mirror of
https://github.com/MariaDB/server.git
synced 2025-01-18 21:12:26 +01:00
4e26a41f3e
ASSERTION TABLE->DB_STAT FAILED IN SQL_BASE.CC::OPEN_TABLE() DURING I_S Q This assert could be triggered if a statement requiring a name lock on a table (e.g. DROP TRIGGER) executed concurrently with an I_S query which also used the table. One connection first started an I_S query that opened a given table. Then another connection started a statement requiring a name lock on the same table. This statement was blocked since the table was in use by the I_S query. When the I_S query resumed and tried to open the table again as part of get_all_tables(), it would encounter a table instance with an old version number representing the pending name lock. Since I_S queries ignore version checks and thus pending name locks, it would try to continue. This caused it to encounter the assert. The assert checked that the TABLE instance found with a different version, was a real, open table. However, since this TABLE instance instead represented a pending name lock, the check would fail and trigger the assert. This patch fixes the problem by removing the assert. It is ok for TABLE::db_stat to be 0 in this case since the TABLE instance can represent a pending name lock. Test case added to lock_sync.test.
775 lines
27 KiB
Text
775 lines
27 KiB
Text
#
|
|
# Test how we handle locking in various cases when
|
|
# we read data from MyISAM tables.
|
|
#
|
|
# In this test we mostly check that the SQL-layer correctly
|
|
# determines the type of thr_lock.c lock for a table being
|
|
# read.
|
|
# I.e. that it disallows concurrent inserts when the statement
|
|
# is going to be written to the binary log and therefore
|
|
# should be serialized, and allows concurrent inserts when
|
|
# such serialization is not necessary (e.g. when
|
|
# the statement is not written to binary log).
|
|
#
|
|
# Force concurrent inserts to be performed even if the table
|
|
# has gaps. This allows to simplify clean up in scripts
|
|
# used below (instead of backing up table being inserted
|
|
# into and then restoring it from backup at the end of the
|
|
# script we can simply delete rows which were inserted).
|
|
set @old_concurrent_insert= @@global.concurrent_insert;
|
|
set @@global.concurrent_insert= 2;
|
|
select @@global.concurrent_insert;
|
|
@@global.concurrent_insert
|
|
ALWAYS
|
|
# Prepare playground by creating tables, views,
|
|
# routines and triggers used in tests.
|
|
drop table if exists t0, t1, t2, t3, t4, t5;
|
|
drop view if exists v1, v2;
|
|
drop procedure if exists p1;
|
|
drop procedure if exists p2;
|
|
drop function if exists f1;
|
|
drop function if exists f2;
|
|
drop function if exists f3;
|
|
drop function if exists f4;
|
|
drop function if exists f5;
|
|
drop function if exists f6;
|
|
drop function if exists f7;
|
|
drop function if exists f8;
|
|
drop function if exists f9;
|
|
drop function if exists f10;
|
|
drop function if exists f11;
|
|
drop function if exists f12;
|
|
drop function if exists f13;
|
|
drop function if exists f14;
|
|
drop function if exists f15;
|
|
create table t1 (i int primary key);
|
|
insert into t1 values (1), (2), (3), (4), (5);
|
|
create table t2 (j int primary key);
|
|
insert into t2 values (1), (2), (3), (4), (5);
|
|
create table t3 (k int primary key);
|
|
insert into t3 values (1), (2), (3);
|
|
create table t4 (l int primary key);
|
|
insert into t4 values (1);
|
|
create table t5 (l int primary key);
|
|
insert into t5 values (1);
|
|
create view v1 as select i from t1;
|
|
create view v2 as select j from t2 where j in (select i from t1);
|
|
create procedure p1(k int) insert into t2 values (k);
|
|
create function f1() returns int
|
|
begin
|
|
declare j int;
|
|
select i from t1 where i = 1 into j;
|
|
return j;
|
|
end|
|
|
create function f2() returns int
|
|
begin
|
|
declare k int;
|
|
select i from t1 where i = 1 into k;
|
|
insert into t2 values (k + 5);
|
|
return 0;
|
|
end|
|
|
