mariadb/storage/innobase/row/row0merge.cc
Sergei Golubchik 40e94a3734 merge with 5.5
2012-11-03 12:28:51 +01:00

3101 lines
81 KiB
C++

/*****************************************************************************
Copyright (c) 1995, 2012, Oracle and/or its affiliates. All Rights Reserved.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file row/row0merge.cc
New index creation routines using a merge sort
Created 12/4/2005 Jan Lindstrom
Completed by Sunny Bains and Marko Makela
*******************************************************/
#include "row0merge.h"
#include "row0ext.h"
#include "row0row.h"
#include "row0upd.h"
#include "row0ins.h"
#include "row0sel.h"
#include "dict0dict.h"
#include "dict0mem.h"
#include "dict0boot.h"
#include "dict0crea.h"
#include "dict0load.h"
#include "btr0btr.h"
#include "mach0data.h"
#include "trx0rseg.h"
#include "trx0trx.h"
#include "trx0roll.h"
#include "trx0undo.h"
#include "trx0purge.h"
#include "trx0rec.h"
#include "que0que.h"
#include "rem0cmp.h"
#include "read0read.h"
#include "os0file.h"
#include "lock0lock.h"
#include "data0data.h"
#include "data0type.h"
#include "que0que.h"
#include "pars0pars.h"
#include "mem0mem.h"
#include "log0log.h"
#include "ut0sort.h"
#include "handler0alter.h"
#include "fts0fts.h"
#include "fts0types.h"
#include "fts0priv.h"
#include "row0ftsort.h"
/* Ignore posix_fadvise() on those platforms where it does not exist */
#if defined __WIN__
# define posix_fadvise(fd, offset, len, advice) /* nothing */
#endif /* __WIN__ */
#ifdef UNIV_DEBUG
/** Set these in order ot enable debug printout. */
/* @{ */
/** Log the outcome of each row_merge_cmp() call, comparing records. */
static ibool row_merge_print_cmp;
/** Log each record read from temporary file. */
static ibool row_merge_print_read;
/** Log each record write to temporary file. */
static ibool row_merge_print_write;
/** Log each row_merge_blocks() call, merging two blocks of records to
a bigger one. */
static ibool row_merge_print_block;
/** Log each block read from temporary file. */
static ibool row_merge_print_block_read;
/** Log each block read from temporary file. */
static ibool row_merge_print_block_write;
/* @} */
#endif /* UNIV_DEBUG */
/* Whether to disable file system cache */
UNIV_INTERN char srv_disable_sort_file_cache;
/********************************************************************//**
Read sorted file containing index data tuples and insert these data
tuples to the index
@return DB_SUCCESS or error number */
static
ulint
row_merge_insert_index_tuples(
/*==========================*/
trx_t* trx, /*!< in: transaction */
dict_index_t* index, /*!< in: index */
dict_table_t* table, /*!< in: new table */
ulint zip_size,/*!< in: compressed page size of
the old table, or 0 if uncompressed */
int fd, /*!< in: file descriptor */
row_merge_block_t* block); /*!< in/out: file buffer */
#ifdef UNIV_DEBUG
/******************************************************//**
Display a merge tuple. */
static
void
row_merge_tuple_print(
/*==================*/
FILE* f, /*!< in: output stream */
const dfield_t* entry, /*!< in: tuple to print */
ulint n_fields)/*!< in: number of fields in the tuple */
{
ulint j;
for (j = 0; j < n_fields; j++) {
const dfield_t* field = &entry[j];
if (dfield_is_null(field)) {
fputs("\n NULL;", f);
} else {
ulint field_len = dfield_get_len(field);
ulint len = ut_min(field_len, 20);
if (dfield_is_ext(field)) {
fputs("\nE", f);
} else {
fputs("\n ", f);
}
ut_print_buf(f, dfield_get_data(field), len);
if (len != field_len) {
fprintf(f, " (total %lu bytes)", field_len);
}
}
}
putc('\n', f);
}
#endif /* UNIV_DEBUG */
/******************************************************//**
Allocate a sort buffer.
@return own: sort buffer */
static
row_merge_buf_t*
row_merge_buf_create_low(
/*=====================*/
mem_heap_t* heap, /*!< in: heap where allocated */
dict_index_t* index, /*!< in: secondary index */
ulint max_tuples, /*!< in: maximum number of data tuples */
ulint buf_size) /*!< in: size of the buffer, in bytes */
{
row_merge_buf_t* buf;
ut_ad(max_tuples > 0);
ut_ad(max_tuples <= srv_sort_buf_size);
buf = static_cast<row_merge_buf_t*>(mem_heap_zalloc(heap, buf_size));
buf->heap = heap;
buf->index = index;
buf->max_tuples = max_tuples;
buf->tuples = static_cast<const dfield_t**>(
ut_malloc(2 * max_tuples * sizeof *buf->tuples));
buf->tmp_tuples = buf->tuples + max_tuples;
return(buf);
}
/******************************************************//**
Allocate a sort buffer.
@return own: sort buffer */
UNIV_INTERN
row_merge_buf_t*
row_merge_buf_create(
/*=================*/
dict_index_t* index) /*!< in: secondary index */
{
row_merge_buf_t* buf;
ulint max_tuples;
ulint buf_size;
mem_heap_t* heap;
max_tuples = srv_sort_buf_size
/ ut_max(1, dict_index_get_min_size(index));
buf_size = (sizeof *buf);
heap = mem_heap_create(buf_size);
buf = row_merge_buf_create_low(heap, index, max_tuples, buf_size);
return(buf);
}
/******************************************************//**
Empty a sort buffer.
@return sort buffer */
UNIV_INTERN
row_merge_buf_t*
row_merge_buf_empty(
/*================*/
row_merge_buf_t* buf) /*!< in,own: sort buffer */
{
ulint buf_size;
ulint max_tuples = buf->max_tuples;
mem_heap_t* heap = buf->heap;
dict_index_t* index = buf->index;
void* tuple = buf->tuples;
buf_size = (sizeof *buf);;
mem_heap_empty(heap);
buf = static_cast<row_merge_buf_t*>(mem_heap_zalloc(heap, buf_size));
buf->heap = heap;
buf->index = index;
buf->max_tuples = max_tuples;
buf->tuples = static_cast<const dfield_t**>(tuple);
buf->tmp_tuples = buf->tuples + max_tuples;
return(buf);
}
/******************************************************//**
Deallocate a sort buffer. */
UNIV_INTERN
void
row_merge_buf_free(
/*===============*/
row_merge_buf_t* buf) /*!< in,own: sort buffer, to be freed */
{
ut_free(buf->tuples);
mem_heap_free(buf->heap);
}
/******************************************************//**
Insert a data tuple into a sort buffer.
@return number of rows added, 0 if out of space */
static
ulint
row_merge_buf_add(
/*==============*/
row_merge_buf_t* buf, /*!< in/out: sort buffer */
dict_index_t* fts_index,/*!< fts index to be
created */
fts_psort_t* psort_info, /*!< in: parallel sort info */
const dtuple_t* row, /*!< in: row in clustered index */
const row_ext_t* ext, /*!< in: cache of externally stored
column prefixes, or NULL */
doc_id_t* doc_id) /*!< in/out: Doc ID if we are
creating FTS index */
{
ulint i;
const dict_index_t* index;
dfield_t* entry;
dfield_t* field;
const dict_field_t* ifield;
ulint n_fields;
ulint data_size;
ulint extra_size;
ulint bucket = 0;
doc_id_t write_doc_id;
ulint n_row_added = 0;
if (buf->n_tuples >= buf->max_tuples) {
return(FALSE);
}
UNIV_PREFETCH_R(row->fields);
/* If we are building FTS index, buf->index points to
the 'fts_sort_idx', and real FTS index is stored in
fts_index */
index = (buf->index->type & DICT_FTS) ? fts_index : buf->index;
n_fields = dict_index_get_n_fields(index);
entry = static_cast<dfield_t*>(
mem_heap_alloc(buf->heap, n_fields * sizeof *entry));
buf->tuples[buf->n_tuples] = entry;
field = entry;
data_size = 0;
extra_size = UT_BITS_IN_BYTES(index->n_nullable);
ifield = dict_index_get_nth_field(index, 0);
for (i = 0; i < n_fields; i++, field++, ifield++) {
ulint len;
const dict_col_t* col;
ulint col_no;
const dfield_t* row_field;
ibool col_adjusted;
col = ifield->col;
col_no = dict_col_get_no(col);
col_adjusted = FALSE;
/* If we are creating a FTS index, a new Doc
ID column is being added, so we need to adjust
any column number positioned after this Doc ID */
if (*doc_id > 0
&& DICT_TF2_FLAG_IS_SET(index->table,
DICT_TF2_FTS_ADD_DOC_ID)
&& col_no > index->table->fts->doc_col) {
ut_ad(index->table->fts);
col_no--;
col_adjusted = TRUE;
}
/* Process the Doc ID column */
if (*doc_id > 0
&& col_no == index->table->fts->doc_col
&& !col_adjusted) {
fts_write_doc_id((byte*) &write_doc_id, *doc_id);
/* Note: field->data now points to a value on the
stack: &write_doc_id after dfield_set_data(). Because
there is only one doc_id per row, it shouldn't matter.
We allocate a new buffer before we leave the function
later below. */
dfield_set_data(
field, &write_doc_id, sizeof(write_doc_id));
field->type.mtype = ifield->col->mtype;
field->type.prtype = ifield->col->prtype;
field->type.mbminmaxlen = DATA_MBMINMAXLEN(0, 0);
field->type.len = ifield->col->len;
} else {
row_field = dtuple_get_nth_field(row, col_no);
dfield_copy(field, row_field);
/* Tokenize and process data for FTS */
if (index->type & DICT_FTS) {
fts_doc_item_t* doc_item;
byte* value;
if (dfield_is_null(field)) {
n_row_added = 1;
continue;
}
doc_item = static_cast<fts_doc_item_t*>(
mem_heap_alloc(
buf->heap,
sizeof(fts_doc_item_t)));
/* fetch Doc ID if it already exists
in the row, and not supplied by the caller */
if (*doc_id == 0) {
const dfield_t* doc_field;
doc_field = dtuple_get_nth_field(
row,
index->table->fts->doc_col);
*doc_id = (doc_id_t) mach_read_from_8(
static_cast<byte*>(
dfield_get_data(doc_field)));
if (*doc_id == 0) {
fprintf(stderr, "InnoDB FTS: "
"User supplied Doc ID "
"is zero. Record "
"Skipped\n");
return(0);
}
}
value = static_cast<byte*>(
ut_malloc(field->len));
memcpy(value, field->data, field->len);
field->data = value;
doc_item->field = field;
doc_item->doc_id = *doc_id;
bucket = *doc_id % fts_sort_pll_degree;
UT_LIST_ADD_LAST(
doc_list,
psort_info[bucket].fts_doc_list,
doc_item);
n_row_added = 1;
continue;
}
}
len = dfield_get_len(field);
if (dfield_is_null(field)) {
ut_ad(!(col->prtype & DATA_NOT_NULL));
continue;
} else if (!ext) {
} else if (dict_index_is_clust(index)) {
/* Flag externally stored fields. */
const byte* buf = row_ext_lookup(ext, col_no,
&len);
if (UNIV_LIKELY_NULL(buf)) {
ut_a(buf != field_ref_zero);
if (i < dict_index_get_n_unique(index)) {
dfield_set_data(field, buf, len);
} else {
dfield_set_ext(field);
len = dfield_get_len(field);
}
}
} else {
const byte* buf = row_ext_lookup(ext, col_no,
&len);
if (UNIV_LIKELY_NULL(buf)) {
ut_a(buf != field_ref_zero);
dfield_set_data(field, buf, len);
}
}
/* If a column prefix index, take only the prefix */
if (ifield->prefix_len) {
len = dtype_get_at_most_n_mbchars(
col->prtype,
col->mbminmaxlen,
ifield->prefix_len,
len,
static_cast<char*>(dfield_get_data(field)));
dfield_set_len(field, len);
}
ut_ad(len <= col->len || col->mtype == DATA_BLOB);
if (ifield->fixed_len) {
ut_ad(len == ifield->fixed_len);
ut_ad(!dfield_is_ext(field));
} else if (dfield_is_ext(field)) {
extra_size += 2;
} else if (len < 128
|| (col->len < 256 && col->mtype != DATA_BLOB)) {
extra_size++;
} else {
/* For variable-length columns, we look up the
maximum length from the column itself. If this
is a prefix index column shorter than 256 bytes,
this will waste one byte. */
extra_size += 2;
}
data_size += len;
}
/* If this is FTS index, we already populated the sort buffer, return
here */
if (index->type & DICT_FTS) {
return(n_row_added);
}
#ifdef UNIV_DEBUG
{
ulint size;
ulint extra;
size = rec_get_converted_size_comp(index,
REC_STATUS_ORDINARY,
entry, n_fields, &extra);
ut_ad(data_size + extra_size + REC_N_NEW_EXTRA_BYTES == size);
ut_ad(extra_size + REC_N_NEW_EXTRA_BYTES == extra);
}
#endif /* UNIV_DEBUG */
/* Add to the total size of the record in row_merge_block_t
the encoded length of extra_size and the extra bytes (extra_size).
