mirror of
https://github.com/MariaDB/server.git
synced 2025-01-23 15:24:16 +01:00
3f307a1f8f
git-svn-id: file:///svn/tokudb@115 c7de825b-a66e-492c-adef-691d508d4ae1
827 lines
23 KiB
C
827 lines
23 KiB
C
/* An in-memory Packed Memory Array dictionary.
|
|
The keys and values are arrays of bytes, but are not necessarily kept in scan order.
|
|
Only the pointers are kept.
|
|
*/
|
|
|
|
#include "key.h"
|
|
#include "memory.h"
|
|
#include "myassert.h"
|
|
#include "../include/ydb-constants.h"
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
/* Only needed for testing. */
|
|
#include <string.h>
|
|
|
|
#include "list.h"
|
|
#include "kv-pair.h"
|
|
#include "pma-internal.h"
|
|
|
|
/* TODO get this from a include file */
|
|
#define KEY_VALUE_OVERHEAD 8
|
|
|
|
int pma_n_entries (PMA pma) {
|
|
return pma->n_pairs_present;
|
|
}
|
|
|
|
int pma_index_limit (PMA pma) {
|
|
return pma->N;
|
|
}
|
|
|
|
int pmanode_valid (PMA pma, int i) {
|
|
assert(0<=i); assert(i<pma_index_limit(pma));
|
|
return pma->pairs[i] != 0;
|
|
}
|
|
|
|
bytevec pmanode_key (PMA pma, int i) {
|
|
struct kv_pair *pair;
|
|
assert(0<=i); assert(i<pma_index_limit(pma));
|
|
pair = pma->pairs[i];
|
|
assert(pair);
|
|
return pair->key;
|
|
}
|
|
|
|
ITEMLEN pmanode_keylen (PMA pma, int i) {
|
|
struct kv_pair *pair;
|
|
assert(0<=i); assert(i<pma_index_limit(pma));
|
|
pair = pma->pairs[i];
|
|
assert(pair);
|
|
return pair->keylen;
|
|
}
|
|
|
|
bytevec pmanode_val (PMA pma, int i) {
|
|
struct kv_pair *pair;
|
|
assert(0<=i); assert(i<pma_index_limit(pma));
|
|
pair = pma->pairs[i];
|
|
assert(pair);
|
|
return pair->key + pair->keylen;
|
|
}
|
|
|
|
ITEMLEN pmanode_vallen (PMA pma, int i) {
|
|
struct kv_pair *pair;
|
|
assert(0<=i); assert(i<pma_index_limit(pma));
|
|
pair = pma->pairs[i];
|
|
assert(pair);
|
|
return pair->vallen;
|
|
}
|
|
|
|
|
|
/* Could pick the same one every time if we wanted. */
|
|
int pma_random_pick(PMA pma, bytevec *key, ITEMLEN *keylen, bytevec *val, ITEMLEN *vallen) {
|
|
#if 1
|
|
int i;
|
|
/* For now a simple implementation where we simply start at the beginning and look. */
|
|
for (i=0; i<pma_index_limit(pma); i++) {
|
|
if (pma->pairs[i]) {
|
|
*key = pmanode_key(pma,i);
|
|
*keylen = pmanode_keylen(pma,i);
|
|
*val = pmanode_val(pma,i);
|
|
*vallen = pmanode_vallen(pma,i);
|
|
return 0;
|
|
}
|
|
}
|
|
return DB_NOTFOUND;
|
|
#else
|
|
/* Maybe we should pick a random item to remove in order to reduce the unbalancing. */
|
|
int i;
|
|
int l = pma_index_limit(pma);
|
|
int r = random()%l;
|
|
/* For now a simple implementation where we simply start at the beginning and look. */
|
|
for (i=0; i<l; i++) {
|
|
int ir=(i+r)%l;
|
|
if (pma->pairs[ir].key) {
|
|
*key = pmanode_key(pma,ir);
|
|
*keylen = pmanode_keylen(pma,ir);
|
|
*val = pmanode_val(pma,ir);
|
|
*vallen = pmanode_vallen(pma,ir);
|
|
return 0;
|
|
}
|
|
}
|
|
return DB_NOTFOUND;
|
|
|
|
#endif
|
|
}
|
|
|
|
static int pma_count_finds=0;
|
|
static int pma_count_divides=0;
|
|
static int pma_count_scans=0;
|
|
void pma_show_stats (void) {
|
|
printf("%d finds, %d divides, %d scans\n", pma_count_finds, pma_count_divides, pma_count_scans);
|
|
}
|
|
|
|
// Return the smallest index such that no lower index contains a larger key.
