mirror of
https://github.com/MariaDB/server.git
synced 2025-01-22 06:44:16 +01:00
588 lines
23 KiB
C++
588 lines
23 KiB
C++
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
|
|
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
|
|
|
|
/*
|
|
COPYING CONDITIONS NOTICE:
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of version 2 of the GNU General Public License as
|
|
published by the Free Software Foundation, and provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain this COPYING
|
|
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
|
|
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
|
|
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
|
|
GRANT (below).
|
|
|
|
* Redistributions in binary form must reproduce this COPYING
|
|
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
|
|
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
|
|
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
|
|
GRANT (below) in the documentation and/or other materials
|
|
provided with the distribution.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
02110-1301, USA.
|
|
|
|
COPYRIGHT NOTICE:
|
|
|
|
TokuFT, Tokutek Fractal Tree Indexing Library.
|
|
Copyright (C) 2007-2013 Tokutek, Inc.
|
|
|
|
DISCLAIMER:
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
UNIVERSITY PATENT NOTICE:
|
|
|
|
The technology is licensed by the Massachusetts Institute of
|
|
Technology, Rutgers State University of New Jersey, and the Research
|
|
Foundation of State University of New York at Stony Brook under
|
|
United States of America Serial No. 11/760379 and to the patents
|
|
and/or patent applications resulting from it.
|
|
|
|
PATENT MARKING NOTICE:
|
|
|
|
This software is covered by US Patent No. 8,185,551.
|
|
This software is covered by US Patent No. 8,489,638.
|
|
|
|
PATENT RIGHTS GRANT:
|
|
|
|
"THIS IMPLEMENTATION" means the copyrightable works distributed by
|
|
Tokutek as part of the Fractal Tree project.
|
|
|
|
"PATENT CLAIMS" means the claims of patents that are owned or
|
|
licensable by Tokutek, both currently or in the future; and that in
|
|
the absence of this license would be infringed by THIS
|
|
IMPLEMENTATION or by using or running THIS IMPLEMENTATION.
|
|
|
|
"PATENT CHALLENGE" shall mean a challenge to the validity,
|
|
patentability, enforceability and/or non-infringement of any of the
|
|
PATENT CLAIMS or otherwise opposing any of the PATENT CLAIMS.
|
|
|
|
Tokutek hereby grants to you, for the term and geographical scope of
|
|
the PATENT CLAIMS, a non-exclusive, no-charge, royalty-free,
|
|
irrevocable (except as stated in this section) patent license to
|
|
make, have made, use, offer to sell, sell, import, transfer, and
|
|
otherwise run, modify, and propagate the contents of THIS
|
|
IMPLEMENTATION, where such license applies only to the PATENT
|
|
CLAIMS. This grant does not include claims that would be infringed
|
|
only as a consequence of further modifications of THIS
|
|
IMPLEMENTATION. If you or your agent or licensee institute or order
|
|
or agree to the institution of patent litigation against any entity
|
|
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
|
THIS IMPLEMENTATION constitutes direct or contributory patent
|
|
infringement, or inducement of patent infringement, then any rights
|
|
granted to you under this License shall terminate as of the date
|
|
such litigation is filed. If you or your agent or exclusive
|
|
licensee institute or order or agree to the institution of a PATENT
|
|
CHALLENGE, then Tokutek may terminate any rights granted to you
|
|
under this License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "ft/bndata.h"
|
|
#include "ft/comparator.h"
|
|
#include "ft/ft.h"
|
|
#include "ft/msg_buffer.h"
|
|
|
|
/* Pivot keys.
|
|
* Child 0's keys are <= pivotkeys[0].
|
|
* Child 1's keys are <= pivotkeys[1].
|
|
* Child 1's keys are > pivotkeys[0].
