mariadb/sql/vector_mhnsw.cc
Sergei Golubchik 3ff7f04fd4 misc changes
* sysvars should be REQUIRED_ARG
* fix a mix of US and UK spelling (use US)
* use consistent naming
* work if VEC_DISTANCE arguments are in the swapped order (const, col)
* work if VEC_DISTANCE argument is NULL/invalid or wrong length
* abort INSERT if the value is invalid or wrong length
* store the "number of neighbors" in a blob in endianness-independent way
* use field->store(longlong, bool) not field->store(double)
* a lot more error checking everywhere
* cleanup after errors
* simplify calling conventions, remove reinterpret_cast's
* todo/XXX comments
* whitespaces
* use float consistently

memory management is still totally PoC quality
2024-11-05 14:00:48 -08:00

756 lines
24 KiB
C++

/*
Copyright (c) 2024, MariaDB plc
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA
*/
#include <my_global.h>
#include "vector_mhnsw.h"
#include "field.h"
#include "hash.h"
#include "item.h"
#include "item_vectorfunc.h"
#include "key.h"
#include "my_base.h"
#include "mysql/psi/psi_base.h"
#include "sql_queue.h"
#include <scope.h>
#define HNSW_MAX_M 10000 // practically the number of neighbors should be ~100
#define HNSW_MAX_M_WIDTH 2
#define HNSW_MAX_M_store int2store
#define HNSW_MAX_M_read uint2korr
const LEX_CSTRING mhnsw_hlindex_table={STRING_WITH_LEN("\
CREATE TABLE i ( \
layer int not null, \
src varbinary(255) not null, \
neighbors blob not null, \
index (layer, src)) \
")};
class FVectorRef
{
public:
// Shallow ref copy. Used for other ref lookups in HashSet
FVectorRef(const void *ref, size_t ref_len): ref{(uchar*)ref}, ref_len{ref_len} {}
static const uchar *get_key(const FVectorRef *elem, size_t *key_len, my_bool)
{
*key_len= elem->ref_len;
return elem->ref;
}
static void free_vector(void *elem)
{
delete (FVectorRef *)elem;
}
size_t get_ref_len() const { return ref_len; }
const uchar* get_ref() const { return ref; }
protected:
FVectorRef() = default;
uchar *ref;
size_t ref_len;
};
Hash_set<FVectorRef> all_vector_set(PSI_INSTRUMENT_MEM, &my_charset_bin,
1000, 0, 0, (my_hash_get_key)FVectorRef::get_key, 0, HASH_UNIQUE);
Hash_set<FVectorRef> all_vector_ref_set(PSI_INSTRUMENT_MEM, &my_charset_bin,
1000, 0, 0, (my_hash_get_key)FVectorRef::get_key, NULL, HASH_UNIQUE);
class FVector: public FVectorRef
{
private:
float *vec;
size_t vec_len;
public:
FVector(): vec(nullptr), vec_len(0) {}
~FVector() { my_free(this->ref); }
bool init(const uchar *ref, size_t ref_len, const void *vec, size_t bytes)
{
this->ref= (uchar*)my_malloc(PSI_NOT_INSTRUMENTED, ref_len + bytes, MYF(0));
if (!this->ref)
return true;
this->vec= reinterpret_cast<float *>(this->ref + ref_len);
memcpy(this->ref, ref, ref_len);
memcpy(this->vec, vec, bytes);
this->ref_len= ref_len;
this->vec_len= bytes / sizeof(float);
return false;
}
size_t size_of() const { return vec_len * sizeof(float); }
size_t get_vec_len() const { return vec_len; }
const float* get_vec() const { return vec; }
float distance_to(const FVector &other) const
{
DBUG_ASSERT(other.vec_len == vec_len);
return euclidean_vec_distance(vec, other.vec, vec_len);
}
static FVectorRef *get_fvector_ref(const uchar *ref, size_t ref_len)
{
FVectorRef tmp{ref, ref_len};
FVectorRef *v= all_vector_ref_set.find(&tmp);
if (v)
return v;
// TODO(cvicentiu) memory management.