|
|
// This will be in the range 0 (inclusive) to pma_index_limit(pma) (inclusive).
|
|
// Thus the returned index may not be a valid index into the array if it is == pma_index_limit(pma)
|
|
// For example: if the array is empty, that means we return 0.
|
|
// For example: if the array is full of small keys, that means we return pma_index_limit(pma), which is off the end of teh array.
|
|
// For example: if the array is full of large keys, then we return 0.
|
|
int pmainternal_find (PMA pma, DBT *k, DB *db) {
|
|
int lo=0, hi=pma_index_limit(pma);
|
|
/* lo and hi are the minimum and maximum values (inclusive) that we could possibly return. */
|
|
pma_count_finds++;
|
|
while (lo<hi) {
|
|
int mid;
|
|
// Scan forward looking for a non-null value.
|
|
for (mid=(lo+hi)/2; mid<hi; mid++) {
|
|
if (pma->pairs[mid]!=0) {
|
|
// Found one.
|
|
DBT k2;
|
|
int cmp = pma->compare_fun(db, k, fill_dbt(&k2, pma->pairs[mid]->key, pma->pairs[mid]->keylen));
|
|
if (cmp==0) return mid;
|
|
else if (cmp<0) {
|
|
/* key is smaller than the midpoint, so look in the low half. */
|
|
hi = (lo+hi)/2; /* recalculate the midpoint, since mid is no necessarily the midpoint now. */
|
|
pma_count_divides++;
|
|
goto next_range;
|
|
} else {
|
|
/* key is larger than the midpoint. So look in the high half. */
|
|
lo = mid+1; /* The smallest value we could want to return is lo. */
|
|
pma_count_divides++;
|
|
goto next_range;
|
|
}
|
|
/* Not reached */
|
|
}
|
|
pma_count_scans++;
|
|
}
|
|
/* If we got here, all from mid to hi were null, so adjust hi to the midpoint. */
|
|
/* If the whole array is null, we'll end up returning index 0, which is good. */
|
|
hi = (lo+hi)/2;
|
|
pma_count_divides++;
|
|
next_range: ; /* We have adjusted lo and hi, so look again. */
|
|
}
|
|
assert(0<=lo);
|
|
assert(lo==hi);
|
|
assert(hi <= pma_index_limit(pma));
|
|
#if 0
|
|
/* If lo points at something, the something should not be smaller than key. */
|
|
if (lo>0 && lo < pma_index_limit(pma) && pma->pairs[lo]) {
|
|
//printf("lo=%d\n", lo);
|
|
DBT k2;
|
|
assert(0 >= pma->compare_fun(db, k, fill_dbt(&k2, pma->pairs[lo]->key, pma->pairs[lo]->keylen)));
|
|
}
|
|
#endif
|
|
return lo;
|
|
}
|
|
|
|
//int min (int i, int j) { if (i<j) return i; else return j; }
|
|
//int max (int i, int j) { if (i<j) return j; else return i; }
|
|
//double lg (int n) { return log((double)n)/log(2.0); }
|
|
|
|
int pmainternal_printpairs (struct kv_pair *pairs[], int N) {
|
|
int count=0;
|
|
int i;
|
|
printf("{");
|
|
for (i=0; i<N; i++) {
|
|
if (i!=0) printf(" ");
|
|
if (pairs[i]) {
|
|
printf("%s", (char*)pairs[i]->key);
|
|
count++;
|
|
}
|
|
else printf("_");
|
|
}
|
|
printf("}");
|
|
return count;
|
|
}
|
|
|
|
void print_pma (PMA pma) {
|
|
int count;
|
|
printf("N=%d n_present=%d ", pma_index_limit(pma), pma->n_pairs_present);
|
|
count=pmainternal_printpairs(pma->pairs, pma_index_limit(pma));
|
|
printf("\n");
|
|
assert(count==pma->n_pairs_present);
|
|
}
|
|
|
|
/* Smooth the data, and return the location of the null. */
|
|
int distribute_data (struct kv_pair *destpairs[], int dcount,
|
|
struct kv_pair_tag sourcepairs[], int scount, PMA pma) {
|
|
assert(scount<=dcount);
|
|
if (scount==0) {
|
|
return -1;
|
|
}
|
|
if (scount==1) {
|
|
destpairs[0]=sourcepairs[0].pair;
|
|
if (pma)
|
|
sourcepairs[0].newtag = destpairs - pma->pairs;
|
|
if (destpairs[0]==0) return 0;
|
|
else return -1;
|
|
} else {
|