|
|
* etc
|
|
*/
|
|
class ftnode_pivot_keys {
|
|
public:
|
|
// effect: create an empty set of pivot keys
|
|
void create_empty();
|
|
|
|
// effect: create pivot keys by copying the given DBT array
|
|
void create_from_dbts(const DBT *keys, int n);
|
|
|
|
// effect: create pivot keys as a clone of an existing set of pivotkeys
|
|
void create_from_pivot_keys(const ftnode_pivot_keys &pivotkeys);
|
|
|
|
void destroy();
|
|
|
|
// effect: deserialize pivot keys previously serialized by serialize_to_wbuf()
|
|
void deserialize_from_rbuf(struct rbuf *rb, int n);
|
|
|
|
// returns: unowned DBT representing the i'th pivot key
|
|
DBT get_pivot(int i) const;
|
|
|
|
// effect: fills a DBT with the i'th pivot key
|
|
// returns: the given dbt
|
|
DBT *fill_pivot(int i, DBT *dbt) const;
|
|
|
|
// effect: insert a pivot into the i'th position, shifting others to the right
|
|
void insert_at(const DBT *key, int i);
|
|
|
|
// effect: append pivotkeys to the end of our own pivot keys
|
|
void append(const ftnode_pivot_keys &pivotkeys);
|
|
|
|
// effect: replace the pivot at the i'th position
|
|
void replace_at(const DBT *key, int i);
|
|
|
|
// effect: removes the i'th pivot key, shifting others to the left
|
|
void delete_at(int i);
|
|
|
|
// effect: split the pivot keys, removing all pivots at position greater
|
|
// than or equal to `i' and storing them in *other
|
|
// requires: *other is empty (size == 0)
|
|
void split_at(int i, ftnode_pivot_keys *other);
|
|
|
|
// effect: serialize pivot keys to a wbuf
|
|
// requires: wbuf has at least ftnode_pivot_keys::total_size() bytes available
|
|
void serialize_to_wbuf(struct wbuf *wb) const;
|
|
|
|
int num_pivots() const;
|
|
|
|
// return: the total size of this data structure
|
|
size_t total_size() const;
|
|
|
|
// return: the sum of the keys sizes of each pivot (for serialization)
|
|
size_t serialized_size() const;
|
|
|
|
private:
|
|
inline size_t _align4(size_t x) const {
|
|
return roundup_to_multiple(4, x);
|
|
}
|
|
|
|
// effect: create pivot keys, in fixed key format, by copying the given key array
|
|
void _create_from_fixed_keys(const char *fixedkeys, size_t fixed_keylen, int n);
|
|
|
|
char *_fixed_key(int i) const {
|
|
return &_fixed_keys[i * _fixed_keylen_aligned];
|
|
}
|
|
|
|
bool _fixed_format() const {
|
|
return _fixed_keys != nullptr;
|
|
}
|
|
|
|
void sanity_check() const;
|
|
|
|
void _insert_at_dbt(const DBT *key, int i);
|
|
void _append_dbt(const ftnode_pivot_keys &pivotkeys);
|
|
void _replace_at_dbt(const DBT *key, int i);
|
|
void _delete_at_dbt(int i);
|
|
void _split_at_dbt(int i, ftnode_pivot_keys *other);
|
|
|
|
void _insert_at_fixed(const DBT *key, int i);
|
|
void _append_fixed(const ftnode_pivot_keys &pivotkeys);
|
|
void _replace_at_fixed(const DBT *key, int i);
|
|
void _delete_at_fixed(int i);
|
|
void _split_at_fixed(int i, ftnode_pivot_keys *other);
|
|
|
|
// adds/destroys keys at a certain index (in dbt format),
|
|
// maintaining _total_size, but not _num_pivots
|
|
void _add_key_dbt(const DBT *key, int i);
|
|
void _destroy_key_dbt(int i);
|
|
|
|
// conversions to and from packed key array format
|
|
void _convert_to_dbt_format();
|
|
void _convert_to_fixed_format();
|
|
|
|
// If every key is _fixed_keylen long, then _fixed_key is a
|
|
// packed array of keys..
|
|
char *_fixed_keys;
|
|
// The actual length of the fixed key
|
|
size_t _fixed_keylen;
|
|
// The aligned length that we use for fixed key storage
|
|
size_t _fixed_keylen_aligned;
|
|
|
|
// ..otherwise _fixed_keys is null and we store an array of dbts,
|
|
// each representing a key. this is simpler but less cache-efficient.
|
|
DBT *_dbt_keys;
|
|
|
|
int _num_pivots;
|
|
size_t _total_size;
|
|
};
|
|
|
|
// TODO: class me up
|
|
struct ftnode {
|
|
MSN max_msn_applied_to_node_on_disk; // max_msn_applied that will be written to disk
|
|
unsigned int flags;
|
|
BLOCKNUM blocknum; // Which block number is this node?
