mariadb/sql/sql_class.cc
Sven Sandberg 3d467f04a1 merged fixes for BUG#39934 to 5.1-rpl+3
Also renamed current_stmt_binlog_row_based to
current_stmt_binlog_format_row for consistency
2009-09-30 18:00:22 +02:00

4256 lines
120 KiB
C++

/* Copyright 2000-2008 MySQL AB, 2008 Sun Microsystems, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*****************************************************************************
**
** This file implements classes defined in sql_class.h
** Especially the classes to handle a result from a select
**
*****************************************************************************/
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation // gcc: Class implementation
#endif
#include "mysql_priv.h"
#include "rpl_rli.h"
#include "rpl_filter.h"
#include "rpl_record.h"
#include "slave.h"
#include <my_bitmap.h>
#include "log_event.h"
#include <m_ctype.h>
#include <sys/stat.h>
#include <thr_alarm.h>
#ifdef __WIN__
#include <io.h>
#endif
#include <mysys_err.h>
#include <limits.h>
#include "sp_rcontext.h"
#include "sp_cache.h"
/*
The following is used to initialise Table_ident with a internal
table name
*/
char internal_table_name[2]= "*";
char empty_c_string[1]= {0}; /* used for not defined db */
const char * const THD::DEFAULT_WHERE= "field list";
/*****************************************************************************
** Instansiate templates
*****************************************************************************/
#ifdef HAVE_EXPLICIT_TEMPLATE_INSTANTIATION
/* Used templates */
template class List<Key>;
template class List_iterator<Key>;
template class List<Key_part_spec>;
template class List_iterator<Key_part_spec>;
template class List<Alter_drop>;
template class List_iterator<Alter_drop>;
template class List<Alter_column>;
template class List_iterator<Alter_column>;
#endif
/****************************************************************************
** User variables
****************************************************************************/
extern "C" uchar *get_var_key(user_var_entry *entry, size_t *length,
my_bool not_used __attribute__((unused)))
{
*length= entry->name.length;
return (uchar*) entry->name.str;
}
extern "C" void free_user_var(user_var_entry *entry)
{
char *pos= (char*) entry+ALIGN_SIZE(sizeof(*entry));
if (entry->value && entry->value != pos)
my_free(entry->value, MYF(0));
my_free((char*) entry,MYF(0));
}
bool Key_part_spec::operator==(const Key_part_spec& other) const
{
return length == other.length && !strcmp(field_name, other.field_name);
}
/**
Construct an (almost) deep copy of this key. Only those
elements that are known to never change are not copied.
If out of memory, a partial copy is returned and an error is set
in THD.
*/
Key::Key(const Key &rhs, MEM_ROOT *mem_root)
:type(rhs.type),
key_create_info(rhs.key_create_info),
columns(rhs.columns, mem_root),
name(rhs.name),
generated(rhs.generated)
{
list_copy_and_replace_each_value(columns, mem_root);
}
/**
Construct an (almost) deep copy of this foreign key. Only those
elements that are known to never change are not copied.
If out of memory, a partial copy is returned and an error is set
in THD.
*/
Foreign_key::Foreign_key(const Foreign_key &rhs, MEM_ROOT *mem_root)
:Key(rhs),
ref_table(rhs.ref_table),
ref_columns(rhs.ref_columns),
delete_opt(rhs.delete_opt),
update_opt(rhs.update_opt),
match_opt(rhs.match_opt)
{
list_copy_and_replace_each_value(ref_columns, mem_root);
}
/*
Test if a foreign key (= generated key) is a prefix of the given key
(ignoring key name, key type and order of columns)
NOTES:
This is only used to test if an index for a FOREIGN KEY exists
IMPLEMENTATION
We only compare field names
RETURN
0 Generated key is a prefix of other key
1 Not equal
*/
bool foreign_key_prefix(Key *a, Key *b)
{
/* Ensure that 'a' is the generated key */
if (a->generated)
{
if (b->generated && a->columns.elements > b->columns.elements)
swap_variables(Key*, a, b); // Put shorter key in 'a'
}
else
{
if (!b->generated)
return TRUE; // No foreign key
swap_variables(Key*, a, b); // Put generated key in 'a'
}
/* Test if 'a' is a prefix of 'b' */