uchar *buf= (uchar *)my_malloc(PSI_NOT_INSTRUMENTED, ref_len, MYF(0));
if (buf)
{
memcpy(buf, ref, ref_len);
if ((v= new FVectorRef(buf, ref_len)))
all_vector_ref_set.insert(v);
}
return v;
}
static FVector *get_fvector_from_source(TABLE *source, Field *vec_field,
const FVectorRef &ref)
{
FVectorRef *v= all_vector_set.find(&ref);
if (v)
return (FVector *)v;
FVector *new_vector= new FVector;
if (!new_vector)
return nullptr;
source->file->ha_rnd_pos(source->record[0],
const_cast<uchar *>(ref.get_ref()));
String buf, *vec;
vec= vec_field->val_str(&buf);
// TODO(cvicentiu) error checking
new_vector->init(ref.get_ref(), ref.get_ref_len(), vec->ptr(), vec->length());
all_vector_set.insert(new_vector);
return new_vector;
}
};
static int cmp_vec(const FVector *reference, const FVector *a, const FVector *b)
{
float a_dist= reference->distance_to(*a);
float b_dist= reference->distance_to(*b);
if (a_dist < b_dist)
return -1;
if (a_dist > b_dist)
return 1;
return 0;
}
const bool KEEP_PRUNED_CONNECTIONS=true; // XXX why?
const bool EXTEND_CANDIDATES=true; // XXX or false?
static int get_neighbors(TABLE *graph, size_t layer_number,
const FVectorRef &source_node,
List<FVectorRef> *neighbors)
{
uchar *key= static_cast<uchar*>(alloca(graph->key_info->key_length));
graph->field[0]->store(layer_number, false);
graph->field[1]->store_binary(source_node.get_ref(), source_node.get_ref_len());
key_copy(key, graph->record[0], graph->key_info, graph->key_info->key_length);
if (int err= graph->file->ha_index_read_map(graph->record[0], key,
HA_WHOLE_KEY, HA_READ_KEY_EXACT))
return err;
String strbuf, *str= graph->field[2]->val_str(&strbuf);
// mhnsw_insert() guarantees that all ref have the same length
uint ref_length= source_node.get_ref_len();
const uchar *neigh_arr_bytes= reinterpret_cast<const uchar *>(str->ptr());
uint number_of_neighbors= HNSW_MAX_M_read(neigh_arr_bytes);
if (number_of_neighbors * ref_length + HNSW_MAX_M_WIDTH != str->length())
return HA_ERR_CRASHED; // should not happen, corrupted HNSW index
const uchar *pos= neigh_arr_bytes + HNSW_MAX_M_WIDTH;
for (uint i= 0; i < number_of_neighbors; i++)
{
FVectorRef *v= FVector::get_fvector_ref(pos, ref_length);
if (!v)
return HA_ERR_OUT_OF_MEM;
neighbors->push_back(v);
pos+= ref_length;
}
return 0;
}
static int select_neighbors(TABLE *source, TABLE *graph, Field *vec_field,
size_t layer_number, const FVector &target,
const List<FVectorRef> &candidates,
size_t max_neighbor_connections,
List<FVectorRef> *neighbors)
{
/*
TODO: If the input neighbors list is already sorted in search_layer, then
no need to do additional queue build steps here.
*/
Hash_set<FVectorRef> visited(PSI_INSTRUMENT_MEM, &my_charset_bin, 1000, 0,
0, (my_hash_get_key)FVectorRef::get_key,
NULL, HASH_UNIQUE);
Queue<FVector, const FVector> pq; // working queue
Queue<FVector, const FVector> pq_discard; // queue for discarded candidates
Queue<FVector, const FVector> best; // neighbors to return
// TODO(cvicentiu) this 1000 here is a hardcoded value for max queue size.
// This should not be fixed.