|
|
int layout_version; // What version of the data structure?
|
|
int layout_version_original; // different (<) from layout_version if upgraded from a previous version (useful for debugging)
|
|
int layout_version_read_from_disk; // transient, not serialized to disk, (useful for debugging)
|
|
uint32_t build_id; // build_id (svn rev number) of software that wrote this node to disk
|
|
int height; /* height is always >= 0. 0 for leaf, >0 for nonleaf. */
|
|
int dirty;
|
|
uint32_t fullhash;
|
|
|
|
// for internal nodes, if n_children==fanout+1 then the tree needs to be rebalanced.
|
|
// for leaf nodes, represents number of basement nodes
|
|
int n_children;
|
|
ftnode_pivot_keys pivotkeys;
|
|
|
|
// What's the oldest referenced xid that this node knows about? The real oldest
|
|
// referenced xid might be younger, but this is our best estimate. We use it
|
|
// as a heuristic to transition provisional mvcc entries from provisional to
|
|
// committed (from implicity committed to really committed).
|
|
//
|
|
// A better heuristic would be the oldest live txnid, but we use this since it
|
|
// still works well most of the time, and its readily available on the inject
|
|
// code path.
|
|
TXNID oldest_referenced_xid_known;
|
|
|
|
// array of size n_children, consisting of ftnode partitions
|
|
// each one is associated with a child
|
|
// for internal nodes, the ith partition corresponds to the ith message buffer
|
|
// for leaf nodes, the ith partition corresponds to the ith basement node
|
|
struct ftnode_partition *bp;
|
|
struct ctpair *ct_pair;
|
|
};
|
|
typedef struct ftnode *FTNODE;
|
|
|
|
// data of an available partition of a leaf ftnode
|
|
struct ftnode_leaf_basement_node {
|
|
bn_data data_buffer;
|
|
unsigned int seqinsert; // number of sequential inserts to this leaf
|
|
MSN max_msn_applied; // max message sequence number applied
|
|
bool stale_ancestor_messages_applied;
|
|
STAT64INFO_S stat64_delta; // change in stat64 counters since basement was last written to disk
|
|
};
|
|
typedef struct ftnode_leaf_basement_node *BASEMENTNODE;
|
|
|
|
enum pt_state { // declare this to be packed so that when used below it will only take 1 byte.
|
|
PT_INVALID = 0,
|
|
PT_ON_DISK = 1,
|
|
PT_COMPRESSED = 2,
|
|
PT_AVAIL = 3};
|
|
|
|
enum ftnode_child_tag {
|
|
BCT_INVALID = 0,
|
|
BCT_NULL,
|
|
BCT_SUBBLOCK,
|
|
BCT_LEAF,
|
|
BCT_NONLEAF
|
|
};
|
|
|
|
typedef toku::omt<int32_t> off_omt_t;
|
|
typedef toku::omt<int32_t, int32_t, true> marked_off_omt_t;
|
|
|
|
// data of an available partition of a nonleaf ftnode
|
|
struct ftnode_nonleaf_childinfo {
|
|
message_buffer msg_buffer;
|
|
off_omt_t broadcast_list;
|
|
marked_off_omt_t fresh_message_tree;
|
|
off_omt_t stale_message_tree;
|
|
uint64_t flow[2]; // current and last checkpoint
|
|
};
|
|
typedef struct ftnode_nonleaf_childinfo *NONLEAF_CHILDINFO;
|
|
|
|
typedef struct ftnode_child_pointer {
|
|
union {
|
|
struct sub_block *subblock;
|
|
struct ftnode_nonleaf_childinfo *nonleaf;
|
|
struct ftnode_leaf_basement_node *leaf;
|
|
} u;
|
|
enum ftnode_child_tag tag;
|
|
} FTNODE_CHILD_POINTER;
|
|
|
|
struct ftnode_disk_data {
|
|
//
|
|
// stores the offset to the beginning of the partition on disk from the ftnode, and the length, needed to read a partition off of disk
|
|
// the value is only meaningful if the node is clean. If the node is dirty, then the value is meaningless
|
|
// The START is the distance from the end of the compressed node_info data, to the beginning of the compressed partition
|
|
// The SIZE is the size of the compressed partition.