if (a->columns.elements > b->columns.elements)
return TRUE; // Can't be prefix
List_iterator<Key_part_spec> col_it1(a->columns);
List_iterator<Key_part_spec> col_it2(b->columns);
const Key_part_spec *col1, *col2;
#ifdef ENABLE_WHEN_INNODB_CAN_HANDLE_SWAPED_FOREIGN_KEY_COLUMNS
while ((col1= col_it1++))
{
bool found= 0;
col_it2.rewind();
while ((col2= col_it2++))
{
if (*col1 == *col2)
{
found= TRUE;
break;
}
}
if (!found)
return TRUE; // Error
}
return FALSE; // Is prefix
#else
while ((col1= col_it1++))
{
col2= col_it2++;
if (!(*col1 == *col2))
return TRUE;
}
return FALSE; // Is prefix
#endif
}
/****************************************************************************
** Thread specific functions
****************************************************************************/
/** Push an error to the error stack and return TRUE for now. */
bool
Reprepare_observer::report_error(THD *thd)
{
my_error(ER_NEED_REPREPARE, MYF(ME_NO_WARNING_FOR_ERROR|ME_NO_SP_HANDLER));
m_invalidated= TRUE;
return TRUE;
}
Open_tables_state::Open_tables_state(ulong version_arg)
:version(version_arg), state_flags(0U)
{
reset_open_tables_state();
}
/*
The following functions form part of the C plugin API
*/
extern "C" int mysql_tmpfile(const char *prefix)
{
char filename[FN_REFLEN];
File fd = create_temp_file(filename, mysql_tmpdir, prefix,
#ifdef __WIN__
O_BINARY | O_TRUNC | O_SEQUENTIAL |
O_SHORT_LIVED |
#endif /* __WIN__ */
O_CREAT | O_EXCL | O_RDWR | O_TEMPORARY,
MYF(MY_WME));
if (fd >= 0) {
#ifndef __WIN__
/*
This can be removed once the following bug is fixed:
Bug #28903 create_temp_file() doesn't honor O_TEMPORARY option
(file not removed) (Unix)
*/
unlink(filename);
#endif /* !__WIN__ */
}
return fd;
}
extern "C"
int thd_in_lock_tables(const THD *thd)
{
return test(thd->in_lock_tables);
}
extern "C"
int thd_tablespace_op(const THD *thd)
{
return test(thd->tablespace_op);
}
extern "C"
const char *set_thd_proc_info(THD *thd, const char *info,
const char *calling_function,
const char *calling_file,
const unsigned int calling_line)
{
const char *old_info= thd->proc_info;
DBUG_PRINT("proc_info", ("%s:%d %s", calling_file, calling_line,
(info != NULL) ? info : "(null)"));
#if defined(ENABLED_PROFILING) && defined(COMMUNITY_SERVER)
thd->profiling.status_change(info, calling_function, calling_file, calling_line);
#endif
thd->proc_info= info;
return old_info;
}
extern "C"
void **thd_ha_data(const THD *thd, const struct handlerton *hton)
{
return (void **) &thd->ha_data[hton->slot].ha_ptr;
}
extern "C"
long long thd_test_options(const THD *thd, long long test_options)
{
return thd->options & test_options;
}
extern "C"
int thd_sql_command(const THD *thd)
{
return (int) thd->lex->sql_command;
}
extern "C"
int thd_tx_isolation(const THD *thd)
{
return (int) thd->variables.tx_isolation;
}
extern "C"
void thd_inc_row_count(THD *thd)
{
thd->row_count++;
}
/**
Dumps a text description of a thread, its security context
(user, host) and the current query.
@param thd thread context
@param buffer pointer to preferred result buffer
@param length length of buffer
@param max_query_len how many chars of query to copy (0 for all)
@req LOCK_thread_count
@note LOCK_thread_count mutex is not necessary when the function is invoked on
the currently running thread (current_thd) or if the caller in some other
way guarantees that access to thd->query is serialized.
@return Pointer to string
*/
extern "C"
char *thd_security_context(THD *thd, char *buffer, unsigned int length,
unsigned int max_query_len)
{
String str(buffer, length, &my_charset_latin1);
const Security_context *sctx= &thd->main_security_ctx;
char header[64];
int len;
/*
The pointers thd->query and thd->proc_info might change since they are
being modified concurrently. This is acceptable for proc_info since its
values doesn't have to very accurate and the memory it points to is static,
but we need to attempt a snapshot on the pointer values to avoid using NULL
values. The pointer to thd->query however, doesn't point to static memory
and has to be protected by LOCK_thread_count or risk pointing to
uninitialized memory.