create function f3() returns int
|
|
begin
|
|
return (select i from t1 where i = 3);
|
|
end|
|
|
create function f4() returns int
|
|
begin
|
|
if (select i from t1 where i = 3) then
|
|
return 1;
|
|
else
|
|
return 0;
|
|
end if;
|
|
end|
|
|
create function f5() returns int
|
|
begin
|
|
insert into t2 values ((select i from t1 where i = 1) + 5);
|
|
return 0;
|
|
end|
|
|
create function f6() returns int
|
|
begin
|
|
declare k int;
|
|
select i from v1 where i = 1 into k;
|
|
return k;
|
|
end|
|
|
create function f7() returns int
|
|
begin
|
|
declare k int;
|
|
select j from v2 where j = 1 into k;
|
|
return k;
|
|
end|
|
|
create function f8() returns int
|
|
begin
|
|
declare k int;
|
|
select i from v1 where i = 1 into k;
|
|
insert into t2 values (k+5);
|
|
return k;
|
|
end|
|
|
create function f9() returns int
|
|
begin
|
|
update v2 set j=j+10 where j=1;
|
|
return 1;
|
|
end|
|
|
create function f10() returns int
|
|
begin
|
|
return f1();
|
|
end|
|
|
create function f11() returns int
|
|
begin
|
|
declare k int;
|
|
set k= f1();
|
|
insert into t2 values (k+5);
|
|
return k;
|
|
end|
|
|
create function f12(p int) returns int
|
|
begin
|
|
insert into t2 values (p);
|
|
return p;
|
|
end|
|
|
create function f13(p int) returns int
|
|
begin
|
|
return p;
|
|
end|
|
|
create procedure p2(inout p int)
|
|
begin
|
|
select i from t1 where i = 1 into p;
|
|
end|
|
|
create function f14() returns int
|
|
begin
|
|
declare k int;
|
|
call p2(k);
|
|
insert into t2 values (k+5);
|
|
return k;
|
|
end|
|
|
create function f15() returns int
|
|
begin
|
|
declare k int;
|
|
call p2(k);
|
|
return k;
|
|
end|
|
|
create trigger t4_bi before insert on t4 for each row
|
|
begin
|
|
declare k int;
|
|
select i from t1 where i=1 into k;
|
|
set new.l= k+1;
|
|
end|
|
|
create trigger t4_bu before update on t4 for each row
|
|
begin
|
|
if (select i from t1 where i=1) then
|
|
set new.l= 2;
|
|
end if;
|
|
end|
|
|
create trigger t4_bd before delete on t4 for each row
|
|
begin
|
|
if !(select i from v1 where i=1) then
|
|
signal sqlstate '45000';
|
|
end if;
|
|
end|
|
|
create trigger t5_bi before insert on t5 for each row
|
|
begin
|
|
set new.l= f1()+1;
|
|
end|
|
|
create trigger t5_bu before update on t5 for each row
|
|
begin
|
|
declare j int;
|
|
call p2(j);
|
|
set new.l= j + 1;
|
|
end|
|
|
#
|
|
# Set common variables to be used by the scripts
|
|
# called below.
|
|
#
|
|
# Switch to connection 'con1'.
|
|
# Cache all functions used in the tests below so statements
|
|
# calling them won't need to open and lock mysql.proc table
|
|
# and we can assume that each statement locks its tables
|
|
# once during its execution.
|
|
show create procedure p1;
|
|
show create procedure p2;
|
|
show create function f1;
|
|
show create function f2;
|
|
show create function f3;
|
|
show create function f4;
|
|
show create function f5;
|
|
show create function f6;
|
|
show create function f7;
|
|
show create function f8;
|
|
show create function f9;
|
|
show create function f10;
|
|
show create function f11;
|
|
show create function f12;
|
|
show create function f13;
|
|
show create function f14;
|
|
show create function f15;
|
|
# Switch back to connection 'default'.
|
|
#
|
|
# 1. Statements that read tables and do not use subqueries.
|
|
#
|
|
#
|
|
# 1.1 Simple SELECT statement.
|
|
#
|
|
# No locks are necessary as this statement won't be written
|
|
# to the binary log and thanks to how MyISAM works SELECT
|
|
# will see version of the table prior to concurrent insert.
|
|
Success: 'select * from t1' allows concurrent inserts into 't1'.
|
|
#
|
|
# 1.2 Multi-UPDATE statement.
|
|
#
|
|
# Has to take shared locks on rows in the table being read as this
|
|
# statement will be written to the binary log and therefore should
|
|
# be serialized with concurrent statements.
|
|
Success: 'update t2, t1 set j= j - 1 where i = j' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 1.3 Multi-DELETE statement.