|
|
// Rationale: We cannot store the size from the beginning of the node since we don't know how big the header will be.
|
|
// However, later when we are doing aligned writes, we won't be able to store the size from the end since we want things to align.
|
|
uint32_t start;
|
|
uint32_t size;
|
|
};
|
|
typedef struct ftnode_disk_data *FTNODE_DISK_DATA;
|
|
|
|
// TODO: Turn these into functions instead of macros
|
|
#define BP_START(node_dd,i) ((node_dd)[i].start)
|
|
#define BP_SIZE(node_dd,i) ((node_dd)[i].size)
|
|
|
|
// a ftnode partition, associated with a child of a node
|
|
struct ftnode_partition {
|
|
// the following three variables are used for nonleaf nodes
|
|
// for leaf nodes, they are meaningless
|
|
BLOCKNUM blocknum; // blocknum of child
|
|
|
|
// How many bytes worth of work was performed by messages in each buffer.
|
|
uint64_t workdone;
|
|
|
|
//
|
|
// pointer to the partition. Depending on the state, they may be different things
|
|
// if state == PT_INVALID, then the node was just initialized and ptr == NULL
|
|
// if state == PT_ON_DISK, then ptr == NULL
|
|
// if state == PT_COMPRESSED, then ptr points to a struct sub_block*
|
|
// if state == PT_AVAIL, then ptr is:
|
|
// a struct ftnode_nonleaf_childinfo for internal nodes,
|
|
// a struct ftnode_leaf_basement_node for leaf nodes
|
|
//
|
|
struct ftnode_child_pointer ptr;
|
|
//
|
|
// at any time, the partitions may be in one of the following three states (stored in pt_state):
|
|
// PT_INVALID - means that the partition was just initialized
|
|
// PT_ON_DISK - means that the partition is not in memory and needs to be read from disk. To use, must read off disk and decompress
|
|
// PT_COMPRESSED - means that the partition is compressed in memory. To use, must decompress
|
|
// PT_AVAIL - means the partition is decompressed and in memory
|
|
//
|
|
enum pt_state state; // make this an enum to make debugging easier.
|
|
|
|
// clock count used to for pe_callback to determine if a node should be evicted or not
|
|
// for now, saturating the count at 1
|
|
uint8_t clock_count;
|
|
};
|
|
|
|
//
|
|
// TODO: Fix all these names
|
|
// Organize declarations
|
|
// Fix widespread parameter ordering inconsistencies
|
|
//
|
|
BASEMENTNODE toku_create_empty_bn(void);
|
|
BASEMENTNODE toku_create_empty_bn_no_buffer(void); // create a basement node with a null buffer.
|
|
NONLEAF_CHILDINFO toku_clone_nl(NONLEAF_CHILDINFO orig_childinfo);
|
|
BASEMENTNODE toku_clone_bn(BASEMENTNODE orig_bn);
|
|
NONLEAF_CHILDINFO toku_create_empty_nl(void);
|
|
void destroy_basement_node (BASEMENTNODE bn);
|
|
void destroy_nonleaf_childinfo (NONLEAF_CHILDINFO nl);
|
|
void toku_destroy_ftnode_internals(FTNODE node);
|
|
void toku_ftnode_free (FTNODE *node);
|
|
bool toku_ftnode_fully_in_memory(FTNODE node);
|
|
void toku_ftnode_assert_fully_in_memory(FTNODE node);
|
|
void toku_evict_bn_from_memory(FTNODE node, int childnum, FT ft);
|
|
BASEMENTNODE toku_detach_bn(FTNODE node, int childnum);
|
|
void toku_ftnode_update_disk_stats(FTNODE ftnode, FT ft, bool for_checkpoint);
|
|
void toku_ftnode_clone_partitions(FTNODE node, FTNODE cloned_node);
|
|
|
|