*/
const char *proc_info= thd->proc_info;
len= my_snprintf(header, sizeof(header),
"MySQL thread id %lu, query id %lu",
thd->thread_id, (ulong) thd->query_id);
str.length(0);
str.append(header, len);
if (sctx->host)
{
str.append(' ');
str.append(sctx->host);
}
if (sctx->ip)
{
str.append(' ');
str.append(sctx->ip);
}
if (sctx->user)
{
str.append(' ');
str.append(sctx->user);
}
if (proc_info)
{
str.append(' ');
str.append(proc_info);
}
if (thd->query)
{
if (max_query_len < 1)
len= thd->query_length;
else
len= min(thd->query_length, max_query_len);
str.append('\n');
str.append(thd->query, len);
}
if (str.c_ptr_safe() == buffer)
return buffer;
/*
We have to copy the new string to the destination buffer because the string
was reallocated to a larger buffer to be able to fit.
*/
DBUG_ASSERT(buffer != NULL);
length= min(str.length(), length-1);
memcpy(buffer, str.c_ptr_quick(), length);
/* Make sure that the new string is null terminated */
buffer[length]= '\0';
return buffer;
}
/**
Clear this diagnostics area.
Normally called at the end of a statement.
*/
void
Diagnostics_area::reset_diagnostics_area()
{
#ifdef DBUG_OFF
can_overwrite_status= FALSE;
/** Don't take chances in production */
m_message[0]= '\0';
m_sql_errno= 0;
m_server_status= 0;
m_affected_rows= 0;
m_last_insert_id= 0;
m_total_warn_count= 0;
#endif
is_sent= FALSE;
/** Tiny reset in debug mode to see garbage right away */
m_status= DA_EMPTY;
}
/**
Set OK status -- ends commands that do not return a
result set, e.g. INSERT/UPDATE/DELETE.
*/
void
Diagnostics_area::set_ok_status(THD *thd, ha_rows affected_rows_arg,
ulonglong last_insert_id_arg,
const char *message_arg)
{
DBUG_ASSERT(! is_set());
#ifdef DBUG_OFF
/*
In production, refuse to overwrite an error or a custom response
with an OK packet.
*/
if (is_error() || is_disabled())
return;
#endif
/** Only allowed to report success if has not yet reported an error */
m_server_status= thd->server_status;
m_total_warn_count= thd->total_warn_count;
m_affected_rows= affected_rows_arg;
m_last_insert_id= last_insert_id_arg;
if (message_arg)
strmake(m_message, message_arg, sizeof(m_message) - 1);
else
m_message[0]= '\0';
m_status= DA_OK;
}
/**
Set EOF status.
*/
void
Diagnostics_area::set_eof_status(THD *thd)
{
/** Only allowed to report eof if has not yet reported an error */
DBUG_ASSERT(! is_set());
#ifdef DBUG_OFF
/*
In production, refuse to overwrite an error or a custom response
with an EOF packet.
*/
if (is_error() || is_disabled())
return;
#endif
m_server_status= thd->server_status;
/*
If inside a stored procedure, do not return the total
number of warnings, since they are not available to the client
anyway.
*/
m_total_warn_count= thd->spcont ? 0 : thd->total_warn_count;
m_status= DA_EOF;
}
/**
Set ERROR status.
*/
void
Diagnostics_area::set_error_status(THD *thd, uint sql_errno_arg,
const char *message_arg)
{
/*
Only allowed to report error if has not yet reported a success
The only exception is when we flush the message to the client,
an error can happen during the flush.
*/
DBUG_ASSERT(! is_set() || can_overwrite_status);
#ifdef DBUG_OFF
/*
In production, refuse to overwrite a custom response with an
ERROR packet.
*/
if (is_disabled())
return;
#endif
m_sql_errno= sql_errno_arg;
strmake(m_message, message_arg, sizeof(m_message) - 1);
m_status= DA_ERROR;
}
/**
Mark the diagnostics area as 'DISABLED'.
This is used in rare cases when the COM_ command at hand sends a response
in a custom format. One example is the query cache, another is
COM_STMT_PREPARE.
