
return;
|
|
Item_equal_fields_iterator it(*this);
|
|
Item *item;
|
|
const_item_cache= 1;
|
|
while ((item= it++))
|
|
{
|
|
item->update_used_tables();
|
|
used_tables_cache|= item->used_tables();
|
|
/* see commentary at Item_equal::update_const() */
|
|
const_item_cache&= item->const_item() && !item->is_outer_field();
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
@note
|
|
This multiple equality can contains elements belonging not to tables {T}
|
|
marked in 'allowed' . So we can ascertain null-rejectedness of field f
|
|
belonging to table t from {T} only if one of the following equality
|
|
predicate can be extracted from this multiple equality:
|
|
- f=const
|
|
- f=f' where f' is a field of some table from {T}
|
|
*/
|
|
|
|
bool Item_equal::find_not_null_fields(table_map allowed)
|
|
{
|
|
if (!(allowed & used_tables()))
|
|
return false;
|
|
bool checked= false;
|
|
Item_equal_fields_iterator it(*this);
|
|
Item *item;
|
|
while ((item= it++))
|
|
{
|
|
if (~allowed & item->used_tables())
|
|
continue;
|
|
if ((with_const || checked) && !item->find_not_null_fields(allowed))
|
|
continue;
|
|
Item_equal_fields_iterator it1(*this);
|
|
Item *item1;
|
|
while ((item1= it1++) && item1 != item)
|
|
{
|
|
if (~allowed & item1->used_tables())
|
|
continue;
|
|
if (!item->find_not_null_fields(allowed) &&
|
|
!item1->find_not_null_fields(allowed))
|
|
{
|
|
checked= true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
bool Item_equal::count_sargable_conds(void *arg)
|
|
{
|
|
SELECT_LEX *sel= (SELECT_LEX *) arg;
|
|
uint m= equal_items.elements;
|
|
sel->cond_count+= m*(m-1);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Evaluate multiple equality
|
|
|
|
@details
|
|
The function evaluate multiple equality to a boolean value.
|
|
The function ignores non-constant items from the equal_items list.
|
|
The function returns 1 if all constant items from the list are equal.
|
|
It returns 0 if there are unequal constant items in the list or
|
|
one of the constant items is evaluated to NULL.
|
|
|
|
@notes
|
|
Currently this function can be called only at the optimization
|
|
stage after the constant table substitution, since all Item_equals
|
|
are eliminated before the execution stage.
|
|
|
|
@retval
|
|
0 multiple equality is always FALSE or NULL
|
|
1 otherwise
|
|
*/
|
|
|
|
bool Item_equal::val_bool()
|
|
{
|
|
if (cond_false)
|
|
return 0;
|
|
if (cond_true)
|
|
return 1;
|
|
Item *item= get_const();
|
|
Item_equal_fields_iterator it(*this);
|
|
if (!item)
|
|
item= it++;
|
|
eval_item->store_value(item);
|
|
if ((null_value= item->null_value))
|
|
return 0;
|
|
while ((item= it++))
|
|
{
|
|
Field *field= it.get_curr_field();
|
|
/* Skip fields of tables that has not been read yet */
|
|
if (!field->table->status || (field->table->status & STATUS_NULL_ROW))
|
|
{
|
|
const int rc= eval_item->cmp(item);
|
|
if ((rc == TRUE) || (null_value= (rc == UNKNOWN)))
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
bool Item_equal::fix_length_and_dec(THD *thd)
|
|
{
|
|
Item *item= get_first(NO_PARTICULAR_TAB, NULL);
|
|
const Type_handler *handler= item->type_handler();
|
|
eval_item= handler->make_cmp_item(thd, item->collation.collation);
|
|
return eval_item == NULL;
|
|
}
|
|
|
|
|
|
bool Item_equal::walk(Item_processor processor, bool walk_subquery, void *arg)
|
|
{
|
|
Item *item;
|
|
Item_equal_fields_iterator it(*this);
|
|
while ((item= it++))
|
|
{
|
|
if (item->walk(processor, walk_subquery, arg))
|
|
return 1;
|
|
}
|
|
return Item_func::walk(processor, walk_subquery, arg);
|
|
}
|
|
|
|
|
|
Item *Item_equal::transform(THD *thd, Item_transformer transformer, uchar *arg)
|
|
{
|
|
DBUG_ASSERT(!thd->stmt_arena->is_stmt_prepare());
|
|
|
|
Item *item;
|
|
Item_equal_fields_iterator it(*this);
|
|
while ((item= it++))
|
|
{
|
|
Item *new_item= item->transform(thd, transformer, arg);
|
|
if (!new_item)
|
|
return 0;
|
|
|
|
/*
|
|
THD::change_item_tree() should be called only if the tree was
|
|
really transformed, i.e. when a new item has been created.
