mariadb/sql/sql_class.h
Sven Sandberg 41783de549 BUG#39934: Slave stops for engine that only support row-based logging
General overview:
The logic for switching to row format when binlog_format=MIXED had
numerous flaws. The underlying problem was the lack of a consistent
architecture.
General purpose of this changeset:
This changeset introduces an architecture for switching to row format
when binlog_format=MIXED. It enforces the architecture where it has
to. It leaves some bugs to be fixed later. It adds extensive tests to
verify that unsafe statements work as expected and that appropriate
errors are produced by problems with the selection of binlog format.
It was not practical to split this into smaller pieces of work.

Problem 1:
To determine the logging mode, the code has to take several parameters
into account (namely: (1) the value of binlog_format; (2) the
capabilities of the engines; (3) the type of the current statement:
normal, unsafe, or row injection). These parameters may conflict in
several ways, namely:
 - binlog_format=STATEMENT for a row injection
 - binlog_format=STATEMENT for an unsafe statement
 - binlog_format=STATEMENT for an engine only supporting row logging
 - binlog_format=ROW for an engine only supporting statement logging
 - statement is unsafe and engine does not support row logging
 - row injection in a table that does not support statement logging
 - statement modifies one table that does not support row logging and
   one that does not support statement logging
Several of these conflicts were not detected, or were detected with
an inappropriate error message. The problem of BUG#39934 was that no
appropriate error message was written for the case when an engine
only supporting row logging executed a row injection with
binlog_format=ROW. However, all above cases must be handled.
Fix 1:
Introduce new error codes (sql/share/errmsg.txt). Ensure that all
conditions are detected and handled in decide_logging_format()

Problem 2:
The binlog format shall be determined once per statement, in
decide_logging_format(). It shall not be changed before or after that.
Before decide_logging_format() is called, all information necessary to
determine the logging format must be available. This principle ensures
that all unsafe statements are handled in a consistent way.
However, this principle is not followed:
thd->set_current_stmt_binlog_row_based_if_mixed() is called in several
places, including from code executing UPDATE..LIMIT,
INSERT..SELECT..LIMIT, DELETE..LIMIT, INSERT DELAYED, and
SET @@binlog_format. After Problem 1 was fixed, that caused
inconsistencies where these unsafe statements would not print the
appropriate warnings or errors for some of the conflicts.
Fix 2:
Remove calls to THD::set_current_stmt_binlog_row_based_if_mixed() from
code executed after decide_logging_format(). Compensate by calling the
set_current_stmt_unsafe() at parse time. This way, all unsafe statements
are detected by decide_logging_format().

Problem 3:
INSERT DELAYED is not unsafe: it is logged in statement format even if
binlog_format=MIXED, and no warning is printed even if
binlog_format=STATEMENT. This is BUG#45825.
Fix 3:
Made INSERT DELAYED set itself to unsafe at parse time. This allows
decide_logging_format() to detect that a warning should be printed or
the binlog_format changed.

Problem 4:
LIMIT clause were not marked as unsafe when executed inside stored
functions/triggers/views/prepared statements. This is
BUG#45785.
Fix 4:
Make statements containing the LIMIT clause marked as unsafe at
parse time, instead of at execution time. This allows propagating
unsafe-ness to the view.


mysql-test/extra/rpl_tests/create_recursive_construct.inc:
  Added auxiliary file used by binlog_unsafe.test to create and
  execute recursive constructs
  (functions/procedures/triggers/views/prepared statements).
mysql-test/extra/rpl_tests/rpl_foreign_key.test:
  removed unnecessary set @@session.binlog_format
mysql-test/extra/rpl_tests/rpl_insert_delayed.test:
  Filter out table id from table map events in binlog listing.
  Got rid of $binlog_format_statement.
mysql-test/extra/rpl_tests/rpl_ndb_apply_status.test:
  disable warnings around call to unsafe procedure
mysql-test/include/rpl_udf.inc:
  Disabled warnings for code that generates warnings
  for some binlog formats. That would otherwise cause
  inconsistencies in the result file.
mysql-test/r/mysqldump.result:
  Views are now unsafe if they contain a LIMIT clause.
  That fixed BUG#45831. Due to BUG#45832, a warning is
  printed for the CREATE VIEW statement.
mysql-test/r/sp_trans.result:
  Unsafe statements in stored procedures did not give a warning if
  binlog_format=statement. This is BUG#45824. Now they do, so this
  result file gets a new warning.
mysql-test/suite/binlog/r/binlog_multi_engine.result:
  Error message changed.
mysql-test/suite/binlog/r/binlog_statement_insert_delayed.result:
  INSERT DELAYED didn't generate a warning when binlog_format=STATEMENT.
  That was BUG#45825. Now there is a warning, so result file needs to be
  updated.
mysql-test/suite/binlog/r/binlog_stm_ps.result:
  Changed error message.
mysql-test/suite/binlog/r/binlog_unsafe.result:
  updated result file:
   - error message changed
   - added test for most combinations of unsafe constructs invoked
     from recursive constructs
   - INSERT DELAYED now gives a warning (because BUG#45826 is fixed)
   - INSERT..SELECT..LIMIT now gives a warning from inside recursive
     constructs (because BUG#45785 was fixed)
   - When a recursive construct (e.g., stored proc or function)
     contains more than one statement, at least one of which is
     unsafe, then all statements in the recursive construct give
     warnings. This is a new bug introduced by this changeset.
     It will be addressed in a post-push fix.
mysql-test/suite/binlog/t/binlog_innodb.test:
  Changed error code for innodb updates with READ COMMITTED or 
  READ UNCOMMITTED transaction isolation level and
  binlog_format=statement.
mysql-test/suite/binlog/t/binlog_multi_engine.test:
  The error code has changed for statements where more than one
  engine is involved and one of them is self-logging.
mysql-test/suite/binlog/t/binlog_unsafe-master.opt:
  Since binlog_unsafe now tests unsafe-ness of UDF's, we need an extra
  flag in the .opt file.
mysql-test/suite/binlog/t/binlog_unsafe.test:
   - Clarified comment.
   - Rewrote first part of test. Now it tests not only unsafe variables
     and functions, but also unsafe-ness due to INSERT..SELECT..LIMIT,
     INSERT DELAYED, insert into two autoinc columns, use of UDF's, and
     access to log tables in the mysql database.
     Also, in addition to functions, procedures, triggers, and prepared
     statements, it now also tests views; and it constructs recursive
     calls in two levels by combining these recursive constructs.
     Part of the logic is in extra/rpl_tests/create_recursive_construct.inc.
   - added tests for all special system variables that should not be unsafe.
   - added specific tests for BUG#45785 and BUG#45825
mysql-test/suite/rpl/r/rpl_events.result:
  updated result file
mysql-test/suite/rpl/r/rpl_extraColmaster_innodb.result:
  updated result file
mysql-test/suite/rpl/r/rpl_extraColmaster_myisam.result:
  updated result file
mysql-test/suite/rpl/r/rpl_foreign_key_innodb.result:
  updated result file
mysql-test/suite/rpl/r/rpl_idempotency.result:
  updated result file
mysql-test/suite/rpl/r/rpl_mix_found_rows.result:
  Split rpl_found_rows.test into rpl_mix_found_rows.test (a new file) and
  rpl_stm_found_rows.test (renamed rpl_found_rows.test). This file equals
  the second half of the old rpl_found_rows.result, with the following
  modifications:
   - minor formatting changes
   - additional initialization
mysql-test/suite/rpl/r/rpl_mix_insert_delayed.result:
  Moved out code operating in mixed mode from rpl_stm_insert_delayed
  (into rpl_mix_insert_delayed) and got rid of explicit setting of
  binlog format.
mysql-test/suite/rpl/r/rpl_rbr_to_sbr.result:
  updated result file
mysql-test/suite/rpl/r/rpl_row_idempotency.result:
  Moved the second half of rpl_idempotency.test, which only
  executed in row mode, to rpl_row_idempotency.test. This is
  the new result file.
mysql-test/suite/rpl/r/rpl_row_insert_delayed.result:
  Got rid of unnecessary explicit setting of binlog format.
mysql-test/suite/rpl/r/rpl_stm_found_rows.result:
  Split rpl_found_rows.test into rpl_mix_found_rows.test (a new file) and
  rpl_stm_found_rows.test (renamed rpl_found_rows.test). Changes in
  this file:
   - minor formatting changes
   - warning is now issued for unsafe statements inside procedures
     (since BUG#45824 is fixed)
   - second half of file is moved to rpl_mix_found_rows.result
mysql-test/suite/rpl/r/rpl_stm_insert_delayed.result:
  Moved out code operating in mixed mode from rpl_stm_insert_delayed
  (into rpl_mix_insert_delayed) and got rid of explicit setting of
  binlog format.
mysql-test/suite/rpl/r/rpl_stm_loadfile.result:
  error message changed
mysql-test/suite/rpl/r/rpl_temporary_errors.result:
  updated result file
mysql-test/suite/rpl/r/rpl_udf.result:
  Remove explicit set of binlog format (and triplicate test execution)
  and rely on test system executing the test in all binlog formats.
mysql-test/suite/rpl/t/rpl_bug31076.test:
  Test is only valid in mixed or row mode since it generates row events.
mysql-test/suite/rpl/t/rpl_events.test:
  Removed explicit set of binlog_format and removed duplicate testing.
  Instead, we rely on the test system to try all binlog formats.
mysql-test/suite/rpl/t/rpl_extraColmaster_innodb.test:
  Removed triplicate testing and instead relying on test system.
  Test is only relevant for row format since statement-based replication
  cannot handle extra columns on master.
mysql-test/suite/rpl/t/rpl_extraColmaster_myisam.test:
  Removed triplicate testing and instead relying on test system.
  Test is only relevant for row format since statement-based replication
  cannot handle extra columns on master.
mysql-test/suite/rpl/t/rpl_idempotency-slave.opt:
  Removed .opt file to avoid server restarts.
mysql-test/suite/rpl/t/rpl_idempotency.test:
  - Moved out row-only tests to a new test file, rpl_row_idempotency.test.
    rpl_idempotency now only contains tests that execute in all
    binlog_formats.
  - While I was here, also removed .opt file to avoid server restarts.
    The slave_exec_mode is now set inside the test instead.
mysql-test/suite/rpl/t/rpl_mix_found_rows.test:
  Split rpl_found_rows.test into rpl_mix_found_rows.test (a new file) and
  rpl_stm_found_rows.test (renamed rpl_found_rows.test). This file
  contains the second half of the original rpl_found_rows.test with the
  follwing changes:
   - initialization
   - removed SET_BINLOG_FORMAT and added have_binlog_format_mixed.inc
   - minor formatting changes
mysql-test/suite/rpl/t/rpl_mix_insert_delayed.test:
  Moved out code operating in mixed mode from rpl_stm_insert_delayed
  (into rpl_mix_insert_delayed) and got rid of explicit setting of
  binlog format.
mysql-test/suite/rpl/t/rpl_rbr_to_sbr.test:
  Test cannot execute in statement mode, since we no longer
  switch to row format when binlog_format=statement.
  Enforced mixed mode throughout the test.
mysql-test/suite/rpl/t/rpl_row_idempotency.test:
  Moved the second half of rpl_idempotency.test, which only
  executed in row mode, to this new file. We now rely on the
  test system to set binlog format.
mysql-test/suite/rpl/t/rpl_row_insert_delayed.test:
   - Got rid of unnecessary explicit setting of binlog format.
   - extra/rpl_tests/rpl_insert_delayed.test does not need the
     $binlog_format_statement variable any more, so that was
     removed.
mysql-test/suite/rpl/t/rpl_slave_skip.test:
  The test switches binlog_format internally and master generates both
  row and statement events. Hence, the slave must be able to log in both
  statement and row format. Hence test was changed to only execute in
  mixed mode.
mysql-test/suite/rpl/t/rpl_stm_found_rows.test:
  Split rpl_found_rows.test into rpl_mix_found_rows.test (a new file) and
  rpl_stm_found_rows.test (renamed rpl_found_rows.test). Changes in
  this file:
   - minor formatting changes
   - added have_binlog_format_statement and removed SET BINLOG_FORMAT.
   - second half of file is moved to rpl_mix_found_rows.test
   - added cleanup code
mysql-test/suite/rpl/t/rpl_stm_insert_delayed.test:
  Moved out code operating in mixed mode from rpl_stm_insert_delayed
  (into rpl_mix_insert_delayed) and got rid of explicit setting of
  binlog format.
mysql-test/suite/rpl/t/rpl_switch_stm_row_mixed.test:
  The test switches binlog_format internally and master generates both
  row and statement events. Hence, the slave must be able to log in both
  statement and row format. Hence test was changed to only execute in
  mixed mode on slave.
mysql-test/suite/rpl/t/rpl_temporary_errors.test:
  Removed explicit set of binlog format. Instead, the test now only
  executes in row mode.
mysql-test/suite/rpl/t/rpl_udf.test:
  Remove explicit set of binlog format (and triplicate test execution)
  and rely on test system executing the test in all binlog formats.
mysql-test/suite/rpl_ndb/combinations:
  Added combinations file for rpl_ndb.
mysql-test/suite/rpl_ndb/r/rpl_ndb_binlog_format_errors.result:
  new result file
mysql-test/suite/rpl_ndb/r/rpl_ndb_circular_simplex.result:
  updated result file
mysql-test/suite/rpl_ndb/t/rpl_ndb_2innodb.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/suite/rpl_ndb/t/rpl_ndb_2myisam.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/suite/rpl_ndb/t/rpl_ndb_basic.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/suite/rpl_ndb/t/rpl_ndb_binlog_format_errors-master.opt:
  new option file
mysql-test/suite/rpl_ndb/t/rpl_ndb_binlog_format_errors-slave.opt:
  new option file
mysql-test/suite/rpl_ndb/t/rpl_ndb_binlog_format_errors.test:
  New test case to verify all errors and warnings generated by
  decide_logging_format.
mysql-test/suite/rpl_ndb/t/rpl_ndb_blob.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/suite/rpl_ndb/t/rpl_ndb_blob2.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/suite/rpl_ndb/t/rpl_ndb_circular.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/suite/rpl_ndb/t/rpl_ndb_circular_simplex.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
  While I was here, also made the test clean up after itself.
mysql-test/suite/rpl_ndb/t/rpl_ndb_commit_afterflush.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/suite/rpl_ndb/t/rpl_ndb_ctype_ucs2_def.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/suite/rpl_ndb/t/rpl_ndb_delete_nowhere.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/suite/rpl_ndb/t/rpl_ndb_do_db.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/suite/rpl_ndb/t/rpl_ndb_do_table.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/suite/rpl_ndb/t/rpl_ndb_func003.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/suite/rpl_ndb/t/rpl_ndb_innodb_trans.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/suite/rpl_ndb/t/rpl_ndb_insert_ignore.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/suite/rpl_ndb/t/rpl_ndb_mixed_engines_transactions.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/suite/rpl_ndb/t/rpl_ndb_multi_update3.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/suite/rpl_ndb/t/rpl_ndb_rep_ignore.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/suite/rpl_ndb/t/rpl_ndb_row_001.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/suite/rpl_ndb/t/rpl_ndb_sp003.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/suite/rpl_ndb/t/rpl_ndb_sp006.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/suite/rpl_ndb/t/rpl_ndb_trig004.test:
  The test needs slave to be able to switch to row mode, so the
  test was changed to only execute in mixed and row mode.
mysql-test/t/partition_innodb_stmt.test:
  Changed error code for innodb updates with READ COMMITTED or 
  READ UNCOMMITTED transaction isolation level and
  binlog_format=statement.
sql/event_db_repository.cc:
  Use member function to read current_stmt_binlog_row_based.
sql/events.cc:
  Use member function to read current_stmt_binlog_row_based.
sql/ha_ndbcluster_binlog.cc:
  reset_current_stmt_binlog_row_based() is not a no-op for the ndb_binlog
  thread any more. Instead, the ndb_binlog thread now forces row mode both
  initially and just after calling mysql_parse.  (mysql_parse() is the only
  place where reset_current_stmt_binlog_row_based() may be called from
  the ndb_binlog thread, so these are the only two places that need to
  change.)
sql/ha_partition.cc:
  Use member function to read current_stmt_binlog_row_based.
sql/handler.cc:
  Use member function to read current_stmt_binlog_row_based.
sql/item_create.cc:
  Added DBUG_ENTER to some functions, to be able to trace when
  set_stmt_unsafe is called.
sql/log.cc:
  Use member function to read current_stmt_binlog_row_based.
sql/log_event.cc:
   - Moved logic for changing to row format out of do_apply_event (and into
     decide_logging_format).