|
int r1 = distribute_data(destpairs, dcount/2,
|
|
sourcepairs, scount/2, pma);
|
|
int r2 = distribute_data(destpairs +dcount/2, dcount-dcount/2,
|
|
sourcepairs+scount/2, scount-scount/2, pma);
|
|
assert(r1==-1 || r2==-1);
|
|
if (r1!=-1) return r1;
|
|
else if (r2!=-1) return r2+dcount/2;
|
|
else return -1;
|
|
}
|
|
}
|
|
|
|
/* spread the non-empty pairs around. There are n of them. Create an empty slot just before the IDXth
|
|
element, and return that slot's index in the smoothed array. */
|
|
int pmainternal_smooth_region (struct kv_pair *pairs[], int n, int idx, int base, PMA pma) {
|
|
int i;
|
|
int n_present=0;
|
|
for (i=0; i<n; i++) {
|
|
if (pairs[i]) n_present++;
|
|
}
|
|
n_present++; // Save one for the blank guy.
|
|
{
|
|
//#define USE_MALLOC_IN_SMOOTH
|
|
#ifdef USE_MALLOC_IN_SMOOTH
|
|
struct kv_pair_tag *MALLOC_N(n_present, tmppairs);
|
|
#else
|
|
struct kv_pair_tag tmppairs[n_present];
|
|
#endif
|
|
int n_saved=0;
|
|
int r;
|
|
|
|
for (i=0; i<n; i++) {
|
|
if (i==idx) {
|
|
tmppairs[n_saved++].pair = 0;
|
|
}
|
|
if (pairs[i]) {
|
|
tmppairs[n_saved].oldtag = base + i;
|
|
tmppairs[n_saved++].pair = pairs[i];
|
|
}
|
|
pairs[i] = 0;
|
|
}
|
|
if (idx==n) {
|
|
tmppairs[n_saved++].pair = 0;
|
|
}
|
|
//printf(" temp="); printpairs(tmppairs, n_saved);
|
|
assert(n_saved==n_present);
|
|
/* Now the tricky part. Distribute the data. */
|
|
r=distribute_data (pairs, n,
|
|
tmppairs, n_saved, pma);
|
|
|
|
if (pma && !list_empty(&pma->cursors)) {
|
|
struct list cursors;
|
|
|
|
list_move(&cursors, &pma->cursors);
|
|
pma_update_region(pma, &cursors, tmppairs, n_present);
|
|
while (!list_empty(&cursors)) {
|
|
struct list *list = list_head(&cursors);
|
|
list_remove(list);
|
|
list_push(&pma->cursors, list);
|
|
}
|
|
}
|
|
#ifdef USE_MALLOC_IN_SMOOTH
|
|
toku_free(tmppairs);
|
|
#endif
|
|
return r;
|
|
}
|
|
}
|
|
|
|
int lg (int n) {
|
|
int result=0;
|
|
int two_to_result = 1;
|
|
while (two_to_result<n) {
|
|
result++;
|
|
two_to_result*=2;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void pmainternal_calculate_parameters (PMA pma)
|
|
/* Calculate densitystep and uplgN, given N. */
|
|
{
|
|
int N = pma_index_limit(pma);
|
|
int lgN = lg(N);
|
|
int n_divisions=0;
|
|
//printf("N=%d lgN=%d\n", N, lgN);
|
|
while (N/2>=lgN) {
|
|
n_divisions++;
|
|
N/=2;
|
|
}
|
|
pma->uplgN=N;
|
|
//printf("uplgN = %d n_divisions=%d\n", pma->uplgN, n_divisions);
|
|
assert(n_divisions>0);
|
|
pma->densitystep = 0.5/n_divisions;
|
|
}
|
|
|
|
int pmainternal_count_region (struct kv_pair *pairs[], int lo, int hi) {
|
|
int n=0;
|
|
while (lo<hi) {
|
|
if (pairs[lo]) n++;
|
|
lo++;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
int pma_create (PMA *pma, int (*compare_fun)(DB*,const DBT*,const DBT*)) {
|
|
int error;
|
|
TAGMALLOC(PMA, result);
|
|
if (result==0) return -1;
|
|
result->n_pairs_present = 0;
|
|
result->pairs = 0;
|
|
list_init(&result->cursors);
|
|
result->compare_fun = compare_fun;
|
|
result->skey = 0;
|
|
result->sval = 0;
|
|
result->N = 4;
|
|
#if 0 /* memory.c is broken */
|
|
result->pairs = 0;
|
|
#else
|
|
result->pairs = toku_malloc((1 + 4) * sizeof (struct kv_pair *));
|
|
#endif
|
|
|
|
error = pma_resize_array(result, 4);
|
|
if (error) {
|
|
toku_free(result);
|
|
return -1;
|
|
}
|
|
|
|
*pma = result;
|
|
assert((unsigned long)result->pairs[result->N]==0xdeadbeefL);
|
|
return 0;
|
|
}
|
|
|
|