|
|
#
|
|
# The above is true for this statement as well.
|
|
Success: 'delete t2 from t1, t2 where i = j' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 1.4 DESCRIBE statement.
|
|
#
|
|
# This statement does not really read data from the
|
|
# target table and thus does not take any lock on it.
|
|
# We check this for completeness of coverage.
|
|
lock table t1 write;
|
|
# Switching to connection 'con1'.
|
|
# This statement should not be blocked.
|
|
describe t1;
|
|
# Switching to connection 'default'.
|
|
unlock tables;
|
|
#
|
|
# 1.5 SHOW statements.
|
|
#
|
|
# The above is true for SHOW statements as well.
|
|
lock table t1 write;
|
|
# Switching to connection 'con1'.
|
|
# These statements should not be blocked.
|
|
show keys from t1;
|
|
# Switching to connection 'default'.
|
|
unlock tables;
|
|
#
|
|
# 2. Statements which read tables through subqueries.
|
|
#
|
|
#
|
|
# 2.1 CALL with a subquery.
|
|
#
|
|
# A strong lock is not necessary as this statement is not
|
|
# written to the binary log as a whole (it is written
|
|
# statement-by-statement).
|
|
Success: 'call p1((select i + 5 from t1 where i = 1))' allows concurrent inserts into 't1'.
|
|
#
|
|
# 2.2 CREATE TABLE with a subquery.
|
|
#
|
|
# Has to take a strong lock on the table being read as
|
|
# this statement is written to the binary log and therefore
|
|
# should be serialized with concurrent statements.
|
|
Success: 'create table t0 select * from t1' doesn't allow concurrent inserts into 't1'.
|
|
drop table t0;
|
|
Success: 'create table t0 select j from t2 where j in (select i from t1)' doesn't allow concurrent inserts into 't1'.
|
|
drop table t0;
|
|
#
|
|
# 2.3 DELETE with a subquery.
|
|
#
|
|
# The above is true for this statement as well.
|
|
Success: 'delete from t2 where j in (select i from t1)' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 2.4 MULTI-DELETE with a subquery.
|
|
#
|
|
# Same is true for this statement as well.
|
|
Success: 'delete t2 from t3, t2 where k = j and j in (select i from t1)' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 2.5 DO with a subquery.
|
|
#
|
|
# A strong lock is not necessary as it is not logged.
|
|
Success: 'do (select i from t1 where i = 1)' allows concurrent inserts into 't1'.
|
|
#
|
|
# 2.6 INSERT with a subquery.
|
|
#
|
|
# Has to take a strong lock on the table being read as
|
|
# this statement is written to the binary log and therefore
|
|
# should be serialized with concurrent inserts.
|
|
Success: 'insert into t2 select i+5 from t1' doesn't allow concurrent inserts into 't1'.
|
|
Success: 'insert into t2 values ((select i+5 from t1 where i = 4))' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 2.7 LOAD DATA with a subquery.
|
|
#
|
|
# The above is true for this statement as well.
|
|
Success: 'load data infile '../../std_data/rpl_loaddata.dat' into table t2 (@a, @b) set j= @b + (select i from t1 where i = 1)' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 2.8 REPLACE with a subquery.
|
|
#
|
|
# Same is true for this statement as well.
|
|
Success: 'replace into t2 select i+5 from t1' doesn't allow concurrent inserts into 't1'.
|
|
Success: 'replace into t2 values ((select i+5 from t1 where i = 4))' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 2.9 SELECT with a subquery.
|
|
#
|
|
# Strong locks are not necessary as this statement is not written
|
|
# to the binary log and thanks to how MyISAM works this statement
|
|
# sees a version of the table prior to the concurrent insert.
|
|
Success: 'select * from t2 where j in (select i from t1)' allows concurrent inserts into 't1'.
|
|
#
|
|
# 2.10 SET with a subquery.
|
|
#
|
|
# The same is true for this statement as well.
|
|
Success: 'set @a:= (select i from t1 where i = 1)' allows concurrent inserts into 't1'.
|
|
#
|
|
# 2.11 SHOW with a subquery.
|
|
#
|
|
# And for this statement too.
|
|
Success: 'show tables from test where Tables_in_test = 't2' and (select i from t1 where i = 1)' allows concurrent inserts into 't1'.
|
|
Success: 'show columns from t2 where (select i from t1 where i = 1)' allows concurrent inserts into 't1'.