   - Added @todo comment for post-push cleanup.
sql/log_event_old.cc:
  Move logic for changing to row format out of do_apply_event (and into
  decide_logging_format).
sql/mysql_priv.h:
  Make decide_logging_format() a member of the THD class, for two reasons:
   - It is natural from an object-oriented perspective.
   - decide_logging_format() needs to access private members of THD
     (specifically, the new binlog_warning_flags field).
sql/rpl_injector.cc:
  Removed call to set_current_stmt_binlog_row_based().
  From now on, only decide_logging_fromat is allowed to modify
  current_stmt_binlog_row_based. This call is from the ndb_binlog
  thread, mostly executing code in ha_ndbcluster_binlog.cc.
  This call can be safely removed, because:
   - current_stmt_binlog_row_based is initialized for the ndb_binlog
     thread's THD object when the THD object is created. So we're
     not going to read uninitialized memory.
   - The behavior of ndb_binlog thread does not use the state of the
     current_stmt_binlog_row_based. It is conceivable that the
     ndb_binlog thread would rely on the current_stmt_binlog_format
     in two situations:
      (1) when it calls mysql_parse;
      (2) when it calls THD::binlog_query.
     In case (1), it always clears THD::options&OPTION_BIN_LOG (because
     run_query() in ha_ndbcluster_binlog.cc is only called with
     disable_binlogging = TRUE).
     In case (2), it always uses qtype=STMT_QUERY_TYPE.
sql/set_var.cc:
  Added @todo comment for post-push cleanup.
sql/share/errmsg.txt:
  Added new error messages and clarified ER_BINLOG_UNSAFE_STATEMENT.
sql/sp.cc:
  Added DBUG_ENTER, to be able to trace when set_stmt_unsafe is called.
  Got rid of MYSQL_QUERY_TYPE: it was equivalent to STMT_QUERY_TYPE.
sql/sp_head.cc:
  Use member function to read current_stmt_binlog_row_based.
sql/sp_head.h:
  Added DBUG_ENTER, to be able to trace when set_stmt_unsafe is called.
sql/sql_acl.cc:
  Got rid of MYSQL_QUERY_TYPE: it was equivalent to STMT_QUERY_TYPE.
sql/sql_base.cc:
   - Made decide_logging_format take care of all logic for deciding the
     logging format, and for determining the related warnings and errors.
     See comment above decide_logging_format for details.
   - Made decide_logging_format a member function of THD, since it needs
     to access private members of THD and since its purpose is to update
     the state of a THD object.
   - Added DBUG_ENTER, to be able to trace when set_stmt_unsafe is called.
sql/sql_class.cc:
  - Moved logic for determining unsafe warnings away from THD::binlog_query
    (and into decide_logging_format()). Now, it works like this:
    1. decide_logging_format detects that the current statement shall
       produce a warning, if it ever makes it to the binlog
    2. decide_logging_format sets a flag of THD::binlog_warning_flags.
    3. THD::binlog_query reads the flag. If the flag is set, it generates
       a warning.
  - Use member function to read current_stmt_binlog_row_based.
sql/sql_class.h:
  - Added THD::binlog_warning_flags (see sql_class.cc for explanation).
  - Made decide_logging_format() and reset_for_next_command() member
    functions of THD (instead of standalone functions). This was needed
    for two reasons: (1) the functions need to access the private member
    THD::binlog_warning_flags; (2) the purpose of these functions is to
    update the staet of a THD object, so from an object-oriented point
    of view they should be member functions.
  - Encapsulated current_stmt_binlog_row_based, so it is now private and
    can only be accessed from a member function. Also changed the
    data type to an enumeration instead of a bool.
  - Removed MYSQL_QUERY_TYPE, because it was equivalent to
    STMT_QUERY_TYPE anyways.
  - When reset_current_stmt_binlog_row_based was called from the
    ndb_binlog thread, it would behave as a no-op. This special
    case has been removed, and the behavior of
    reset_current_stmt_binlog_row_based does not depend on which thread
    calls it any more. The special case did not serve any purpose,
    since the ndb binlog thread did not take the
    current_stmt_binlog_row_based flag into account anyways.
sql/sql_delete.cc:
  - Moved logic for setting row format for DELETE..LIMIT away from
    mysql_prepare_delete.
    (Instead, we mark the statement as unsafe at parse time (sql_yacc.yy)
    and rely on decide_logging_format() (sql_class.cc) to set row format.)
    This is part of the fix for BUG#45831.
  - Use member function to read current_stmt_binlog_row_based.
sql/sql_insert.cc:
   - Removed unnecessary calls to thd->lex->set_stmt_unsafe() and
     thd->set_current_stmt_binlog_row_based_if_mixed() from
     handle_delayed_insert(). The calls are unnecessary because they
     have already been made; they were made in the constructor of
     the `di' object.
   - Since decide_logging_format() is now a member function of THD, code
     that calls decide_logging_format() had to be updated.
   - Added DBUG_ENTER call, to be able to trace when set_stmt_unsafe is
     called.
   - Moved call to set_stmt_unsafe() for INSERT..SELECT..LIMIT away from
     mysql_insert_select_prepare() (and into decide_logging_format).
     This is part of the fix for BUG#45831.
   - Use member function to read current_stmt_binlog_row_based.
sql/sql_lex.h:
   - Added the flag BINLOG_STMT_FLAG_ROW_INJECTION to enum_binlog_stmt_flag.
     This was necessary so that a statement can identify itself as a row
     injection.
   - Added appropriate setter and getter functions for the new flag.
   - Added or clarified some comments.
   - Added DBUG_ENTER()
sql/sql_load.cc:
  Use member function to read current_stmt_binlog_row_based.
sql/sql_parse.cc:
   - Made mysql_reset_thd_for_next_command() clear thd->binlog_warning_flags.
   - Since thd->binlog_warning_flags is private, it must be set in a
     member function of THD. Hence, moved the body of
     mysql_reset_thd_for_next_command() to the new member function
     THD::reset_thd_for_next_command(), and made
     mysql_reset_thd_for_next_command() call
     THD::reset_thd_for_next_command().
   - Removed confusing comment.
   - Use member function to read current_stmt_binlog_row_based.
sql/sql_repl.cc:
  Use member function to read current_stmt_binlog_row_based.
sql/sql_table.cc:
  Use member function to read current_stmt_binlog_row_based.
sql/sql_udf.cc:
  Use member function to read current_stmt_binlog_row_based.
sql/sql_update.cc:
  Moved logic for setting row format for UPDATE..LIMIT away from
  mysql_prepare_update.
  (Instead, we mark the statement as unsafe at parse time (sql_yacc.yy)
  and rely on decide_logging_format() (sql_class.cc) to set row format.)
  This is part of the fix for BUG#45831.
sql/sql_yacc.yy:
  Made INSERT DELAYED, INSERT..SELECT..LIMIT, UPDATE..LIMIT, and
  DELETE..LIMIT mark themselves as unsafe at parse time (instead
  of at execution time).
  This is part of the fixes BUG#45831 and BUG#45825.
storage/example/ha_example.cc:
  Made exampledb accept inserts. This was needed by the new test case
  rpl_ndb_binlog_format_errors, because it needs an engine that
  is statement-only (and accepts inserts).
storage/example/ha_example.h:
  Made exampledb a statement-only engine instead of a row-only engine.
  No existing test relied exampledb's row-only capabilities. The new
  test case rpl_ndb_binlog_format_errors needs an engine that is
  statement-only.
storage/innobase/handler/ha_innodb.cc:
  - Changed error error code and message given by innodb when 
    binlog_format=STATEMENT and transaction isolation level is
    READ COMMITTED or READ UNCOMMITTED.
  - While I was here, also simplified the condition for
    checking when to give the error.
2009-07-14 21:31:19 +02:00

3016 lines
96 KiB
Objective-C

/* Copyright 2000-2008 MySQL AB, 2008 Sun Microsystems, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/* Classes in mysql */
#ifdef USE_PRAGMA_INTERFACE
#pragma interface /* gcc class implementation */
#endif
#include "log.h"
#include "rpl_tblmap.h"
/**
An interface that is used to take an action when
the locking module notices that a table version has changed
since the last execution. "Table" here may refer to any kind of
table -- a base table, a temporary table, a view or an
information schema table.
When we open and lock tables for execution of a prepared
statement, we must verify that they did not change
since statement prepare. If some table did change, the statement
parse tree *may* be no longer valid, e.g. in case it contains
optimizations that depend on table metadata.
This class provides an interface (a method) that is
invoked when such a situation takes place.
The implementation of the method simply reports an error, but
the exact details depend on the nature of the SQL statement.
At most 1 instance of this class is active at a time, in which
case THD::m_reprepare_observer is not NULL.
@sa check_and_update_table_version() for details of the
version tracking algorithm
@sa Open_tables_state::m_reprepare_observer for the life cycle
of metadata observers.
*/
class Reprepare_observer
{
public:
/**
Check if a change of metadata is OK. In future
the signature of this method may be extended to accept the old
and the new versions, but since currently the check is very
simple, we only need the THD to report an error.
*/
bool report_error(THD *thd);
bool is_invalidated() const { return m_invalidated; }
void reset_reprepare_observer() { m_invalidated= FALSE; }
private:
bool m_invalidated;
};
class Relay_log_info;
class Query_log_event;
class Load_log_event;
class Slave_log_event;
class sp_rcontext;
class sp_cache;
class Parser_state;
class Rows_log_event;
enum enum_enable_or_disable { LEAVE_AS_IS, ENABLE, DISABLE };
enum enum_ha_read_modes { RFIRST, RNEXT, RPREV, RLAST, RKEY, RNEXT_SAME };
enum enum_duplicates { DUP_ERROR, DUP_REPLACE, DUP_UPDATE };
enum enum_delay_key_write { DELAY_KEY_WRITE_NONE, DELAY_KEY_WRITE_ON,
DELAY_KEY_WRITE_ALL };
enum enum_slave_exec_mode { SLAVE_EXEC_MODE_STRICT,
SLAVE_EXEC_MODE_IDEMPOTENT,
SLAVE_EXEC_MODE_LAST_BIT};
enum enum_mark_columns
{ MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE};
extern char internal_table_name[2];
extern char empty_c_string[1];
extern const char **errmesg;
#define TC_LOG_PAGE_SIZE 8192
#define TC_LOG_MIN_SIZE (3*TC_LOG_PAGE_SIZE)
#define TC_HEURISTIC_RECOVER_COMMIT 1
#define TC_HEURISTIC_RECOVER_ROLLBACK 2
extern uint tc_heuristic_recover;
typedef struct st_user_var_events
{
user_var_entry *user_var_event;
char *value;
ulong length;
Item_result type;
uint charset_number;
} BINLOG_USER_VAR_EVENT;
#define RP_LOCK_LOG_IS_ALREADY_LOCKED 1
#define RP_FORCE_ROTATE 2
/*
The COPY_INFO structure is used by INSERT/REPLACE code.
The schema of the row counting by the INSERT/INSERT ... ON DUPLICATE KEY
UPDATE code:
If a row is inserted then the copied variable is incremented.
If a row is updated by the INSERT ... ON DUPLICATE KEY UPDATE and the
new data differs from the old one then the copied and the updated
variables are incremented.
The touched variable is incremented if a row was touched by the update part
of the INSERT ... ON DUPLICATE KEY UPDATE no matter whether the row
was actually changed or not.
*/
typedef struct st_copy_info {
ha_rows records; /**< Number of processed records */
ha_rows deleted; /**< Number of deleted records */
ha_rows updated; /**< Number of updated records */
ha_rows copied; /**< Number of copied records */
ha_rows error_count;
ha_rows touched; /* Number of touched records */
enum enum_duplicates handle_duplicates;
int escape_char, last_errno;
bool ignore;
/* for INSERT ... UPDATE */
List<Item> *update_fields;
List<Item> *update_values;
/* for VIEW ... WITH CHECK OPTION */
TABLE_LIST *view;
} COPY_INFO;
class Key_part_spec :public Sql_alloc {
public:
const char *field_name;
uint length;
Key_part_spec(const char *name,uint len=0) :field_name(name), length(len) {}
bool operator==(const Key_part_spec& other) const;
/**
Construct a copy of this Key_part_spec. field_name is copied
by-pointer as it is known to never change. At the same time
'length' may be reset in mysql_prepare_create_table, and this
is why we supply it with a copy.
@return If out of memory, 0 is returned and an error is set in
THD.