*/
void
Diagnostics_area::disable_status()
{
DBUG_ASSERT(! is_set());
m_status= DA_DISABLED;
}
THD::THD()
:Statement(&main_lex, &main_mem_root, CONVENTIONAL_EXECUTION,
/* statement id */ 0),
Open_tables_state(refresh_version), rli_fake(0),
lock_id(&main_lock_id),
user_time(0), in_sub_stmt(0),
sql_log_bin_toplevel(false),
binlog_unsafe_warning_flags(0), binlog_table_maps(0),
table_map_for_update(0),
arg_of_last_insert_id_function(FALSE),
first_successful_insert_id_in_prev_stmt(0),
first_successful_insert_id_in_prev_stmt_for_binlog(0),
first_successful_insert_id_in_cur_stmt(0),
stmt_depends_on_first_successful_insert_id_in_prev_stmt(FALSE),
examined_row_count(0),
global_read_lock(0),
is_fatal_error(0),
transaction_rollback_request(0),
is_fatal_sub_stmt_error(0),
rand_used(0),
time_zone_used(0),
in_lock_tables(0),
bootstrap(0),
derived_tables_processing(FALSE),
spcont(NULL),
m_parser_state(NULL)
{
ulong tmp;
/*
Pass nominal parameters to init_alloc_root only to ensure that
the destructor works OK in case of an error. The main_mem_root
will be re-initialized in init_for_queries().
*/
init_sql_alloc(&main_mem_root, ALLOC_ROOT_MIN_BLOCK_SIZE, 0);
stmt_arena= this;
thread_stack= 0;
catalog= (char*)"std"; // the only catalog we have for now
main_security_ctx.init();
security_ctx= &main_security_ctx;
locked=some_tables_deleted=no_errors=password= 0;
query_start_used= 0;
count_cuted_fields= CHECK_FIELD_IGNORE;
killed= NOT_KILLED;
col_access=0;
is_slave_error= thread_specific_used= FALSE;
hash_clear(&handler_tables_hash);
tmp_table=0;
used_tables=0;
cuted_fields= sent_row_count= row_count= 0L;
limit_found_rows= 0;
row_count_func= -1;
statement_id_counter= 0UL;
#ifdef ERROR_INJECT_SUPPORT
error_inject_value= 0UL;
#endif
// Must be reset to handle error with THD's created for init of mysqld
lex->current_select= 0;
start_time=(time_t) 0;
start_utime= prior_thr_create_utime= 0L;
utime_after_lock= 0L;
current_linfo = 0;
slave_thread = 0;
bzero(&variables, sizeof(variables));
thread_id= 0;
one_shot_set= 0;
file_id = 0;
query_id= 0;
query_name_consts= 0;
warn_id= 0;
db_charset= global_system_variables.collation_database;
bzero(ha_data, sizeof(ha_data));
mysys_var=0;
binlog_evt_union.do_union= FALSE;
enable_slow_log= 0;
#ifndef DBUG_OFF
dbug_sentry=THD_SENTRY_MAGIC;
#endif
#ifndef EMBEDDED_LIBRARY
net.vio=0;
#endif
client_capabilities= 0; // minimalistic client
#ifdef HAVE_QUERY_CACHE
query_cache_init_query(&net); // If error on boot
#endif
ull=0;
system_thread= NON_SYSTEM_THREAD;
cleanup_done= abort_on_warning= no_warnings_for_error= 0;
peer_port= 0; // For SHOW PROCESSLIST
transaction.m_pending_rows_event= 0;
transaction.on= 1;
#ifdef SIGNAL_WITH_VIO_CLOSE
active_vio = 0;
#endif
pthread_mutex_init(&LOCK_thd_data, MY_MUTEX_INIT_FAST);
/* Variables with default values */
proc_info="login";
where= THD::DEFAULT_WHERE;
server_id = ::server_id;
slave_net = 0;
command=COM_CONNECT;
*scramble= '\0';
init();
/* Initialize sub structures */
init_sql_alloc(&warn_root, WARN_ALLOC_BLOCK_SIZE, WARN_ALLOC_PREALLOC_SIZE);
#if defined(ENABLED_PROFILING) && defined(COMMUNITY_SERVER)
profiling.set_thd(this);
#endif
user_connect=(USER_CONN *)0;
hash_init(&user_vars, system_charset_info, USER_VARS_HASH_SIZE, 0, 0,
(hash_get_key) get_var_key,
(hash_free_key) free_user_var, 0);
sp_proc_cache= NULL;
sp_func_cache= NULL;
/* For user vars replication*/
if (opt_bin_log)
my_init_dynamic_array(&user_var_events,
sizeof(BINLOG_USER_VAR_EVENT *), 16, 16);
else
bzero((char*) &user_var_events, sizeof(user_var_events));
/* Protocol */
protocol= &protocol_text; // Default protocol