See row_merge_buf_write() for the variable-length encoding
of extra_size. */
data_size += (extra_size + 1) + ((extra_size + 1) >= 0x80);
/* The following assertion may fail if row_merge_block_t is
declared very small and a PRIMARY KEY is being created with
many prefix columns. In that case, the record may exceed the
page_zip_rec_needs_ext() limit. However, no further columns
will be moved to external storage until the record is inserted
to the clustered index B-tree. */
ut_ad(data_size < srv_sort_buf_size);
/* Reserve one byte for the end marker of row_merge_block_t. */
if (buf->total_size + data_size >= srv_sort_buf_size - 1) {
return(0);
}
buf->total_size += data_size;
buf->n_tuples++;
n_row_added++;
field = entry;
/* Copy the data fields. */
do {
dfield_dup(field++, buf->heap);
} while (--n_fields);
return(n_row_added);
}
/*************************************************************//**
Report a duplicate key. */
static
void
row_merge_dup_report(
/*=================*/
row_merge_dup_t* dup, /*!< in/out: for reporting duplicates */
const dfield_t* entry) /*!< in: duplicate index entry */
{
mrec_buf_t* buf;
const dtuple_t* tuple;
dtuple_t tuple_store;
const rec_t* rec;
const dict_index_t* index = dup->index;
ulint n_fields= dict_index_get_n_fields(index);
mem_heap_t* heap;
ulint* offsets;
ulint n_ext;
if (dup->n_dup++) {
/* Only report the first duplicate record,
but count all duplicate records. */
return;
}
/* Convert the tuple to a record and then to MySQL format. */
heap = mem_heap_create((1 + REC_OFFS_HEADER_SIZE + n_fields)
* sizeof *offsets
+ sizeof *buf);
buf = static_cast<mrec_buf_t*>(mem_heap_alloc(heap, sizeof *buf));
tuple = dtuple_from_fields(&tuple_store, entry, n_fields);
n_ext = dict_index_is_clust(index) ? dtuple_get_n_ext(tuple) : 0;
rec = rec_convert_dtuple_to_rec(*buf, index, tuple, n_ext);
offsets = rec_get_offsets(rec, index, NULL, ULINT_UNDEFINED, &heap);
innobase_rec_to_mysql(dup->table, rec, index, offsets);
mem_heap_free(heap);
}
/*************************************************************//**
Compare two tuples.
@return 1, 0, -1 if a is greater, equal, less, respectively, than b */
static
int
row_merge_tuple_cmp(
/*================*/
ulint n_field,/*!< in: number of fields */
const dfield_t* a, /*!< in: first tuple to be compared */
const dfield_t* b, /*!< in: second tuple to be compared */
row_merge_dup_t* dup) /*!< in/out: for reporting duplicates */
{
int cmp;
const dfield_t* field = a;
/* Compare the fields of the tuples until a difference is
found or we run out of fields to compare. If !cmp at the
end, the tuples are equal. */
do {
cmp = cmp_dfield_dfield(a++, b++);
} while (!cmp && --n_field);
if (UNIV_UNLIKELY(!cmp) && UNIV_LIKELY_NULL(dup)) {
/* Report a duplicate value error if the tuples are
logically equal. NULL columns are logically inequal,
although they are equal in the sorting order. Find
out if any of the fields are NULL. */
for (b = field; b != a; b++) {
if (dfield_is_null(b)) {
goto func_exit;
}
}
row_merge_dup_report(dup, field);
}
func_exit:
return(cmp);
}
/** Wrapper for row_merge_tuple_sort() to inject some more context to
UT_SORT_FUNCTION_BODY().
@param a array of tuples that being sorted
@param b aux (work area), same size as tuples[]
@param c lower bound of the sorting area, inclusive
@param d upper bound of the sorting area, inclusive */
#define row_merge_tuple_sort_ctx(a,b,c,d) \
row_merge_tuple_sort(n_field, dup, a, b, c, d)
/** Wrapper for row_merge_tuple_cmp() to inject some more context to
UT_SORT_FUNCTION_BODY().
@param a first tuple to be compared
@param b second tuple to be compared
@return 1, 0, -1 if a is greater, equal, less, respectively, than b */
#define row_merge_tuple_cmp_ctx(a,b) row_merge_tuple_cmp(n_field, a, b, dup)
/**********************************************************************//**
Merge sort the tuple buffer in main memory. */
static
void
row_merge_tuple_sort(
/*=================*/
ulint n_field,/*!< in: number of fields */
row_merge_dup_t* dup, /*!< in/out: for reporting duplicates */
const dfield_t** tuples, /*!< in/out: tuples */
const dfield_t** aux, /*!< in/out: work area */
ulint low, /*!< in: lower bound of the
sorting area, inclusive */
ulint high) /*!< in: upper bound of the
sorting area, exclusive */
{
UT_SORT_FUNCTION_BODY(row_merge_tuple_sort_ctx,
tuples, aux, low, high, row_merge_tuple_cmp_ctx);
}
/******************************************************//**
Sort a buffer. */
UNIV_INTERN
void
row_merge_buf_sort(
/*===============*/
row_merge_buf_t* buf, /*!< in/out: sort buffer */
row_merge_dup_t* dup) /*!< in/out: for reporting duplicates */
{
row_merge_tuple_sort(dict_index_get_n_unique(buf->index), dup,
buf->tuples, buf->tmp_tuples, 0, buf->n_tuples);
}
/******************************************************//**
Write a buffer to a block. */
UNIV_INTERN
void
row_merge_buf_write(
/*================*/
const row_merge_buf_t* buf, /*!< in: sorted buffer */
const merge_file_t* of UNIV_UNUSED,
/*!< in: output file */
row_merge_block_t* block) /*!< out: buffer for writing to file */
{
const dict_index_t* index = buf->index;
ulint n_fields= dict_index_get_n_fields(index);
byte* b = &block[0];
ulint i;
for (i = 0; i < buf->n_tuples; i++) {
ulint size;
ulint extra_size;
const dfield_t* entry = buf->tuples[i];
size = rec_get_converted_size_comp(index,
REC_STATUS_ORDINARY,
entry, n_fields,
&extra_size);
ut_ad(size >= extra_size);
ut_ad(extra_size >= REC_N_NEW_EXTRA_BYTES);
extra_size -= REC_N_NEW_EXTRA_BYTES;
size -= REC_N_NEW_EXTRA_BYTES;
/* Encode extra_size + 1 */
if (extra_size + 1 < 0x80) {
*b++ = (byte) (extra_size + 1);
} else {
ut_ad((extra_size + 1) < 0x8000);
*b++ = (byte) (0x80 | ((extra_size + 1) >> 8));
*b++ = (byte) (extra_size + 1);
}
ut_ad(b + size < &block[srv_sort_buf_size]);
rec_convert_dtuple_to_rec_comp(b + extra_size, 0, index,
REC_STATUS_ORDINARY,
entry, n_fields);
b += size;
#ifdef UNIV_DEBUG
if (row_merge_print_write) {
fprintf(stderr, "row_merge_buf_write %p,%d,%lu %lu",
(void*) b, of->fd, (ulong) of->offset,
(ulong) i);
row_merge_tuple_print(stderr, entry, n_fields);
}
#endif /* UNIV_DEBUG */
}
/* Write an "end-of-chunk" marker. */
ut_a(b < &block[srv_sort_buf_size]);
ut_a(b == &block[0] + buf->total_size);
*b++ = 0;
#ifdef UNIV_DEBUG_VALGRIND
/* The rest of the block is uninitialized. Initialize it
to avoid bogus warnings. */
memset(b, 0xff, &block[srv_sort_buf_size] - b);
#endif /* UNIV_DEBUG_VALGRIND */
#ifdef UNIV_DEBUG
if (row_merge_print_write) {
fprintf(stderr, "row_merge_buf_write %p,%d,%lu EOF\n",
(void*) b, of->fd, (ulong) of->offset);
}
#endif /* UNIV_DEBUG */
}
/******************************************************//**
Create a memory heap and allocate space for row_merge_rec_offsets()
and mrec_buf_t[3].
@return memory heap */
static
mem_heap_t*
row_merge_heap_create(
/*==================*/
const dict_index_t* index, /*!< in: record descriptor */
mrec_buf_t** buf, /*!< out: 3 buffers */
ulint** offsets1, /*!< out: offsets */
ulint** offsets2) /*!< out: offsets */
{
ulint i = 1 + REC_OFFS_HEADER_SIZE
+ dict_index_get_n_fields(index);
mem_heap_t* heap = mem_heap_create(2 * i * sizeof **offsets1
+ 3 * sizeof **buf);
*buf = static_cast<mrec_buf_t*>(
mem_heap_alloc(heap, 3 * sizeof **buf));
*offsets1 = static_cast<ulint*>(
mem_heap_alloc(heap, i * sizeof **offsets1));
*offsets2 = static_cast<ulint*>(
mem_heap_alloc(heap, i * sizeof **offsets2));
(*offsets1)[0] = (*offsets2)[0] = i;
(*offsets1)[1] = (*offsets2)[1] = dict_index_get_n_fields(index);
return(heap);
}
/**********************************************************************//**
Search an index object by name and column names. If several indexes match,
return the index with the max id.
@return matching index, NULL if not found */
static
dict_index_t*
row_merge_dict_table_get_index(
/*===========================*/
dict_table_t* table, /*!< in: table */
const merge_index_def_t*index_def) /*!< in: index definition */
{
ulint i;
dict_index_t* index;
const char** column_names;
column_names = static_cast<const char**>(
mem_alloc(index_def->n_fields * sizeof *column_names));
for (i = 0; i < index_def->n_fields; ++i) {
column_names[i] = index_def->fields[i].field_name;
}
index = dict_table_get_index_by_max_id(
table, index_def->name, column_names, index_def->n_fields);
mem_free((void*) column_names);
return(index);
}
/********************************************************************//**
Read a merge block from the file system.