*/
Key_part_spec *clone(MEM_ROOT *mem_root) const
{ return new (mem_root) Key_part_spec(*this); }
};
class Alter_drop :public Sql_alloc {
public:
enum drop_type {KEY, COLUMN };
const char *name;
enum drop_type type;
Alter_drop(enum drop_type par_type,const char *par_name)
:name(par_name), type(par_type) {}
/**
Used to make a clone of this object for ALTER/CREATE TABLE
@sa comment for Key_part_spec::clone
*/
Alter_drop *clone(MEM_ROOT *mem_root) const
{ return new (mem_root) Alter_drop(*this); }
};
class Alter_column :public Sql_alloc {
public:
const char *name;
Item *def;
Alter_column(const char *par_name,Item *literal)
:name(par_name), def(literal) {}
/**
Used to make a clone of this object for ALTER/CREATE TABLE
@sa comment for Key_part_spec::clone
*/
Alter_column *clone(MEM_ROOT *mem_root) const
{ return new (mem_root) Alter_column(*this); }
};
class Key :public Sql_alloc {
public:
enum Keytype { PRIMARY, UNIQUE, MULTIPLE, FULLTEXT, SPATIAL, FOREIGN_KEY};
enum Keytype type;
KEY_CREATE_INFO key_create_info;
List<Key_part_spec> columns;
const char *name;
bool generated;
Key(enum Keytype type_par, const char *name_arg,
KEY_CREATE_INFO *key_info_arg,
bool generated_arg, List<Key_part_spec> &cols)
:type(type_par), key_create_info(*key_info_arg), columns(cols),
name(name_arg), generated(generated_arg)
{}
Key(const Key &rhs, MEM_ROOT *mem_root);
virtual ~Key() {}
/* Equality comparison of keys (ignoring name) */
friend bool foreign_key_prefix(Key *a, Key *b);
/**
Used to make a clone of this object for ALTER/CREATE TABLE
@sa comment for Key_part_spec::clone
*/
virtual Key *clone(MEM_ROOT *mem_root) const
{ return new (mem_root) Key(*this, mem_root); }
};
class Table_ident;
class Foreign_key: public Key {
public:
enum fk_match_opt { FK_MATCH_UNDEF, FK_MATCH_FULL,
FK_MATCH_PARTIAL, FK_MATCH_SIMPLE};
enum fk_option { FK_OPTION_UNDEF, FK_OPTION_RESTRICT, FK_OPTION_CASCADE,
FK_OPTION_SET_NULL, FK_OPTION_NO_ACTION, FK_OPTION_DEFAULT};
Table_ident *ref_table;
List<Key_part_spec> ref_columns;
uint delete_opt, update_opt, match_opt;
Foreign_key(const char *name_arg, List<Key_part_spec> &cols,
Table_ident *table, List<Key_part_spec> &ref_cols,
uint delete_opt_arg, uint update_opt_arg, uint match_opt_arg)
:Key(FOREIGN_KEY, name_arg, &default_key_create_info, 0, cols),
ref_table(table), ref_columns(ref_cols),
delete_opt(delete_opt_arg), update_opt(update_opt_arg),
match_opt(match_opt_arg)
{}
Foreign_key(const Foreign_key &rhs, MEM_ROOT *mem_root);
/**
Used to make a clone of this object for ALTER/CREATE TABLE
@sa comment for Key_part_spec::clone
*/
virtual Key *clone(MEM_ROOT *mem_root) const
{ return new (mem_root) Foreign_key(*this, mem_root); }
};
typedef struct st_mysql_lock
{
TABLE **table;
uint table_count,lock_count;
THR_LOCK_DATA **locks;
} MYSQL_LOCK;
class LEX_COLUMN : public Sql_alloc
{
public:
String column;
uint rights;
LEX_COLUMN (const String& x,const uint& y ): column (x),rights (y) {}
};
#include "sql_lex.h" /* Must be here */
class Delayed_insert;
class select_result;
class Time_zone;
#define THD_SENTRY_MAGIC 0xfeedd1ff
#define THD_SENTRY_GONE 0xdeadbeef
#define THD_CHECK_SENTRY(thd) DBUG_ASSERT(thd->dbug_sentry == THD_SENTRY_MAGIC)
struct system_variables
{
/*
How dynamically allocated system variables are handled:
The global_system_variables and max_system_variables are "authoritative"
They both should have the same 'version' and 'size'.
When attempting to access a dynamic variable, if the session version
is out of date, then the session version is updated and realloced if
neccessary and bytes copied from global to make up for missing data.
*/
ulong dynamic_variables_version;
char* dynamic_variables_ptr;
uint dynamic_variables_head; /* largest valid variable offset */
uint dynamic_variables_size; /* how many bytes are in use */
ulonglong myisam_max_extra_sort_file_size;
ulonglong myisam_max_sort_file_size;
ulonglong max_heap_table_size;
ulonglong tmp_table_size;
ulonglong long_query_time;
ha_rows select_limit;
ha_rows max_join_size;
ulong auto_increment_increment, auto_increment_offset;
ulong bulk_insert_buff_size;
ulong join_buff_size;
ulong max_allowed_packet;
ulong max_error_count;
ulong max_length_for_sort_data;
ulong max_sort_length;
ulong max_tmp_tables;
ulong max_insert_delayed_threads;
ulong min_examined_row_limit;
ulong multi_range_count;
ulong myisam_repair_threads;
ulong myisam_sort_buff_size;
ulong myisam_stats_method;
ulong net_buffer_length;
ulong net_interactive_timeout;
ulong net_read_timeout;
ulong net_retry_count;
ulong net_wait_timeout;
ulong net_write_timeout;
ulong optimizer_prune_level;
ulong optimizer_search_depth;
/* A bitmap for switching optimizations on/off */
ulong optimizer_switch;
ulong preload_buff_size;
ulong profiling_history_size;
ulong query_cache_type;
ulong read_buff_size;
ulong read_rnd_buff_size;
ulong div_precincrement;
ulong sortbuff_size;
ulong thread_handling;
ulong tx_isolation;
ulong completion_type;
/* Determines which non-standard SQL behaviour should be enabled */
ulong sql_mode;
ulong max_sp_recursion_depth;
/* check of key presence in updatable view */
ulong updatable_views_with_limit;
ulong default_week_format;
ulong max_seeks_for_key;
ulong range_alloc_block_size;
ulong query_alloc_block_size;
ulong query_prealloc_size;
ulong trans_alloc_block_size;
ulong trans_prealloc_size;
ulong log_warnings;
ulong group_concat_max_len;
ulong ndb_autoincrement_prefetch_sz;
ulong ndb_index_stat_cache_entries;
ulong ndb_index_stat_update_freq;
ulong binlog_format; // binlog format for this thd (see enum_binlog_format)
/*
In slave thread we need to know in behalf of which
thread the query is being run to replicate temp tables properly
*/
my_thread_id pseudo_thread_id;
my_bool low_priority_updates;
my_bool new_mode;
/*
compatibility option:
- index usage hints (USE INDEX without a FOR clause) behave as in 5.0
*/
my_bool old_mode;
my_bool query_cache_wlock_invalidate;
my_bool engine_condition_pushdown;
my_bool keep_files_on_create;
my_bool ndb_force_send;
my_bool ndb_use_copying_alter_table;
my_bool ndb_use_exact_count;
my_bool ndb_use_transactions;
my_bool ndb_index_stat_enable;
my_bool old_alter_table;
my_bool old_passwords;
plugin_ref table_plugin;
/* Only charset part of these variables is sensible */
CHARSET_INFO *character_set_filesystem;
CHARSET_INFO *character_set_client;
CHARSET_INFO *character_set_results;
/* Both charset and collation parts of these variables are important */
CHARSET_INFO *collation_server;
CHARSET_INFO *collation_database;
CHARSET_INFO *collation_connection;
/* Locale Support */
MY_LOCALE *lc_time_names;
Time_zone *time_zone;
/* DATE, DATETIME and MYSQL_TIME formats */
DATE_TIME_FORMAT *date_format;
DATE_TIME_FORMAT *datetime_format;
DATE_TIME_FORMAT *time_format;
my_bool sysdate_is_now;
};
/* per thread status variables */
typedef struct system_status_var
{
ulonglong bytes_received;
ulonglong bytes_sent;
ulong com_other;
ulong com_stat[(uint) SQLCOM_END];
ulong created_tmp_disk_tables;
ulong created_tmp_tables;
ulong ha_commit_count;
ulong ha_delete_count;
ulong ha_read_first_count;
ulong ha_read_last_count;
ulong ha_read_key_count;
ulong ha_read_next_count;
ulong ha_read_prev_count;
ulong ha_read_rnd_count;
ulong ha_read_rnd_next_count;
ulong ha_rollback_count;
ulong ha_update_count;
ulong ha_write_count;
ulong ha_prepare_count;
ulong ha_discover_count;
ulong ha_savepoint_count;
ulong ha_savepoint_rollback_count;
/* KEY_CACHE parts. These are copies of the original */
ulong key_blocks_changed;
ulong key_blocks_used;
ulong key_cache_r_requests;
ulong key_cache_read;
ulong key_cache_w_requests;
ulong key_cache_write;
/* END OF KEY_CACHE parts */
ulong net_big_packet_count;
ulong opened_tables;
ulong opened_shares;
ulong select_full_join_count;
ulong select_full_range_join_count;
ulong select_range_count;
ulong select_range_check_count;
ulong select_scan_count;
ulong long_query_count;
ulong filesort_merge_passes;
ulong filesort_range_count;
ulong filesort_rows;
ulong filesort_scan_count;
/* Prepared statements and binary protocol */
ulong com_stmt_prepare;
ulong com_stmt_reprepare;
ulong com_stmt_execute;
ulong com_stmt_send_long_data;
ulong com_stmt_fetch;
ulong com_stmt_reset;
ulong com_stmt_close;
/*
Number of statements sent from the client
*/
ulong questions;
/*
IMPORTANT!
SEE last_system_status_var DEFINITION BELOW.
Below 'last_system_status_var' are all variables which doesn't make any
sense to add to the /global/ status variable counter.
Status variables which it does not make sense to add to
global status variable counter
*/
double last_query_cost;
} STATUS_VAR;
/*
This is used for 'SHOW STATUS'. It must be updated to the last ulong
variable in system_status_var which is makes sens to add to the global
counter
*/
#define last_system_status_var questions
void mark_transaction_to_rollback(THD *thd, bool all);
#ifdef MYSQL_SERVER
void free_tmp_table(THD *thd, TABLE *entry);
/* The following macro is to make init of Query_arena simpler */
#ifndef DBUG_OFF
#define INIT_ARENA_DBUG_INFO is_backup_arena= 0; is_reprepared= FALSE;
#else
#define INIT_ARENA_DBUG_INFO
#endif
class Query_arena
{
public:
/*
List of items created in the parser for this query. Every item puts
itself to the list on creation (see Item::Item() for details))
*/
Item *free_list;
MEM_ROOT *mem_root; // Pointer to current memroot
#ifndef DBUG_OFF
bool is_backup_arena; /* True if this arena is used for backup. */
bool is_reprepared;
#endif
/*
The states relfects three diffrent life cycles for three
different types of statements:
Prepared statement: INITIALIZED -> PREPARED -> EXECUTED.
Stored procedure: INITIALIZED_FOR_SP -> EXECUTED.
Other statements: CONVENTIONAL_EXECUTION never changes.
*/
enum enum_state
{
INITIALIZED= 0, INITIALIZED_FOR_SP= 1, PREPARED= 2,
CONVENTIONAL_EXECUTION= 3, EXECUTED= 4, ERROR= -1
};
enum_state state;
/* We build without RTTI, so dynamic_cast can't be used. */
enum Type
{
STATEMENT, PREPARED_STATEMENT, STORED_PROCEDURE
};
Query_arena(MEM_ROOT *mem_root_arg, enum enum_state state_arg) :
free_list(0), mem_root(mem_root_arg), state(state_arg)
{ INIT_ARENA_DBUG_INFO; }
/*
This constructor is used only when Query_arena is created as
backup storage for another instance of Query_arena.
*/
Query_arena() { INIT_ARENA_DBUG_INFO; }
virtual Type type() const;
virtual ~Query_arena() {};
inline bool is_stmt_prepare() const { return state == INITIALIZED; }
inline bool is_first_sp_execute() const
{ return state == INITIALIZED_FOR_SP; }
inline bool is_stmt_prepare_or_first_sp_execute() const
{ return (int)state < (int)PREPARED; }
inline bool is_first_stmt_execute() const { return state == PREPARED; }
inline bool is_stmt_execute() const
{ return state == PREPARED || state == EXECUTED; }
inline bool is_conventional() const
{ return state == CONVENTIONAL_EXECUTION; }
inline void* alloc(size_t size) { return alloc_root(mem_root,size); }
inline void* calloc(size_t size)
{
void *ptr;
if ((ptr=alloc_root(mem_root,size)))
bzero(ptr, size);
return ptr;
}
inline char *strdup(const char *str)
{ return strdup_root(mem_root,str); }
inline char *strmake(const char *str, size_t size)
{ return strmake_root(mem_root,str,size); }
inline void *memdup(const void *str, size_t size)
{ return memdup_root(mem_root,str,size); }
inline void *memdup_w_gap(const void *str, size_t size, uint gap)
{
void *ptr;
if ((ptr= alloc_root(mem_root,size+gap)))
memcpy(ptr,str,size);
return ptr;
}
void set_query_arena(Query_arena *set);
void free_items();
/* Close the active state associated with execution of this statement */
virtual void cleanup_stmt();
};
class Server_side_cursor;
/**
@class Statement
@brief State of a single command executed against this connection.
One connection can contain a lot of simultaneously running statements,
some of which could be:
- prepared, that is, contain placeholders,
- opened as cursors. We maintain 1 to 1 relationship between
statement and cursor - if user wants to create another cursor for his
query, we create another statement for it.
To perform some action with statement we reset THD part to the state of
that statement, do the action, and then save back modified state from THD
to the statement. It will be changed in near future, and Statement will
be used explicitly.
*/
class Statement: public ilink, public Query_arena
{
Statement(const Statement &rhs); /* not implemented: */
Statement &operator=(const Statement &rhs); /* non-copyable */
public:
/*
Uniquely identifies each statement object in thread scope; change during
statement lifetime. FIXME: must be const
*/
ulong id;
/*
MARK_COLUMNS_NONE: Means mark_used_colums is not set and no indicator to
handler of fields used is set
MARK_COLUMNS_READ: Means a bit in read set is set to inform handler
that the field is to be read. If field list contains
duplicates, then thd->dup_field is set to point
to the last found duplicate.
MARK_COLUMNS_WRITE: Means a bit is set in write set to inform handler
that it needs to update this field in write_row
and update_row.
*/
enum enum_mark_columns mark_used_columns;
LEX_STRING name; /* name for named prepared statements */
LEX *lex; // parse tree descriptor
/*
Points to the query associated with this statement. It's const, but
we need to declare it char * because all table handlers are written
in C and need to point to it.