protocol_text.init(this);
protocol_binary.init(this);
tablespace_op=FALSE;
tmp= sql_rnd_with_mutex();
randominit(&rand, tmp + (ulong) &rand, tmp + (ulong) ::global_query_id);
substitute_null_with_insert_id = FALSE;
thr_lock_info_init(&lock_info); /* safety: will be reset after start */
thr_lock_owner_init(&main_lock_id, &lock_info);
m_internal_handler= NULL;
}
void THD::push_internal_handler(Internal_error_handler *handler)
{
if (m_internal_handler)
{
handler->m_prev_internal_handler= m_internal_handler;
m_internal_handler= handler;
}
else
{
m_internal_handler= handler;
}
}
bool THD::handle_error(uint sql_errno, const char *message,
MYSQL_ERROR::enum_warning_level level)
{
if (!m_internal_handler)
return FALSE;
for (Internal_error_handler *error_handler= m_internal_handler;
error_handler;
error_handler= m_internal_handler->m_prev_internal_handler)
{
if (error_handler->handle_error(sql_errno, message, level, this))
return TRUE;
}
return FALSE;
}
void THD::pop_internal_handler()
{
DBUG_ASSERT(m_internal_handler != NULL);
m_internal_handler= m_internal_handler->m_prev_internal_handler;
}
extern "C"
void *thd_alloc(MYSQL_THD thd, unsigned int size)
{
return thd->alloc(size);
}
extern "C"
void *thd_calloc(MYSQL_THD thd, unsigned int size)
{
return thd->calloc(size);
}
extern "C"
char *thd_strdup(MYSQL_THD thd, const char *str)
{
return thd->strdup(str);
}
extern "C"
char *thd_strmake(MYSQL_THD thd, const char *str, unsigned int size)
{
return thd->strmake(str, size);
}
extern "C"
LEX_STRING *thd_make_lex_string(THD *thd, LEX_STRING *lex_str,
const char *str, unsigned int size,
int allocate_lex_string)
{
return thd->make_lex_string(lex_str, str, size,
(bool) allocate_lex_string);
}
extern "C"
void *thd_memdup(MYSQL_THD thd, const void* str, unsigned int size)
{
return thd->memdup(str, size);
}
extern "C"
void thd_get_xid(const MYSQL_THD thd, MYSQL_XID *xid)
{
*xid = *(MYSQL_XID *) &thd->transaction.xid_state.xid;
}
#ifdef _WIN32
extern "C" THD *_current_thd_noinline(void)
{
return my_pthread_getspecific_ptr(THD*,THR_THD);
}
#endif
/*
Init common variables that has to be reset on start and on change_user
*/
void THD::init(void)
{
pthread_mutex_lock(&LOCK_global_system_variables);
plugin_thdvar_init(this);
variables.time_format= date_time_format_copy((THD*) 0,
variables.time_format);
variables.date_format= date_time_format_copy((THD*) 0,
variables.date_format);
variables.datetime_format= date_time_format_copy((THD*) 0,
variables.datetime_format);
/*
variables= global_system_variables above has reset
variables.pseudo_thread_id to 0. We need to correct it here to
avoid temporary tables replication failure.
*/
variables.pseudo_thread_id= thread_id;
pthread_mutex_unlock(&LOCK_global_system_variables);
server_status= SERVER_STATUS_AUTOCOMMIT;
if (variables.sql_mode & MODE_NO_BACKSLASH_ESCAPES)
server_status|= SERVER_STATUS_NO_BACKSLASH_ESCAPES;
options= thd_startup_options;
if (variables.max_join_size == HA_POS_ERROR)
options |= OPTION_BIG_SELECTS;
else
options &= ~OPTION_BIG_SELECTS;
transaction.all.modified_non_trans_table= transaction.stmt.modified_non_trans_table= FALSE;
open_options=ha_open_options;
update_lock_default= (variables.low_priority_updates ?
TL_WRITE_LOW_PRIORITY :
TL_WRITE);
session_tx_isolation= (enum_tx_isolation) variables.tx_isolation;
warn_list.empty();
bzero((char*) warn_count, sizeof(warn_count));
total_warn_count= 0;
update_charset();
reset_current_stmt_binlog_format_row();
bzero((char *) &status_var, sizeof(status_var));
sql_log_bin_toplevel= options & OPTION_BIN_LOG;
}
/*
Init THD for query processing.