|
|
#
|
|
# 2.12 UPDATE with a subquery.
|
|
#
|
|
# Has to take a strong lock on the table being read as
|
|
# this statement is written to the binary log and therefore
|
|
# should be serialized with concurrent inserts.
|
|
Success: 'update t2 set j= j-10 where j in (select i from t1)' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 2.13 MULTI-UPDATE with a subquery.
|
|
#
|
|
# Same is true for this statement as well.
|
|
Success: 'update t2, t3 set j= j -10 where j=k and j in (select i from t1)' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 3. Statements which read tables through a view.
|
|
#
|
|
#
|
|
# 3.1 SELECT statement which uses some table through a view.
|
|
#
|
|
# Since this statement is not written to the binary log and
|
|
# an old version of the table is accessible thanks to how MyISAM
|
|
# handles concurrent insert, no locking is necessary.
|
|
Success: 'select * from v1' allows concurrent inserts into 't1'.
|
|
Success: 'select * from v2' allows concurrent inserts into 't1'.
|
|
Success: 'select * from t2 where j in (select i from v1)' allows concurrent inserts into 't1'.
|
|
Success: 'select * from t3 where k in (select j from v2)' allows concurrent inserts into 't1'.
|
|
#
|
|
# 3.2 Statements which modify a table and use views.
|
|
#
|
|
# Since such statements are going to be written to the binary
|
|
# log they need to be serialized against concurrent statements
|
|
# and therefore should take strong locks on the data read.
|
|
Success: 'update t2 set j= j-10 where j in (select i from v1)' doesn't allow concurrent inserts into 't1'.
|
|
Success: 'update t3 set k= k-10 where k in (select j from v2)' doesn't allow concurrent inserts into 't1'.
|
|
Success: 'update t2, v1 set j= j-10 where j = i' doesn't allow concurrent inserts into 't1'.
|
|
Success: 'update v2 set j= j-10 where j = 3' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 4. Statements which read tables through stored functions.
|
|
#
|
|
#
|
|
# 4.1 SELECT/SET with a stored function which does not
|
|
# modify data and uses SELECT in its turn.
|
|
#
|
|
# In theory there is no need to take strong locks on the table
|
|
# being selected from in SF as the call to such function
|
|
# won't get into the binary log. In practice, however, we
|
|
# discover that fact too late in the process to be able to
|
|
# affect the decision what locks should be taken.
|
|
# Hence, strong locks are taken in this case.
|
|
Success: 'select f1()' doesn't allow concurrent inserts into 't1'.
|
|
Success: 'set @a:= f1()' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 4.2 INSERT (or other statement which modifies data) with
|
|
# a stored function which does not modify data and uses
|
|
# SELECT.
|
|
#
|
|
# Since such statement is written to the binary log it should
|
|
# be serialized with concurrent statements affecting the data
|
|
# it uses. Therefore it should take strong lock on the data
|
|
# it reads.
|
|
Success: 'insert into t2 values (f1() + 5)' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 4.3 SELECT/SET with a stored function which
|
|
# reads and modifies data.
|
|
#
|
|
# Since a call to such function is written to the binary log,
|
|
# it should be serialized with concurrent statements affecting
|
|
# the data it uses. Hence, a strong lock on the data read
|
|
# should be taken.
|
|
Success: 'select f2()' doesn't allow concurrent inserts into 't1'.
|
|
Success: 'set @a:= f2()' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 4.4. SELECT/SET with a stored function which does not
|
|
# modify data and reads a table through subselect
|
|
# in a control construct.
|
|
#
|
|
# Again, in theory a call to this function won't get to the
|
|
# binary log and thus no strong lock is needed. But in practice
|
|
# we don't detect this fact early enough (get_lock_type_for_table())
|
|
# to avoid taking a strong lock.
|
|
Success: 'select f3()' doesn't allow concurrent inserts into 't1'.
|
|
Success: 'set @a:= f3()' doesn't allow concurrent inserts into 't1'.
|
|
Success: 'select f4()' doesn't allow concurrent inserts into 't1'.
|
|
Success: 'set @a:= f4()' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 4.5. INSERT (or other statement which modifies data) with
|
|
# a stored function which does not modify data and reads
|
|
# the table through a subselect in one of its control
|
|
# constructs.
|
|
#
|
|
# Since such statement is written to the binary log it should
|
|
# be serialized with concurrent statements affecting data it
|
|
# uses. Therefore it should take a strong lock on the data
|
|
# it reads.
|
|
Success: 'insert into t2 values (f3() + 5)' doesn't allow concurrent inserts into 't1'.