Note that (A) if we set query = NULL, we must at the same time set
query_length = 0, and protect the whole operation with the
LOCK_thread_count mutex. And (B) we are ONLY allowed to set query to a
non-NULL value if its previous value is NULL. We do not need to protect
operation (B) with any mutex. To avoid crashes in races, if we do not
know that thd->query cannot change at the moment, one should print
thd->query like this:
(1) reserve the LOCK_thread_count mutex;
(2) check if thd->query is NULL;
(3) if not NULL, then print at most thd->query_length characters from
it. We will see the query_length field as either 0, or the right value
for it.
Assuming that the write and read of an n-bit memory field in an n-bit
computer is atomic, we can avoid races in the above way.
This printing is needed at least in SHOW PROCESSLIST and SHOW INNODB
STATUS.
*/
char *query;
uint32 query_length; // current query length
Server_side_cursor *cursor;
/**
Name of the current (default) database.
If there is the current (default) database, "db" contains its name. If
there is no current (default) database, "db" is NULL and "db_length" is
0. In other words, "db", "db_length" must either be NULL, or contain a
valid database name.
@note this attribute is set and alloced by the slave SQL thread (for
the THD of that thread); that thread is (and must remain, for now) the
only responsible for freeing this member.
*/
char *db;
size_t db_length;
public:
/* This constructor is called for backup statements */
Statement() {}
Statement(LEX *lex_arg, MEM_ROOT *mem_root_arg,
enum enum_state state_arg, ulong id_arg);
virtual ~Statement();
/* Assign execution context (note: not all members) of given stmt to self */
void set_statement(Statement *stmt);
void set_n_backup_statement(Statement *stmt, Statement *backup);
void restore_backup_statement(Statement *stmt, Statement *backup);
/* return class type */
virtual Type type() const;
};
/**
Container for all statements created/used in a connection.
Statements in Statement_map have unique Statement::id (guaranteed by id
assignment in Statement::Statement)
Non-empty statement names are unique too: attempt to insert a new statement
with duplicate name causes older statement to be deleted
Statements are auto-deleted when they are removed from the map and when the
map is deleted.
*/
class Statement_map
{
public:
Statement_map();
int insert(THD *thd, Statement *statement);
Statement *find_by_name(LEX_STRING *name)
{
Statement *stmt;
stmt= (Statement*)hash_search(&names_hash, (uchar*)name->str,
name->length);
return stmt;
}
Statement *find(ulong id)
{
if (last_found_statement == 0 || id != last_found_statement->id)
{
Statement *stmt;
stmt= (Statement *) hash_search(&st_hash, (uchar *) &id, sizeof(id));
if (stmt && stmt->name.str)
return NULL;
last_found_statement= stmt;
}
return last_found_statement;
}
/*
Close all cursors of this connection that use tables of a storage
engine that has transaction-specific state and therefore can not
survive COMMIT or ROLLBACK. Currently all but MyISAM cursors are closed.
*/
void close_transient_cursors();
void erase(Statement *statement);
/* Erase all statements (calls Statement destructor) */
void reset();
~Statement_map();
private:
HASH st_hash;
HASH names_hash;
I_List<Statement> transient_cursor_list;
Statement *last_found_statement;
};
struct st_savepoint {
struct st_savepoint *prev;
char *name;
uint length;
Ha_trx_info *ha_list;
};
enum xa_states {XA_NOTR=0, XA_ACTIVE, XA_IDLE, XA_PREPARED, XA_ROLLBACK_ONLY};
extern const char *xa_state_names[];
typedef struct st_xid_state {
/* For now, this is only used to catch duplicated external xids */
XID xid; // transaction identifier
enum xa_states xa_state; // used by external XA only
bool in_thd;
/* Error reported by the Resource Manager (RM) to the Transaction Manager. */
uint rm_error;
} XID_STATE;
extern pthread_mutex_t LOCK_xid_cache;
extern HASH xid_cache;
bool xid_cache_init(void);
void xid_cache_free(void);
XID_STATE *xid_cache_search(XID *xid);
bool xid_cache_insert(XID *xid, enum xa_states xa_state);
bool xid_cache_insert(XID_STATE *xid_state);
void xid_cache_delete(XID_STATE *xid_state);
/**
@class Security_context
@brief A set of THD members describing the current authenticated user.
*/
class Security_context {
public:
Security_context() {} /* Remove gcc warning */
/*
host - host of the client
user - user of the client, set to NULL until the user has been read from
the connection
priv_user - The user privilege we are using. May be "" for anonymous user.
ip - client IP
*/
char *host, *user, *priv_user, *ip;
/* The host privilege we are using */
char priv_host[MAX_HOSTNAME];
/* points to host if host is available, otherwise points to ip */
const char *host_or_ip;
ulong master_access; /* Global privileges from mysql.user */
ulong db_access; /* Privileges for current db */
void init();
void destroy();
void skip_grants();
inline char *priv_host_name()
{
return (*priv_host ? priv_host : (char *)"%");
}
bool set_user(char *user_arg);
#ifndef NO_EMBEDDED_ACCESS_CHECKS
bool
change_security_context(THD *thd,
LEX_STRING *definer_user,
LEX_STRING *definer_host,
LEX_STRING *db,
Security_context **backup);
void
restore_security_context(THD *thd, Security_context *backup);
#endif
bool user_matches(Security_context *);
};
/**
A registry for item tree transformations performed during
query optimization. We register only those changes which require
a rollback to re-execute a prepared statement or stored procedure
yet another time.
*/
struct Item_change_record;
typedef I_List<Item_change_record> Item_change_list;
/**
Type of prelocked mode.
See comment for THD::prelocked_mode for complete description.
*/
enum prelocked_mode_type {NON_PRELOCKED= 0, PRELOCKED= 1,
PRELOCKED_UNDER_LOCK_TABLES= 2};
/**
Class that holds information about tables which were opened and locked
by the thread. It is also used to save/restore this information in
push_open_tables_state()/pop_open_tables_state().
*/
class Open_tables_state
{
public:
/**
As part of class THD, this member is set during execution
of a prepared statement. When it is set, it is used
by the locking subsystem to report a change in table metadata.
When Open_tables_state part of THD is reset to open
a system or INFORMATION_SCHEMA table, the member is cleared
to avoid spurious ER_NEED_REPREPARE errors -- system and
INFORMATION_SCHEMA tables are not subject to metadata version
tracking.
@sa check_and_update_table_version()
*/
Reprepare_observer *m_reprepare_observer;
/**
List of regular tables in use by this thread. Contains temporary and
base tables that were opened with @see open_tables().
*/
TABLE *open_tables;
/**
List of temporary tables used by this thread. Contains user-level
temporary tables, created with CREATE TEMPORARY TABLE, and
internal temporary tables, created, e.g., to resolve a SELECT,
or for an intermediate table used in ALTER.
XXX Why are internal temporary tables added to this list?
*/
TABLE *temporary_tables;
/**
List of tables that were opened with HANDLER OPEN and are
still in use by this thread.
*/
TABLE *handler_tables;
TABLE *derived_tables;
/*
During a MySQL session, one can lock tables in two modes: automatic
or manual. In automatic mode all necessary tables are locked just before
statement execution, and all acquired locks are stored in 'lock'
member. Unlocking takes place automatically as well, when the
statement ends.
Manual mode comes into play when a user issues a 'LOCK TABLES'
statement. In this mode the user can only use the locked tables.
Trying to use any other tables will give an error. The locked tables are
stored in 'locked_tables' member. Manual locking is described in
the 'LOCK_TABLES' chapter of the MySQL manual.
See also lock_tables() for details.
*/
MYSQL_LOCK *lock;
/*
Tables that were locked with explicit or implicit LOCK TABLES.
(Implicit LOCK TABLES happens when we are prelocking tables for
execution of statement which uses stored routines. See description
THD::prelocked_mode for more info.)
*/
MYSQL_LOCK *locked_tables;
/*
CREATE-SELECT keeps an extra lock for the table being
created. This field is used to keep the extra lock available for
lower level routines, which would otherwise miss that lock.
*/
MYSQL_LOCK *extra_lock;
/*
prelocked_mode_type enum and prelocked_mode member are used for
indicating whenever "prelocked mode" is on, and what type of
"prelocked mode" is it.
Prelocked mode is used for execution of queries which explicitly
or implicitly (via views or triggers) use functions, thus may need
some additional tables (mentioned in query table list) for their
execution.
First open_tables() call for such query will analyse all functions
used by it and add all additional tables to table its list. It will
also mark this query as requiring prelocking. After that lock_tables()
will issue implicit LOCK TABLES for the whole table list and change
thd::prelocked_mode to non-0. All queries called in functions invoked
by the main query will use prelocked tables. Non-0 prelocked_mode
will also surpress mentioned analysys in those queries thus saving
cycles. Prelocked mode will be turned off once close_thread_tables()
for the main query will be called.
Note: Since not all "tables" present in table list are really locked
thd::prelocked_mode does not imply thd::locked_tables.
*/
prelocked_mode_type prelocked_mode;
ulong version;
uint current_tablenr;
enum enum_flags {
BACKUPS_AVAIL = (1U << 0) /* There are backups available */
};
/*
Flags with information about the open tables state.
*/
uint state_flags;
/*
This constructor serves for creation of Open_tables_state instances
which are used as backup storage.
*/
Open_tables_state() : state_flags(0U) { }
Open_tables_state(ulong version_arg);
void set_open_tables_state(Open_tables_state *state)
{
*this= *state;
}
void reset_open_tables_state()
{
open_tables= temporary_tables= handler_tables= derived_tables= 0;
extra_lock= lock= locked_tables= 0;
prelocked_mode= NON_PRELOCKED;
state_flags= 0U;
m_reprepare_observer= NULL;
}
};
/**
@class Sub_statement_state
@brief Used to save context when executing a function or trigger
*/
/* Defines used for Sub_statement_state::in_sub_stmt */
#define SUB_STMT_TRIGGER 1
#define SUB_STMT_FUNCTION 2
class Sub_statement_state
{
public:
ulonglong options;
ulonglong first_successful_insert_id_in_prev_stmt;
ulonglong first_successful_insert_id_in_cur_stmt, insert_id_for_cur_row;
Discrete_interval auto_inc_interval_for_cur_row;
Discrete_intervals_list auto_inc_intervals_forced;
ulonglong limit_found_rows;
ha_rows cuted_fields, sent_row_count, examined_row_count;
ulong client_capabilities;
uint in_sub_stmt;
bool enable_slow_log;
bool last_insert_id_used;
SAVEPOINT *savepoints;
};
/* Flags for the THD::system_thread variable */
enum enum_thread_type
{
NON_SYSTEM_THREAD= 0,
SYSTEM_THREAD_DELAYED_INSERT= 1,
SYSTEM_THREAD_SLAVE_IO= 2,
SYSTEM_THREAD_SLAVE_SQL= 4,
SYSTEM_THREAD_NDBCLUSTER_BINLOG= 8,
SYSTEM_THREAD_EVENT_SCHEDULER= 16,
SYSTEM_THREAD_EVENT_WORKER= 32
};
inline char const *
show_system_thread(enum_thread_type thread)
{
#define RETURN_NAME_AS_STRING(NAME) case (NAME): return #NAME
switch (thread) {
static char buf[64];
RETURN_NAME_AS_STRING(NON_SYSTEM_THREAD);
RETURN_NAME_AS_STRING(SYSTEM_THREAD_DELAYED_INSERT);
RETURN_NAME_AS_STRING(SYSTEM_THREAD_SLAVE_IO);
RETURN_NAME_AS_STRING(SYSTEM_THREAD_SLAVE_SQL);
RETURN_NAME_AS_STRING(SYSTEM_THREAD_NDBCLUSTER_BINLOG);
RETURN_NAME_AS_STRING(SYSTEM_THREAD_EVENT_SCHEDULER);
RETURN_NAME_AS_STRING(SYSTEM_THREAD_EVENT_WORKER);
default:
sprintf(buf, "<UNKNOWN SYSTEM THREAD: %d>", thread);
return buf;
}
#undef RETURN_NAME_AS_STRING
}
/**
This class represents the interface for internal error handlers.
Internal error handlers are exception handlers used by the server
implementation.
*/
class Internal_error_handler
{
protected:
Internal_error_handler() :
m_prev_internal_handler(NULL)
{}
virtual ~Internal_error_handler() {}
public:
/**
Handle an error condition.
This method can be implemented by a subclass to achieve any of the
following:
- mask an error internally, prevent exposing it to the user,
- mask an error and throw another one instead.
When this method returns true, the error condition is considered
'handled', and will not be propagated to upper layers.
It is the responsability of the code installing an internal handler
to then check for trapped conditions, and implement logic to recover
from the anticipated conditions trapped during runtime.
This mechanism is similar to C++ try/throw/catch:
- 'try' correspond to <code>THD::push_internal_handler()</code>,
- 'throw' correspond to <code>my_error()</code>,
which invokes <code>my_message_sql()</code>,
- 'catch' correspond to checking how/if an internal handler was invoked,
before removing it from the exception stack with
<code>THD::pop_internal_handler()</code>.
@param sql_errno the error number
@param level the error level
@param thd the calling thread
@return true if the error is handled
*/
virtual bool handle_error(uint sql_errno,
const char *message,
MYSQL_ERROR::enum_warning_level level,
THD *thd) = 0;
private:
Internal_error_handler *m_prev_internal_handler;
friend class THD;
};
/**
Implements the trivial error handler which cancels all error states
and prevents an SQLSTATE to be set.
*/
class Dummy_error_handler : public Internal_error_handler
{
public:
bool handle_error(uint sql_errno,
const char *message,
MYSQL_ERROR::enum_warning_level level,
THD *thd)
{
/* Ignore error */
return TRUE;
}
};
/**
Stores status of the currently executed statement.
Cleared at the beginning of the statement, and then
can hold either OK, ERROR, or EOF status.
Can not be assigned twice per statement.
*/
class Diagnostics_area
{
public:
enum enum_diagnostics_status
{
/** The area is cleared at start of a statement. */
DA_EMPTY= 0,
/** Set whenever one calls my_ok(). */
DA_OK,
/** Set whenever one calls my_eof(). */
DA_EOF,
/** Set whenever one calls my_error() or my_message(). */
DA_ERROR,
/** Set in case of a custom response, such as one from COM_STMT_PREPARE. */
DA_DISABLED
};
/** True if status information is sent to the client. */
bool is_sent;
/** Set to make set_error_status after set_{ok,eof}_status possible. */
bool can_overwrite_status;
void set_ok_status(THD *thd, ha_rows affected_rows_arg,
ulonglong last_insert_id_arg,
const char *message);
void set_eof_status(THD *thd);
void set_error_status(THD *thd, uint sql_errno_arg, const char *message_arg);
void disable_status();
void reset_diagnostics_area();
bool is_set() const { return m_status != DA_EMPTY; }
bool is_error() const { return m_status == DA_ERROR; }
bool is_eof() const { return m_status == DA_EOF; }
bool is_ok() const { return m_status == DA_OK; }
bool is_disabled() const { return m_status == DA_DISABLED; }
enum_diagnostics_status status() const { return m_status; }
const char *message() const
{ DBUG_ASSERT(m_status == DA_ERROR || m_status == DA_OK); return m_message; }
uint sql_errno() const
{ DBUG_ASSERT(m_status == DA_ERROR); return m_sql_errno; }
uint server_status() const
{
DBUG_ASSERT(m_status == DA_OK || m_status == DA_EOF);
return m_server_status;
}
ha_rows affected_rows() const
{ DBUG_ASSERT(m_status == DA_OK); return m_affected_rows; }
ulonglong last_insert_id() const
{ DBUG_ASSERT(m_status == DA_OK); return m_last_insert_id; }
uint total_warn_count() const
{
DBUG_ASSERT(m_status == DA_OK || m_status == DA_EOF);
return m_total_warn_count;
}
Diagnostics_area() { reset_diagnostics_area(); }
private:
/** Message buffer. Can be used by OK or ERROR status. */
char m_message[MYSQL_ERRMSG_SIZE];
/**
SQL error number. One of ER_ codes from share/errmsg.txt.