int pma_resize_array(PMA pma, int asksize) {
|
|
int i;
|
|
int n;
|
|
|
|
/* find the smallest power of 2 >= n */
|
|
n = 4;
|
|
while (n < asksize)
|
|
n *= 2;
|
|
|
|
pma->N = n;
|
|
pma->pairs = toku_realloc(pma->pairs, (1 + pma->N) * sizeof (struct kv_pair *));
|
|
if (pma->pairs == 0)
|
|
return -1;
|
|
pma->pairs[pma->N] = (void *) 0xdeadbeef;
|
|
|
|
for (i=0; i<pma->N; i++) {
|
|
pma->pairs[i] = 0;
|
|
}
|
|
pmainternal_calculate_parameters(pma);
|
|
return 0;
|
|
}
|
|
|
|
int pma_cursor (PMA pma, PMA_CURSOR *cursp) {
|
|
PMA_CURSOR MALLOC(curs);
|
|
assert(curs!=0);
|
|
if (errno!=0) return errno;
|
|
curs->position=-1; /* undefined */
|
|
curs->pma = pma;
|
|
curs->skey = 0;
|
|
curs->sval=0;
|
|
list_push(&pma->cursors, &curs->next);
|
|
*cursp=curs;
|
|
return 0;
|
|
}
|
|
|
|
int pma_cursor_set_position_last (PMA_CURSOR c)
|
|
{
|
|
PMA pma = c->pma;
|
|
c->position=pma->N-1;
|
|
while (c->pma->pairs[c->position]==0) {
|
|
if (c->position>0) c->position--;
|
|
else return DB_NOTFOUND;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int pma_cursor_set_position_prev (PMA_CURSOR c) {
|
|
PMA pma = c->pma;
|
|
int old_position = c->position;
|
|
c->position--;
|
|
while (c->position >= 0) {
|
|
if (pma->pairs[c->position] != 0)
|
|
return 0;
|
|
c->position--;
|
|
}
|
|
c->position = old_position;
|
|
return DB_NOTFOUND;
|
|
}
|
|
|
|
int pma_cursor_set_position_first (PMA_CURSOR c)
|
|
{
|
|
PMA pma = c->pma;
|
|
c->position=0;
|
|
while (c->pma->pairs[c->position]==0) {
|
|
if (c->position+1<pma->N) c->position++;
|
|
else return DB_NOTFOUND;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int pma_cursor_set_position_next (PMA_CURSOR c)
|
|
{
|
|
PMA pma = c->pma;
|
|
int old_position=c->position;
|
|
c->position++;
|
|
while (c->position<pma->N) {
|
|
if (c->pma->pairs[c->position]!=0) return 0;
|
|
c->position++;
|
|
}
|
|
c->position=old_position;
|
|
return DB_NOTFOUND;
|
|
}
|
|
|
|
int pma_cget_current (PMA_CURSOR c, DBT *key, DBT *val) {
|
|
PMA pma = c->pma;
|
|
struct kv_pair *pair = pma->pairs[c->position];
|
|
if (pair==0) return BRT_KEYEMPTY;
|
|
ybt_set_value(key, pair->key, pair->keylen, &c->skey);
|
|
ybt_set_value(val, pair->key + pair->keylen, pair->vallen, &c->sval);
|
|
return 0;
|
|
}
|
|
|
|
|
|
#if 0
|
|
int pma_cget_first (PMA_CURSOR c, YBT *key, YBT *val) {
|
|
PMA pma=c->pma;
|
|
c->position=0;
|
|
if (pma->n_pairs_present==0) return DB_NOTFOUND;
|
|
while (pma->pairs[c->position].key==0 && c->position<pma->N) {
|
|
c->position++;
|
|
}
|
|
assert(c->position<pma->N && pma->pairs[c->position].key!=0);
|
|
ybt_set_value(key, pma->pairs[c->position].key, pma->pairs[c->position].keylen, &c->skey);
|
|
ybt_set_value(val, pma->pairs[c->position].val, pma->pairs[c->position].vallen, &c->sval);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
int pma_cursor_free (PMA_CURSOR *cursp) {
|
|
PMA_CURSOR curs=*cursp;
|
|
list_remove(&curs->next);
|
|
if (curs->skey) toku_free(curs->skey);
|
|
if (curs->sval) toku_free(curs->sval);
|
|
toku_free(curs);
|
|
*cursp=0;
|
|
return 0;
|
|
}
|
|
|
|
/* Make some space for a key to go at idx (the thing currently at idx should end up at to the right.) */
|
|
/* Return the new index. (Making space may involve moving things around, including the hole at index.) */
|
|
int pmainternal_make_space_at (PMA pma, int idx) {
|
|
/* Within a range LO to HI we have a limit of how much packing we will tolerate.