@return TRUE if request was successful, FALSE if fail */
UNIV_INTERN
ibool
row_merge_read(
/*===========*/
int fd, /*!< in: file descriptor */
ulint offset, /*!< in: offset where to read
in number of row_merge_block_t
elements */
row_merge_block_t* buf) /*!< out: data */
{
os_offset_t ofs = ((os_offset_t) offset) * srv_sort_buf_size;
ibool success;
#ifdef UNIV_DEBUG
if (row_merge_print_block_read) {
fprintf(stderr, "row_merge_read fd=%d ofs=%lu\n",
fd, (ulong) offset);
}
#endif /* UNIV_DEBUG */
#ifdef UNIV_DEBUG
if (row_merge_print_block_read) {
fprintf(stderr, "row_merge_read fd=%d ofs=%lu\n",
fd, (ulong) offset);
}
#endif /* UNIV_DEBUG */
success = os_file_read_no_error_handling(OS_FILE_FROM_FD(fd), buf,
ofs, srv_sort_buf_size);
#ifdef POSIX_FADV_DONTNEED
/* Each block is read exactly once. Free up the file cache. */
posix_fadvise(fd, ofs, srv_sort_buf_size, POSIX_FADV_DONTNEED);
#endif /* POSIX_FADV_DONTNEED */
if (UNIV_UNLIKELY(!success)) {
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: failed to read merge block at "UINT64PF"\n",
ofs);
}
return(UNIV_LIKELY(success));
}
/********************************************************************//**
Write a merge block to the file system.
@return TRUE if request was successful, FALSE if fail */
UNIV_INTERN
ibool
row_merge_write(
/*============*/
int fd, /*!< in: file descriptor */
ulint offset, /*!< in: offset where to write,
in number of row_merge_block_t elements */
const void* buf) /*!< in: data */
{
size_t buf_len = srv_sort_buf_size;
os_offset_t ofs = buf_len * (os_offset_t) offset;
ibool ret;
ret = os_file_write("(merge)", OS_FILE_FROM_FD(fd), buf, ofs, buf_len);
#ifdef UNIV_DEBUG
if (row_merge_print_block_write) {
fprintf(stderr, "row_merge_write fd=%d ofs=%lu\n",
fd, (ulong) offset);
}
#endif /* UNIV_DEBUG */
#ifdef POSIX_FADV_DONTNEED
/* The block will be needed on the next merge pass,
but it can be evicted from the file cache meanwhile. */
posix_fadvise(fd, ofs, buf_len, POSIX_FADV_DONTNEED);
#endif /* POSIX_FADV_DONTNEED */
return(UNIV_LIKELY(ret));
}
/********************************************************************//**
Read a merge record.
@return pointer to next record, or NULL on I/O error or end of list */
UNIV_INTERN __attribute__((nonnull))
const byte*
row_merge_read_rec(
/*===============*/
row_merge_block_t* block, /*!< in/out: file buffer */
mrec_buf_t* buf, /*!< in/out: secondary buffer */
const byte* b, /*!< in: pointer to record */
const dict_index_t* index, /*!< in: index of the record */
int fd, /*!< in: file descriptor */
ulint* foffs, /*!< in/out: file offset */
const mrec_t** mrec, /*!< out: pointer to merge record,
or NULL on end of list
(non-NULL on I/O error) */
ulint* offsets)/*!< out: offsets of mrec */
{
ulint extra_size;
ulint data_size;
ulint avail_size;
ut_ad(block);
ut_ad(buf);
ut_ad(b >= &block[0]);
ut_ad(b < &block[srv_sort_buf_size]);
ut_ad(index);
ut_ad(foffs);
ut_ad(mrec);
ut_ad(offsets);
ut_ad(*offsets == 1 + REC_OFFS_HEADER_SIZE
+ dict_index_get_n_fields(index));
extra_size = *b++;
if (UNIV_UNLIKELY(!extra_size)) {
/* End of list */
*mrec = NULL;
#ifdef UNIV_DEBUG
if (row_merge_print_read) {
fprintf(stderr, "row_merge_read %p,%p,%d,%lu EOF\n",
(const void*) b, (const void*) block,
fd, (ulong) *foffs);
}
#endif /* UNIV_DEBUG */
return(NULL);
}
if (extra_size >= 0x80) {
/* Read another byte of extra_size. */
if (UNIV_UNLIKELY(b >= &block[srv_sort_buf_size])) {
if (!row_merge_read(fd, ++(*foffs), block)) {
err_exit:
/* Signal I/O error. */
*mrec = b;
return(NULL);
}
/* Wrap around to the beginning of the buffer. */
b = &block[0];
}
extra_size = (extra_size & 0x7f) << 8;
extra_size |= *b++;
}
/* Normalize extra_size. Above, value 0 signals "end of list". */
extra_size--;
/* Read the extra bytes. */
if (UNIV_UNLIKELY(b + extra_size >= &block[srv_sort_buf_size])) {
/* The record spans two blocks. Copy the entire record
to the auxiliary buffer and handle this as a special
case. */
avail_size = &block[srv_sort_buf_size] - b;
memcpy(*buf, b, avail_size);
if (!row_merge_read(fd, ++(*foffs), block)) {
goto err_exit;
}
/* Wrap around to the beginning of the buffer. */
b = &block[0];
/* Copy the record. */
memcpy(*buf + avail_size, b, extra_size - avail_size);
b += extra_size - avail_size;
*mrec = *buf + extra_size;
rec_init_offsets_comp_ordinary(*mrec, 0, index, offsets);
data_size = rec_offs_data_size(offsets);
/* These overflows should be impossible given that
records are much smaller than either buffer, and
the record starts near the beginning of each buffer. */
ut_a(extra_size + data_size < sizeof *buf);
ut_a(b + data_size < &block[srv_sort_buf_size]);
/* Copy the data bytes. */
memcpy(*buf + extra_size, b, data_size);
b += data_size;
goto func_exit;
}
*mrec = b + extra_size;
rec_init_offsets_comp_ordinary(*mrec, 0, index, offsets);
data_size = rec_offs_data_size(offsets);
ut_ad(extra_size + data_size < sizeof *buf);
b += extra_size + data_size;
if (UNIV_LIKELY(b < &block[srv_sort_buf_size])) {
/* The record fits entirely in the block.
This is the normal case. */
goto func_exit;
}
/* The record spans two blocks. Copy it to buf. */
b -= extra_size + data_size;
avail_size = &block[srv_sort_buf_size] - b;
memcpy(*buf, b, avail_size);
*mrec = *buf + extra_size;
#ifdef UNIV_DEBUG
/* We cannot invoke rec_offs_make_valid() here, because there
are no REC_N_NEW_EXTRA_BYTES between extra_size and data_size.
Similarly, rec_offs_validate() would fail, because it invokes
rec_get_status(). */
offsets[2] = (ulint) *mrec;
offsets[3] = (ulint) index;
#endif /* UNIV_DEBUG */
if (!row_merge_read(fd, ++(*foffs), block)) {
goto err_exit;
}
/* Wrap around to the beginning of the buffer. */
b = &block[0];
/* Copy the rest of the record. */
memcpy(*buf + avail_size, b, extra_size + data_size - avail_size);
b += extra_size + data_size - avail_size;
func_exit:
#ifdef UNIV_DEBUG
if (row_merge_print_read) {
fprintf(stderr, "row_merge_read %p,%p,%d,%lu ",
(const void*) b, (const void*) block,
fd, (ulong) *foffs);
rec_print_comp(stderr, *mrec, offsets);
putc('\n', stderr);
}
#endif /* UNIV_DEBUG */
return(b);
}
/********************************************************************//**
Write a merge record. */
static
void
row_merge_write_rec_low(
/*====================*/
byte* b, /*!< out: buffer */
ulint e, /*!< in: encoded extra_size */
#ifdef UNIV_DEBUG
ulint size, /*!< in: total size to write */
int fd, /*!< in: file descriptor */
ulint foffs, /*!< in: file offset */
#endif /* UNIV_DEBUG */
const mrec_t* mrec, /*!< in: record to write */
const ulint* offsets)/*!< in: offsets of mrec */
#ifndef UNIV_DEBUG
# define row_merge_write_rec_low(b, e, size, fd, foffs, mrec, offsets) \
row_merge_write_rec_low(b, e, mrec, offsets)
#endif /* !UNIV_DEBUG */
{
#ifdef UNIV_DEBUG
const byte* const end = b + size;
ut_ad(e == rec_offs_extra_size(offsets) + 1);
if (row_merge_print_write) {
fprintf(stderr, "row_merge_write %p,%d,%lu ",
(void*) b, fd, (ulong) foffs);
rec_print_comp(stderr, mrec, offsets);
putc('\n', stderr);
}
#endif /* UNIV_DEBUG */
if (e < 0x80) {
*b++ = (byte) e;
} else {
*b++ = (byte) (0x80 | (e >> 8));
*b++ = (byte) e;
}
memcpy(b, mrec - rec_offs_extra_size(offsets), rec_offs_size(offsets));
ut_ad(b + rec_offs_size(offsets) == end);
}
/********************************************************************//**
Write a merge record.
@return pointer to end of block, or NULL on error */
static
byte*
row_merge_write_rec(
/*================*/
row_merge_block_t* block, /*!< in/out: file buffer */
mrec_buf_t* buf, /*!< in/out: secondary buffer */
byte* b, /*!< in: pointer to end of block */
int fd, /*!< in: file descriptor */
ulint* foffs, /*!< in/out: file offset */
const mrec_t* mrec, /*!< in: record to write */
const ulint* offsets)/*!< in: offsets of mrec */
{
ulint extra_size;
ulint size;
ulint avail_size;
ut_ad(block);
ut_ad(buf);
ut_ad(b >= &block[0]);
ut_ad(b < &block[srv_sort_buf_size]);
ut_ad(mrec);
ut_ad(foffs);
ut_ad(mrec < &block[0] || mrec > &block[srv_sort_buf_size]);
ut_ad(mrec < buf[0] || mrec > buf[1]);
/* Normalize extra_size. Value 0 signals "end of list". */
extra_size = rec_offs_extra_size(offsets) + 1;
size = extra_size + (extra_size >= 0x80)
+ rec_offs_data_size(offsets);
if (UNIV_UNLIKELY(b + size >= &block[srv_sort_buf_size])) {
/* The record spans two blocks.
Copy it to the temporary buffer first. */
avail_size = &block[srv_sort_buf_size] - b;
row_merge_write_rec_low(buf[0],
extra_size, size, fd, *foffs,
mrec, offsets);
/* Copy the head of the temporary buffer, write
the completed block, and copy the tail of the
record to the head of the new block. */
memcpy(b, buf[0], avail_size);
if (!row_merge_write(fd, (*foffs)++, block)) {
return(NULL);
}
UNIV_MEM_INVALID(&block[0], srv_sort_buf_size);
/* Copy the rest. */
b = &block[0];
memcpy(b, buf[0] + avail_size, size - avail_size);
b += size - avail_size;
} else {
row_merge_write_rec_low(b, extra_size, size, fd, *foffs,
mrec, offsets);
b += size;
}
return(b);
}
/********************************************************************//**
Write an end-of-list marker.