Set by set_error_status.
*/
uint m_sql_errno;
/**
Copied from thd->server_status when the diagnostics area is assigned.
We need this member as some places in the code use the following pattern:
thd->server_status|= ...
my_eof(thd);
thd->server_status&= ~...
Assigned by OK, EOF or ERROR.
*/
uint m_server_status;
/**
The number of rows affected by the last statement. This is
semantically close to thd->row_count_func, but has a different
life cycle. thd->row_count_func stores the value returned by
function ROW_COUNT() and is cleared only by statements that
update its value, such as INSERT, UPDATE, DELETE and few others.
This member is cleared at the beginning of the next statement.
We could possibly merge the two, but life cycle of thd->row_count_func
can not be changed.
*/
ha_rows m_affected_rows;
/**
Similarly to the previous member, this is a replacement of
thd->first_successful_insert_id_in_prev_stmt, which is used
to implement LAST_INSERT_ID().
*/
ulonglong m_last_insert_id;
/** The total number of warnings. */
uint m_total_warn_count;
enum_diagnostics_status m_status;
/**
@todo: the following THD members belong here:
- warn_list, warn_count,
*/
};
/**
Storage engine specific thread local data.
*/
struct Ha_data
{
/**
Storage engine specific thread local data.
Lifetime: one user connection.
*/
void *ha_ptr;
/**
0: Life time: one statement within a transaction. If @@autocommit is
on, also represents the entire transaction.
@sa trans_register_ha()
1: Life time: one transaction within a connection.
If the storage engine does not participate in a transaction,
this should not be used.
@sa trans_register_ha()
*/
Ha_trx_info ha_info[2];
Ha_data() :ha_ptr(NULL) {}
};
/**
@class THD
For each client connection we create a separate thread with THD serving as
a thread/connection descriptor
*/
class THD :public Statement,
public Open_tables_state
{
public:
/* Used to execute base64 coded binlog events in MySQL server */
Relay_log_info* rli_fake;
void reset_for_next_command();
/*
Constant for THD::where initialization in the beginning of every query.
It's needed because we do not save/restore THD::where normally during
primary (non subselect) query execution.
*/
static const char * const DEFAULT_WHERE;
#ifdef EMBEDDED_LIBRARY
struct st_mysql *mysql;
unsigned long client_stmt_id;
unsigned long client_param_count;
struct st_mysql_bind *client_params;
char *extra_data;
ulong extra_length;
struct st_mysql_data *cur_data;
struct st_mysql_data *first_data;
struct st_mysql_data **data_tail;
void clear_data_list();
struct st_mysql_data *alloc_new_dataset();
/*
In embedded server it points to the statement that is processed
in the current query. We store some results directly in statement
fields then.
*/
struct st_mysql_stmt *current_stmt;
#endif
NET net; // client connection descriptor
MEM_ROOT warn_root; // For warnings and errors
Protocol *protocol; // Current protocol
Protocol_text protocol_text; // Normal protocol
Protocol_binary protocol_binary; // Binary protocol
HASH user_vars; // hash for user variables
String packet; // dynamic buffer for network I/O
String convert_buffer; // buffer for charset conversions
struct sockaddr_in remote; // client socket address
struct rand_struct rand; // used for authentication
struct system_variables variables; // Changeable local variables
struct system_status_var status_var; // Per thread statistic vars
struct system_status_var *initial_status_var; /* used by show status */
THR_LOCK_INFO lock_info; // Locking info of this thread
THR_LOCK_OWNER main_lock_id; // To use for conventional queries
THR_LOCK_OWNER *lock_id; // If not main_lock_id, points to
// the lock_id of a cursor.
pthread_mutex_t LOCK_delete; // Locked before thd is deleted
/* all prepared statements and cursors of this connection */
Statement_map stmt_map;
/*
A pointer to the stack frame of handle_one_connection(),
which is called first in the thread for handling a client
*/
char *thread_stack;
/**
Currently selected catalog.
*/
char *catalog;
/**
@note
Some members of THD (currently 'Statement::db',
'catalog' and 'query') are set and alloced by the slave SQL thread
(for the THD of that thread); that thread is (and must remain, for now)
the only responsible for freeing these 3 members. If you add members
here, and you add code to set them in replication, don't forget to
free_them_and_set_them_to_0 in replication properly. For details see
the 'err:' label of the handle_slave_sql() in sql/slave.cc.
@see handle_slave_sql
*/
Security_context main_security_ctx;
Security_context *security_ctx;
/*
Points to info-string that we show in SHOW PROCESSLIST
You are supposed to update thd->proc_info only if you have coded
a time-consuming piece that MySQL can get stuck in for a long time.
Set it using the thd_proc_info(THD *thread, const char *message)
macro/function.
*/
const char *proc_info;
/*
Used in error messages to tell user in what part of MySQL we found an
error. E. g. when where= "having clause", if fix_fields() fails, user
will know that the error was in having clause.
*/
const char *where;
double tmp_double_value; /* Used in set_var.cc */
ulong client_capabilities; /* What the client supports */
ulong max_client_packet_length;
HASH handler_tables_hash;
/*
One thread can hold up to one named user-level lock. This variable
points to a lock object if the lock is present. See item_func.cc and
chapter 'Miscellaneous functions', for functions GET_LOCK, RELEASE_LOCK.
*/
User_level_lock *ull;
#ifndef DBUG_OFF
uint dbug_sentry; // watch out for memory corruption
#endif
struct st_my_thread_var *mysys_var;
/*
Type of current query: COM_STMT_PREPARE, COM_QUERY, etc. Set from
first byte of the packet in do_command()
*/
enum enum_server_command command;
uint32 server_id;
uint32 file_id; // for LOAD DATA INFILE
/* remote (peer) port */
uint16 peer_port;
time_t start_time, user_time;
// track down slow pthread_create
ulonglong prior_thr_create_utime, thr_create_utime;
ulonglong start_utime, utime_after_lock;
thr_lock_type update_lock_default;
Delayed_insert *di;
/* <> 0 if we are inside of trigger or stored function. */
uint in_sub_stmt;
/* TRUE when the current top has SQL_LOG_BIN ON */
bool sql_log_bin_toplevel;
/* container for handler's private per-connection data */
Ha_data ha_data[MAX_HA];
#ifndef MYSQL_CLIENT
int binlog_setup_trx_data();
/*
Public interface to write RBR events to the binlog
*/
void binlog_start_trans_and_stmt();
void binlog_set_stmt_begin();
int binlog_write_table_map(TABLE *table, bool is_transactional);
int binlog_write_row(TABLE* table, bool is_transactional,
MY_BITMAP const* cols, size_t colcnt,
const uchar *buf);
int binlog_delete_row(TABLE* table, bool is_transactional,
MY_BITMAP const* cols, size_t colcnt,
const uchar *buf);
int binlog_update_row(TABLE* table, bool is_transactional,
MY_BITMAP const* cols, size_t colcnt,
const uchar *old_data, const uchar *new_data);
void set_server_id(uint32 sid) { server_id = sid; }
/*
Member functions to handle pending event for row-level logging.
*/
template <class RowsEventT> Rows_log_event*
binlog_prepare_pending_rows_event(TABLE* table, uint32 serv_id,
MY_BITMAP const* cols,
size_t colcnt,
size_t needed,
bool is_transactional,
RowsEventT* hint);
Rows_log_event* binlog_get_pending_rows_event() const;
void binlog_set_pending_rows_event(Rows_log_event* ev);
int binlog_flush_pending_rows_event(bool stmt_end);
int binlog_remove_pending_rows_event(bool clear_maps);
int is_current_stmt_binlog_format_row() {
DBUG_ASSERT(current_stmt_binlog_format == BINLOG_FORMAT_STMT ||
current_stmt_binlog_format == BINLOG_FORMAT_ROW);
return current_stmt_binlog_format == BINLOG_FORMAT_ROW;
}
private:
/*
Tells if current statement should binlog row-based(1) or stmt-based(0)
*/
enum_binlog_format current_stmt_binlog_format;
enum enum_binlog_warning_flag {
/* ER_BINLOG_UNSAFE_AND_STMT_ENGINE affects current stmt */
BINLOG_WARNING_FLAG_UNSAFE_AND_STMT_ENGINE = 0,
/* ER_BINLOG_UNSAFE_AND_STMT_MODE affects current stmt */
BINLOG_WARNING_FLAG_UNSAFE_AND_STMT_MODE,
/* One of the warnings has already been printed */
BINLOG_WARNING_FLAG_PRINTED,
/* number of elements of this enum; insert new members above */
BINLOG_WARNING_FLAG_COUNT
};
/**
Flags holding the status of binlog-related warnings for the
current statement. This is a binary combination of (1<<flag),
where flag is a member of @c enum_binlog_warning_flag.
The warnings are determined in @c THD::decide_logging_format, but
issued only later, after the statement has been written to the
binlog. Hence it must be stored in the @c THD object.
*/
uint32 binlog_warning_flags;
/*
Number of outstanding table maps, i.e., table maps in the
transaction cache.
*/
uint binlog_table_maps;
public:
uint get_binlog_table_maps() const {
return binlog_table_maps;
}
#endif /* MYSQL_CLIENT */
public:
struct st_transactions {
SAVEPOINT *savepoints;
THD_TRANS all; // Trans since BEGIN WORK
THD_TRANS stmt; // Trans for current statement
bool on; // see ha_enable_transaction()
XID_STATE xid_state;
Rows_log_event *m_pending_rows_event;
/*
Tables changed in transaction (that must be invalidated in query cache).
List contain only transactional tables, that not invalidated in query
cache (instead of full list of changed in transaction tables).
*/
CHANGED_TABLE_LIST* changed_tables;
MEM_ROOT mem_root; // Transaction-life memory allocation pool
void cleanup()
{
changed_tables= 0;
savepoints= 0;
/*
If rm_error is raised, it means that this piece of a distributed
transaction has failed and must be rolled back. But the user must
rollback it explicitly, so don't start a new distributed XA until
then.
*/
if (!xid_state.rm_error)
xid_state.xid.null();
#ifdef USING_TRANSACTIONS
free_root(&mem_root,MYF(MY_KEEP_PREALLOC));
#endif
}
st_transactions()
{
#ifdef USING_TRANSACTIONS
bzero((char*)this, sizeof(*this));
xid_state.xid.null();
init_sql_alloc(&mem_root, ALLOC_ROOT_MIN_BLOCK_SIZE, 0);
#else
xid_state.xa_state= XA_NOTR;
#endif
}
} transaction;
Field *dup_field;
#ifndef __WIN__
sigset_t signals;
#endif
#ifdef SIGNAL_WITH_VIO_CLOSE
Vio* active_vio;
#endif
/*
This is to track items changed during execution of a prepared
statement/stored procedure. It's created by
register_item_tree_change() in memory root of THD, and freed in
rollback_item_tree_changes(). For conventional execution it's always
empty.
*/
Item_change_list change_list;
/*
A permanent memory area of the statement. For conventional
execution, the parsed tree and execution runtime reside in the same
memory root. In this case stmt_arena points to THD. In case of
a prepared statement or a stored procedure statement, thd->mem_root
conventionally points to runtime memory, and thd->stmt_arena
points to the memory of the PS/SP, where the parsed tree of the
statement resides. Whenever you need to perform a permanent
transformation of a parsed tree, you should allocate new memory in
stmt_arena, to allow correct re-execution of PS/SP.
Note: in the parser, stmt_arena == thd, even for PS/SP.
*/
Query_arena *stmt_arena;
/*
map for tables that will be updated for a multi-table update query
statement, for other query statements, this will be zero.
*/
table_map table_map_for_update;
/* Tells if LAST_INSERT_ID(#) was called for the current statement */
bool arg_of_last_insert_id_function;
/*
ALL OVER THIS FILE, "insert_id" means "*automatically generated* value for
insertion into an auto_increment column".
*/
/*
This is the first autogenerated insert id which was *successfully*
inserted by the previous statement (exactly, if the previous statement
didn't successfully insert an autogenerated insert id, then it's the one
of the statement before, etc).
It can also be set by SET LAST_INSERT_ID=# or SELECT LAST_INSERT_ID(#).
It is returned by LAST_INSERT_ID().
*/
ulonglong first_successful_insert_id_in_prev_stmt;
/*
Variant of the above, used for storing in statement-based binlog. The
difference is that the one above can change as the execution of a stored
function progresses, while the one below is set once and then does not
change (which is the value which statement-based binlog needs).
*/
ulonglong first_successful_insert_id_in_prev_stmt_for_binlog;
/*
This is the first autogenerated insert id which was *successfully*
inserted by the current statement. It is maintained only to set
first_successful_insert_id_in_prev_stmt when statement ends.
*/
ulonglong first_successful_insert_id_in_cur_stmt;
/*
We follow this logic:
- when stmt starts, first_successful_insert_id_in_prev_stmt contains the
first insert id successfully inserted by the previous stmt.
- as stmt makes progress, handler::insert_id_for_cur_row changes;
every time get_auto_increment() is called,
auto_inc_intervals_in_cur_stmt_for_binlog is augmented with the
reserved interval (if statement-based binlogging).
- at first successful insertion of an autogenerated value,
first_successful_insert_id_in_cur_stmt is set to
handler::insert_id_for_cur_row.
- when stmt goes to binlog,
auto_inc_intervals_in_cur_stmt_for_binlog is binlogged if
non-empty.
- when stmt ends, first_successful_insert_id_in_prev_stmt is set to
first_successful_insert_id_in_cur_stmt.
*/
/*
stmt_depends_on_first_successful_insert_id_in_prev_stmt is set when
LAST_INSERT_ID() is used by a statement.
If it is set, first_successful_insert_id_in_prev_stmt_for_binlog will be
stored in the statement-based binlog.