if (pq.init(10000, 0, cmp_vec, &target) ||
pq_discard.init(10000, 0, cmp_vec, &target) ||
best.init(max_neighbor_connections, true, cmp_vec, &target))
return HA_ERR_OUT_OF_MEM;
for (const FVectorRef &candidate : candidates)
{
FVector *v= FVector::get_fvector_from_source(source, vec_field, candidate);
if (!v)
return HA_ERR_OUT_OF_MEM;
visited.insert(&candidate);
pq.push(v);
}
if (EXTEND_CANDIDATES)
{
for (const FVectorRef &candidate : candidates)
{
List<FVectorRef> candidate_neighbors;
if (int err= get_neighbors(graph, layer_number, candidate,
&candidate_neighbors))
return err;
for (const FVectorRef &extra_candidate : candidate_neighbors)
{
if (visited.find(&extra_candidate))
continue;
visited.insert(&extra_candidate);
FVector *v= FVector::get_fvector_from_source(source, vec_field,
extra_candidate);
if (!v)
return HA_ERR_OUT_OF_MEM;
pq.push(v);
}
}
}
DBUG_ASSERT(pq.elements());
best.push(pq.pop());
float best_top= best.top()->distance_to(target);
while (pq.elements() && best.elements() < max_neighbor_connections)
{
const FVector *vec= pq.pop();
const float cur_dist= vec->distance_to(target);
if (cur_dist < best_top)
{
DBUG_ASSERT(0); // impossible. XXX redo the loop
best.push(vec);
best_top= cur_dist;
}
else
pq_discard.push(vec);
}
if (KEEP_PRUNED_CONNECTIONS)
{
while (pq_discard.elements() &&
best.elements() < max_neighbor_connections)
{
best.push(pq_discard.pop());
}
}
DBUG_ASSERT(best.elements() <= max_neighbor_connections);
while (best.elements()) // XXX why not to return best directly?
neighbors->push_front(best.pop());
return 0;
}
static void dbug_print_vec_ref(const char *prefix, uint layer,
const FVectorRef &ref)
{
#ifndef DBUG_OFF
// TODO(cvicentiu) disable this in release build.
char *ref_str= static_cast<char *>(alloca(ref.get_ref_len() * 2 + 1));
DBUG_ASSERT(ref_str);
char *ptr= ref_str;
for (size_t i= 0; i < ref.get_ref_len(); ptr += 2, i++)
{
snprintf(ptr, 3, "%02x", ref.get_ref()[i]);
}
DBUG_PRINT("VECTOR", ("%s %u %s", prefix, layer, ref_str));
#endif
}
static void dbug_print_vec_neigh(uint layer, const List<FVectorRef> &neighbors)
{
#ifndef DBUG_OFF
DBUG_PRINT("VECTOR", ("NEIGH: NUM: %d", neighbors.elements));
for (const FVectorRef& ref : neighbors)
{
dbug_print_vec_ref("NEIGH: ", layer, ref);
}
#endif
}
static bool write_neighbors(TABLE *graph, size_t layer_number,
const FVectorRef &source_node,
const List<FVectorRef> &new_neighbors)
{
DBUG_ASSERT(new_neighbors.elements <= HNSW_MAX_M);
size_t total_size= HNSW_MAX_M_WIDTH + new_neighbors.elements * source_node.get_ref_len();
// Allocate memory for the struct and the flexible array member
char *neighbor_array_bytes= static_cast<char *>(my_safe_alloca(total_size));
// XXX why bother storing it?
HNSW_MAX_M_store(neighbor_array_bytes, new_neighbors.elements);
char *pos= neighbor_array_bytes + HNSW_MAX_M_WIDTH;
for (const auto &node: new_neighbors)
{
DBUG_ASSERT(node.get_ref_len() == source_node.get_ref_len());
memcpy(pos, node.get_ref(), node.get_ref_len());
pos+= node.get_ref_len();
}
graph->field[0]->store(layer_number, false);
graph->field[1]->store_binary(source_node.get_ref(), source_node.get_ref_len());
graph->field[2]->store_binary(neighbor_array_bytes, total_size);
uchar *key= static_cast<uchar*>(alloca(graph->key_info->key_length));
key_copy(key, graph->record[0], graph->key_info, graph->key_info->key_length);
int err= graph->file->ha_index_read_map(graph->record[1], key, HA_WHOLE_KEY,
HA_READ_KEY_EXACT);
// no record
if (err == HA_ERR_KEY_NOT_FOUND)
{
dbug_print_vec_ref("INSERT ", layer_number, source_node);
err= graph->file->ha_write_row(graph->record[0]);
}
else if (!err)
{
dbug_print_vec_ref("UPDATE ", layer_number, source_node);
dbug_print_vec_neigh(layer_number, new_neighbors);
err= graph->file->ha_update_row(graph->record[1], graph->record[0]);
}
my_safe_afree(neighbor_array_bytes, total_size);
return err;
}
static int update_second_degree_neighbors(TABLE *source, Field *vec_field,
TABLE *graph, size_t layer_number,
uint max_neighbors,
const FVectorRef &source_node,
const List<FVectorRef> &neighbors)
{
//dbug_print_vec_ref("Updating second degree neighbors", layer_number, source_node);
//dbug_print_vec_neigh(layer_number, neighbors);
for (const FVectorRef &neigh: neighbors) // XXX why this loop?