|
|
Otherwise we'll be allocating a lot of unnecessary memory for
|
|
change records at each execution.
|
|
*/
|
|
if (new_item != item)
|
|
thd->change_item_tree((Item **) it.ref(), new_item);
|
|
}
|
|
return Item_func::transform(thd, transformer, arg);
|
|
}
|
|
|
|
|
|
void Item_equal::print(String *str, enum_query_type query_type)
|
|
{
|
|
if (cond_false)
|
|
{
|
|
str->append('0');
|
|
return;
|
|
}
|
|
str->append(func_name_cstring());
|
|
str->append('(');
|
|
List_iterator_fast<Item> it(equal_items);
|
|
Item *item;
|
|
item= it++;
|
|
item->print(str, query_type);
|
|
while ((item= it++))
|
|
{
|
|
str->append(',');
|
|
str->append(' ');
|
|
item->print(str, query_type);
|
|
}
|
|
str->append(')');
|
|
}
|
|
|
|
|
|
/*
|
|
@brief Get the first equal field of multiple equality.
|
|
@param[in] field the field to get equal field to
|
|
|
|
@details Get the first field of multiple equality that is equal to the
|
|
given field. In order to make semi-join materialization strategy work
|
|
correctly we can't propagate equal fields from upper select to a
|
|
materialized semi-join.
|
|
Thus the fields is returned according to following rules:
|
|
|
|
1) If the given field belongs to a semi-join then the first field in
|
|
multiple equality which belong to the same semi-join is returned.
|
|
Otherwise NULL is returned.
|
|
2) If the given field doesn't belong to a semi-join then
|
|
the first field in the multiple equality that doesn't belong to any
|
|
semi-join is returned.
|
|
If all fields in the equality are belong to semi-join(s) then NULL
|
|
is returned.
|
|
3) If no field is given then the first field in the multiple equality
|
|
is returned without regarding whether it belongs to a semi-join or not.
|
|
|
|
@retval Found first field in the multiple equality.
|
|
@retval 0 if no field found.
|
|
*/
|
|
|
|
Item* Item_equal::get_first(JOIN_TAB *context, Item *field_item)
|
|
{
|
|
Item_equal_fields_iterator it(*this);
|
|
Item *item;
|
|
if (!field_item)
|
|
return (it++);
|
|
Field *field= ((Item_field *) (field_item->real_item()))->field;
|
|
|
|
/*
|
|
Of all equal fields, return the first one we can use. Normally, this is the
|
|
field which belongs to the table that is the first in the join order.
|
|
|
|
There is one exception to this: When semi-join materialization strategy is
|
|
used, and the given field belongs to a table within the semi-join nest, we
|
|
must pick the first field in the semi-join nest.
|
|
|
|
Example: suppose we have a join order:
|
|
|
|
ot1 ot2 SJ-Mat(it1 it2 it3) ot3
|
|
|
|
and equality ot2.col = it1.col = it2.col
|
|
If we're looking for best substitute for 'it2.col', we should pick it1.col
|
|
and not ot2.col.