void toku_initialize_empty_ftnode(FTNODE node, BLOCKNUM blocknum, int height, int num_children,
|
|
int layout_version, unsigned int flags);
|
|
|
|
int toku_ftnode_which_child(FTNODE node, const DBT *k, const toku::comparator &cmp);
|
|
void toku_ftnode_save_ct_pair(CACHEKEY key, void *value_data, PAIR p);
|
|
|
|
//
|
|
// TODO: put the heaviside functions into their respective 'struct .*extra;' namespaces
|
|
//
|
|
struct toku_msg_buffer_key_msn_heaviside_extra {
|
|
const toku::comparator &cmp;
|
|
message_buffer *msg_buffer;
|
|
const DBT *key;
|
|
MSN msn;
|
|
toku_msg_buffer_key_msn_heaviside_extra(const toku::comparator &c, message_buffer *mb, const DBT *k, MSN m) :
|
|
cmp(c), msg_buffer(mb), key(k), msn(m) {
|
|
}
|
|
};
|
|
int toku_msg_buffer_key_msn_heaviside(const int32_t &v, const struct toku_msg_buffer_key_msn_heaviside_extra &extra);
|
|
|
|
struct toku_msg_buffer_key_msn_cmp_extra {
|
|
const toku::comparator &cmp;
|
|
message_buffer *msg_buffer;
|
|
toku_msg_buffer_key_msn_cmp_extra(const toku::comparator &c, message_buffer *mb) :
|
|
cmp(c), msg_buffer(mb) {
|
|
}
|
|
};
|
|
int toku_msg_buffer_key_msn_cmp(const struct toku_msg_buffer_key_msn_cmp_extra &extrap, const int &a, const int &b);
|
|
|
|
struct toku_msg_leafval_heaviside_extra {
|
|
const toku::comparator &cmp;
|
|
DBT const *const key;
|
|
toku_msg_leafval_heaviside_extra(const toku::comparator &c, const DBT *k) :
|
|
cmp(c), key(k) {
|
|
}
|
|
};
|
|
int toku_msg_leafval_heaviside(DBT const &kdbt, const struct toku_msg_leafval_heaviside_extra &be);
|
|
|
|
unsigned int toku_bnc_nbytesinbuf(NONLEAF_CHILDINFO bnc);
|
|
int toku_bnc_n_entries(NONLEAF_CHILDINFO bnc);
|
|
long toku_bnc_memory_size(NONLEAF_CHILDINFO bnc);
|
|
long toku_bnc_memory_used(NONLEAF_CHILDINFO bnc);
|
|
void toku_bnc_insert_msg(NONLEAF_CHILDINFO bnc, const void *key, uint32_t keylen, const void *data, uint32_t datalen, enum ft_msg_type type, MSN msn, XIDS xids, bool is_fresh, const toku::comparator &cmp);
|
|
void toku_bnc_empty(NONLEAF_CHILDINFO bnc);
|
|
void toku_bnc_flush_to_child(FT ft, NONLEAF_CHILDINFO bnc, FTNODE child, TXNID parent_oldest_referenced_xid_known);
|
|
bool toku_bnc_should_promote(FT ft, NONLEAF_CHILDINFO bnc) __attribute__((const, nonnull));
|
|
|
|
bool toku_ftnode_nonleaf_is_gorged(FTNODE node, uint32_t nodesize);
|
|
uint32_t toku_ftnode_leaf_num_entries(FTNODE node);
|
|
void toku_ftnode_leaf_rebalance(FTNODE node, unsigned int basementnodesize);
|
|
|
|
void toku_ftnode_leaf_run_gc(FT ft, FTNODE node);
|
|
|
|
enum reactivity {
|
|
RE_STABLE,
|
|
RE_FUSIBLE,
|
|
RE_FISSIBLE
|
|
};
|
|
|
|
enum reactivity toku_ftnode_get_reactivity(FT ft, FTNODE node);
|
|
enum reactivity toku_ftnode_get_nonleaf_reactivity(FTNODE node, unsigned int fanout);
|
|
enum reactivity toku_ftnode_get_leaf_reactivity(FTNODE node, uint32_t nodesize);
|
|
|
|
/**
|
|
* Finds the next child for HOT to flush to, given that everything up to
|
|
* and including k has been flattened.
|
|
*
|
|
* If k falls between pivots in node, then we return the childnum where k
|
|
* lies.
|
|
*
|
|
* If k is equal to some pivot, then we return the next (to the right)
|
|
* childnum.