This variable is CUMULATIVE along the execution of a stored function or
trigger: if one substatement sets it to 1 it will stay 1 until the
function/trigger ends, thus making sure that
first_successful_insert_id_in_prev_stmt_for_binlog does not change anymore
and is propagated to the caller for binlogging.
*/
bool stmt_depends_on_first_successful_insert_id_in_prev_stmt;
/*
List of auto_increment intervals reserved by the thread so far, for
storage in the statement-based binlog.
Note that its minimum is not first_successful_insert_id_in_cur_stmt:
assuming a table with an autoinc column, and this happens:
INSERT INTO ... VALUES(3);
SET INSERT_ID=3; INSERT IGNORE ... VALUES (NULL);
then the latter INSERT will insert no rows
(first_successful_insert_id_in_cur_stmt == 0), but storing "INSERT_ID=3"
in the binlog is still needed; the list's minimum will contain 3.
This variable is cumulative: if several statements are written to binlog
as one (stored functions or triggers are used) this list is the
concatenation of all intervals reserved by all statements.
*/
Discrete_intervals_list auto_inc_intervals_in_cur_stmt_for_binlog;
/* Used by replication and SET INSERT_ID */
Discrete_intervals_list auto_inc_intervals_forced;
/*
There is BUG#19630 where statement-based replication of stored
functions/triggers with two auto_increment columns breaks.
We however ensure that it works when there is 0 or 1 auto_increment
column; our rules are
a) on master, while executing a top statement involving substatements,
first top- or sub- statement to generate auto_increment values wins the
exclusive right to see its values be written to binlog (the write
will be done by the statement or its caller), and the losers won't see
their values be written to binlog.
b) on slave, while replicating a top statement involving substatements,
first top- or sub- statement to need to read auto_increment values from
the master's binlog wins the exclusive right to read them (so the losers
won't read their values from binlog but instead generate on their own).
a) implies that we mustn't backup/restore
auto_inc_intervals_in_cur_stmt_for_binlog.
b) implies that we mustn't backup/restore auto_inc_intervals_forced.
If there are more than 1 auto_increment columns, then intervals for
different columns may mix into the
auto_inc_intervals_in_cur_stmt_for_binlog list, which is logically wrong,
but there is no point in preventing this mixing by preventing intervals
from the secondly inserted column to come into the list, as such
prevention would be wrong too.
What will happen in the case of
INSERT INTO t1 (auto_inc) VALUES(NULL);
where t1 has a trigger which inserts into an auto_inc column of t2, is
that in binlog we'll store the interval of t1 and the interval of t2 (when
we store intervals, soon), then in slave, t1 will use both intervals, t2
will use none; if t1 inserts the same number of rows as on master,
normally the 2nd interval will not be used by t1, which is fine. t2's
values will be wrong if t2's internal auto_increment counter is different
from what it was on master (which is likely). In 5.1, in mixed binlogging
mode, row-based binlogging is used for such cases where two
auto_increment columns are inserted.
*/
inline void record_first_successful_insert_id_in_cur_stmt(ulonglong id_arg)
{
if (first_successful_insert_id_in_cur_stmt == 0)
first_successful_insert_id_in_cur_stmt= id_arg;
}
inline ulonglong read_first_successful_insert_id_in_prev_stmt(void)
{
if (!stmt_depends_on_first_successful_insert_id_in_prev_stmt)
{
/* It's the first time we read it */
first_successful_insert_id_in_prev_stmt_for_binlog=
first_successful_insert_id_in_prev_stmt;
stmt_depends_on_first_successful_insert_id_in_prev_stmt= 1;
}
return first_successful_insert_id_in_prev_stmt;
}
/*
Used by Intvar_log_event::do_apply_event() and by "SET INSERT_ID=#"
(mysqlbinlog). We'll soon add a variant which can take many intervals in
argument.
*/
inline void force_one_auto_inc_interval(ulonglong next_id)
{
auto_inc_intervals_forced.empty(); // in case of multiple SET INSERT_ID
auto_inc_intervals_forced.append(next_id, ULONGLONG_MAX, 0);
}
ulonglong limit_found_rows;
ulonglong options; /* Bitmap of states */
longlong row_count_func; /* For the ROW_COUNT() function */
ha_rows cuted_fields;
/*
number of rows we actually sent to the client, including "synthetic"
rows in ROLLUP etc.
*/
ha_rows sent_row_count;
/*
number of rows we read, sent or not, including in create_sort_index()
*/
ha_rows examined_row_count;
/*
The set of those tables whose fields are referenced in all subqueries
of the query.
TODO: possibly this it is incorrect to have used tables in THD because
with more than one subquery, it is not clear what does the field mean.
*/
table_map used_tables;
USER_CONN *user_connect;
CHARSET_INFO *db_charset;
/*
FIXME: this, and some other variables like 'count_cuted_fields'
maybe should be statement/cursor local, that is, moved to Statement
class. With current implementation warnings produced in each prepared
statement/cursor settle here.
*/
List <MYSQL_ERROR> warn_list;
uint warn_count[(uint) MYSQL_ERROR::WARN_LEVEL_END];
uint total_warn_count;
Diagnostics_area main_da;
#if defined(ENABLED_PROFILING) && defined(COMMUNITY_SERVER)
PROFILING profiling;
#endif
/*
Id of current query. Statement can be reused to execute several queries
query_id is global in context of the whole MySQL server.
ID is automatically generated from mutex-protected counter.
It's used in handler code for various purposes: to check which columns
from table are necessary for this select, to check if it's necessary to
update auto-updatable fields (like auto_increment and timestamp).
*/
query_id_t query_id, warn_id;
ulong col_access;
#ifdef ERROR_INJECT_SUPPORT
ulong error_inject_value;
#endif
/* Statement id is thread-wide. This counter is used to generate ids */
ulong statement_id_counter;
ulong rand_saved_seed1, rand_saved_seed2;
/*
Row counter, mainly for errors and warnings. Not increased in
create_sort_index(); may differ from examined_row_count.
*/
ulong row_count;
pthread_t real_id; /* For debugging */
my_thread_id thread_id;
uint tmp_table, global_read_lock;
uint server_status,open_options;
enum enum_thread_type system_thread;
uint select_number; //number of select (used for EXPLAIN)
/* variables.transaction_isolation is reset to this after each commit */
enum_tx_isolation session_tx_isolation;
enum_check_fields count_cuted_fields;
DYNAMIC_ARRAY user_var_events; /* For user variables replication */
MEM_ROOT *user_var_events_alloc; /* Allocate above array elements here */
enum killed_state
{
NOT_KILLED=0,
KILL_BAD_DATA=1,
KILL_CONNECTION=ER_SERVER_SHUTDOWN,
KILL_QUERY=ER_QUERY_INTERRUPTED,
KILLED_NO_VALUE /* means neither of the states */
};
killed_state volatile killed;
/* scramble - random string sent to client on handshake */
char scramble[SCRAMBLE_LENGTH+1];
bool slave_thread, one_shot_set;
bool locked, some_tables_deleted;
bool last_cuted_field;
bool no_errors, password;
/**
Set to TRUE if execution of the current compound statement
can not continue. In particular, disables activation of
CONTINUE or EXIT handlers of stored routines.
Reset in the end of processing of the current user request, in
@see mysql_reset_thd_for_next_command().
*/
bool is_fatal_error;
/**
Set by a storage engine to request the entire
transaction (that possibly spans multiple engines) to
rollback. Reset in ha_rollback.
*/
bool transaction_rollback_request;
/**
TRUE if we are in a sub-statement and the current error can
not be safely recovered until we left the sub-statement mode.
In particular, disables activation of CONTINUE and EXIT
handlers inside sub-statements. E.g. if it is a deadlock
error and requires a transaction-wide rollback, this flag is
raised (traditionally, MySQL first has to close all the reads
via @see handler::ha_index_or_rnd_end() and only then perform
the rollback).
Reset to FALSE when we leave the sub-statement mode.
*/
bool is_fatal_sub_stmt_error;
bool query_start_used, rand_used, time_zone_used;
/* for IS NULL => = last_insert_id() fix in remove_eq_conds() */
bool substitute_null_with_insert_id;
bool in_lock_tables;
/**
True if a slave error. Causes the slave to stop. Not the same
as the statement execution error (is_error()), since
a statement may be expected to return an error, e.g. because
it returned an error on master, and this is OK on the slave.
*/
bool is_slave_error;
bool bootstrap, cleanup_done;
/** is set if some thread specific value(s) used in a statement. */
bool thread_specific_used;
bool charset_is_system_charset, charset_is_collation_connection;
bool charset_is_character_set_filesystem;
bool enable_slow_log; /* enable slow log for current statement */
bool abort_on_warning;
bool got_warning; /* Set on call to push_warning() */
bool no_warnings_for_error; /* no warnings on call to my_error() */
/* set during loop of derived table processing */
bool derived_tables_processing;
my_bool tablespace_op; /* This is TRUE in DISCARD/IMPORT TABLESPACE */
sp_rcontext *spcont; // SP runtime context
sp_cache *sp_proc_cache;
sp_cache *sp_func_cache;
/** number of name_const() substitutions, see sp_head.cc:subst_spvars() */
uint query_name_consts;
/*
If we do a purge of binary logs, log index info of the threads
that are currently reading it needs to be adjusted. To do that
each thread that is using LOG_INFO needs to adjust the pointer to it
*/
LOG_INFO* current_linfo;
NET* slave_net; // network connection from slave -> m.
/* Used by the sys_var class to store temporary values */
union
{
my_bool my_bool_value;
long long_value;
ulong ulong_value;
ulonglong ulonglong_value;
} sys_var_tmp;
struct {
/*
If true, mysql_bin_log::write(Log_event) call will not write events to
binlog, and maintain 2 below variables instead (use
mysql_bin_log.start_union_events to turn this on)
*/
bool do_union;
/*
If TRUE, at least one mysql_bin_log::write(Log_event) call has been
made after last mysql_bin_log.start_union_events() call.
*/
bool unioned_events;
/*
If TRUE, at least one mysql_bin_log::write(Log_event e), where
e.cache_stmt == TRUE call has been made after last
mysql_bin_log.start_union_events() call.
*/
bool unioned_events_trans;
/*
'queries' (actually SP statements) that run under inside this binlog
union have thd->query_id >= first_query_id.
*/
query_id_t first_query_id;
} binlog_evt_union;
/**
Internal parser state.
Note that since the parser is not re-entrant, we keep only one parser
state here. This member is valid only when executing code during parsing.
*/
Parser_state *m_parser_state;
#ifdef WITH_PARTITION_STORAGE_ENGINE
partition_info *work_part_info;
#endif
THD();
~THD();
void init(void);
/*
Initialize memory roots necessary for query processing and (!)
pre-allocate memory for it. We can't do that in THD constructor because
there are use cases (acl_init, delayed inserts, watcher threads,
killing mysqld) where it's vital to not allocate excessive and not used
memory. Note, that we still don't return error from init_for_queries():
if preallocation fails, we should notice that at the first call to
alloc_root.
*/
void init_for_queries();
void change_user(void);
void cleanup(void);
void cleanup_after_query();
bool store_globals();
#ifdef SIGNAL_WITH_VIO_CLOSE
inline void set_active_vio(Vio* vio)
{
pthread_mutex_lock(&LOCK_delete);
active_vio = vio;
pthread_mutex_unlock(&LOCK_delete);
}
inline void clear_active_vio()
{
pthread_mutex_lock(&LOCK_delete);
active_vio = 0;
pthread_mutex_unlock(&LOCK_delete);
}
void close_active_vio();
#endif
void awake(THD::killed_state state_to_set);
#ifndef MYSQL_CLIENT
enum enum_binlog_query_type {
/* The query can be logged in row format or in statement format. */
ROW_QUERY_TYPE,
/* The query has to be logged in statement format. */
STMT_QUERY_TYPE,
QUERY_TYPE_COUNT
};
int binlog_query(enum_binlog_query_type qtype,
char const *query, ulong query_len,
bool is_trans, bool suppress_use,
int errcode);
#endif
/*
For enter_cond() / exit_cond() to work the mutex must be got before
enter_cond(); this mutex is then released by exit_cond().
Usage must be: lock mutex; enter_cond(); your code; exit_cond().
*/
inline const char* enter_cond(pthread_cond_t *cond, pthread_mutex_t* mutex,
const char* msg)
{
const char* old_msg = proc_info;
safe_mutex_assert_owner(mutex);
mysys_var->current_mutex = mutex;
mysys_var->current_cond = cond;
proc_info = msg;
return old_msg;
}
inline void exit_cond(const char* old_msg)
{
/*
Putting the mutex unlock in exit_cond() ensures that
mysys_var->current_mutex is always unlocked _before_ mysys_var->mutex is
locked (if that would not be the case, you'll get a deadlock if someone
does a THD::awake() on you).
*/
pthread_mutex_unlock(mysys_var->current_mutex);
pthread_mutex_lock(&mysys_var->mutex);
mysys_var->current_mutex = 0;
mysys_var->current_cond = 0;
proc_info = old_msg;
pthread_mutex_unlock(&mysys_var->mutex);
}
inline time_t query_start() { query_start_used=1; return start_time; }
inline void set_time()
{
if (user_time)
{
start_time= user_time;
start_utime= utime_after_lock= my_micro_time();
}
else
start_utime= utime_after_lock= my_micro_time_and_time(&start_time);
}
inline void set_current_time() { start_time= my_time(MY_WME); }
inline void set_time(time_t t)
{
start_time= user_time= t;
start_utime= utime_after_lock= my_micro_time();
}
void set_time_after_lock() { utime_after_lock= my_micro_time(); }
ulonglong current_utime() { return my_micro_time(); }
inline ulonglong found_rows(void)
{
return limit_found_rows;
}
inline bool active_transaction()
{
#ifdef USING_TRANSACTIONS
return server_status & SERVER_STATUS_IN_TRANS;
#else
return 0;
#endif
}
inline bool fill_derived_tables()
{
return !stmt_arena->is_stmt_prepare() && !lex->only_view_structure();
}
inline bool fill_information_schema_tables()
{
return !stmt_arena->is_stmt_prepare();
}
inline void* trans_alloc(unsigned int size)
{
return alloc_root(&transaction.mem_root,size);
}
LEX_STRING *make_lex_string(LEX_STRING *lex_str,
const char* str, uint length,
bool allocate_lex_string);
bool convert_string(LEX_STRING *to, CHARSET_INFO *to_cs,
const char *from, uint from_length,
CHARSET_INFO *from_cs);
bool convert_string(String *s, CHARSET_INFO *from_cs, CHARSET_INFO *to_cs);
void add_changed_table(TABLE *table);
void add_changed_table(const char *key, long key_length);
CHANGED_TABLE_LIST * changed_table_dup(const char *key, long key_length);
int send_explain_fields(select_result *result);
#ifndef EMBEDDED_LIBRARY
/**
Clear the current error, if any.