|
|
|
|
eliminate_item_equal() also has code that deals with equality substitution
|
|
in presence of SJM nests.
|
|
*/
|
|
|
|
TABLE_LIST *emb_nest;
|
|
if (context != NO_PARTICULAR_TAB)
|
|
emb_nest= context->emb_sj_nest;
|
|
else
|
|
emb_nest= field->table->pos_in_table_list->embedding;
|
|
|
|
if (emb_nest && emb_nest->sj_mat_info && emb_nest->sj_mat_info->is_used)
|
|
{
|
|
/*
|
|
It's a field from an materialized semi-join. We can substitute it for
|
|
- a constant item
|
|
- a field from the same semi-join
|
|
Find the first of such items:
|
|
*/
|
|
while ((item= it++))
|
|
{
|
|
if (item->const_item() ||
|
|
it.get_curr_field()->table->pos_in_table_list->embedding == emb_nest)
|
|
{
|
|
/*
|
|
If we found given field then return NULL to avoid unnecessary
|
|
substitution.
|
|
*/
|
|
return (item != field_item) ? item : NULL;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
The field is not in SJ-Materialization nest. We must return the first
|
|
field in the join order. The field may be inside a semi-join nest, i.e
|
|
a join order may look like this:
|
|
|
|
SJ-Mat(it1 it2) ot1 ot2
|
|
|
|
where we're looking what to substitute ot2.col for. In this case we must
|
|
still return it1.col, here's a proof why:
|
|
|
|
First let's note that either it1.col or it2.col participates in
|
|
subquery's IN-equality. It can't be otherwise, because materialization is
|
|
only applicable to uncorrelated subqueries, so the only way we could
|
|
infer "it1.col=ot1.col" is from the IN-equality. Ok, so IN-eqality has
|
|
it1.col or it2.col on its inner side. it1.col is first such item in the
|
|
join order, so it's not possible for SJ-Mat to be
|
|
SJ-Materialization-lookup, it is SJ-Materialization-Scan. The scan part
|
|
of this strategy will unpack value of it1.col=it2.col into it1.col
|
|
(that's the first equal item inside the subquery), and we'll be able to
|
|
get it from there. qed.
|
|
*/
|
|
|
|
return equal_items.head();
|
|
}
|
|
// Shouldn't get here.
|
|
DBUG_ASSERT(0);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
bool Item_func_dyncol_check::val_bool()
|
|
{
|
|
char buff[STRING_BUFFER_USUAL_SIZE];
|
|
String tmp(buff, sizeof(buff), &my_charset_bin);
|
|
DYNAMIC_COLUMN col;
|
|
String *str;
|
|
enum enum_dyncol_func_result rc;
|
|
|
|
str= args[0]->val_str(&tmp);
|
|
if (args[0]->null_value)
|
|
goto null;
|
|
col.length= str->length();
|
|
/* We do not change the string, so could do this trick */
|
|
col.str= (char *)str->ptr();
|
|
rc= mariadb_dyncol_check(&col);
|
|
if (rc < 0 && rc != ER_DYNCOL_FORMAT)
|
|
{
|
|
dynamic_column_error_message(rc);
|
|
goto null;
|
|
}
|
|
null_value= FALSE;
|
|
return rc == ER_DYNCOL_OK;
|
|
|
|
null:
|
|
null_value= TRUE;
|
|
return 0;
|
|
}
|
|
|
|
bool Item_func_dyncol_exists::val_bool()
|
|
{
|
|
char buff[STRING_BUFFER_USUAL_SIZE], nmstrbuf[11];
|
|
String tmp(buff, sizeof(buff), &my_charset_bin),
|
|