{
List<FVectorRef> new_neighbors;
if (int err= get_neighbors(graph, layer_number, neigh, &new_neighbors))
return err;
new_neighbors.push_back(&source_node);
if (int err= write_neighbors(graph, layer_number, neigh, new_neighbors))
return err;
}
for (const FVectorRef &neigh: neighbors)
{
List<FVectorRef> new_neighbors;
if (int err= get_neighbors(graph, layer_number, neigh, &new_neighbors))
return err;
if (new_neighbors.elements > max_neighbors)
{
// shrink the neighbors
List<FVectorRef> selected;
FVector *v= FVector::get_fvector_from_source(source, vec_field, neigh);
if (!v)
return HA_ERR_OUT_OF_MEM;
if (int err= select_neighbors(source, graph, vec_field, layer_number,
*v, new_neighbors, max_neighbors, &selected))
return err;
if (int err= write_neighbors(graph, layer_number, neigh, selected))
return err;
}
// release memory
new_neighbors.empty();
}
return 0;
}
static int update_neighbors(TABLE *source, TABLE *graph, Field *vec_field,
size_t layer_number, uint max_neighbors,
const FVectorRef &source_node,
const List<FVectorRef> &neighbors)
{
// 1. update node's neighbors
if (int err= write_neighbors(graph, layer_number, source_node, neighbors))
return err;
// 2. update node's neighbors' neighbors (shrink before update)
return update_second_degree_neighbors(source, vec_field, graph, layer_number,
max_neighbors, source_node, neighbors);
}
static int search_layer(TABLE *source, TABLE *graph, Field *vec_field,
const FVector &target,
const List<FVectorRef> &start_nodes,
uint max_candidates_return, size_t layer,
List<FVectorRef> *result)
{
DBUG_ASSERT(start_nodes.elements > 0);
// Result list must be empty, otherwise there's a risk of memory leak
DBUG_ASSERT(result->elements == 0);
Queue<FVector, const FVector> candidates;
Queue<FVector, const FVector> best;
//TODO(cvicentiu) Fix this hash method.
Hash_set<FVectorRef> visited(PSI_INSTRUMENT_MEM, &my_charset_bin, 1000, 0, 0,
(my_hash_get_key)FVectorRef::get_key, NULL,
HASH_UNIQUE);
candidates.init(10000, false, cmp_vec, &target);
best.init(max_candidates_return, true, cmp_vec, &target);
for (const FVectorRef &node : start_nodes)
{
FVector *v= FVector::get_fvector_from_source(source, vec_field, node);
candidates.push(v);
if (best.elements() < max_candidates_return)
best.push(v);
else if (target.distance_to(*v) > target.distance_to(*best.top()))
best.replace_top(v);
visited.insert(v);
dbug_print_vec_ref("INSERTING node in visited: ", layer, node);
}
float furthest_best= target.distance_to(*best.top());
while (candidates.elements())
{
const FVector &cur_vec= *candidates.pop();
float cur_distance= target.distance_to(cur_vec);
if (cur_distance > furthest_best && best.elements() == max_candidates_return)
{
break; // All possible candidates are worse than what we have.
// Can't get better.
}
List<FVectorRef> neighbors;
get_neighbors(graph, layer, cur_vec, &neighbors);
for (const FVectorRef &neigh: neighbors)
{
if (visited.find(&neigh))
continue;
FVector *clone= FVector::get_fvector_from_source(source, vec_field, neigh);
// TODO(cvicentiu) mem ownership...
visited.insert(clone);
if (best.elements() < max_candidates_return)
{
candidates.push(clone);
best.push(clone);
furthest_best= target.distance_to(*best.top());
}
else if (target.distance_to(*clone) < furthest_best)
{
best.replace_top(clone);
candidates.push(clone);
furthest_best= target.distance_to(*best.top());
}
}
neighbors.empty();
}
DBUG_PRINT("VECTOR", ("SEARCH_LAYER_END %d best", best.elements()));
while (best.elements())
{
// TODO(cvicentiu) FVector memory leak.