@return pointer to end of block, or NULL on error */
static
byte*
row_merge_write_eof(
/*================*/
row_merge_block_t* block, /*!< in/out: file buffer */
byte* b, /*!< in: pointer to end of block */
int fd, /*!< in: file descriptor */
ulint* foffs) /*!< in/out: file offset */
{
ut_ad(block);
ut_ad(b >= &block[0]);
ut_ad(b < &block[srv_sort_buf_size]);
ut_ad(foffs);
#ifdef UNIV_DEBUG
if (row_merge_print_write) {
fprintf(stderr, "row_merge_write %p,%p,%d,%lu EOF\n",
(void*) b, (void*) block, fd, (ulong) *foffs);
}
#endif /* UNIV_DEBUG */
*b++ = 0;
UNIV_MEM_ASSERT_RW(&block[0], b - &block[0]);
UNIV_MEM_ASSERT_W(&block[0], srv_sort_buf_size);
#ifdef UNIV_DEBUG_VALGRIND
/* The rest of the block is uninitialized. Initialize it
to avoid bogus warnings. */
memset(b, 0xff, &block[srv_sort_buf_size] - b);
#endif /* UNIV_DEBUG_VALGRIND */
if (!row_merge_write(fd, (*foffs)++, block)) {
return(NULL);
}
UNIV_MEM_INVALID(&block[0], srv_sort_buf_size);
return(&block[0]);
}
/*************************************************************//**
Compare two merge records.
@return 1, 0, -1 if mrec1 is greater, equal, less, respectively, than mrec2 */
UNIV_INTERN
int
row_merge_cmp(
/*==========*/
const mrec_t* mrec1, /*!< in: first merge
record to be compared */
const mrec_t* mrec2, /*!< in: second merge
record to be compared */
const ulint* offsets1, /*!< in: first record offsets */
const ulint* offsets2, /*!< in: second record offsets */
const dict_index_t* index, /*!< in: index */
ibool* null_eq) /*!< out: set to TRUE if
found matching null values */
{
int cmp;
cmp = cmp_rec_rec_simple(mrec1, mrec2, offsets1, offsets2, index,
null_eq);
#ifdef UNIV_DEBUG
if (row_merge_print_cmp) {
fputs("row_merge_cmp1 ", stderr);
rec_print_comp(stderr, mrec1, offsets1);
fputs("\nrow_merge_cmp2 ", stderr);
rec_print_comp(stderr, mrec2, offsets2);
fprintf(stderr, "\nrow_merge_cmp=%d\n", cmp);
}
#endif /* UNIV_DEBUG */
return(cmp);
}
/********************************************************************//**
Reads clustered index of the table and create temporary files
containing the index entries for the indexes to be built.
@return DB_SUCCESS or error */
static __attribute__((nonnull))
ulint
row_merge_read_clustered_index(
/*===========================*/
trx_t* trx, /*!< in: transaction */
struct TABLE* table, /*!< in/out: MySQL table object,
for reporting erroneous records */
const dict_table_t* old_table,/*!< in: table where rows are
read from */
const dict_table_t* new_table,/*!< in: table where indexes are
created; identical to old_table
unless creating a PRIMARY KEY */
dict_index_t** index, /*!< in: indexes to be created */
dict_index_t* fts_sort_idx,
/*!< in: indexes to be created */
fts_psort_t* psort_info, /*!< in: parallel sort info */
merge_file_t* files, /*!< in: temporary files */
ulint n_index,/*!< in: number of indexes to create */
row_merge_block_t* block) /*!< in/out: file buffer */
{
dict_index_t* clust_index; /* Clustered index */
mem_heap_t* row_heap; /* Heap memory to create
clustered index records */
row_merge_buf_t** merge_buf; /* Temporary list for records*/
btr_pcur_t pcur; /* Persistent cursor on the
clustered index */
mtr_t mtr; /* Mini transaction */
ulint err = DB_SUCCESS;/* Return code */
ulint i;
ulint n_nonnull = 0; /* number of columns
changed to NOT NULL */
ulint* nonnull = NULL; /* NOT NULL columns */
dict_index_t* fts_index = NULL;/* FTS index */
doc_id_t doc_id = 0;
doc_id_t max_doc_id = 0;
ibool add_doc_id = FALSE;
os_event_t fts_parallel_sort_event = NULL;
ibool fts_pll_sort = FALSE;
ib_int64_t sig_count = 0;
trx->op_info = "reading clustered index";
ut_ad(trx);
ut_ad(old_table);
ut_ad(new_table);
ut_ad(index);
ut_ad(files);
#ifdef FTS_INTERNAL_DIAG_PRINT
DEBUG_FTS_SORT_PRINT("FTS_SORT: Start Create Index\n");
#endif
/* Create and initialize memory for record buffers */
merge_buf = static_cast<row_merge_buf_t**>(
mem_alloc(n_index * sizeof *merge_buf));
for (i = 0; i < n_index; i++) {
if (index[i]->type & DICT_FTS) {
/* We are building a FT index, make sure
we have the temporary 'fts_sort_idx' */
ut_a(fts_sort_idx);
fts_index = index[i];
merge_buf[i] = row_merge_buf_create(fts_sort_idx);
add_doc_id = DICT_TF2_FLAG_IS_SET(
old_table, DICT_TF2_FTS_ADD_DOC_ID);
/* If Doc ID does not exist in the table itself,
fetch the first FTS Doc ID */
if (add_doc_id) {
fts_get_next_doc_id(
(dict_table_t*) new_table,
&doc_id);
ut_ad(doc_id > 0);
}
fts_pll_sort = TRUE;
row_fts_start_psort(psort_info);
fts_parallel_sort_event =
psort_info[0].psort_common->sort_event;
} else {
merge_buf[i] = row_merge_buf_create(index[i]);
}
}
mtr_start(&mtr);
/* Find the clustered index and create a persistent cursor
based on that. */
clust_index = dict_table_get_first_index(old_table);
btr_pcur_open_at_index_side(
TRUE, clust_index, BTR_SEARCH_LEAF, &pcur, TRUE, &mtr);
if (UNIV_UNLIKELY(old_table != new_table)) {
ulint n_cols = dict_table_get_n_cols(old_table);
/* A primary key will be created. Identify the
columns that were flagged NOT NULL in the new table,
so that we can quickly check that the records in the
(old) clustered index do not violate the added NOT
NULL constraints. */
if (!fts_sort_idx) {
ut_a(n_cols == dict_table_get_n_cols(new_table));
}
nonnull = static_cast<ulint*>(
mem_alloc(n_cols * sizeof *nonnull));
for (i = 0; i < n_cols; i++) {
if (dict_table_get_nth_col(old_table, i)->prtype
& DATA_NOT_NULL) {
continue;
}
if (dict_table_get_nth_col(new_table, i)->prtype
& DATA_NOT_NULL) {
nonnull[n_nonnull++] = i;
}
}
if (!n_nonnull) {
mem_free(nonnull);
nonnull = NULL;
}
}
row_heap = mem_heap_create(sizeof(mrec_buf_t));
/* Scan the clustered index. */
for (;;) {
const rec_t* rec;
ulint* offsets;
dtuple_t* row = NULL;
row_ext_t* ext;
ibool has_next = TRUE;
btr_pcur_move_to_next_on_page(&pcur);
/* When switching pages, commit the mini-transaction
in order to release the latch on the old page. */
if (btr_pcur_is_after_last_on_page(&pcur)) {
if (UNIV_UNLIKELY(trx_is_interrupted(trx))) {
err = DB_INTERRUPTED;
trx->error_key_num = 0;
goto func_exit;
}
/* Store the cursor position on the last user
record on the page. */
btr_pcur_move_to_prev_on_page(&pcur);
/* Leaf pages must never be empty, unless
this is the only page in the index tree. */
ut_ad(btr_pcur_is_on_user_rec(&pcur)
|| buf_block_get_page_no(
btr_pcur_get_block(&pcur))
== clust_index->page);
btr_pcur_store_position(&pcur, &mtr);
mtr_commit(&mtr);
mtr_start(&mtr);
/* Restore position on the record, or its
predecessor if the record was purged
meanwhile. */
btr_pcur_restore_position(BTR_SEARCH_LEAF,
&pcur, &mtr);
/* Move to the successor of the original record. */
has_next = btr_pcur_move_to_next_user_rec(&pcur, &mtr);
}
if (UNIV_LIKELY(has_next)) {
rec = btr_pcur_get_rec(&pcur);
offsets = rec_get_offsets(rec, clust_index, NULL,
ULINT_UNDEFINED, &row_heap);
/* Skip delete marked records. */
if (rec_get_deleted_flag(
rec, dict_table_is_comp(old_table))) {
continue;
}
srv_n_rows_inserted++;
/* Build a row based on the clustered index. */
row = row_build(ROW_COPY_POINTERS, clust_index,
rec, offsets,
new_table, &ext, row_heap);
if (UNIV_LIKELY_NULL(nonnull)) {
for (i = 0; i < n_nonnull; i++) {
dfield_t* field
= &row->fields[nonnull[i]];
dtype_t* field_type
= dfield_get_type(field);
ut_a(!(field_type->prtype
& DATA_NOT_NULL));
if (dfield_is_null(field)) {
err = DB_PRIMARY_KEY_IS_NULL;
trx->error_key_num = 0;
goto func_exit;
}
field_type->prtype |= DATA_NOT_NULL;
}
}
}
/* Get the next Doc ID */
if (add_doc_id) {
doc_id++;
} else {
doc_id = 0;
}
/* Build all entries for all the indexes to be created
in a single scan of the clustered index. */
for (i = 0; i < n_index; i++) {
row_merge_buf_t* buf = merge_buf[i];
merge_file_t* file = &files[i];
const dict_index_t* index = buf->index;
ulint rows_added = 0;
if (UNIV_LIKELY
(row && (rows_added = row_merge_buf_add(
buf, fts_index, psort_info,
row, ext, &doc_id)))) {
/* If we are creating FTS index,
a single row can generate more
records for tokenized word */
file->n_rec += rows_added;
if (doc_id > max_doc_id) {
max_doc_id = doc_id;
}
continue;
}
if ((!row || !doc_id)
&& index->type & DICT_FTS) {
continue;
}
/* The buffer must be sufficiently large
to hold at least one record. */
ut_ad(buf->n_tuples || !has_next);
/* We have enough data tuples to form a block.
Sort them and write to disk. */
if (buf->n_tuples) {
if (dict_index_is_unique(index)) {
row_merge_dup_t dup;
dup.index = buf->index;
dup.table = table;
dup.n_dup = 0;
row_merge_buf_sort(buf, &dup);
if (dup.n_dup) {
err = DB_DUPLICATE_KEY;
trx->error_key_num = i;
goto func_exit;
}
} else {
row_merge_buf_sort(buf, NULL);
}
}
row_merge_buf_write(buf, file, block);
if (!row_merge_write(file->fd, file->offset++,
block)) {
err = DB_OUT_OF_FILE_SPACE;
trx->error_key_num = i;
goto func_exit;
}
UNIV_MEM_INVALID(&block[0], srv_sort_buf_size);
merge_buf[i] = row_merge_buf_empty(buf);
if (UNIV_LIKELY(row != NULL)) {
/* Try writing the record again, now
that the buffer has been written out
and emptied. */
if (UNIV_UNLIKELY
(!(rows_added = row_merge_buf_add(
buf, fts_index, psort_info, row,
ext, &doc_id)))) {
/* An empty buffer should have enough
room for at least one record.