This has to be called once before we call mysql_parse.
See also comments in sql_class.h.
*/
void THD::init_for_queries()
{
set_time();
ha_enable_transaction(this,TRUE);
reset_root_defaults(mem_root, variables.query_alloc_block_size,
variables.query_prealloc_size);
#ifdef USING_TRANSACTIONS
reset_root_defaults(&transaction.mem_root,
variables.trans_alloc_block_size,
variables.trans_prealloc_size);
#endif
transaction.xid_state.xid.null();
transaction.xid_state.in_thd=1;
}
/*
Do what's needed when one invokes change user
SYNOPSIS
change_user()
IMPLEMENTATION
Reset all resources that are connection specific
*/
void THD::change_user(void)
{
pthread_mutex_lock(&LOCK_status);
add_to_status(&global_status_var, &status_var);
pthread_mutex_unlock(&LOCK_status);
cleanup();
killed= NOT_KILLED;
cleanup_done= 0;
init();
stmt_map.reset();
hash_init(&user_vars, system_charset_info, USER_VARS_HASH_SIZE, 0, 0,
(hash_get_key) get_var_key,
(hash_free_key) free_user_var, 0);
sp_cache_clear(&sp_proc_cache);
sp_cache_clear(&sp_func_cache);
}
/* Do operations that may take a long time */
void THD::cleanup(void)
{
DBUG_ENTER("THD::cleanup");
DBUG_ASSERT(cleanup_done == 0);
killed= KILL_CONNECTION;
#ifdef ENABLE_WHEN_BINLOG_WILL_BE_ABLE_TO_PREPARE
if (transaction.xid_state.xa_state == XA_PREPARED)
{
#error xid_state in the cache should be replaced by the allocated value
}
#endif
{
ha_rollback(this);
xid_cache_delete(&transaction.xid_state);
}
if (locked_tables)
{
lock=locked_tables; locked_tables=0;
close_thread_tables(this);
}
mysql_ha_cleanup(this);
delete_dynamic(&user_var_events);
hash_free(&user_vars);
close_temporary_tables(this);
my_free((char*) variables.time_format, MYF(MY_ALLOW_ZERO_PTR));
my_free((char*) variables.date_format, MYF(MY_ALLOW_ZERO_PTR));
my_free((char*) variables.datetime_format, MYF(MY_ALLOW_ZERO_PTR));
sp_cache_clear(&sp_proc_cache);
sp_cache_clear(&sp_func_cache);
if (global_read_lock)
unlock_global_read_lock(this);
if (ull)
{
pthread_mutex_lock(&LOCK_user_locks);
item_user_lock_release(ull);
pthread_mutex_unlock(&LOCK_user_locks);
ull= NULL;
}
cleanup_done=1;
DBUG_VOID_RETURN;
}
THD::~THD()
{
THD_CHECK_SENTRY(this);
DBUG_ENTER("~THD()");
/* Ensure that no one is using THD */
pthread_mutex_lock(&LOCK_thd_data);
pthread_mutex_unlock(&LOCK_thd_data);
add_to_status(&global_status_var, &status_var);
/* Close connection */
#ifndef EMBEDDED_LIBRARY
if (net.vio)
{
vio_delete(net.vio);
net_end(&net);
}
#endif
stmt_map.reset(); /* close all prepared statements */
DBUG_ASSERT(lock_info.n_cursors == 0);
if (!cleanup_done)
cleanup();
ha_close_connection(this);
plugin_thdvar_cleanup(this);
DBUG_PRINT("info", ("freeing security context"));
main_security_ctx.destroy();
safeFree(db);
free_root(&warn_root,MYF(0));
#ifdef USING_TRANSACTIONS
free_root(&transaction.mem_root,MYF(0));
#endif
mysys_var=0; // Safety (shouldn't be needed)
pthread_mutex_destroy(&LOCK_thd_data);
#ifndef DBUG_OFF
dbug_sentry= THD_SENTRY_GONE;
#endif
#ifndef EMBEDDED_LIBRARY
if (rli_fake)
{
delete rli_fake;
rli_fake= NULL;
}
#endif
free_root(&main_mem_root, MYF(0));
DBUG_VOID_RETURN;
}
/*
Add all status variables to another status variable array
SYNOPSIS
add_to_status()
to_var add to this array
from_var from this array
NOTES
This function assumes that all variables are long/ulong.