|
|
*/
|
|
int toku_ftnode_hot_next_child(FTNODE node, const DBT *k, const toku::comparator &cmp);
|
|
|
|
void toku_ftnode_put_msg(const toku::comparator &cmp, ft_update_func update_fun,
|
|
FTNODE node, int target_childnum,
|
|
const ft_msg &msg, bool is_fresh, txn_gc_info *gc_info,
|
|
size_t flow_deltas[], STAT64INFO stats_to_update);
|
|
|
|
void toku_ft_bn_apply_msg_once(BASEMENTNODE bn, const ft_msg &msg, uint32_t idx,
|
|
uint32_t le_keylen, LEAFENTRY le, txn_gc_info *gc_info,
|
|
uint64_t *workdonep, STAT64INFO stats_to_update);
|
|
|
|
void toku_ft_bn_apply_msg(const toku::comparator &cmp, ft_update_func update_fun,
|
|
BASEMENTNODE bn, const ft_msg &msg, txn_gc_info *gc_info,
|
|
uint64_t *workdone, STAT64INFO stats_to_update);
|
|
|
|
void toku_ft_leaf_apply_msg(const toku::comparator &cmp, ft_update_func update_fun,
|
|
FTNODE node, int target_childnum,
|
|
const ft_msg &msg, txn_gc_info *gc_info,
|
|
uint64_t *workdone, STAT64INFO stats_to_update);
|
|
|
|
//
|
|
// Message management for orthopush
|
|
//
|
|
|
|
struct ancestors {
|
|
// This is the root node if next is NULL (since the root has no ancestors)
|
|
FTNODE node;
|
|
// Which buffer holds messages destined to the node whose ancestors this list represents.
|
|
int childnum;
|
|
struct ancestors *next;
|
|
};
|
|
typedef struct ancestors *ANCESTORS;
|
|
|
|
void toku_ft_bnc_move_messages_to_stale(FT ft, NONLEAF_CHILDINFO bnc);
|
|
|
|
void toku_move_ftnode_messages_to_stale(FT ft, FTNODE node);
|
|
|
|
// TODO: Should ft_handle just be FT?
|
|
class pivot_bounds;
|
|
void toku_apply_ancestors_messages_to_node(FT_HANDLE t, FTNODE node, ANCESTORS ancestors,
|
|
const pivot_bounds &bounds,
|
|
bool *msgs_applied, int child_to_read);
|
|
|
|
bool toku_ft_leaf_needs_ancestors_messages(FT ft, FTNODE node, ANCESTORS ancestors,
|
|
const pivot_bounds &bounds,
|
|
MSN *const max_msn_in_path, int child_to_read);
|
|
|
|
void toku_ft_bn_update_max_msn(FTNODE node, MSN max_msn_applied, int child_to_read);
|
|
|
|
struct ft_search;
|
|
int toku_ft_search_which_child(const toku::comparator &cmp, FTNODE node, ft_search *search);
|
|
|
|
//
|
|
// internal node inline functions
|
|
// TODO: Turn the macros into real functions
|
|
//
|
|
|
|
static inline void set_BNULL(FTNODE node, int i) {
|
|
paranoid_invariant(i >= 0);
|
|
paranoid_invariant(i < node->n_children);
|
|
node->bp[i].ptr.tag = BCT_NULL;
|
|
}
|
|
|
|
static inline bool is_BNULL (FTNODE node, int i) {
|
|
paranoid_invariant(i >= 0);
|
|
paranoid_invariant(i < node->n_children);
|
|
return node->bp[i].ptr.tag == BCT_NULL;
|
|
}
|
|
|
|
static inline NONLEAF_CHILDINFO BNC(FTNODE node, int i) {
|
|
paranoid_invariant(i >= 0);
|
|
paranoid_invariant(i < node->n_children);
|
|
FTNODE_CHILD_POINTER p = node->bp[i].ptr;
|
|
paranoid_invariant(p.tag==BCT_NONLEAF);
|
|
return p.u.nonleaf;
|
|
}
|
|
|
|
static inline void set_BNC(FTNODE node, int i, NONLEAF_CHILDINFO nl) {
|
|
paranoid_invariant(i >= 0);
|
|
paranoid_invariant(i < node->n_children);
|
|
FTNODE_CHILD_POINTER *p = &node->bp[i].ptr;
|
|
p->tag = BCT_NONLEAF;
|
|
p->u.nonleaf = nl;
|
|
}
|
|
|
|
static inline BASEMENTNODE BLB(FTNODE node, int i) {
|
|
paranoid_invariant(i >= 0);
|
|
// The optimizer really doesn't like it when we compare
|
|
// i to n_children as signed integers. So we assert that
|
|
// n_children is in fact positive before doing a comparison
|
|
// on the values forcibly cast to unsigned ints.