nmbuf(nmstrbuf, sizeof(nmstrbuf), system_charset_info);
|
|
DYNAMIC_COLUMN col;
|
|
String *str;
|
|
LEX_STRING buf, *name= NULL;
|
|
ulonglong num= 0;
|
|
enum enum_dyncol_func_result rc;
|
|
|
|
if (args[1]->result_type() == INT_RESULT)
|
|
num= args[1]->val_int();
|
|
else
|
|
{
|
|
String *nm= args[1]->val_str(&nmbuf);
|
|
if (!nm || args[1]->null_value)
|
|
{
|
|
null_value= 1;
|
|
return 1;
|
|
}
|
|
if (my_charset_same(nm->charset(), DYNCOL_UTF))
|
|
{
|
|
buf.str= (char *) nm->ptr();
|
|
buf.length= nm->length();
|
|
}
|
|
else
|
|
{
|
|
uint strlen= nm->length() * DYNCOL_UTF->mbmaxlen + 1;
|
|
uint dummy_errors;
|
|
buf.str= (char *) current_thd->alloc(strlen);
|
|
if (buf.str)
|
|
{
|
|
buf.length=
|
|
copy_and_convert(buf.str, strlen, DYNCOL_UTF,
|
|
nm->ptr(), nm->length(), nm->charset(),
|
|
&dummy_errors);
|
|
}
|
|
else
|
|
buf.length= 0;
|
|
}
|
|
name= &buf;
|
|
}
|
|
str= args[0]->val_str(&tmp);
|
|
if (args[0]->null_value || args[1]->null_value || num > UINT_MAX16)
|
|
goto null;
|
|
col.length= str->length();
|
|
/* We do not change the string, so could do this trick */
|
|
col.str= (char *)str->ptr();
|
|
rc= ((name == NULL) ?
|
|
mariadb_dyncol_exists_num(&col, (uint) num) :
|
|
mariadb_dyncol_exists_named(&col, name));
|
|
if (rc < 0)
|
|
{
|
|
dynamic_column_error_message(rc);
|
|
goto null;
|
|
}
|
|
null_value= FALSE;
|
|
return rc == ER_DYNCOL_YES;
|
|
|
|
null:
|
|
null_value= TRUE;
|
|
return 0;
|
|
}
|
|
|
|
|
|
Item_bool_rowready_func2 *Eq_creator::create(THD *thd, Item *a, Item *b) const
|
|
{
|
|
return new(thd->mem_root) Item_func_eq(thd, a, b);
|
|
}
|
|
|
|
|
|
Item_bool_rowready_func2* Eq_creator::create_swap(THD *thd, Item *a, Item *b) const
|
|
{
|
|
return new(thd->mem_root) Item_func_eq(thd, b, a);
|
|
}
|
|
|
|
|
|
Item_bool_rowready_func2* Ne_creator::create(THD *thd, Item *a, Item *b) const
|
|
{
|
|
return new(thd->mem_root) Item_func_ne(thd, a, b);
|
|
}
|
|
|
|
|
|
Item_bool_rowready_func2* Ne_creator::create_swap(THD *thd, Item *a, Item *b) const
|
|
{
|
|
return new(thd->mem_root) Item_func_ne(thd, b, a);
|
|
}
|
|
|
|
|
|
Item_bool_rowready_func2* Gt_creator::create(THD *thd, Item *a, Item *b) const
|
|
{
|
|
return new(thd->mem_root) Item_func_gt(thd, a, b);
|
|
}
|
|
|
|
|
|
Item_bool_rowready_func2* Gt_creator::create_swap(THD *thd, Item *a, Item *b) const
|
|
{
|
|
return new(thd->mem_root) Item_func_lt(thd, b, a);
|
|
}
|
|
|
|
|
|
Item_bool_rowready_func2* Lt_creator::create(THD *thd, Item *a, Item *b) const
|
|
{
|
|
return new(thd->mem_root) Item_func_lt(thd, a, b);
|
|
}
|
|
|
|
|
|
Item_bool_rowready_func2* Lt_creator::create_swap(THD *thd, Item *a, Item *b) const
|
|
{
|
|
return new(thd->mem_root) Item_func_gt(thd, b, a);
|
|
}
|
|
|
|
|
|
Item_bool_rowready_func2* Ge_creator::create(THD *thd, Item *a, Item *b) const
|
|
{
|
|
return new(thd->mem_root) Item_func_ge(thd, a, b);
|
|
}
|
|
|
|
|
|
Item_bool_rowready_func2* Ge_creator::create_swap(THD *thd, Item *a, Item *b) const