If this assumption will change, then we have to explictely add
the other variables after the while loop
*/
void add_to_status(STATUS_VAR *to_var, STATUS_VAR *from_var)
{
ulong *end= (ulong*) ((uchar*) to_var +
offsetof(STATUS_VAR, last_system_status_var) +
sizeof(ulong));
ulong *to= (ulong*) to_var, *from= (ulong*) from_var;
while (to != end)
*(to++)+= *(from++);
}
/*
Add the difference between two status variable arrays to another one.
SYNOPSIS
add_diff_to_status
to_var add to this array
from_var from this array
dec_var minus this array
NOTE
This function assumes that all variables are long/ulong.
*/
void add_diff_to_status(STATUS_VAR *to_var, STATUS_VAR *from_var,
STATUS_VAR *dec_var)
{
ulong *end= (ulong*) ((uchar*) to_var + offsetof(STATUS_VAR,
last_system_status_var) +
sizeof(ulong));
ulong *to= (ulong*) to_var, *from= (ulong*) from_var, *dec= (ulong*) dec_var;
while (to != end)
*(to++)+= *(from++) - *(dec++);
}
void THD::awake(THD::killed_state state_to_set)
{
DBUG_ENTER("THD::awake");
DBUG_PRINT("enter", ("this: 0x%lx", (long) this));
THD_CHECK_SENTRY(this);
safe_mutex_assert_owner(&LOCK_thd_data);
killed= state_to_set;
if (state_to_set != THD::KILL_QUERY)
{
thr_alarm_kill(thread_id);
if (!slave_thread)
thread_scheduler.post_kill_notification(this);
#ifdef SIGNAL_WITH_VIO_CLOSE
if (this != current_thd)
{
/*
In addition to a signal, let's close the socket of the thread that
is being killed. This is to make sure it does not block if the
signal is lost. This needs to be done only on platforms where
signals are not a reliable interruption mechanism.
If we're killing ourselves, we know that we're not blocked, so this
hack is not used.
*/
close_active_vio();
}
#endif
}
if (mysys_var)
{
pthread_mutex_lock(&mysys_var->mutex);
if (!system_thread) // Don't abort locks
mysys_var->abort=1;
/*
This broadcast could be up in the air if the victim thread
exits the cond in the time between read and broadcast, but that is
ok since all we want to do is to make the victim thread get out
of waiting on current_cond.
If we see a non-zero current_cond: it cannot be an old value (because
then exit_cond() should have run and it can't because we have mutex); so
it is the true value but maybe current_mutex is not yet non-zero (we're
in the middle of enter_cond() and there is a "memory order
inversion"). So we test the mutex too to not lock 0.
Note that there is a small chance we fail to kill. If victim has locked
current_mutex, but hasn't yet entered enter_cond() (which means that
current_cond and current_mutex are 0), then the victim will not get
a signal and it may wait "forever" on the cond (until
we issue a second KILL or the status it's waiting for happens).
It's true that we have set its thd->killed but it may not
see it immediately and so may have time to reach the cond_wait().
*/
if (mysys_var->current_cond && mysys_var->current_mutex)
{
pthread_mutex_lock(mysys_var->current_mutex);
pthread_cond_broadcast(mysys_var->current_cond);
pthread_mutex_unlock(mysys_var->current_mutex);
}
pthread_mutex_unlock(&mysys_var->mutex);
}
DBUG_VOID_RETURN;
}
/*
Remember the location of thread info, the structure needed for
sql_alloc() and the structure for the net buffer
*/
bool THD::store_globals()
{
/*
Assert that thread_stack is initialized: it's necessary to be able
to track stack overrun.
*/
DBUG_ASSERT(thread_stack);
if (my_pthread_setspecific_ptr(THR_THD, this) ||
my_pthread_setspecific_ptr(THR_MALLOC, &mem_root))
return 1;
mysys_var=my_thread_var;
/*
Let mysqld define the thread id (not mysys)
This allows us to move THD to different threads if needed.
*/
mysys_var->id= thread_id;
real_id= pthread_self(); // For debugging
/*
We have to call thr_lock_info_init() again here as THD may have been
created in another thread
*/
thr_lock_info_init(&lock_info);
return 0;
}
/*
Cleanup after query.
SYNOPSIS
THD::cleanup_after_query()
DESCRIPTION
This function is used to reset thread data to its default state.