|
|
Success: 'insert into t2 values (f4() + 6)' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 4.6 SELECT/SET which uses a stored function with
|
|
# DML which reads a table via a subquery.
|
|
#
|
|
# Since call to such function is written to the binary log
|
|
# it should be serialized with concurrent statements.
|
|
# Hence reads should take a strong lock.
|
|
Success: 'select f5()' doesn't allow concurrent inserts into 't1'.
|
|
Success: 'set @a:= f5()' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 4.7 SELECT/SET which uses a stored function which
|
|
# doesn't modify data and reads tables through
|
|
# a view.
|
|
#
|
|
# Once again, in theory, calls to such functions won't
|
|
# get into the binary log and thus don't need strong
|
|
# locks. But in practice this fact is discovered
|
|
# too late to have any effect.
|
|
Success: 'select f6()' doesn't allow concurrent inserts into 't1'.
|
|
Success: 'set @a:= f6()' doesn't allow concurrent inserts into 't1'.
|
|
Success: 'select f7()' doesn't allow concurrent inserts into 't1'.
|
|
Success: 'set @a:= f7()' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 4.8 INSERT which uses stored function which
|
|
# doesn't modify data and reads a table
|
|
# through a view.
|
|
#
|
|
# Since such statement is written to the binary log and
|
|
# should be serialized with concurrent statements affecting
|
|
# the data it uses. Therefore it should take a strong lock on
|
|
# the table it reads.
|
|
Success: 'insert into t3 values (f6() + 5)' doesn't allow concurrent inserts into 't1'.
|
|
Success: 'insert into t3 values (f7() + 5)' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 4.9 SELECT which uses a stored function which
|
|
# modifies data and reads tables through a view.
|
|
#
|
|
# Since a call to such function is written to the binary log
|
|
# it should be serialized with concurrent statements.
|
|
# Hence, reads should take strong locks.
|
|
Success: 'select f8()' doesn't allow concurrent inserts into 't1'.
|
|
Success: 'select f9()' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 4.10 SELECT which uses a stored function which doesn't modify
|
|
# data and reads a table indirectly, by calling another
|
|
# function.
|
|
#
|
|
# In theory, calls to such functions won't get into the binary
|
|
# log and thus don't need to acquire strong locks. But in practice
|
|
# this fact is discovered too late to have any effect.
|
|
Success: 'select f10()' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 4.11 INSERT which uses a stored function which doesn't modify
|
|
# data and reads a table indirectly, by calling another
|
|
# function.
|
|
#
|
|
# Since such statement is written to the binary log, it should
|
|
# be serialized with concurrent statements affecting the data it
|
|
# uses. Therefore it should take strong locks on data it reads.
|
|
Success: 'insert into t2 values (f10() + 5)' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 4.12 SELECT which uses a stored function which modifies
|
|
# data and reads a table indirectly, by calling another
|
|
# function.
|
|
#
|
|
# Since a call to such function is written to the binary log
|
|
# it should be serialized from concurrent statements.
|
|
# Hence, read should take a strong lock.
|
|
Success: 'select f11()' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 4.13 SELECT that reads a table through a subquery passed
|
|
# as a parameter to a stored function which modifies
|
|
# data.
|
|
#
|
|
# Even though a call to this function is written to the
|
|
# binary log, values of its parameters are written as literals.
|
|
# So there is no need to acquire strong locks for tables used in
|
|
# the subquery.
|
|
Success: 'select f12((select i+10 from t1 where i=1))' allows concurrent inserts into 't1'.
|
|
#
|
|
# 4.14 INSERT that reads a table via a subquery passed
|
|
# as a parameter to a stored function which doesn't
|
|
# modify data.
|
|
#
|
|
# Since this statement is written to the binary log it should
|
|
# be serialized with concurrent statements affecting the data it
|
|
# uses. Therefore it should take strong locks on the data it reads.
|
|
Success: 'insert into t2 values (f13((select i+10 from t1 where i=1)))' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 5. Statements that read tables through stored procedures.
|
|
#
|
|
#
|
|
# 5.1 CALL statement which reads a table via SELECT.
|
|
#
|
|
# Since neither this statement nor its components are
|
|
# written to the binary log, there is no need to take
|
|
# strong locks on the data it reads.
|
|
Success: 'call p2(@a)' allows concurrent inserts into 't1'.