|
|
* We allow the entire array to be 50% full.
|
|
* We allow a region of size lgN to be full.
|
|
* At sizes in between, we interpolate.
|
|
*/
|
|
int size=pma->uplgN;
|
|
int lo=idx;
|
|
int hi=idx;
|
|
double density=1.0;
|
|
while (1) {
|
|
/* set hi-lo equal size, make sure it is a supserset of (hi,lo). */
|
|
lo=idx-size/2;
|
|
hi=idx+size/2;
|
|
//printf("lo=%d hi=%d\n", lo, hi);
|
|
if (lo<0) { hi-=lo; lo=0; }
|
|
else if (hi>pma_index_limit(pma)) { lo-=(hi-pma_index_limit(pma)); hi=pma_index_limit(pma); }
|
|
else { ; /* nothing */ }
|
|
|
|
//printf("lo=%d hi=%d\n", lo, hi);
|
|
assert(0<=lo); assert(lo<hi); assert(hi<=pma_index_limit(pma)); assert(hi-lo==size); // separate into separate assertions so that gcov doesn't see branches not taken.
|
|
assert(density>0.499); assert(density<=1);
|
|
if (density<0.5001) { assert(lo==0); assert(hi==pma_index_limit(pma)); }
|
|
{
|
|
int count = (1+ /* Don't forget space for the new guy. */
|
|
pmainternal_count_region(pma->pairs, lo, hi));
|
|
if (count/(double)(hi-lo) <= density) break;
|
|
if (lo==0 && hi==pma_index_limit(pma)) {
|
|
/* The array needs to be doubled in size. */
|
|
int i;
|
|
assert(size==pma_index_limit(pma));
|
|
size*=2;
|
|
//printf("realloc %p to %d\n", pma->pairs, size*sizeof(*pma->pairs));
|
|
pma->pairs = toku_realloc(pma->pairs, (1+size)*sizeof(struct kv_pair *));
|
|
for (i=hi; i<size; i++) pma->pairs[i]=0;
|
|
pma->pairs[size] = (void*)0xdeadbeefL;
|
|
pma->N=size;
|
|
pmainternal_calculate_parameters(pma);
|
|
hi=size;
|
|
//printf("doubled N\n");
|
|
break;
|
|
}
|
|
}
|
|
density-=pma->densitystep;
|
|
size*=2;
|
|
}
|
|
//printf("%s:%d Smoothing from %d to %d to density %f\n", __FILE__, __LINE__, lo, hi, density);
|
|
{
|
|
int new_index = pmainternal_smooth_region(pma->pairs+lo, hi-lo, idx-lo, lo, pma);
|
|
|
|
return new_index+lo;
|
|
}
|
|
}
|
|
|
|
enum pma_errors pma_lookup (PMA pma, DBT *k, DBT *v, DB *db) {
|
|
DBT k2;
|
|
struct kv_pair *pair;
|
|
int l = pmainternal_find(pma, k, db);
|
|
assert(0<=l ); assert(l<=pma_index_limit(pma));
|
|
if (l==pma_index_limit(pma)) return DB_NOTFOUND;
|
|
pair = pma->pairs[l];
|
|
if (pair!=0 && pma->compare_fun(db, k, fill_dbt(&k2, pair->key, pair->keylen))==0) {
|
|
return ybt_set_value(v, pair->key + pair->keylen, pair->vallen, &pma->sval);
|
|
} else {
|
|
return DB_NOTFOUND;
|
|
}
|
|
}
|
|
|
|
/* returns 0 if OK.