// TODO(cvicentiu) this is n*log(n), we need a queue iterator.
result->push_front(best.pop());
}
return 0;
}
static int bad_value_on_insert(Field *f)
{
my_error(ER_TRUNCATED_WRONG_VALUE_FOR_FIELD, MYF(0), "vector", "...",
f->table->s->db.str, f->table->s->table_name.str, f->field_name.str,
f->table->in_use->get_stmt_da()->current_row_for_warning());
return HA_ERR_GENERIC;
}
int mhnsw_insert(TABLE *table, KEY *keyinfo)
{
THD *thd= table->in_use;
TABLE *graph= table->hlindex;
MY_BITMAP *old_map= dbug_tmp_use_all_columns(table, &table->read_set);
Field *vec_field= keyinfo->key_part->field;
String buf, *res= vec_field->val_str(&buf);
handler *h= table->file->lookup_handler;
/* metadata are checked on open */
DBUG_ASSERT(graph);
DBUG_ASSERT(keyinfo->algorithm == HA_KEY_ALG_VECTOR);
DBUG_ASSERT(keyinfo->usable_key_parts == 1);
DBUG_ASSERT(vec_field->binary());
DBUG_ASSERT(vec_field->cmp_type() == STRING_RESULT);
DBUG_ASSERT(res); // ER_INDEX_CANNOT_HAVE_NULL
DBUG_ASSERT(h->ref_length <= graph->field[1]->field_length);
// XXX returning an error here will rollback the insert in InnoDB
// but in MyISAM the row will stay inserted, making the index out of sync:
// invalid vector values are present in the table but cannot be found
// via an index. The easiest way to fix it is with a VECTOR(N) type
if (res->length() == 0 || res->length() % 4)
return bad_value_on_insert(vec_field);
const double NORMALIZATION_FACTOR= 1 / std::log(thd->variables.hnsw_max_connection_per_layer);
if (int err= h->ha_rnd_init(1))
return err;
SCOPE_EXIT([h](){ h->ha_rnd_end(); });
if (int err= graph->file->ha_index_init(0, 1))
return err;
SCOPE_EXIT([graph](){ graph->file->ha_index_end(); });
if (int err= graph->file->ha_index_last(graph->record[0]))
{
if (err != HA_ERR_END_OF_FILE)
return err;
// First insert!
h->position(table->record[0]);
return write_neighbors(graph, 0, {h->ref, h->ref_length}, {});
}
longlong max_layer= graph->field[0]->val_int();
h->position(table->record[0]);
List<FVectorRef> candidates;
List<FVectorRef> start_nodes;
String ref_str, *ref_ptr;
ref_ptr= graph->field[1]->val_str(&ref_str);
FVectorRef start_node_ref{ref_ptr->ptr(), ref_ptr->length()};
// TODO(cvicentiu) use a random start node in last layer.
// XXX or may be *all* nodes in the last layer? there should be few
if (start_nodes.push_back(&start_node_ref))
return HA_ERR_OUT_OF_MEM;
FVector *v= FVector::get_fvector_from_source(table, vec_field, start_node_ref);
if (!v)
return HA_ERR_OUT_OF_MEM;
if (v->size_of() != res->length())
return bad_value_on_insert(vec_field);
FVector target;
target.init(h->ref, h->ref_length, res->ptr(), res->length());
double new_num= my_rnd(&thd->rand);
double log= -std::log(new_num) * NORMALIZATION_FACTOR;
longlong new_node_layer= static_cast<longlong>(std::floor(log));
for (longlong cur_layer= max_layer; cur_layer > new_node_layer; cur_layer--)
{
if (int err= search_layer(table, graph, vec_field, target, start_nodes,
thd->variables.hnsw_ef_constructor, cur_layer,
&candidates))
return err;
start_nodes.empty();
start_nodes.push_back(candidates.head()); // XXX ef=1
//candidates.delete_elements();
candidates.empty();
//TODO(cvicentiu) memory leak
}
for (longlong cur_layer= std::min(max_layer, new_node_layer);
cur_layer >= 0; cur_layer--)
{
List<FVectorRef> neighbors;
if (int err= search_layer(table, graph, vec_field, target, start_nodes,
thd->variables.hnsw_ef_constructor, cur_layer,
&candidates))
return err;
// release vectors
start_nodes.empty();
uint max_neighbors= (cur_layer == 0) ? // heuristics from the paper
thd->variables.hnsw_max_connection_per_layer * 2
: thd->variables.hnsw_max_connection_per_layer;
if (int err= select_neighbors(table, graph, vec_field, cur_layer, target,
candidates, max_neighbors, &neighbors))
return err;
if (int err= update_neighbors(table, graph, vec_field, cur_layer,
max_neighbors, target, neighbors))
return err;
start_nodes= candidates;
}
start_nodes.empty();
// XXX what is that?