TODO: for FTS index building, we'll
need to prepared for coping with very
large text/blob data in a single row
that could fill up the merge file */
ut_error;
}
file->n_rec += rows_added;
}
}
mem_heap_empty(row_heap);
if (UNIV_UNLIKELY(!has_next)) {
goto func_exit;
}
}
func_exit:
#ifdef FTS_INTERNAL_DIAG_PRINT
DEBUG_FTS_SORT_PRINT("FTS_SORT: Complete Scan Table\n");
#endif
if (fts_pll_sort) {
for (i = 0; i < fts_sort_pll_degree; i++) {
psort_info[i].state = FTS_PARENT_COMPLETE;
}
wait_again:
os_event_wait_time_low(fts_parallel_sort_event,
1000000, sig_count);
for (i = 0; i < fts_sort_pll_degree; i++) {
if (psort_info[i].child_status != FTS_CHILD_COMPLETE) {
sig_count = os_event_reset(
fts_parallel_sort_event);
goto wait_again;
}
}
}
#ifdef FTS_INTERNAL_DIAG_PRINT
DEBUG_FTS_SORT_PRINT("FTS_SORT: Complete Tokenization\n");
#endif
btr_pcur_close(&pcur);
mtr_commit(&mtr);
mem_heap_free(row_heap);
if (UNIV_LIKELY_NULL(nonnull)) {
mem_free(nonnull);
}
for (i = 0; i < n_index; i++) {
row_merge_buf_free(merge_buf[i]);
}
row_fts_free_pll_merge_buf(psort_info);
mem_free(merge_buf);
/* Update the next Doc ID we used. Table should be locked, so
no concurrent DML */
if (max_doc_id) {
fts_update_next_doc_id(new_table, old_table->name, max_doc_id);
}
trx->op_info = "";
return(err);
}
/** Write a record via buffer 2 and read the next record to buffer N.
@param M FTS merge info structure
@param N index into array of merge info structure
@param INDEX the FTS index */
/** Write a record via buffer 2 and read the next record to buffer N.
@param N number of the buffer (0 or 1)
@param AT_END statement to execute at end of input */
#define ROW_MERGE_WRITE_GET_NEXT(N, AT_END) \
do { \
b2 = row_merge_write_rec(&block[2 * srv_sort_buf_size], &buf[2], b2, \
of->fd, &of->offset, \
mrec##N, offsets##N); \
if (UNIV_UNLIKELY(!b2 || ++of->n_rec > file->n_rec)) { \
goto corrupt; \
} \
b##N = row_merge_read_rec(&block[N * srv_sort_buf_size], &buf[N], \
b##N, index, \
file->fd, foffs##N, \
&mrec##N, offsets##N); \
if (UNIV_UNLIKELY(!b##N)) { \
if (mrec##N) { \
goto corrupt; \
} \
AT_END; \
} \
} while (0)
/*************************************************************//**
Merge two blocks of records on disk and write a bigger block.
@return DB_SUCCESS or error code */
static
ulint
row_merge_blocks(
/*=============*/
const dict_index_t* index, /*!< in: index being created */
const merge_file_t* file, /*!< in: file containing
index entries */
row_merge_block_t* block, /*!< in/out: 3 buffers */
ulint* foffs0, /*!< in/out: offset of first
source list in the file */
ulint* foffs1, /*!< in/out: offset of second
source list in the file */
merge_file_t* of, /*!< in/out: output file */
struct TABLE* table) /*!< in/out: MySQL table, for
reporting erroneous key value
if applicable */
{
mem_heap_t* heap; /*!< memory heap for offsets0, offsets1 */
mrec_buf_t* buf; /*!< buffer for handling
split mrec in block[] */
const byte* b0; /*!< pointer to block[0] */
const byte* b1; /*!< pointer to block[1] */
byte* b2; /*!< pointer to block[2] */
const mrec_t* mrec0; /*!< merge rec, points to block[0] or buf[0] */
const mrec_t* mrec1; /*!< merge rec, points to block[1] or buf[1] */
ulint* offsets0;/* offsets of mrec0 */
ulint* offsets1;/* offsets of mrec1 */
#ifdef UNIV_DEBUG
if (row_merge_print_block) {
fprintf(stderr,
"row_merge_blocks fd=%d ofs=%lu + fd=%d ofs=%lu"
" = fd=%d ofs=%lu\n",
file->fd, (ulong) *foffs0,
file->fd, (ulong) *foffs1,
of->fd, (ulong) of->offset);
}
#endif /* UNIV_DEBUG */
heap = row_merge_heap_create(index, &buf, &offsets0, &offsets1);
/* Write a record and read the next record. Split the output
file in two halves, which can be merged on the following pass. */
if (!row_merge_read(file->fd, *foffs0, &block[0])
|| !row_merge_read(file->fd, *foffs1, &block[srv_sort_buf_size])) {
corrupt:
mem_heap_free(heap);
return(DB_CORRUPTION);
}
b0 = &block[0];
b1 = &block[srv_sort_buf_size];
b2 = &block[2 * srv_sort_buf_size];
b0 = row_merge_read_rec(&block[0], &buf[0], b0, index, file->fd,
foffs0, &mrec0, offsets0);
b1 = row_merge_read_rec(&block[srv_sort_buf_size], &buf[srv_sort_buf_size], b1, index, file->fd,
foffs1, &mrec1, offsets1);
if (UNIV_UNLIKELY(!b0 && mrec0)
|| UNIV_UNLIKELY(!b1 && mrec1)) {
goto corrupt;
}
while (mrec0 && mrec1) {
ibool null_eq = FALSE;
switch (row_merge_cmp(mrec0, mrec1,
offsets0, offsets1, index,
&null_eq)) {
case 0:
if (UNIV_UNLIKELY
(dict_index_is_unique(index) && !null_eq)) {
innobase_rec_to_mysql(table, mrec0,
index, offsets0);
mem_heap_free(heap);
return(DB_DUPLICATE_KEY);
}
/* fall through */
case -1:
ROW_MERGE_WRITE_GET_NEXT(0, goto merged);
break;
case 1:
ROW_MERGE_WRITE_GET_NEXT(1, goto merged);
break;
default:
ut_error;
}
}
merged:
if (mrec0) {
/* append all mrec0 to output */
for (;;) {
ROW_MERGE_WRITE_GET_NEXT(0, goto done0);
}
}
done0:
if (mrec1) {
/* append all mrec1 to output */
for (;;) {
ROW_MERGE_WRITE_GET_NEXT(1, goto done1);
}
}
done1:
mem_heap_free(heap);
b2 = row_merge_write_eof(&block[2 * srv_sort_buf_size], b2, of->fd, &of->offset);
return(b2 ? DB_SUCCESS : DB_CORRUPTION);
}
/*************************************************************//**
Copy a block of index entries.
@return TRUE on success, FALSE on failure */
static __attribute__((nonnull))
ibool
row_merge_blocks_copy(
/*==================*/
const dict_index_t* index, /*!< in: index being created */
const merge_file_t* file, /*!< in: input file */
row_merge_block_t* block, /*!< in/out: 3 buffers */
ulint* foffs0, /*!< in/out: input file offset */
merge_file_t* of) /*!< in/out: output file */
{
mem_heap_t* heap; /*!< memory heap for offsets0, offsets1 */
mrec_buf_t* buf; /*!< buffer for handling
split mrec in block[] */
const byte* b0; /*!< pointer to block[0] */
byte* b2; /*!< pointer to block[2] */
const mrec_t* mrec0; /*!< merge rec, points to block[0] */
ulint* offsets0;/* offsets of mrec0 */
ulint* offsets1;/* dummy offsets */
#ifdef UNIV_DEBUG
if (row_merge_print_block) {
fprintf(stderr,
"row_merge_blocks_copy fd=%d ofs=%lu"
" = fd=%d ofs=%lu\n",
file->fd, (ulong) foffs0,
of->fd, (ulong) of->offset);
}
#endif /* UNIV_DEBUG */
heap = row_merge_heap_create(index, &buf, &offsets0, &offsets1);
/* Write a record and read the next record. Split the output
file in two halves, which can be merged on the following pass. */
if (!row_merge_read(file->fd, *foffs0, &block[0])) {
corrupt:
mem_heap_free(heap);
return(FALSE);
}
b0 = &block[0];
b2 = &block[2 * srv_sort_buf_size];
b0 = row_merge_read_rec(&block[0], &buf[0], b0, index, file->fd,
foffs0, &mrec0, offsets0);
if (UNIV_UNLIKELY(!b0 && mrec0)) {
goto corrupt;
}
if (mrec0) {
/* append all mrec0 to output */
for (;;) {
ROW_MERGE_WRITE_GET_NEXT(0, goto done0);
}
}
done0:
/* The file offset points to the beginning of the last page
that has been read. Update it to point to the next block. */
(*foffs0)++;
mem_heap_free(heap);
return(row_merge_write_eof(&block[2 * srv_sort_buf_size], b2, of->fd, &of->offset)
!= NULL);
}
/*************************************************************//**
Merge disk files.
@return DB_SUCCESS or error code */
static __attribute__((nonnull))
ulint
row_merge(
/*======*/
trx_t* trx, /*!< in: transaction */
const dict_index_t* index, /*!< in: index being created */
merge_file_t* file, /*!< in/out: file containing
index entries */
row_merge_block_t* block, /*!< in/out: 3 buffers */
int* tmpfd, /*!< in/out: temporary file handle */
struct TABLE* table, /*!< in/out: MySQL table, for
reporting erroneous key value
if applicable */
ulint* num_run,/*!< in/out: Number of runs remain
to be merged */
ulint* run_offset) /*!< in/out: Array contains the
first offset number for each merge
run */
{
ulint foffs0; /*!< first input offset */
ulint foffs1; /*!< second input offset */
ulint error; /*!< error code */
merge_file_t of; /*!< output file */
const ulint ihalf = run_offset[*num_run / 2];
/*!< half the input file */
ulint n_run = 0;
/*!< num of runs generated from this merge */
UNIV_MEM_ASSERT_W(&block[0], 3 * srv_sort_buf_size);
ut_ad(ihalf < file->offset);
of.fd = *tmpfd;
of.offset = 0;
of.n_rec = 0;
#ifdef POSIX_FADV_SEQUENTIAL
/* The input file will be read sequentially, starting from the
beginning and the middle. In Linux, the POSIX_FADV_SEQUENTIAL
affects the entire file. Each block will be read exactly once. */
posix_fadvise(file->fd, 0, 0,
POSIX_FADV_SEQUENTIAL | POSIX_FADV_NOREUSE);
#endif /* POSIX_FADV_SEQUENTIAL */
/* Merge blocks to the output file. */
foffs0 = 0;
foffs1 = ihalf;
UNIV_MEM_INVALID(run_offset, *num_run * sizeof *run_offset);
for (; foffs0 < ihalf && foffs1 < file->offset; foffs0++, foffs1++) {
if (UNIV_UNLIKELY(trx_is_interrupted(trx))) {
return(DB_INTERRUPTED);
}
/* Remember the offset number for this run */
run_offset[n_run++] = of.offset;
error = row_merge_blocks(index, file, block,
&foffs0, &foffs1, &of, table);
if (error != DB_SUCCESS) {
return(error);
}
}
/* Copy the last blocks, if there are any. */
while (foffs0 < ihalf) {
if (UNIV_UNLIKELY(trx_is_interrupted(trx))) {
return(DB_INTERRUPTED);
}
/* Remember the offset number for this run */
run_offset[n_run++] = of.offset;
if (!row_merge_blocks_copy(index, file, block, &foffs0, &of)) {
return(DB_CORRUPTION);
}
}
ut_ad(foffs0 == ihalf);
while (foffs1 < file->offset) {
if (UNIV_UNLIKELY(trx_is_interrupted(trx))) {
return(DB_INTERRUPTED);
}
/* Remember the offset number for this run */
run_offset[n_run++] = of.offset;
if (!row_merge_blocks_copy(index, file, block, &foffs1, &of)) {
return(DB_CORRUPTION);
}
}
ut_ad(foffs1 == file->offset);
if (UNIV_UNLIKELY(of.n_rec != file->n_rec)) {
return(DB_CORRUPTION);
}
ut_ad(n_run <= *num_run);
*num_run = n_run;
/* Each run can contain one or more offsets. As merge goes on,
the number of runs (to merge) will reduce until we have one
single run. So the number of runs will always be smaller than
the number of offsets in file */
ut_ad((*num_run) <= file->offset);
/* The number of offsets in output file is always equal or
smaller than input file */
ut_ad(of.offset <= file->offset);
/* Swap file descriptors for the next pass. */
*tmpfd = file->fd;
*file = of;
UNIV_MEM_INVALID(&block[0], 3 * srv_sort_buf_size);
return(DB_SUCCESS);
}
/*************************************************************//**
Merge disk files.