|
|
#
|
|
# 5.2 Function that modifies data and uses CALL,
|
|
# which reads a table through SELECT.
|
|
#
|
|
# Since a call to such function is written to the binary
|
|
# log, it should be serialized with concurrent statements.
|
|
# Hence, in this case reads should take strong locks on data.
|
|
Success: 'select f14()' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 5.3 SELECT that calls a function that doesn't modify data and
|
|
# uses a CALL statement that reads a table via SELECT.
|
|
#
|
|
# In theory, calls to such functions won't get into the binary
|
|
# log and thus don't need to acquire strong locks. But in practice
|
|
# this fact is discovered too late to have any effect.
|
|
Success: 'select f15()' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 5.4 INSERT which calls function which doesn't modify data and
|
|
# uses CALL statement which reads table through SELECT.
|
|
#
|
|
# Since such statement is written to the binary log it should
|
|
# be serialized with concurrent statements affecting data it
|
|
# uses. Therefore it should take strong locks on data it reads.
|
|
Success: 'insert into t2 values (f15()+5)' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 6. Statements that use triggers.
|
|
#
|
|
#
|
|
# 6.1 Statement invoking a trigger that reads table via SELECT.
|
|
#
|
|
# Since this statement is written to the binary log it should
|
|
# be serialized with concurrent statements affecting the data
|
|
# it uses. Therefore, it should take strong locks on the data
|
|
# it reads.
|
|
Success: 'insert into t4 values (2)' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 6.2 Statement invoking a trigger that reads table through
|
|
# a subquery in a control construct.
|
|
#
|
|
# The above is true for this statement as well.
|
|
Success: 'update t4 set l= 2 where l = 1' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 6.3 Statement invoking a trigger that reads a table through
|
|
# a view.
|
|
#
|
|
# And for this statement.
|
|
Success: 'delete from t4 where l = 1' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 6.4 Statement invoking a trigger that reads a table through
|
|
# a stored function.
|
|
#
|
|
# And for this statement.
|
|
Success: 'insert into t5 values (2)' doesn't allow concurrent inserts into 't1'.
|
|
#
|
|
# 6.5 Statement invoking a trigger that reads a table through
|
|
# stored procedure.
|
|
#
|
|
# And for this statement.
|
|
Success: 'update t5 set l= 2 where l = 1' doesn't allow concurrent inserts into 't1'.
|
|
# Clean-up.
|
|
drop function f1;
|
|
drop function f2;
|
|
drop function f3;
|
|
drop function f4;
|
|
drop function f5;
|
|
drop function f6;
|
|
drop function f7;
|
|
drop function f8;
|
|
drop function f9;
|
|
drop function f10;
|
|
drop function f11;
|
|
drop function f12;
|
|
drop function f13;
|
|
drop function f14;
|
|
drop function f15;
|
|
drop view v1, v2;
|
|
drop procedure p1;
|
|
drop procedure p2;
|
|
drop table t1, t2, t3, t4, t5;
|
|
set @@global.concurrent_insert= @old_concurrent_insert;
|
|
#
|
|
# Test for bug #45143 "All connections hang on concurrent ALTER TABLE".
|
|
#
|
|
# Concurrent execution of statements which required weak write lock
|
|
# (TL_WRITE_ALLOW_WRITE) on several instances of the same table and
|
|
# statements which tried to acquire stronger write lock (TL_WRITE,
|
|
# TL_WRITE_ALLOW_READ) on this table might have led to deadlock.
|
|
drop table if exists t1;
|
|
drop view if exists v1;
|
|
# Create auxiliary connections used through the test.
|
|
# Reset DEBUG_SYNC facility before using it.
|
|
set debug_sync= 'RESET';
|
|
# Turn off logging so calls to locking subsystem performed
|
|
# for general_log table won't interfere with our test.
|
|
set @old_general_log = @@global.general_log;
|
|
set @@global.general_log= OFF;
|
|
create table t1 (i int) engine=InnoDB;
|
|
# We have to use view in order to make LOCK TABLES avoid
|
|
# acquiring SNRW metadata lock on table.
|
|
create view v1 as select * from t1;
|
|
insert into t1 values (1);
|
|
# Prepare user lock which will be used for resuming execution of
|
|
# the first statement after it acquires TL_WRITE_ALLOW_WRITE lock.
|
|
select get_lock("lock_bug45143_wait", 0);
|
|
get_lock("lock_bug45143_wait", 0)