|
|
paranoid_invariant(node->n_children > 0);
|
|
paranoid_invariant((unsigned) i < (unsigned) node->n_children);
|
|
FTNODE_CHILD_POINTER p = node->bp[i].ptr;
|
|
paranoid_invariant(p.tag==BCT_LEAF);
|
|
return p.u.leaf;
|
|
}
|
|
|
|
static inline void set_BLB(FTNODE node, int i, BASEMENTNODE bn) {
|
|
paranoid_invariant(i >= 0);
|
|
paranoid_invariant(i < node->n_children);
|
|
FTNODE_CHILD_POINTER *p = &node->bp[i].ptr;
|
|
p->tag = BCT_LEAF;
|
|
p->u.leaf = bn;
|
|
}
|
|
|
|
static inline struct sub_block *BSB(FTNODE node, int i) {
|
|
paranoid_invariant(i >= 0);
|
|
paranoid_invariant(i < node->n_children);
|
|
FTNODE_CHILD_POINTER p = node->bp[i].ptr;
|
|
paranoid_invariant(p.tag==BCT_SUBBLOCK);
|
|
return p.u.subblock;
|
|
}
|
|
|
|
static inline void set_BSB(FTNODE node, int i, struct sub_block *sb) {
|
|
paranoid_invariant(i >= 0);
|
|
paranoid_invariant(i < node->n_children);
|
|
FTNODE_CHILD_POINTER *p = &node->bp[i].ptr;
|
|
p->tag = BCT_SUBBLOCK;
|
|
p->u.subblock = sb;
|
|
}
|
|
|
|
// ftnode partition macros
|
|
// BP stands for ftnode_partition
|
|
#define BP_BLOCKNUM(node,i) ((node)->bp[i].blocknum)
|
|
#define BP_STATE(node,i) ((node)->bp[i].state)
|
|
#define BP_WORKDONE(node, i)((node)->bp[i].workdone)
|
|
|
|
//
|
|
// macros for managing a node's clock
|
|
// Should be managed by ft-ops.c, NOT by serialize/deserialize
|
|
//
|
|
|
|
//
|
|
// BP_TOUCH_CLOCK uses a compare and swap because multiple threads
|
|
// that have a read lock on an internal node may try to touch the clock
|
|
// simultaneously
|
|
//
|
|
#define BP_TOUCH_CLOCK(node, i) ((node)->bp[i].clock_count = 1)
|
|
#define BP_SWEEP_CLOCK(node, i) ((node)->bp[i].clock_count = 0)
|
|
#define BP_SHOULD_EVICT(node, i) ((node)->bp[i].clock_count == 0)
|
|
// not crazy about having these two here, one is for the case where we create new
|
|
// nodes, such as in splits and creating new roots, and the other is for when
|
|
// we are deserializing a node and not all bp's are touched
|
|
#define BP_INIT_TOUCHED_CLOCK(node, i) ((node)->bp[i].clock_count = 1)
|
|
#define BP_INIT_UNTOUCHED_CLOCK(node, i) ((node)->bp[i].clock_count = 0)
|
|
|
|
// ftnode leaf basementnode macros,
|
|
#define BLB_MAX_MSN_APPLIED(node,i) (BLB(node,i)->max_msn_applied)
|
|
#define BLB_MAX_DSN_APPLIED(node,i) (BLB(node,i)->max_dsn_applied)
|
|
#define BLB_DATA(node,i) (&(BLB(node,i)->data_buffer))
|
|
#define BLB_NBYTESINDATA(node,i) (BLB_DATA(node,i)->get_disk_size())
|
|
#define BLB_SEQINSERT(node,i) (BLB(node,i)->seqinsert)
|