We do not clear is_fatal_error or is_fatal_sub_stmt_error since we
assume this is never called if the fatal error is set.
@todo: To silence an error, one should use Internal_error_handler
mechanism. In future this function will be removed.
*/
inline void clear_error()
{
DBUG_ENTER("clear_error");
if (main_da.is_error())
main_da.reset_diagnostics_area();
is_slave_error= 0;
DBUG_VOID_RETURN;
}
inline bool vio_ok() const { return net.vio != 0; }
#else
void clear_error();
inline bool vio_ok() const { return true; }
#endif
/**
Mark the current error as fatal. Warning: this does not
set any error, it sets a property of the error, so must be
followed or prefixed with my_error().
*/
inline void fatal_error()
{
is_fatal_error= 1;
DBUG_PRINT("error",("Fatal error set"));
}
/**
TRUE if there is an error in the error stack.
Please use this method instead of direct access to
net.report_error.
If TRUE, the current (sub)-statement should be aborted.
The main difference between this member and is_fatal_error
is that a fatal error can not be handled by a stored
procedure continue handler, whereas a normal error can.
To raise this flag, use my_error().
*/
inline bool is_error() const { return main_da.is_error(); }
inline CHARSET_INFO *charset() { return variables.character_set_client; }
void update_charset();
inline Query_arena *activate_stmt_arena_if_needed(Query_arena *backup)
{
/*
Use the persistent arena if we are in a prepared statement or a stored
procedure statement and we have not already changed to use this arena.
*/
if (!stmt_arena->is_conventional() && mem_root != stmt_arena->mem_root)
{
set_n_backup_active_arena(stmt_arena, backup);
return stmt_arena;
}
return 0;
}
void change_item_tree(Item **place, Item *new_value)
{
/* TODO: check for OOM condition here */
if (!stmt_arena->is_conventional())
nocheck_register_item_tree_change(place, *place, mem_root);
*place= new_value;
}
void nocheck_register_item_tree_change(Item **place, Item *old_value,
MEM_ROOT *runtime_memroot);
void rollback_item_tree_changes();
/*
Cleanup statement parse state (parse tree, lex) and execution
state after execution of a non-prepared SQL statement.
*/
void end_statement();
inline int killed_errno() const
{
killed_state killed_val; /* to cache the volatile 'killed' */
return (killed_val= killed) != KILL_BAD_DATA ? killed_val : 0;
}
inline void send_kill_message() const
{
int err= killed_errno();
if (err)
my_message(err, ER(err), MYF(0));
}
/* return TRUE if we will abort query if we make a warning now */
inline bool really_abort_on_warning()
{
return (abort_on_warning &&
(!transaction.stmt.modified_non_trans_table ||
(variables.sql_mode & MODE_STRICT_ALL_TABLES)));
}
void set_status_var_init();
bool is_context_analysis_only()
{ return stmt_arena->is_stmt_prepare() || lex->view_prepare_mode; }
void reset_n_backup_open_tables_state(Open_tables_state *backup);
void restore_backup_open_tables_state(Open_tables_state *backup);
void reset_sub_statement_state(Sub_statement_state *backup, uint new_state);
void restore_sub_statement_state(Sub_statement_state *backup);
void set_n_backup_active_arena(Query_arena *set, Query_arena *backup);
void restore_active_arena(Query_arena *set, Query_arena *backup);
/*
@todo Make these methods private or remove them completely. Only
decide_logging_format should call them. /Sven
*/
inline void set_current_stmt_binlog_row_based_if_mixed()
{
DBUG_ENTER("set_current_stmt_binlog_row_based_if_mixed");
/*
If in a stored/function trigger, the caller should already have done the
change. We test in_sub_stmt to prevent introducing bugs where people
wouldn't ensure that, and would switch to row-based mode in the middle
of executing a stored function/trigger (which is too late, see also
reset_current_stmt_binlog_row_based()); this condition will make their
tests fail and so force them to propagate the
lex->binlog_row_based_if_mixed upwards to the caller.
*/
if ((variables.binlog_format == BINLOG_FORMAT_MIXED) &&
(in_sub_stmt == 0))
current_stmt_binlog_format= BINLOG_FORMAT_ROW;
DBUG_VOID_RETURN;
}
inline void set_current_stmt_binlog_row_based()
{
DBUG_ENTER("set_current_stmt_binlog_row_based");
current_stmt_binlog_format= BINLOG_FORMAT_ROW;
DBUG_VOID_RETURN;
}
inline void clear_current_stmt_binlog_row_based()
{
DBUG_ENTER("clear_current_stmt_binlog_row_based");
current_stmt_binlog_format= BINLOG_FORMAT_STMT;
DBUG_VOID_RETURN;
}
inline void reset_current_stmt_binlog_row_based()
{
DBUG_ENTER("reset_current_stmt_binlog_row_based");
/*
If there are temporary tables, don't reset back to
statement-based. Indeed it could be that:
CREATE TEMPORARY TABLE t SELECT UUID(); # row-based
# and row-based does not store updates to temp tables
# in the binlog.
INSERT INTO u SELECT * FROM t; # stmt-based
and then the INSERT will fail as data inserted into t was not logged.
So we continue with row-based until the temp table is dropped.
If we are in a stored function or trigger, we mustn't reset in the
middle of its execution (as the binary logging way of a stored function
or trigger is decided when it starts executing, depending for example on
the caller (for a stored function: if caller is SELECT or
INSERT/UPDATE/DELETE...).
*/
DBUG_PRINT("debug",
("temporary_tables: %s, in_sub_stmt: %s, system_thread: %s",
YESNO(temporary_tables), YESNO(in_sub_stmt),
show_system_thread(system_thread)));
if ((temporary_tables == NULL) && (in_sub_stmt == 0))
{
current_stmt_binlog_format=
(variables.binlog_format == BINLOG_FORMAT_ROW) ?
BINLOG_FORMAT_ROW : BINLOG_FORMAT_STMT;
}
DBUG_VOID_RETURN;
}
/**
Set the current database; use deep copy of C-string.
@param new_db a pointer to the new database name.
@param new_db_len length of the new database name.
Initialize the current database from a NULL-terminated string with
length. If we run out of memory, we free the current database and
return TRUE. This way the user will notice the error as there will be
no current database selected (in addition to the error message set by
malloc).
@note This operation just sets {db, db_length}. Switching the current
database usually involves other actions, like switching other database
attributes including security context. In the future, this operation
will be made private and more convenient interface will be provided.
@return Operation status
@retval FALSE Success
@retval TRUE Out-of-memory error
*/
bool set_db(const char *new_db, size_t new_db_len)
{
/* Do not reallocate memory if current chunk is big enough. */
if (db && new_db && db_length >= new_db_len)
memcpy(db, new_db, new_db_len+1);
else
{
x_free(db);
db= new_db ? my_strndup(new_db, new_db_len, MYF(MY_WME)) : NULL;
}
db_length= db ? new_db_len : 0;
return new_db && !db;
}
/**
Set the current database; use shallow copy of C-string.
@param new_db a pointer to the new database name.
@param new_db_len length of the new database name.
@note This operation just sets {db, db_length}. Switching the current
database usually involves other actions, like switching other database
attributes including security context. In the future, this operation
will be made private and more convenient interface will be provided.
*/
void reset_db(char *new_db, size_t new_db_len)
{
db= new_db;
db_length= new_db_len;
}
/*
Copy the current database to the argument. Use the current arena to
allocate memory for a deep copy: current database may be freed after
a statement is parsed but before it's executed.
*/
bool copy_db_to(char **p_db, size_t *p_db_length)
{
if (db == NULL)
{
my_message(ER_NO_DB_ERROR, ER(ER_NO_DB_ERROR), MYF(0));
return TRUE;
}
*p_db= strmake(db, db_length);
*p_db_length= db_length;
return FALSE;
}
thd_scheduler scheduler;
public:
inline Internal_error_handler *get_internal_handler()
{ return m_internal_handler; }
/**
Add an internal error handler to the thread execution context.
@param handler the exception handler to add
*/
void push_internal_handler(Internal_error_handler *handler);
/**
Handle an error condition.
@param sql_errno the error number
@param level the error level
@return true if the error is handled
*/
virtual bool handle_error(uint sql_errno, const char *message,
MYSQL_ERROR::enum_warning_level level);
/**
Remove the error handler last pushed.
*/
void pop_internal_handler();
int decide_logging_format(TABLE_LIST *tables);
private:
/** The current internal error handler for this thread, or NULL. */
Internal_error_handler *m_internal_handler;
/**
The lex to hold the parsed tree of conventional (non-prepared) queries.
Whereas for prepared and stored procedure statements we use an own lex
instance for each new query, for conventional statements we reuse
the same lex. (@see mysql_parse for details).
*/
LEX main_lex;
/**
This memory root is used for two purposes:
- for conventional queries, to allocate structures stored in main_lex
during parsing, and allocate runtime data (execution plan, etc.)
during execution.
- for prepared queries, only to allocate runtime data. The parsed
tree itself is reused between executions and thus is stored elsewhere.
*/
MEM_ROOT main_mem_root;
};
/** A short cut for thd->main_da.set_ok_status(). */
inline void
my_ok(THD *thd, ha_rows affected_rows= 0, ulonglong id= 0,
const char *message= NULL)
{
thd->main_da.set_ok_status(thd, affected_rows, id, message);
}
/** A short cut for thd->main_da.set_eof_status(). */
inline void
my_eof(THD *thd)
{
thd->main_da.set_eof_status(thd);
}
#define tmp_disable_binlog(A) \
{ulonglong tmp_disable_binlog__save_options= (A)->options; \
(A)->options&= ~OPTION_BIN_LOG
#define reenable_binlog(A) (A)->options= tmp_disable_binlog__save_options;}
/*
Used to hold information about file and file structure in exchange
via non-DB file (...INTO OUTFILE..., ...LOAD DATA...)
XXX: We never call destructor for objects of this class.
*/
class sql_exchange :public Sql_alloc
{
public:
char *file_name;
String *field_term,*enclosed,*line_term,*line_start,*escaped;
bool opt_enclosed;
bool dumpfile;
ulong skip_lines;
CHARSET_INFO *cs;
sql_exchange(char *name,bool dumpfile_flag);
bool escaped_given(void);
};
#include "log_event.h"
/*
This is used to get result from a select
*/
class JOIN;
class select_result :public Sql_alloc {
protected:
THD *thd;
SELECT_LEX_UNIT *unit;
uint nest_level;
public:
select_result();
virtual ~select_result() {};
virtual int prepare(List<Item> &list, SELECT_LEX_UNIT *u)
{
unit= u;
return 0;
}
virtual int prepare2(void) { return 0; }
/*
Because of peculiarities of prepared statements protocol
we need to know number of columns in the result set (if
there is a result set) apart from sending columns metadata.
*/
virtual uint field_count(List<Item> &fields) const
{ return fields.elements; }
virtual bool send_fields(List<Item> &list, uint flags)=0;
virtual bool send_data(List<Item> &items)=0;
virtual bool initialize_tables (JOIN *join=0) { return 0; }
virtual void send_error(uint errcode,const char *err);
virtual bool send_eof()=0;
/**
Check if this query returns a result set and therefore is allowed in
cursors and set an error message if it is not the case.
@retval FALSE success
@retval TRUE error, an error message is set
*/
virtual bool check_simple_select() const;
virtual void abort() {}
/*
Cleanup instance of this class for next execution of a prepared
statement/stored procedure.
*/
virtual void cleanup();
void set_thd(THD *thd_arg) { thd= thd_arg; }
/**
The nest level, if supported.
@return
-1 if nest level is undefined, otherwise a positive integer.
*/
int get_nest_level() { return nest_level; }
#ifdef EMBEDDED_LIBRARY
virtual void begin_dataset() {}
#else
void begin_dataset() {}
#endif
};
/*
Base class for select_result descendands which intercept and
transform result set rows. As the rows are not sent to the client,
sending of result set metadata should be suppressed as well.
*/
class select_result_interceptor: public select_result
{
public:
select_result_interceptor() {} /* Remove gcc warning */
uint field_count(List<Item> &fields) const { return 0; }
bool send_fields(List<Item> &fields, uint flag) { return FALSE; }
};
class select_send :public select_result {
/**
True if we have sent result set metadata to the client.
In this case the client always expects us to end the result
set with an eof or error packet
*/
bool is_result_set_started;
public:
select_send() :is_result_set_started(FALSE) {}
bool send_fields(List<Item> &list, uint flags);
bool send_data(List<Item> &items);
bool send_eof();
virtual bool check_simple_select() const { return FALSE; }
void abort();
virtual void cleanup();
};
class select_to_file :public select_result_interceptor {
protected:
sql_exchange *exchange;
File file;
IO_CACHE cache;
ha_rows row_count;
char path[FN_REFLEN];
public:
select_to_file(sql_exchange *ex) :exchange(ex), file(-1),row_count(0L)
{ path[0]=0; }
~select_to_file();
void send_error(uint errcode,const char *err);
bool send_eof();
void cleanup();
};
#define ESCAPE_CHARS "ntrb0ZN" // keep synchronous with READ_INFO::unescape
/*
List of all possible characters of a numeric value text representation.
*/
#define NUMERIC_CHARS ".0123456789e+-"
class select_export :public select_to_file {
uint field_term_length;
int field_sep_char,escape_char,line_sep_char;
int field_term_char; // first char of FIELDS TERMINATED BY or MAX_INT
/*
The is_ambiguous_field_sep field is true if a value of the field_sep_char
field is one of the 'n', 't', 'r' etc characters
(see the READ_INFO::unescape method and the ESCAPE_CHARS constant value).
*/
bool is_ambiguous_field_sep;
/*
The is_ambiguous_field_term is true if field_sep_char contains the first
char of the FIELDS TERMINATED BY (ENCLOSED BY is empty), and items can
contain this character.
*/
bool is_ambiguous_field_term;
/*
The is_unsafe_field_sep field is true if a value of the field_sep_char
field is one of the '0'..'9', '+', '-', '.' and 'e' characters
(see the NUMERIC_CHARS constant value).
*/
bool is_unsafe_field_sep;
bool fixed_row_size;
public:
select_export(sql_exchange *ex) :select_to_file(ex) {}
/**
Creates a select_export to represent INTO OUTFILE <filename> with a
defined level of subquery nesting.
*/
select_export(sql_exchange *ex, uint nest_level_arg) :select_to_file(ex)
{
nest_level= nest_level_arg;
}
~select_export();
int prepare(List<Item> &list, SELECT_LEX_UNIT *u);
bool send_data(List<Item> &items);
};
class select_dump :public select_to_file {
public:
select_dump(sql_exchange *ex) :select_to_file(ex) {}
/**
Creates a select_export to represent INTO DUMPFILE <filename> with a
defined level of subquery nesting.