|
|
{
|
|
return new(thd->mem_root) Item_func_le(thd, b, a);
|
|
}
|
|
|
|
|
|
Item_bool_rowready_func2* Le_creator::create(THD *thd, Item *a, Item *b) const
|
|
{
|
|
return new(thd->mem_root) Item_func_le(thd, a, b);
|
|
}
|
|
|
|
|
|
Item_bool_rowready_func2* Le_creator::create_swap(THD *thd, Item *a, Item *b) const
|
|
{
|
|
return new(thd->mem_root) Item_func_ge(thd, b, a);
|
|
}
|
|
|
|
|
|
bool
|
|
Item_equal::excl_dep_on_grouping_fields(st_select_lex *sel)
|
|
{
|
|
Item_equal_fields_iterator it(*this);
|
|
Item *item;
|
|
|
|
while ((item=it++))
|
|
{
|
|
if (item->excl_dep_on_grouping_fields(sel))
|
|
{
|
|
set_extraction_flag(MARKER_FULL_EXTRACTION);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/**
|
|
@brief
|
|
Transform multiple equality into list of equalities
|
|
|
|
@param thd the thread handle
|
|
@param equalities the list where created equalities are stored
|
|
@param checker the checker callback function to be applied to the nodes
|
|
of the tree of the object to check if multiple equality
|
|
elements can be used to create equalities
|
|
@param arg parameter to be passed to the checker
|
|
@param clone_const true <=> clone the constant member if there is any
|
|
|
|
@details
|
|
How the method works on examples:
|
|
|
|
Example 1:
|
|
It takes MULT_EQ(x,a,b) and tries to create from its elements a set of
|
|
equalities {(x=a),(x=b)}.
|
|
|
|
Example 2:
|
|
It takes MULT_EQ(1,a,b) and tries to create from its elements a set of
|
|
equalities {(a=1),(a=b)}.
|
|
|
|
How it is done:
|
|
|
|
1. If there is a constant member c the first non-constant member x for
|
|
which the function checker returns true is taken and an item for
|
|
the equality x=c is created. When constructing the equality item
|
|
the left part of the equality is always taken as a clone of x while
|
|
the right part is taken as a clone of c only if clone_const == true.
|
|
|
|
2. After this all equalities of the form x=a (where x designates the first
|
|
non-constant member for which checker returns true and a is some other
|
|
such member of the multiplle equality) are created. When constructing
|
|
an equality item both its parts are taken as clones of x and a.
|
|
|
|
Suppose in the examples above that for 'x', 'a', and 'b' the function
|
|
checker returns true.
|
|
|
|
Example 1:
|
|
the equality (x=a) is built
|
|
the equality (x=b) is built
|
|
|
|
Example 2:
|
|
the equality (a=1) is built
|
|
the equality (a=b) is built
|
|
|
|
3. As a result we get a set of equalities built with the elements of
|
|
this multiple equality. They are saved in the equality list.
|
|
|
|
Example 1:
|
|
{(x=a),(x=b)}
|
|
|
|
Example 2:
|
|
{(a=1),(a=b)}
|
|
|
|
@note
|
|
This method is called for condition pushdown into materialized
|
|
derived table/view, and IN subquery, and pushdown from HAVING into WHERE.
|
|
When it is called for pushdown from HAVING the empty checker is passed.