|
|
* You must have freed all the cursors, otherwise returns nonzero and does nothing. */
|
|
int pma_free (PMA *pmap) {
|
|
int i;
|
|
PMA pma=*pmap;
|
|
if (!list_empty(&pma->cursors)) return -1;
|
|
for (i=0; i<pma_index_limit(pma); i++) {
|
|
if (pma->pairs[i]) {
|
|
kv_pair_free(pma->pairs[i]);
|
|
pma->pairs[i] = 0;
|
|
}
|
|
}
|
|
toku_free(pma->pairs);
|
|
if (pma->skey) toku_free(pma->skey);
|
|
if (pma->sval) toku_free(pma->sval);
|
|
toku_free(pma);
|
|
*pmap=0;
|
|
return 0;
|
|
}
|
|
|
|
/* Copies keylen and datalen */
|
|
int pma_insert (PMA pma, DBT *k, DBT *v, DB* db) {
|
|
int idx = pmainternal_find(pma, k, db);
|
|
if (idx < pma_index_limit(pma) && pma->pairs[idx]) {
|
|
DBT k2;
|
|
if (0==pma->compare_fun(db, k, fill_dbt(&k2, pma->pairs[idx]->key, pma->pairs[idx]->keylen))) {
|
|
return BRT_ALREADY_THERE; /* It is already here. Return an error. */
|
|
}
|
|
}
|
|
if (pma->pairs[idx]) {
|
|
idx = pmainternal_make_space_at (pma, idx); /* returns the new idx. */
|
|
}
|
|
assert(!pma->pairs[idx]);
|
|
pma->pairs[idx] = kv_pair_malloc(k->data, k->size, v->data, v->size);
|
|
assert(pma->pairs[idx]);
|
|
pma->n_pairs_present++;
|
|
return BRT_OK;
|
|
}
|
|
|
|
int pma_delete (PMA pma, DBT *k, DB *db) {
|
|
int l = pmainternal_find(pma, k, db);
|
|
struct kv_pair *pair = pma->pairs[l];
|
|
if (pair==0) {
|
|
printf("%s:%d l=%d r=%d\n", __FILE__, __LINE__, l, DB_NOTFOUND);
|
|
return DB_NOTFOUND;
|
|
}
|
|
kv_pair_free(pair);
|
|
pma->pairs[l] = 0;
|
|
pma->n_pairs_present--;
|
|
// Need to rebalance
|
|
// smooth_after_delete(pma,l);
|
|
return BRT_OK;
|
|
}
|
|
|
|
int pma_insert_or_replace (PMA pma, DBT *k, DBT *v, DB *db,
|
|
int *replaced_v_size /* If it is a replacement, set to the size of the old value, otherwise set to -1. */
|
|
) {
|
|
//printf("%s:%d v->size=%d\n", __FILE__, __LINE__, v->size);
|
|
int idx = pmainternal_find(pma, k, db);
|
|
struct kv_pair *pair;
|
|
if (idx < pma_index_limit(pma) && (pair=pma->pairs[idx])) {
|
|
DBT k2;
|
|
if (0==pma->compare_fun(db, k, fill_dbt(&k2, pair->key, pair->keylen))) {
|
|
*replaced_v_size = pair->vallen;
|
|
pma->pairs[idx] = kv_pair_realloc_same_key(pair, v->data, v->size);
|
|
return BRT_OK; /* It is already here. Return an error. */
|
|
}
|
|
}
|
|
if (pma->pairs[idx]) {
|
|
idx = pmainternal_make_space_at (pma, idx); /* returns the new idx. */
|
|
}
|
|
assert(!pma->pairs[idx]);
|
|
//printf("%s:%d v->size=%d\n", __FILE__, __LINE__, v->size);
|
|
pma->pairs[idx] = kv_pair_malloc(k->data, k->size, v->data, v->size);
|
|
assert(pma->pairs[idx]);
|
|
pma->n_pairs_present++;
|
|
*replaced_v_size = -1;
|
|
return BRT_OK;
|
|
}
|
|
|
|
void pma_iterate (PMA pma, void(*f)(bytevec,ITEMLEN,bytevec,ITEMLEN, void*), void*v) {
|
|
int i;
|
|
for (i=0; i<pma_index_limit(pma); i++) {
|
|
struct kv_pair *pair = pma->pairs[i];
|
|
if (pair) {
|
|
f(pair->key, pair->keylen,