@return DB_SUCCESS or error code */
UNIV_INTERN
ulint
row_merge_sort(
/*===========*/
trx_t* trx, /*!< in: transaction */
const dict_index_t* index, /*!< in: index being created */
merge_file_t* file, /*!< in/out: file containing
index entries */
row_merge_block_t* block, /*!< in/out: 3 buffers */
int* tmpfd, /*!< in/out: temporary file handle */
struct TABLE* table) /*!< in/out: MySQL table, for
reporting erroneous key value
if applicable */
{
ulint half = file->offset / 2;
ulint num_runs;
ulint* run_offset;
ulint error = DB_SUCCESS;
/* Record the number of merge runs we need to perform */
num_runs = file->offset;
/* If num_runs are less than 1, nothing to merge */
if (num_runs <= 1) {
return(error);
}
/* "run_offset" records each run's first offset number */
run_offset = (ulint*) mem_alloc(file->offset * sizeof(ulint));
/* This tells row_merge() where to start for the first round
of merge. */
run_offset[half] = half;
/* The file should always contain at least one byte (the end
of file marker). Thus, it must be at least one block. */
ut_ad(file->offset > 0);
/* Merge the runs until we have one big run */
do {
error = row_merge(trx, index, file, block, tmpfd,
table, &num_runs, run_offset);
UNIV_MEM_ASSERT_RW(run_offset, num_runs * sizeof *run_offset);
if (error != DB_SUCCESS) {
break;
}
} while (num_runs > 1);
mem_free(run_offset);
return(error);
}
/*************************************************************//**
Copy externally stored columns to the data tuple. */
static
void
row_merge_copy_blobs(
/*=================*/
const mrec_t* mrec, /*!< in: merge record */
const ulint* offsets,/*!< in: offsets of mrec */
ulint zip_size,/*!< in: compressed page size in bytes, or 0 */
dtuple_t* tuple, /*!< in/out: data tuple */
mem_heap_t* heap) /*!< in/out: memory heap */
{
ulint i;
ulint n_fields = dtuple_get_n_fields(tuple);
for (i = 0; i < n_fields; i++) {
ulint len;
const void* data;
dfield_t* field = dtuple_get_nth_field(tuple, i);
if (!dfield_is_ext(field)) {
continue;
}
ut_ad(!dfield_is_null(field));
/* The table is locked during index creation.
Therefore, externally stored columns cannot possibly
be freed between the time the BLOB pointers are read
(row_merge_read_clustered_index()) and dereferenced
(below). */
data = btr_rec_copy_externally_stored_field(
mrec, offsets, zip_size, i, &len, heap);
/* Because we have locked the table, any records
written by incomplete transactions must have been
rolled back already. There must not be any incomplete
BLOB columns. */
ut_a(data);
dfield_set_data(field, data, len);
}
}
/********************************************************************//**
Read sorted file containing index data tuples and insert these data
tuples to the index
@return DB_SUCCESS or error number */
static
ulint
row_merge_insert_index_tuples(
/*==========================*/
trx_t* trx, /*!< in: transaction */
dict_index_t* index, /*!< in: index */
dict_table_t* table, /*!< in: new table */
ulint zip_size,/*!< in: compressed page size of
the old table, or 0 if uncompressed */
int fd, /*!< in: file descriptor */
row_merge_block_t* block) /*!< in/out: file buffer */
{
const byte* b;
que_thr_t* thr;
ins_node_t* node;
mem_heap_t* tuple_heap;
mem_heap_t* graph_heap;
ulint error = DB_SUCCESS;
ulint foffs = 0;
ulint* offsets;
ut_ad(trx);
ut_ad(index);
ut_ad(table);
ut_ad(!(index->type & DICT_FTS));
/* We use the insert query graph as the dummy graph
needed in the row module call */
trx->op_info = "inserting index entries";
graph_heap = mem_heap_create(500 + sizeof(mrec_buf_t));
node = ins_node_create(INS_DIRECT, table, graph_heap);
thr = pars_complete_graph_for_exec(node, trx, graph_heap);
que_thr_move_to_run_state_for_mysql(thr, trx);
tuple_heap = mem_heap_create(1000);
{
ulint i = 1 + REC_OFFS_HEADER_SIZE
+ dict_index_get_n_fields(index);
offsets = static_cast<ulint*>(
mem_heap_alloc(graph_heap, i * sizeof *offsets));
offsets[0] = i;
offsets[1] = dict_index_get_n_fields(index);
}
b = block;
if (!row_merge_read(fd, foffs, block)) {
error = DB_CORRUPTION;
} else {
mrec_buf_t* buf;
buf = static_cast<mrec_buf_t*>(
mem_heap_alloc(graph_heap, sizeof *buf));
for (;;) {
const mrec_t* mrec;
dtuple_t* dtuple;
ulint n_ext;
b = row_merge_read_rec(block, buf, b, index,
fd, &foffs, &mrec, offsets);
if (UNIV_UNLIKELY(!b)) {
/* End of list, or I/O error */
if (mrec) {
error = DB_CORRUPTION;
}
break;
}
dtuple = row_rec_to_index_entry_low(
mrec, index, offsets, &n_ext, tuple_heap);
if (UNIV_UNLIKELY(n_ext)) {
row_merge_copy_blobs(mrec, offsets, zip_size,
dtuple, tuple_heap);
}
node->row = dtuple;
node->table = table;
node->trx_id = trx->id;
ut_ad(dtuple_validate(dtuple));
do {
thr->run_node = thr;
thr->prev_node = thr->common.parent;
error = row_ins_index_entry(index, dtuple,
0, FALSE, thr);
if (UNIV_LIKELY(error == DB_SUCCESS)) {
goto next_rec;
}
thr->lock_state = QUE_THR_LOCK_ROW;
trx->error_state = static_cast<enum db_err>(
error);
que_thr_stop_for_mysql(thr);
thr->lock_state = QUE_THR_LOCK_NOLOCK;
} while (row_mysql_handle_errors(&error, trx,
thr, NULL));
goto err_exit;
next_rec:
mem_heap_empty(tuple_heap);
}
}
que_thr_stop_for_mysql_no_error(thr, trx);
err_exit:
que_graph_free(thr->graph);
trx->op_info = "";
mem_heap_free(tuple_heap);
return(error);
}
/*********************************************************************//**
Sets an exclusive lock on a table, for the duration of creating indexes.
@return error code or DB_SUCCESS */
UNIV_INTERN
ulint
row_merge_lock_table(
/*=================*/
trx_t* trx, /*!< in/out: transaction */
dict_table_t* table, /*!< in: table to lock */
enum lock_mode mode) /*!< in: LOCK_X or LOCK_S */
{
mem_heap_t* heap;
que_thr_t* thr;
ulint err;
sel_node_t* node;
ut_ad(trx);
ut_ad(mode == LOCK_X || mode == LOCK_S);
heap = mem_heap_create(512);
trx->op_info = "setting table lock for creating or dropping index";
node = sel_node_create(heap);
thr = pars_complete_graph_for_exec(node, trx, heap);
thr->graph->state = QUE_FORK_ACTIVE;
/* We use the select query graph as the dummy graph needed
in the lock module call */
thr = static_cast<que_thr_t*>(
que_fork_get_first_thr(
static_cast<que_fork_t*>(que_node_get_parent(thr))));
que_thr_move_to_run_state_for_mysql(thr, trx);
run_again:
thr->run_node = thr;
thr->prev_node = thr->common.parent;
err = lock_table(0, table, mode, thr);
trx->error_state =static_cast<enum db_err>( err);
if (UNIV_LIKELY(err == DB_SUCCESS)) {
que_thr_stop_for_mysql_no_error(thr, trx);
} else {
que_thr_stop_for_mysql(thr);
if (err != DB_QUE_THR_SUSPENDED) {
ibool was_lock_wait;
was_lock_wait = row_mysql_handle_errors(
&err, trx, thr, NULL);
if (was_lock_wait) {
goto run_again;
}
} else {
que_thr_t* run_thr;
que_node_t* parent;
parent = que_node_get_parent(thr);
run_thr = que_fork_start_command(
static_cast<que_fork_t*>(parent));
ut_a(run_thr == thr);
/* There was a lock wait but the thread was not
in a ready to run or running state. */
trx->error_state = DB_LOCK_WAIT;
goto run_again;
}
}
que_graph_free(thr->graph);
trx->op_info = "";
return(err);
}
/*********************************************************************//**
Drop an index from the InnoDB system tables. The data dictionary must
have been locked exclusively by the caller, because the transaction
will not be committed. */
UNIV_INTERN
void
row_merge_drop_index(
/*=================*/
dict_index_t* index, /*!< in: index to be removed */
dict_table_t* table, /*!< in: table */
trx_t* trx) /*!< in: transaction handle */
{
db_err err;
pars_info_t* info = pars_info_create();
/* We use the private SQL parser of Innobase to generate the
query graphs needed in deleting the dictionary data from system
tables in Innobase. Deleting a row from SYS_INDEXES table also
frees the file segments of the B-tree associated with the index. */
static const char sql[] =
"PROCEDURE DROP_INDEX_PROC () IS\n"
"BEGIN\n"
/* Rename the index, so that it will be dropped by
row_merge_drop_temp_indexes() at crash recovery
if the server crashes before this trx is committed. */
"UPDATE SYS_INDEXES SET NAME=CONCAT('"
TEMP_INDEX_PREFIX_STR "', NAME) WHERE ID = :indexid;\n"
"COMMIT WORK;\n"
/* Drop the field definitions of the index. */
"DELETE FROM SYS_FIELDS WHERE INDEX_ID = :indexid;\n"
/* Drop the index definition and the B-tree. */
"DELETE FROM SYS_INDEXES WHERE ID = :indexid;\n"
"END;\n";
ut_ad(index && table && trx);
pars_info_add_ull_literal(info, "indexid", index->id);
trx_start_if_not_started_xa(trx);
trx->op_info = "dropping index";
ut_a(trx->dict_operation_lock_mode == RW_X_LATCH);
err = static_cast<db_err>(que_eval_sql(info, sql, FALSE, trx));
DBUG_EXECUTE_IF(
"ib_drop_index_too_many_concurrent_trxs",
err = DB_TOO_MANY_CONCURRENT_TRXS;
trx->error_state = err;);
if (err == DB_SUCCESS) {
/* If it is FTS index, drop from table->fts and also drop
its auxiliary tables */
if (index->type & DICT_FTS) {
ut_a(table->fts);
fts_drop_index(table, index, trx);
}
/* Replace this index with another equivalent index for all
foreign key constraints on this table where this index is
used */
dict_table_replace_index_in_foreign_list(table, index, trx);
dict_index_remove_from_cache(table, index);
} else {
/* Even though we ensure that DDL transactions are WAIT
and DEADLOCK free, we could encounter other errors e.g.,
DB_TOO_MANY_TRANSACTIONS. */
trx->error_state = DB_SUCCESS;
ut_print_timestamp(stderr);
fprintf(stderr, " InnoDB: Error: row_merge_drop_index failed "
"with error code: %lu.\n", (ulint) err);
}