for (longlong cur_layer= max_layer + 1; cur_layer <= new_node_layer;
cur_layer++)
{
if (int err= write_neighbors(graph, cur_layer, target, {}))
return err;
}
dbug_tmp_restore_column_map(&table->read_set, old_map);
return 0;
}
int mhnsw_read_first(TABLE *table, KEY *keyinfo, Item *dist, ulonglong limit)
{
THD *thd= table->in_use;
TABLE *graph= table->hlindex;
Field *vec_field= keyinfo->key_part->field;
Item_func_vec_distance *fun= (Item_func_vec_distance *)dist;
String buf, *res= fun->get_const_arg()->val_str(&buf);
handler *h= table->file;
if (int err= h->ha_rnd_init(0))
return err;
if (int err= graph->file->ha_index_init(0, 1))
return err;
SCOPE_EXIT([graph](){ graph->file->ha_index_end(); });
if (int err= graph->file->ha_index_last(graph->record[0]))
return err;
longlong max_layer= graph->field[0]->val_int();
List<FVectorRef> candidates; // XXX List? not Queue by distance?
List<FVectorRef> start_nodes;
String ref_str, *ref_ptr;
ref_ptr= graph->field[1]->val_str(&ref_str);
FVectorRef start_node_ref{ref_ptr->ptr(), ref_ptr->length()};
// TODO(cvicentiu) use a random start node in last layer.
// XXX or may be *all* nodes in the last layer? there should be few
if (start_nodes.push_back(&start_node_ref))
return HA_ERR_OUT_OF_MEM;
FVector *v= FVector::get_fvector_from_source(table, vec_field, start_node_ref);
if (!v)
return HA_ERR_OUT_OF_MEM;
/*
if the query vector is NULL or invalid, VEC_DISTANCE will return
NULL, so the result is basically unsorted, we can return rows
in any order. For simplicity let's sort by the start_node.
*/
if (!res || v->size_of() != res->length())
(res= &buf)->set((const char*)(v->get_vec()), v->size_of(), &my_charset_bin);
FVector target;
if (target.init(h->ref, h->ref_length, res->ptr(), res->length()))
return HA_ERR_OUT_OF_MEM;
ulonglong ef_search= std::max<ulonglong>( //XXX why not always limit?
thd->variables.hnsw_ef_search, limit);
for (size_t cur_layer= max_layer; cur_layer > 0; cur_layer--)
{
//XXX in the paper ef_search=1 here
if (int err= search_layer(table, graph, vec_field, target, start_nodes,
ef_search, cur_layer, &candidates))
return err;
start_nodes.empty();
//start_nodes.delete_elements();
start_nodes.push_back(candidates.head()); // XXX so ef_search=1 ???
//candidates.delete_elements();
candidates.empty();
//TODO(cvicentiu) memleak.
}
if (int err= search_layer(table, graph, vec_field, target, start_nodes,
ef_search, 0, &candidates))
return err;
// 8. return results
FVectorRef **context= thd->alloc<FVectorRef*>(limit + 1);
graph->context= context;
FVectorRef **ptr= context;
while (limit--)
*ptr++= candidates.pop();
*ptr= nullptr;
return mhnsw_read_next(table);
}
int mhnsw_read_next(TABLE *table)
{
FVectorRef ***context= (FVectorRef ***)&table->hlindex->context;
FVectorRef *cur_vec= **context;
if (cur_vec)
{
int err= table->file->ha_rnd_pos(table->record[0],
(uchar *)(cur_vec)->get_ref());
// release vectors
// delete cur_vec;
(*context)++;
return err;
}
return HA_ERR_END_OF_FILE;
}