*/
select_dump(sql_exchange *ex, uint nest_level_arg) :
select_to_file(ex)
{
nest_level= nest_level_arg;
}
int prepare(List<Item> &list, SELECT_LEX_UNIT *u);
bool send_data(List<Item> &items);
};
class select_insert :public select_result_interceptor {
public:
TABLE_LIST *table_list;
TABLE *table;
List<Item> *fields;
ulonglong autoinc_value_of_last_inserted_row; // autogenerated or not
COPY_INFO info;
bool insert_into_view;
select_insert(TABLE_LIST *table_list_par,
TABLE *table_par, List<Item> *fields_par,
List<Item> *update_fields, List<Item> *update_values,
enum_duplicates duplic, bool ignore);
~select_insert();
int prepare(List<Item> &list, SELECT_LEX_UNIT *u);
virtual int prepare2(void);
bool send_data(List<Item> &items);
virtual void store_values(List<Item> &values);
virtual bool can_rollback_data() { return 0; }
void send_error(uint errcode,const char *err);
bool send_eof();
void abort();
/* not implemented: select_insert is never re-used in prepared statements */
void cleanup();
};
class select_create: public select_insert {
ORDER *group;
TABLE_LIST *create_table;
HA_CREATE_INFO *create_info;
TABLE_LIST *select_tables;
Alter_info *alter_info;
Field **field;
/* lock data for tmp table */
MYSQL_LOCK *m_lock;
/* m_lock or thd->extra_lock */
MYSQL_LOCK **m_plock;
public:
select_create (TABLE_LIST *table_arg,
HA_CREATE_INFO *create_info_par,
Alter_info *alter_info_arg,
List<Item> &select_fields,enum_duplicates duplic, bool ignore,
TABLE_LIST *select_tables_arg)
:select_insert (NULL, NULL, &select_fields, 0, 0, duplic, ignore),
create_table(table_arg),
create_info(create_info_par),
select_tables(select_tables_arg),
alter_info(alter_info_arg),
m_plock(NULL)
{}
int prepare(List<Item> &list, SELECT_LEX_UNIT *u);
void binlog_show_create_table(TABLE **tables, uint count);
void store_values(List<Item> &values);
void send_error(uint errcode,const char *err);
bool send_eof();
void abort();
virtual bool can_rollback_data() { return 1; }
// Needed for access from local class MY_HOOKS in prepare(), since thd is proteted.
const THD *get_thd(void) { return thd; }
const HA_CREATE_INFO *get_create_info() { return create_info; };
int prepare2(void) { return 0; }
};
#include <myisam.h>
/*
Param to create temporary tables when doing SELECT:s
NOTE
This structure is copied using memcpy as a part of JOIN.
*/
class TMP_TABLE_PARAM :public Sql_alloc
{
private:
/* Prevent use of these (not safe because of lists and copy_field) */
TMP_TABLE_PARAM(const TMP_TABLE_PARAM &);
void operator=(TMP_TABLE_PARAM &);
public:
List<Item> copy_funcs;
List<Item> save_copy_funcs;
Copy_field *copy_field, *copy_field_end;
Copy_field *save_copy_field, *save_copy_field_end;
uchar *group_buff;
Item **items_to_copy; /* Fields in tmp table */
MI_COLUMNDEF *recinfo,*start_recinfo;
KEY *keyinfo;
ha_rows end_write_records;
uint field_count,sum_func_count,func_count;
uint hidden_field_count;
uint group_parts,group_length,group_null_parts;
uint quick_group;
bool using_indirect_summary_function;
/* If >0 convert all blob fields to varchar(convert_blob_length) */
uint convert_blob_length;
CHARSET_INFO *table_charset;
bool schema_table;
/*
True if GROUP BY and its aggregate functions are already computed
by a table access method (e.g. by loose index scan). In this case
query execution should not perform aggregation and should treat
aggregate functions as normal functions.
*/
bool precomputed_group_by;
bool force_copy_fields;
TMP_TABLE_PARAM()
:copy_field(0), group_parts(0),
group_length(0), group_null_parts(0), convert_blob_length(0),
schema_table(0), precomputed_group_by(0), force_copy_fields(0)
{}
~TMP_TABLE_PARAM()
{
cleanup();
}
void init(void);
inline void cleanup(void)
{
if (copy_field) /* Fix for Intel compiler */
{
delete [] copy_field;
save_copy_field= copy_field= 0;
}
}
};
class select_union :public select_result_interceptor
{
TMP_TABLE_PARAM tmp_table_param;
public:
TABLE *table;
select_union() :table(0) {}
int prepare(List<Item> &list, SELECT_LEX_UNIT *u);
bool send_data(List<Item> &items);
bool send_eof();
bool flush();
bool create_result_table(THD *thd, List<Item> *column_types,
bool is_distinct, ulonglong options,
const char *alias);
};
/* Base subselect interface class */
class select_subselect :public select_result_interceptor
{
protected:
Item_subselect *item;
public:
select_subselect(Item_subselect *item);
bool send_data(List<Item> &items)=0;
bool send_eof() { return 0; };
};
/* Single value subselect interface class */
class select_singlerow_subselect :public select_subselect
{
public:
select_singlerow_subselect(Item_subselect *item_arg)
:select_subselect(item_arg)
{}
bool send_data(List<Item> &items);
};
/* used in independent ALL/ANY optimisation */
class select_max_min_finder_subselect :public select_subselect
{
Item_cache *cache;
bool (select_max_min_finder_subselect::*op)();
bool fmax;
public:
select_max_min_finder_subselect(Item_subselect *item_arg, bool mx)
:select_subselect(item_arg), cache(0), fmax(mx)
{}
void cleanup();
bool send_data(List<Item> &items);
bool cmp_real();
bool cmp_int();
bool cmp_decimal();
bool cmp_str();
};
/* EXISTS subselect interface class */
class select_exists_subselect :public select_subselect
{
public:
select_exists_subselect(Item_subselect *item_arg)
:select_subselect(item_arg){}
bool send_data(List<Item> &items);
};
/* Structs used when sorting */
typedef struct st_sort_field {
Field *field; /* Field to sort */
Item *item; /* Item if not sorting fields */
uint length; /* Length of sort field */
uint suffix_length; /* Length suffix (0-4) */
Item_result result_type; /* Type of item */
bool reverse; /* if descending sort */
bool need_strxnfrm; /* If we have to use strxnfrm() */
} SORT_FIELD;
typedef struct st_sort_buffer {
uint index; /* 0 or 1 */
uint sort_orders;
uint change_pos; /* If sort-fields changed */
char **buff;
SORT_FIELD *sortorder;
} SORT_BUFFER;
/* Structure for db & table in sql_yacc */
class Table_ident :public Sql_alloc
{
public:
LEX_STRING db;
LEX_STRING table;
SELECT_LEX_UNIT *sel;
inline Table_ident(THD *thd, LEX_STRING db_arg, LEX_STRING table_arg,
bool force)
:table(table_arg), sel((SELECT_LEX_UNIT *)0)
{
if (!force && (thd->client_capabilities & CLIENT_NO_SCHEMA))
db.str=0;
else
db= db_arg;
}
inline Table_ident(LEX_STRING table_arg)
:table(table_arg), sel((SELECT_LEX_UNIT *)0)
{
db.str=0;
}
/*
This constructor is used only for the case when we create a derived
table. A derived table has no name and doesn't belong to any database.
Later, if there was an alias specified for the table, it will be set
by add_table_to_list.
*/
inline Table_ident(SELECT_LEX_UNIT *s) : sel(s)
{
/* We must have a table name here as this is used with add_table_to_list */
db.str= empty_c_string; /* a subject to casedn_str */
db.length= 0;
table.str= internal_table_name;
table.length=1;
}
bool is_derived_table() const { return test(sel); }
inline void change_db(char *db_name)
{
db.str= db_name; db.length= (uint) strlen(db_name);
}
};
// this is needed for user_vars hash
class user_var_entry
{
public:
user_var_entry() {} /* Remove gcc warning */
LEX_STRING name;
char *value;
ulong length;
query_id_t update_query_id, used_query_id;
Item_result type;
bool unsigned_flag;
double val_real(my_bool *null_value);
longlong val_int(my_bool *null_value) const;
String *val_str(my_bool *null_value, String *str, uint decimals);
my_decimal *val_decimal(my_bool *null_value, my_decimal *result);
DTCollation collation;
};
/*
Unique -- class for unique (removing of duplicates).
Puts all values to the TREE. If the tree becomes too big,
it's dumped to the file. User can request sorted values, or
just iterate through them. In the last case tree merging is performed in
memory simultaneously with iteration, so it should be ~2-3x faster.
*/
class Unique :public Sql_alloc
{
DYNAMIC_ARRAY file_ptrs;
ulong max_elements;
ulonglong max_in_memory_size;
IO_CACHE file;
TREE tree;
uchar *record_pointers;
bool flush();
uint size;
public:
ulong elements;
Unique(qsort_cmp2 comp_func, void *comp_func_fixed_arg,
uint size_arg, ulonglong max_in_memory_size_arg);
~Unique();
ulong elements_in_tree() { return tree.elements_in_tree; }
inline bool unique_add(void *ptr)
{
DBUG_ENTER("unique_add");
DBUG_PRINT("info", ("tree %u - %lu", tree.elements_in_tree, max_elements));
if (tree.elements_in_tree > max_elements && flush())
DBUG_RETURN(1);
DBUG_RETURN(!tree_insert(&tree, ptr, 0, tree.custom_arg));
}
bool get(TABLE *table);
static double get_use_cost(uint *buffer, uint nkeys, uint key_size,
ulonglong max_in_memory_size);
inline static int get_cost_calc_buff_size(ulong nkeys, uint key_size,
ulonglong max_in_memory_size)
{
register ulonglong max_elems_in_tree=
(1 + max_in_memory_size / ALIGN_SIZE(sizeof(TREE_ELEMENT)+key_size));
return (int) (sizeof(uint)*(1 + nkeys/max_elems_in_tree));
}
void reset();
bool walk(tree_walk_action action, void *walk_action_arg);
friend int unique_write_to_file(uchar* key, element_count count, Unique *unique);
friend int unique_write_to_ptrs(uchar* key, element_count count, Unique *unique);
};
class multi_delete :public select_result_interceptor
{
TABLE_LIST *delete_tables, *table_being_deleted;
Unique **tempfiles;
ha_rows deleted, found;
uint num_of_tables;
int error;
bool do_delete;
/* True if at least one table we delete from is transactional */
bool transactional_tables;
/* True if at least one table we delete from is not transactional */
bool normal_tables;
bool delete_while_scanning;
/*
error handling (rollback and binlogging) can happen in send_eof()
so that afterward send_error() needs to find out that.
*/
bool error_handled;
public:
multi_delete(TABLE_LIST *dt, uint num_of_tables);
~multi_delete();
int prepare(List<Item> &list, SELECT_LEX_UNIT *u);
bool send_data(List<Item> &items);
bool initialize_tables (JOIN *join);
void send_error(uint errcode,const char *err);
int do_deletes();
bool send_eof();
virtual void abort();
};
class multi_update :public select_result_interceptor
{
TABLE_LIST *all_tables; /* query/update command tables */
TABLE_LIST *leaves; /* list of leves of join table tree */
TABLE_LIST *update_tables, *table_being_updated;
TABLE **tmp_tables, *main_table, *table_to_update;
TMP_TABLE_PARAM *tmp_table_param;
ha_rows updated, found;
List <Item> *fields, *values;
List <Item> **fields_for_table, **values_for_table;
uint table_count;
/*
List of tables referenced in the CHECK OPTION condition of
the updated view excluding the updated table.
*/
List <TABLE> unupdated_check_opt_tables;
Copy_field *copy_field;
enum enum_duplicates handle_duplicates;
bool do_update, trans_safe;
/* True if the update operation has made a change in a transactional table */
bool transactional_tables;
bool ignore;
/*
error handling (rollback and binlogging) can happen in send_eof()
so that afterward send_error() needs to find out that.
*/
bool error_handled;
public:
multi_update(TABLE_LIST *ut, TABLE_LIST *leaves_list,
List<Item> *fields, List<Item> *values,
enum_duplicates handle_duplicates, bool ignore);
~multi_update();
int prepare(List<Item> &list, SELECT_LEX_UNIT *u);
bool send_data(List<Item> &items);
bool initialize_tables (JOIN *join);
void send_error(uint errcode,const char *err);
int do_updates();
bool send_eof();
virtual void abort();
};
class my_var : public Sql_alloc {
public:
LEX_STRING s;
#ifndef DBUG_OFF
/*
Routine to which this Item_splocal belongs. Used for checking if correct
runtime context is used for variable handling.
*/
sp_head *sp;
#endif
bool local;
uint offset;
enum_field_types type;
my_var (LEX_STRING& j, bool i, uint o, enum_field_types t)
:s(j), local(i), offset(o), type(t)
{}
~my_var() {}
};
class select_dumpvar :public select_result_interceptor {
ha_rows row_count;
public:
List<my_var> var_list;
select_dumpvar() { var_list.empty(); row_count= 0;}
/**
Creates a select_dumpvar to represent INTO <variable> with a defined
level of subquery nesting.
*/
select_dumpvar(uint nest_level_arg)
{
var_list.empty();
row_count= 0;
nest_level= nest_level_arg;
}
~select_dumpvar() {}
int prepare(List<Item> &list, SELECT_LEX_UNIT *u);
bool send_data(List<Item> &items);
bool send_eof();
virtual bool check_simple_select() const;
void cleanup();
};
/* Bits in sql_command_flags */
#define CF_CHANGES_DATA 1
#define CF_HAS_ROW_COUNT 2
#define CF_STATUS_COMMAND 4
#define CF_SHOW_TABLE_COMMAND 8
#define CF_WRITE_LOGS_COMMAND 16
/**
Must be set for SQL statements that may contain
Item expressions and/or use joins and tables.
Indicates that the parse tree of such statement may
contain rule-based optimizations that depend on metadata
(i.e. number of columns in a table), and consequently
that the statement must be re-prepared whenever
referenced metadata changes. Must not be set for
statements that themselves change metadata, e.g. RENAME,
ALTER and other DDL, since otherwise will trigger constant
reprepare. Consequently, complex item expressions and
joins are currently prohibited in these statements.
*/
#define CF_REEXECUTION_FRAGILE 32
/* Functions in sql_class.cc */
void add_to_status(STATUS_VAR *to_var, STATUS_VAR *from_var);
void add_diff_to_status(STATUS_VAR *to_var, STATUS_VAR *from_var,
STATUS_VAR *dec_var);
void mark_transaction_to_rollback(THD *thd, bool all);
#endif /* MYSQL_SERVER */