|
|
1
|
|
# Switch to connection 'con_bug45143_1'.
|
|
# Sending:
|
|
insert into t1 values (get_lock("lock_bug45143_wait", 100));;
|
|
# Switch to connection 'con_bug45143_2'.
|
|
# Wait until the above INSERT takes TL_WRITE_ALLOW_WRITE lock on 't1'
|
|
# and then gets blocked on user lock 'lock_bug45143_wait'.
|
|
# Ensure that upcoming SELECT waits after acquiring TL_WRITE_ALLOW_WRITE
|
|
# lock for the first instance of 't1'.
|
|
set debug_sync='thr_multi_lock_after_thr_lock SIGNAL parked WAIT_FOR go';
|
|
# Sending:
|
|
select count(*) > 0 from t1 as a, t1 as b for update;;
|
|
# Switch to connection 'con_bug45143_3'.
|
|
# Wait until the above SELECT ... FOR UPDATE is blocked after
|
|
# acquiring lock for the the first instance of 't1'.
|
|
set debug_sync= 'now WAIT_FOR parked';
|
|
# Send LOCK TABLE statement which will try to get TL_WRITE lock on 't1':
|
|
lock table v1 write;;
|
|
# Switch to connection 'default'.
|
|
# Wait until this LOCK TABLES statement starts waiting for table lock.
|
|
# Allow SELECT ... FOR UPDATE to resume.
|
|
# Since it already has TL_WRITE_ALLOW_WRITE lock on the first instance
|
|
# of 't1' it should be able to get lock on the second instance without
|
|
# waiting, even although there is another thread which has such lock
|
|
# on this table and also there is a thread waiting for a TL_WRITE on it.
|
|
set debug_sync= 'now SIGNAL go';
|
|
# Switch to connection 'con_bug45143_2'.
|
|
# Reap SELECT ... FOR UPDATE
|
|
count(*) > 0
|
|
1
|
|
# Switch to connection 'default'.
|
|
# Resume execution of the INSERT statement.
|
|
select release_lock("lock_bug45143_wait");
|
|
release_lock("lock_bug45143_wait")
|
|
1
|
|
# Switch to connection 'con_bug45143_1'.
|
|
# Reap INSERT statement.
|
|
# In Statement and Mixed replication mode we get here "Unsafe
|
|
# for binlog" warnings. In row mode there are no warnings.
|
|
# Hide the discrepancy.
|
|
# Switch to connection 'con_bug45143_3'.
|
|
# Reap LOCK TABLES statement.
|
|
unlock tables;
|
|
# Switch to connection 'default'.
|
|
# Do clean-up.
|
|
set debug_sync= 'RESET';
|
|
set @@global.general_log= @old_general_log;
|
|
drop view v1;
|
|
drop table t1;
|
|
#
|
|
# Bug#50821 Deadlock between LOCK TABLES and ALTER TABLE
|
|
#
|
|
DROP TABLE IF EXISTS t1, t2;
|
|
CREATE TABLE t1(id INT);
|
|
CREATE TABLE t2(id INT);
|
|
# Connection con2
|
|
START TRANSACTION;
|
|
SELECT * FROM t1;
|
|
id
|
|
# Connection default
|
|
# Sending:
|
|
ALTER TABLE t1 ADD COLUMN j INT;
|
|
# Connection con2
|
|
# This used to cause a deadlock.
|
|
INSERT INTO t2 SELECT * FROM t1;
|
|
COMMIT;
|
|
# Connection default
|
|
# Reaping ALTER TABLE t1 ADD COLUMN j INT
|
|
DROP TABLE t1, t2;
|
|
#
|
|
# Bug#51391 Deadlock involving events during rqg_info_schema test
|
|
#
|
|
CREATE EVENT e1 ON SCHEDULE EVERY 5 HOUR DO SELECT 1;
|
|
CREATE EVENT e2 ON SCHEDULE EVERY 5 HOUR DO SELECT 2;
|
|
# Connection con1
|
|
SET DEBUG_SYNC="before_lock_tables_takes_lock SIGNAL drop WAIT_FOR query";
|
|
# Sending:
|
|
DROP EVENT e1;;
|
|
# Connection default
|
|
SET DEBUG_SYNC="now WAIT_FOR drop";
|
|
SELECT name FROM mysql.event, INFORMATION_SCHEMA.GLOBAL_VARIABLES
|
|
WHERE definer = VARIABLE_VALUE;
|
|
name
|
|
SET DEBUG_SYNC="now SIGNAL query";
|
|
# Connection con1
|
|
# Reaping: DROP EVENT t1
|
|
# Connection default
|
|
DROP EVENT e2;
|
|
SET DEBUG_SYNC="RESET";