|
|
pair->key + pair->keylen, pair->vallen, v);
|
|
}
|
|
}
|
|
}
|
|
|
|
void pma_update_cursors(PMA pma, struct list *cursor_set, int oldposition, int newposition) {
|
|
struct list *list, *nextlist;
|
|
struct pma_cursor *cursor;
|
|
|
|
list = list_head(cursor_set);
|
|
while (list != cursor_set) {
|
|
nextlist = list->next; /* may be removed later */
|
|
cursor = list_struct(list, struct pma_cursor, next);
|
|
if (cursor->position == oldposition) {
|
|
cursor->position = newposition;
|
|
cursor->pma = pma;
|
|
list_remove(list);
|
|
list_push(&pma->cursors, list);
|
|
}
|
|
list = nextlist;
|
|
}
|
|
}
|
|
|
|
void pma_update_region(PMA pma, struct list *cursor_set, struct kv_pair_tag *pairs, int n) {
|
|
int i;
|
|
|
|
/* short cut */
|
|
if (list_empty(cursor_set))
|
|
return;
|
|
|
|
/* update all cursors to their new positions */
|
|
for (i=0; i<n; i++) {
|
|
if (pairs[i].pair && pairs[i].oldtag >= 0)
|
|
pma_update_cursors(pma, cursor_set, pairs[i].oldtag, pairs[i].newtag);
|
|
}
|
|
}
|
|
|
|
struct kv_pair_tag *pma_extract_pairs(PMA pma, int lo, int hi) {
|
|
int npairs;
|
|
struct kv_pair_tag *pairs;
|
|
int i;
|
|
int lastpair;
|
|
|
|
npairs = pma_n_entries(pma);
|
|
pairs = toku_malloc(npairs * sizeof (struct kv_pair_tag));
|
|
if (pairs == 0)
|
|
return 0;
|
|
lastpair = 0;
|
|
for (i=lo; i<hi; i++) {
|
|
if (pma->pairs[i] != 0) {
|
|
pairs[lastpair].pair = pma->pairs[i];
|
|
pairs[lastpair].oldtag = i;
|
|
pma->pairs[i] = 0;
|
|
lastpair += 1;
|
|
}
|
|
}
|
|
assert(lastpair == npairs);
|
|
return pairs;
|
|
}
|
|
|
|
int pma_split(PMA origpma, unsigned int *origpma_size,
|
|
PMA leftpma, unsigned int *leftpma_size,
|
|
PMA rightpma, unsigned int *rightpma_size) {
|
|
int error;
|
|
int npairs;
|
|
struct kv_pair_tag *pairs;
|
|
int sumlen;
|
|
int runlen;
|
|
int i;
|
|
int n;
|
|
int spliti;
|
|
struct list cursors;
|
|
|
|
/* extract the pairs */
|
|
npairs = pma_n_entries(origpma);
|
|
if (npairs == 0)
|
|
return 0;
|
|
assert(pma_n_entries(leftpma) == 0);
|
|
assert(pma_n_entries(rightpma) == 0);
|
|
|
|
/* TODO move pairs to the stack */
|
|
pairs = pma_extract_pairs(origpma, 0, origpma->N);
|
|
assert(pairs);
|
|
origpma->n_pairs_present = 0;
|
|
|
|
/* debug check the kv length sum */
|
|
sumlen = 0;
|
|
for (i=0; i<npairs; i++)
|
|
sumlen += kv_pair_keylen(pairs[i].pair) + kv_pair_vallen(pairs[i].pair) + KEY_VALUE_OVERHEAD;
|
|
|
|
if (origpma_size)
|
|
assert(*(int *)origpma_size == sumlen);
|
|
|
|
runlen = 0;
|
|
for (i=0; i<npairs;) {
|
|
runlen += kv_pair_keylen(pairs[i].pair) + kv_pair_vallen(pairs[i].pair) + KEY_VALUE_OVERHEAD;
|
|
i++;
|
|
if (2*runlen >= sumlen)
|
|
break;
|
|
}
|
|
spliti = i;
|
|
if (leftpma_size)
|
|
*leftpma_size = runlen;
|
|
if (rightpma_size)
|
|
*rightpma_size = sumlen - runlen;
|
|
|
|
/* set the cursor set to be all of the cursors from the original pma */
|
|