trx->op_info = "";
}
/*********************************************************************//**
Drop those indexes which were created before an error occurred when
building an index. The data dictionary must have been locked
exclusively by the caller, because the transaction will not be
committed. */
UNIV_INTERN
void
row_merge_drop_indexes(
/*===================*/
trx_t* trx, /*!< in: transaction */
dict_table_t* table, /*!< in: table containing the indexes */
dict_index_t** index, /*!< in: indexes to drop */
ulint num_created) /*!< in: number of elements in index[] */
{
ulint key_num;
for (key_num = 0; key_num < num_created; key_num++) {
row_merge_drop_index(index[key_num], table, trx);
}
}
/*********************************************************************//**
Drop all partially created indexes during crash recovery. */
UNIV_INTERN
void
row_merge_drop_temp_indexes(void)
/*=============================*/
{
trx_t* trx;
btr_pcur_t pcur;
mtr_t mtr;
/* Load the table definitions that contain partially defined
indexes, so that the data dictionary information can be checked
when accessing the tablename.ibd files. */
trx = trx_allocate_for_background();
trx->op_info = "dropping partially created indexes";
row_mysql_lock_data_dictionary(trx);
mtr_start(&mtr);
btr_pcur_open_at_index_side(
TRUE,
dict_table_get_first_index(dict_sys->sys_indexes),
BTR_SEARCH_LEAF, &pcur, TRUE, &mtr);
for (;;) {
const rec_t* rec;
const byte* field;
ulint len;
table_id_t table_id;
dict_table_t* table;
btr_pcur_move_to_next_user_rec(&pcur, &mtr);
if (!btr_pcur_is_on_user_rec(&pcur)) {
break;
}
rec = btr_pcur_get_rec(&pcur);
field = rec_get_nth_field_old(
rec, DICT_FLD__SYS_INDEXES__NAME, &len);
if (len == UNIV_SQL_NULL || len == 0
|| (char) *field != TEMP_INDEX_PREFIX) {
continue;
}
/* This is a temporary index. */
field = rec_get_nth_field_old(
rec, DICT_FLD__SYS_INDEXES__TABLE_ID, &len);
if (len != 8) {
/* Corrupted TABLE_ID */
continue;
}
table_id = mach_read_from_8(field);
btr_pcur_store_position(&pcur, &mtr);
btr_pcur_commit_specify_mtr(&pcur, &mtr);
table = dict_table_open_on_id(table_id, TRUE);
if (table) {
dict_index_t* index;
dict_index_t* next_index;
for (index = dict_table_get_first_index(table);
index; index = next_index) {
next_index = dict_table_get_next_index(index);
if (*index->name == TEMP_INDEX_PREFIX) {
row_merge_drop_index(index, table, trx);
trx_commit_for_mysql(trx);
}
}
dict_table_close(table, TRUE);
}
mtr_start(&mtr);
btr_pcur_restore_position(BTR_SEARCH_LEAF, &pcur, &mtr);
}
btr_pcur_close(&pcur);
mtr_commit(&mtr);
row_mysql_unlock_data_dictionary(trx);
trx_free_for_background(trx);
}
/*********************************************************************//**
Creates temporary merge files, and if UNIV_PFS_IO defined, register
the file descriptor with Performance Schema.
@return File descriptor */
UNIV_INLINE
int
row_merge_file_create_low(void)
/*===========================*/
{
int fd;
#ifdef UNIV_PFS_IO
/* This temp file open does not go through normal
file APIs, add instrumentation to register with
performance schema */
struct PSI_file_locker* locker = NULL;
PSI_file_locker_state state;
register_pfs_file_open_begin(&state, locker, innodb_file_temp_key,
PSI_FILE_OPEN,
"Innodb Merge Temp File",
__FILE__, __LINE__);
#endif
fd = innobase_mysql_tmpfile();
#ifdef UNIV_PFS_IO
register_pfs_file_open_end(locker, fd);
#endif
return(fd);
}
/*********************************************************************//**
Create a merge file. */
UNIV_INTERN
void
row_merge_file_create(
/*==================*/
merge_file_t* merge_file) /*!< out: merge file structure */
{
merge_file->fd = row_merge_file_create_low();
if (srv_disable_sort_file_cache) {
os_file_set_nocache(merge_file->fd, "row0merge.c", "sort");
}
merge_file->offset = 0;
merge_file->n_rec = 0;
}
/*********************************************************************//**
Destroy a merge file. And de-register the file from Performance Schema
if UNIV_PFS_IO is defined. */
UNIV_INLINE
void
row_merge_file_destroy_low(
/*=======================*/
int fd) /*!< in: merge file descriptor */
{
#ifdef UNIV_PFS_IO
struct PSI_file_locker* locker = NULL;
PSI_file_locker_state state;
register_pfs_file_io_begin(&state, locker,
fd, 0, PSI_FILE_CLOSE,
__FILE__, __LINE__);
#endif
close(fd);
#ifdef UNIV_PFS_IO
register_pfs_file_io_end(locker, 0);
#endif
}
/*********************************************************************//**
Destroy a merge file. */
UNIV_INTERN
void
row_merge_file_destroy(
/*===================*/
merge_file_t* merge_file) /*!< out: merge file structure */
{
if (merge_file->fd != -1) {
row_merge_file_destroy_low(merge_file->fd);
merge_file->fd = -1;
}
}
/*********************************************************************//**
Determine the precise type of a column that is added to a tem
if a column must be constrained NOT NULL.
@return col->prtype, possibly ORed with DATA_NOT_NULL */
UNIV_INLINE
ulint
row_merge_col_prtype(
/*=================*/
const dict_col_t* col, /*!< in: column */
const char* col_name, /*!< in: name of the column */
const merge_index_def_t*index_def) /*!< in: the index definition
of the primary key */
{
ulint prtype = col->prtype;
ulint i;
ut_ad(index_def->ind_type & DICT_CLUSTERED);
if (prtype & DATA_NOT_NULL) {
return(prtype);
}
/* All columns that are included
in the PRIMARY KEY must be NOT NULL. */
for (i = 0; i < index_def->n_fields; i++) {
if (!strcmp(col_name, index_def->fields[i].field_name)) {
return(prtype | DATA_NOT_NULL);
}
}
return(prtype);
}
/*********************************************************************//**
Create a temporary table for creating a primary key, using the definition
of an existing table.
@return table, or NULL on error */
UNIV_INTERN
dict_table_t*
row_merge_create_temporary_table(
/*=============================*/
const char* table_name, /*!< in: new table name */
const merge_index_def_t*index_def, /*!< in: the index definition
of the primary key */
const dict_table_t* table, /*!< in: old table definition */
trx_t* trx) /*!< in/out: transaction
(sets error_state) */
{
ulint i;
dict_table_t* new_table = NULL;
ulint n_cols = dict_table_get_n_user_cols(table);
ulint error;
mem_heap_t* heap = mem_heap_create(1000);
ulint num_col;
ut_ad(table_name);
ut_ad(index_def);
ut_ad(table);
ut_ad(mutex_own(&dict_sys->mutex));
num_col = DICT_TF2_FLAG_IS_SET(table, DICT_TF2_FTS_ADD_DOC_ID)
? n_cols + 1
: n_cols;
new_table = dict_mem_table_create(
table_name, 0, num_col, table->flags, table->flags2);
for (i = 0; i < n_cols; i++) {
const dict_col_t* col;
const char* col_name;
col = dict_table_get_nth_col(table, i);
col_name = dict_table_get_col_name(table, i);
dict_mem_table_add_col(new_table, heap, col_name, col->mtype,
row_merge_col_prtype(col, col_name,
index_def),
col->len);
}
/* Add the FTS doc_id hidden column */
if (DICT_TF2_FLAG_IS_SET(table, DICT_TF2_FTS_ADD_DOC_ID)) {
fts_add_doc_id_column(new_table);
new_table->fts->doc_col = n_cols;
}
error = row_create_table_for_mysql(new_table, trx);
mem_heap_free(heap);
if (error != DB_SUCCESS) {
trx->error_state = static_cast<enum db_err>(error);
new_table = NULL;
} else {
dict_table_t* temp_table;
/* We need to bump up the table ref count and before we can
use it we need to open the table. */
temp_table = dict_table_open_on_name_no_stats(
new_table->name, TRUE, DICT_ERR_IGNORE_NONE);
ut_a(new_table == temp_table);
}
return(new_table);
}
/*********************************************************************//**
Rename the temporary indexes in the dictionary to permanent ones. The
data dictionary must have been locked exclusively by the caller,
because the transaction will not be committed.
@return DB_SUCCESS if all OK */
UNIV_INTERN
ulint
row_merge_rename_indexes(
/*=====================*/
trx_t* trx, /*!< in/out: transaction */
dict_table_t* table) /*!< in/out: table with new indexes */
{
db_err err = DB_SUCCESS;
pars_info_t* info = pars_info_create();
/* We use the private SQL parser of Innobase to generate the
query graphs needed in renaming indexes. */
static const char* sql =
"PROCEDURE RENAME_INDEXES_PROC () IS\n"
"BEGIN\n"
"UPDATE SYS_INDEXES SET NAME=SUBSTR(NAME,1,LENGTH(NAME)-1)\n"
"WHERE TABLE_ID = :tableid AND SUBSTR(NAME,0,1)='"
TEMP_INDEX_PREFIX_STR "';\n"
"END;\n";
ut_ad(table);
ut_ad(trx);
ut_a(trx->dict_operation_lock_mode == RW_X_LATCH);
trx->op_info = "renaming indexes";
pars_info_add_ull_literal(info, "tableid", table->id);
err = static_cast<db_err>(que_eval_sql(info, sql, FALSE, trx));
DBUG_EXECUTE_IF(
"ib_rename_indexes_too_many_concurrent_trxs",
err = DB_TOO_MANY_CONCURRENT_TRXS;
trx->error_state = static_cast<db_err>(err););
if (err == DB_SUCCESS) {
dict_index_t* index = dict_table_get_first_index(table);
do {
if (*index->name == TEMP_INDEX_PREFIX) {
index->name++;
}
index = dict_table_get_next_index(index);
} while (index);
} else {
/* Even though we ensure that DDL transactions are WAIT
and DEADLOCK free, we could encounter other errors e.g.,
DB_TOO_MANY_TRANSACTIONS. */
trx->error_state = DB_SUCCESS;
ut_print_timestamp(stderr);
fprintf(stderr, " InnoDB: Error: row_merge_rename_indexes "
"failed with error code: %lu.\n", (ulint) err);
}
trx->op_info = "";
return(err);
}
/*********************************************************************//**
Rename the tables in the data dictionary. The data dictionary must
have been locked exclusively by the caller, because the transaction
will not be committed.