|
|
This is because in this case the elements of the multiple equality don't
|
|
need to be checked if they can be used to build equalities: either all
|
|
equalities can be pushed or none of them can be pushed.
|
|
When the function is called for pushdown from HAVING the value of the
|
|
parameter clone_const is always false. In other cases it's always true.
|
|
|
|
@retval true if an error occurs
|
|
@retval false otherwise
|
|
*/
|
|
|
|
bool Item_equal::create_pushable_equalities(THD *thd,
|
|
List<Item> *equalities,
|
|
Pushdown_checker checker,
|
|
uchar *arg,
|
|
bool clone_const)
|
|
{
|
|
Item *item;
|
|
Item *left_item= NULL;
|
|
Item *right_item = get_const();
|
|
Item_equal_fields_iterator it(*this);
|
|
|
|
while ((item=it++))
|
|
{
|
|
if (!checker || ((item->*checker)(arg)))
|
|
{
|
|
left_item= item;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!left_item)
|
|
return false;
|
|
|
|
if (right_item)
|
|
{
|
|
Item_func_eq *eq= 0;
|
|
Item *left_item_clone= left_item->build_clone(thd);
|
|
Item *right_item_clone= !clone_const ?
|
|
right_item : right_item->build_clone(thd);
|
|
if (!left_item_clone || !right_item_clone)
|
|
return true;
|
|
eq= new (thd->mem_root) Item_func_eq(thd,
|
|
left_item_clone,
|
|
right_item_clone);
|
|
if (!eq || equalities->push_back(eq, thd->mem_root))
|
|
return true;
|
|
if (!clone_const)
|
|
{
|
|
/*
|
|
Also set IMMUTABLE_FL for any sub-items of the right_item.
|
|
This is needed to prevent Item::cleanup_excluding_immutables_processor
|
|
from peforming cleanup of the sub-items and so creating an item tree
|
|
where a fixed item has non-fixed items inside it.
|
|
*/
|
|
int16 new_flag= MARKER_IMMUTABLE;
|
|
right_item->walk(&Item::set_extraction_flag_processor, false,
|
|
(void*)&new_flag);
|
|
}
|
|
}
|
|
|
|
while ((item=it++))
|
|
{
|
|
if (checker && !((item->*checker) (arg)))
|
|
continue;
|
|
Item_func_eq *eq= 0;
|
|
Item *left_item_clone= left_item->build_clone(thd);
|
|
Item *right_item_clone= item->build_clone(thd);
|
|
if (!(left_item_clone && right_item_clone))
|
|
return true;
|
|
left_item_clone->set_item_equal(NULL);
|
|
right_item_clone->set_item_equal(NULL);
|
|
eq= new (thd->mem_root) Item_func_eq(thd,
|
|
right_item_clone,
|
|
left_item_clone);
|
|
if (!eq || equalities->push_back(eq, thd->mem_root))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/**
|
|
Transform multiple equality into the AND condition of equalities.
|
|
|
|
Example:
|
|
MULT_EQ(x,a,b)
|
|
=>
|
|
(x=a) AND (x=b)
|
|
|
|
Equalities are built in Item_equal::create_pushable_equalities() method
|
|
using elements of this multiple equality. The result of this method is
|
|
saved in an equality list.
|
|
This method returns the condition where the elements of the equality list
|
|
are anded.
|
|
*/
|
|
|
|
Item *Item_equal::multiple_equality_transformer(THD *thd, uchar *arg)
|
|
{
|
|
List<Item> equalities;
|
|
if (create_pushable_equalities(thd, &equalities, 0, 0, false))
|
|
return 0;
|
|
|
|
switch (equalities.elements)
|
|
{
|
|
case 0:
|
|
return 0;
|
|
case 1:
|
|
return equalities.head();
|
|
break;
|
|
default:
|
|
return new (thd->mem_root) Item_cond_and(thd, equalities);
|
|
break;
|
|
}
|
|
}
|
|
|