list_init(&cursors);
|
|
if (!list_empty(&origpma->cursors))
|
|
list_move(&cursors, &origpma->cursors);
|
|
|
|
/* put the first half of pairs into the left pma */
|
|
n = spliti;
|
|
error = pma_resize_array(leftpma, n + n/4);
|
|
assert(error == 0);
|
|
distribute_data(leftpma->pairs, pma_index_limit(leftpma), &pairs[0], n, leftpma);
|
|
pma_update_region(leftpma, &cursors, &pairs[0], spliti);
|
|
leftpma->n_pairs_present = spliti;
|
|
|
|
/* put the second half of pairs into the right pma */
|
|
n = npairs - spliti;
|
|
error = pma_resize_array(rightpma, n + n/4);
|
|
assert(error == 0);
|
|
distribute_data(rightpma->pairs, pma_index_limit(rightpma), &pairs[spliti], n, rightpma);
|
|
pma_update_region(rightpma, &cursors, &pairs[spliti], n);
|
|
rightpma->n_pairs_present = n;
|
|
|
|
toku_free(pairs);
|
|
|
|
/* bind the remaining cursors to the left pma*/
|
|
while (!list_empty(&cursors)) {
|
|
struct list *list = list_head(&cursors);
|
|
list_remove(list);
|
|
list_push(&leftpma->cursors, list);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int pma_get_last(PMA pma, DBT *key, DBT *val) {
|
|
int position;
|
|
struct kv_pair *pair;
|
|
void *v; int vlen;
|
|
|
|
position = pma->N - 1;
|
|
while ((pair = pma->pairs[position]) == 0) {
|
|
if (position > 0)
|
|
position--;
|
|
else
|
|
return DB_NOTFOUND;
|
|
}
|
|
|
|
if (key) {
|
|
v = kv_pair_key(pair);
|
|
vlen = kv_pair_keylen(pair);
|
|
fill_dbt(key, memdup(v, vlen), vlen);
|
|
}
|
|
|
|
if (val) {
|
|
v = kv_pair_val(pair);
|
|
vlen = kv_pair_vallen(pair);
|
|
fill_dbt(val, memdup(v, vlen), vlen);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __pma_bulk_cleanup(struct kv_pair_tag *pairs, int n) {
|
|
int i;
|
|
|
|
for (i=0; i<n; i++)
|
|
if (pairs[i].pair)
|
|
kv_pair_free(pairs[i].pair);
|
|
}
|
|
|
|
int pma_bulk_insert(PMA pma, DBT *keys, DBT *vals, int n_newpairs) {
|
|
struct kv_pair_tag *newpairs;
|
|
int i;
|
|
int error;
|
|
|
|
if (n_newpairs == 0)
|
|
return 0;
|
|
if (!list_empty(&pma->cursors))
|
|
return -1;
|
|
if (pma_n_entries(pma) > 0)
|
|
return -2;
|
|
|
|
/* TODO put newpairs on the stack */
|
|
newpairs = toku_malloc(n_newpairs * sizeof (struct kv_pair_tag));
|
|
if (newpairs == 0) {
|
|
error = -3; return error;
|
|
}
|
|
|
|
for (i=0; i<n_newpairs; i++) {
|
|
newpairs[i].pair = kv_pair_malloc(keys[i].data, keys[i].size,
|
|
vals[i].data, vals[i].size);
|
|
if (newpairs[i].pair == 0) {
|
|
__pma_bulk_cleanup(newpairs, i);
|
|
toku_free(newpairs);
|
|
error = -4; return error;
|
|
}
|
|
}
|
|
|
|
error = pma_resize_array(pma, n_newpairs + n_newpairs/4);
|
|
if (error) {
|
|
__pma_bulk_cleanup(newpairs, n_newpairs);
|
|
toku_free(newpairs);
|
|
error = -5; return error;
|
|
}
|
|
distribute_data(pma->pairs, pma_index_limit(pma), newpairs, n_newpairs, pma);
|
|
pma->n_pairs_present = n_newpairs;
|
|
|
|
toku_free(newpairs);
|
|
|
|
return 0;
|
|
}
|