@return error code or DB_SUCCESS */
UNIV_INTERN
ulint
row_merge_rename_tables(
/*====================*/
dict_table_t* old_table, /*!< in/out: old table, renamed to
tmp_name */
dict_table_t* new_table, /*!< in/out: new table, renamed to
old_table->name */
const char* tmp_name, /*!< in: new name for old_table */
trx_t* trx) /*!< in: transaction handle */
{
ulint err = DB_ERROR;
pars_info_t* info;
char old_name[MAX_FULL_NAME_LEN + 1];
ut_ad(old_table != new_table);
ut_ad(mutex_own(&dict_sys->mutex));
ut_a(trx->dict_operation_lock_mode == RW_X_LATCH);
/* store the old/current name to an automatic variable */
if (strlen(old_table->name) + 1 <= sizeof(old_name)) {
memcpy(old_name, old_table->name, strlen(old_table->name) + 1);
} else {
ut_print_timestamp(stderr);
fprintf(stderr, " InnoDB: too long table name: '%s', "
"max length is %d\n", old_table->name,
MAX_FULL_NAME_LEN);
ut_error;
}
trx->op_info = "renaming tables";
/* We use the private SQL parser of Innobase to generate the query
graphs needed in updating the dictionary data in system tables. */
info = pars_info_create();
pars_info_add_str_literal(info, "new_name", new_table->name);
pars_info_add_str_literal(info, "old_name", old_name);
pars_info_add_str_literal(info, "tmp_name", tmp_name);
err = que_eval_sql(info,
"PROCEDURE RENAME_TABLES () IS\n"
"BEGIN\n"
"UPDATE SYS_TABLES SET NAME = :tmp_name\n"
" WHERE NAME = :old_name;\n"
"UPDATE SYS_TABLES SET NAME = :old_name\n"
" WHERE NAME = :new_name;\n"
"END;\n", FALSE, trx);
if (err != DB_SUCCESS) {
goto err_exit;
}
/* The following calls will also rename the .ibd data files if
the tables are stored in a single-table tablespace */
if (!dict_table_rename_in_cache(old_table, tmp_name, FALSE)
|| !dict_table_rename_in_cache(new_table, old_name, FALSE)) {
err = DB_ERROR;
goto err_exit;
}
err = dict_load_foreigns(old_name, FALSE, TRUE);
if (err != DB_SUCCESS) {
err_exit:
trx->error_state = DB_SUCCESS;
trx_rollback_to_savepoint(trx, NULL);
trx->error_state = DB_SUCCESS;
}
trx->op_info = "";
return(err);
}
/*********************************************************************//**
Create and execute a query graph for creating an index.
@return DB_SUCCESS or error code */
static
ulint
row_merge_create_index_graph(
/*=========================*/
trx_t* trx, /*!< in: trx */
dict_table_t* table, /*!< in: table */
dict_index_t* index) /*!< in: index */
{
ind_node_t* node; /*!< Index creation node */
mem_heap_t* heap; /*!< Memory heap */
que_thr_t* thr; /*!< Query thread */
ulint err;
ut_ad(trx);
ut_ad(table);
ut_ad(index);
heap = mem_heap_create(512);
index->table = table;
node = ind_create_graph_create(index, heap);
thr = pars_complete_graph_for_exec(node, trx, heap);
ut_a(thr == que_fork_start_command(
static_cast<que_fork_t*>(que_node_get_parent(thr))));
que_run_threads(thr);
err = trx->error_state;
que_graph_free((que_t*) que_node_get_parent(thr));
return(err);
}
/*********************************************************************//**
Create the index and load in to the dictionary.
@return index, or NULL on error */
UNIV_INTERN
dict_index_t*
row_merge_create_index(
/*===================*/
trx_t* trx, /*!< in/out: trx (sets error_state) */
dict_table_t* table, /*!< in: the index is on this table */
const merge_index_def_t*index_def)
/*!< in: the index definition */
{
dict_index_t* index;
ulint err;
ulint n_fields = index_def->n_fields;
ulint i;
/* Create the index prototype, using the passed in def, this is not
a persistent operation. We pass 0 as the space id, and determine at
a lower level the space id where to store the table. */
index = dict_mem_index_create(table->name, index_def->name,
0, index_def->ind_type, n_fields);
ut_a(index);
for (i = 0; i < n_fields; i++) {
merge_index_field_t* ifield = &index_def->fields[i];
dict_mem_index_add_field(index, ifield->field_name,
ifield->prefix_len);
}
/* Add the index to SYS_INDEXES, using the index prototype. */
err = row_merge_create_index_graph(trx, table, index);
if (err == DB_SUCCESS) {
index = row_merge_dict_table_get_index(
table, index_def);
ut_a(index);
/* Note the id of the transaction that created this
index, we use it to restrict readers from accessing
this index, to ensure read consistency. */
index->trx_id = trx->id;
} else {
index = NULL;
}
return(index);
}
/*********************************************************************//**
Check if a transaction can use an index. */
UNIV_INTERN
ibool
row_merge_is_index_usable(
/*======================*/
const trx_t* trx, /*!< in: transaction */
const dict_index_t* index) /*!< in: index to check */
{
return(!dict_index_is_corrupted(index)
&& (!trx->read_view
|| read_view_sees_trx_id(trx->read_view, index->trx_id)));
}
/*********************************************************************//**
Drop the old table.
@return DB_SUCCESS or error code */
UNIV_INTERN
ulint
row_merge_drop_table(
/*=================*/
trx_t* trx, /*!< in: transaction */
dict_table_t* table) /*!< in: table to drop */
{
/* There must be no open transactions on the table. */
ut_a(table->n_ref_count == 0);
return(row_drop_table_for_mysql(table->name, trx, FALSE));
}
/*********************************************************************//**
Build indexes on a table by reading a clustered index,
creating a temporary file containing index entries, merge sorting
these index entries and inserting sorted index entries to indexes.
@return DB_SUCCESS or error code */
UNIV_INTERN
ulint
row_merge_build_indexes(
/*====================*/
trx_t* trx, /*!< in: transaction */
dict_table_t* old_table, /*!< in: table where rows are
read from */
dict_table_t* new_table, /*!< in: table where indexes are
created; identical to old_table
unless creating a PRIMARY KEY */
dict_index_t** indexes, /*!< in: indexes to be created */
ulint n_indexes, /*!< in: size of indexes[] */
struct TABLE* table) /*!< in/out: MySQL table, for
reporting erroneous key value
if applicable */
{
merge_file_t* merge_files;
row_merge_block_t* block;
ulint block_size;
ulint i;
ulint j;
ulint error;
int tmpfd;
dict_index_t* fts_sort_idx = NULL;
fts_psort_t* psort_info = NULL;
fts_psort_t* merge_info = NULL;
ib_int64_t sig_count = 0;
ut_ad(trx);
ut_ad(old_table);
ut_ad(new_table);
ut_ad(indexes);
ut_ad(n_indexes);
trx_start_if_not_started_xa(trx);
/* Allocate memory for merge file data structure and initialize
fields */
merge_files = static_cast<merge_file_t*>(
mem_alloc(n_indexes * sizeof *merge_files));
block_size = 3 * srv_sort_buf_size;
block = static_cast<row_merge_block_t*>(
os_mem_alloc_large(&block_size));
for (i = 0; i < n_indexes; i++) {
row_merge_file_create(&merge_files[i]);
if (indexes[i]->type & DICT_FTS) {
ibool opt_doc_id_size = FALSE;
/* To build FTS index, we would need to extract
doc's word, Doc ID, and word's position, so
we need to build a "fts sort index" indexing
on above three 'fields' */
fts_sort_idx = row_merge_create_fts_sort_index(
indexes[i], old_table,
&opt_doc_id_size);
row_fts_psort_info_init(trx, table, new_table,
fts_sort_idx, opt_doc_id_size,
&psort_info, &merge_info);
}
}
tmpfd = row_merge_file_create_low();
/* Reset the MySQL row buffer that is used when reporting
duplicate keys. */
innobase_rec_reset(table);
/* Read clustered index of the table and create files for
secondary index entries for merge sort */
error = row_merge_read_clustered_index(
trx, table, old_table, new_table, indexes,
fts_sort_idx, psort_info, merge_files, n_indexes, block);
if (error != DB_SUCCESS) {
goto func_exit;
}
/* Now we have files containing index entries ready for
sorting and inserting. */
for (i = 0; i < n_indexes; i++) {
dict_index_t* sort_idx;
sort_idx = (indexes[i]->type & DICT_FTS)
? fts_sort_idx
: indexes[i];
if (indexes[i]->type & DICT_FTS) {
os_event_t fts_parallel_merge_event;
fts_parallel_merge_event
= merge_info[0].psort_common->sort_event;
if (FTS_PLL_MERGE) {
os_event_reset(fts_parallel_merge_event);
row_fts_start_parallel_merge(merge_info);
wait_again:
os_event_wait_time_low(
fts_parallel_merge_event, 1000000,
sig_count);
for (j = 0; j < FTS_NUM_AUX_INDEX; j++) {
if (merge_info[j].child_status
!= FTS_CHILD_COMPLETE) {
sig_count = os_event_reset(
fts_parallel_merge_event);
goto wait_again;
}
}
} else {
error = row_fts_merge_insert(
sort_idx, new_table,
psort_info, 0);
}
} else {
error = row_merge_sort(trx, sort_idx, &merge_files[i],
block, &tmpfd, table);
if (error == DB_SUCCESS) {
error = row_merge_insert_index_tuples(
trx, sort_idx, new_table,
dict_table_zip_size(old_table),
merge_files[i].fd, block);
}
#ifdef FTS_INTERNAL_DIAG_PRINT
DEBUG_FTS_SORT_PRINT("FTS_SORT: Complete Insert\n");
#endif
}
/* Close the temporary file to free up space. */
row_merge_file_destroy(&merge_files[i]);
if (indexes[i]->type & DICT_FTS) {
row_fts_psort_info_destroy(psort_info, merge_info);
}
if (error != DB_SUCCESS) {
trx->error_key_num = i;
goto func_exit;
}
if (indexes[i]->type & DICT_FTS && fts_enable_diag_print) {
char* name = (char*) indexes[i]->name;
if (*name == TEMP_INDEX_PREFIX) {
name++;
}
ut_print_timestamp(stderr);
fprintf(stderr, " InnoDB: Finished building "
"full-text index %s\n", name);
}
}
func_exit:
DBUG_EXECUTE_IF(
"ib_build_indexes_too_many_concurrent_trxs",
error = DB_TOO_MANY_CONCURRENT_TRXS;
trx->error_state = static_cast<db_err>(error););
row_merge_file_destroy_low(tmpfd);
for (i = 0; i < n_indexes; i++) {
row_merge_file_destroy(&merge_files[i]);
}
if (fts_sort_idx) {
dict_mem_index_free(fts_sort_idx);
}
mem_free(merge_files);
os_mem_free_large(block, block_size);
return(error);
}