|
|
#
|
|
# Bug#55930 Assertion `thd->transaction.stmt.is_empty() ||
|
|
# thd->in_sub_stmt || (thd->state..
|
|
#
|
|
DROP TABLE IF EXISTS t1;
|
|
CREATE TABLE t1(a INT) engine=InnoDB;
|
|
INSERT INTO t1 VALUES (1), (2);
|
|
# Connection con1
|
|
SET SESSION lock_wait_timeout= 1;
|
|
SET DEBUG_SYNC= 'ha_admin_open_ltable SIGNAL opti_recreate WAIT_FOR opti_analyze';
|
|
# Sending:
|
|
OPTIMIZE TABLE t1;
|
|
# Connection con2
|
|
SET DEBUG_SYNC= 'now WAIT_FOR opti_recreate';
|
|
SET DEBUG_SYNC= 'after_lock_tables_takes_lock SIGNAL thrlock WAIT_FOR release_thrlock';
|
|
# Sending:
|
|
INSERT INTO t1 VALUES (3);
|
|
# Connection default
|
|
SET DEBUG_SYNC= 'now WAIT_FOR thrlock';
|
|
SET DEBUG_SYNC= 'now SIGNAL opti_analyze';
|
|
# Connection con1
|
|
# Reaping: OPTIMIZE TABLE t1
|
|
Table Op Msg_type Msg_text
|
|
test.t1 optimize note Table does not support optimize, doing recreate + analyze instead
|
|
test.t1 optimize error Lock wait timeout exceeded; try restarting transaction
|
|
test.t1 optimize status Operation failed
|
|
Warnings:
|
|
Error 1205 Lock wait timeout exceeded; try restarting transaction
|
|
SET DEBUG_SYNC= 'now SIGNAL release_thrlock';
|
|
# Connection con2
|
|
# Reaping: INSERT INTO t1 VALUES (3)
|
|
# Connection default
|
|
DROP TABLE t1;
|
|
SET DEBUG_SYNC= 'RESET';
|
|
#
|
|
# Bug#57130 crash in Item_field::print during SHOW CREATE TABLE or VIEW
|
|
#
|
|
DROP TABLE IF EXISTS t1;
|
|
DROP VIEW IF EXISTS v1;
|
|
DROP FUNCTION IF EXISTS f1;
|
|
CREATE TABLE t1(a INT);
|
|
CREATE FUNCTION f1() RETURNS INTEGER RETURN 1;
|
|
CREATE VIEW v1 AS SELECT * FROM t1 WHERE f1() = 1;
|
|
DROP FUNCTION f1;
|
|
# Connection con1
|
|
SET DEBUG_SYNC= 'open_tables_after_open_and_process_table SIGNAL opened WAIT_FOR dropped EXECUTE 2';
|
|
# Sending:
|
|
SHOW CREATE VIEW v1;
|
|
# Connection con2
|
|
SET DEBUG_SYNC= 'now WAIT_FOR opened';
|
|
SET DEBUG_SYNC= 'now SIGNAL dropped';
|
|
SET DEBUG_SYNC= 'now WAIT_FOR opened';
|
|
# Sending:
|
|
FLUSH TABLES;
|
|
# Connection default
|
|
# Waiting for FLUSH TABLES to be blocked.
|
|
SET DEBUG_SYNC= 'now SIGNAL dropped';
|
|
# Connection con1
|
|
# Reaping: SHOW CREATE VIEW v1
|
|
View Create View character_set_client collation_connection
|
|
v1 CREATE ALGORITHM=UNDEFINED DEFINER=`root`@`localhost` SQL SECURITY DEFINER VIEW `v1` AS select `t1`.`a` AS `a` from `t1` where (`f1`() = 1) latin1 latin1_swedish_ci
|
|
Warnings:
|
|
Warning 1356 View 'test.v1' references invalid table(s) or column(s) or function(s) or definer/invoker of view lack rights to use them
|
|
# Connection con2
|
|
# Reaping: FLUSH TABLES
|
|
# Connection default
|
|
SET DEBUG_SYNC= 'RESET';
|
|
DROP VIEW v1;
|
|
DROP TABLE t1;
|