NOTE
This function is not suitable for setting thread data to some
non-default values, as there is only one replication thread, so
different master threads may overwrite data of each other on
slave.
*/
void THD::cleanup_after_query()
{
/*
Reset rand_used so that detection of calls to rand() will save random
seeds if needed by the slave.
Do not reset rand_used if inside a stored function or trigger because
only the call to these operations is logged. Thus only the calling
statement needs to detect rand() calls made by its substatements. These
substatements must not set rand_used to 0 because it would remove the
detection of rand() by the calling statement.
*/
if (!in_sub_stmt) /* stored functions and triggers are a special case */
{
/* Forget those values, for next binlogger: */
stmt_depends_on_first_successful_insert_id_in_prev_stmt= 0;
auto_inc_intervals_in_cur_stmt_for_binlog.empty();
rand_used= 0;
}
if (first_successful_insert_id_in_cur_stmt > 0)
{
/* set what LAST_INSERT_ID() will return */
first_successful_insert_id_in_prev_stmt=
first_successful_insert_id_in_cur_stmt;
first_successful_insert_id_in_cur_stmt= 0;
substitute_null_with_insert_id= TRUE;
}
arg_of_last_insert_id_function= 0;
/* Free Items that were created during this execution */
free_items();
/* Reset where. */
where= THD::DEFAULT_WHERE;
/* reset table map for multi-table update */
table_map_for_update= 0;
}
/**
Create a LEX_STRING in this connection.
@param lex_str pointer to LEX_STRING object to be initialized
@param str initializer to be copied into lex_str
@param length length of str, in bytes
@param allocate_lex_string if TRUE, allocate new LEX_STRING object,
instead of using lex_str value
@return NULL on failure, or pointer to the LEX_STRING object
*/
LEX_STRING *THD::make_lex_string(LEX_STRING *lex_str,
const char* str, uint length,
bool allocate_lex_string)
{
if (allocate_lex_string)
if (!(lex_str= (LEX_STRING *)alloc(sizeof(LEX_STRING))))
return 0;
if (!(lex_str->str= strmake_root(mem_root, str, length)))
return 0;
lex_str->length= length;
return lex_str;
}
/*
Convert a string to another character set
SYNOPSIS
convert_string()
to Store new allocated string here
to_cs New character set for allocated string
from String to convert
from_length Length of string to convert
from_cs Original character set
NOTES
to will be 0-terminated to make it easy to pass to system funcs
RETURN
0 ok
1 End of memory.
In this case to->str will point to 0 and to->length will be 0.
*/
bool THD::convert_string(LEX_STRING *to, CHARSET_INFO *to_cs,
const char *from, uint from_length,
CHARSET_INFO *from_cs)
{
DBUG_ENTER("convert_string");
size_t new_length= to_cs->mbmaxlen * from_length;
uint dummy_errors;
if (!(to->str= (char*) alloc(new_length+1)))
{
to->length= 0; // Safety fix
DBUG_RETURN(1); // EOM
}
to->length= copy_and_convert((char*) to->str, new_length, to_cs,
from, from_length, from_cs, &dummy_errors);
to->str[to->length]=0; // Safety
DBUG_RETURN(0);
}
/*
Convert string from source character set to target character set inplace.
SYNOPSIS
THD::convert_string
DESCRIPTION
Convert string using convert_buffer - buffer for character set
conversion shared between all protocols.
RETURN
0 ok
!0 out of memory
*/
bool THD::convert_string(String *s, CHARSET_INFO *from_cs, CHARSET_INFO *to_cs)
{
uint dummy_errors;
if (convert_buffer.copy(s->ptr(), s->length(), from_cs, to_cs, &dummy_errors))
return TRUE;
/* If convert_buffer >> s copying is more efficient long term */
if (convert_buffer.alloced_length() >= convert_buffer.length() * 2 ||
!s->is_alloced())
{
return s->copy(convert_buffer);
}
s->swap(convert_buffer);
return FALSE;
}
/*
Update some cache variables when character set changes
*/
void THD::update_charset()
{
uint32 not_used;
charset_is_system_charset= !String::needs_conversion(0,charset(),
system_charset_info,
&not_used);
charset_is_collation_connection=
!String::needs_conversion(0,charset(),variables.collation_connection,
&not_used);
charset_is_character_set_filesystem=
!String::needs_conversion(0, charset(),
variables.character_set_filesystem, &not_used);
}
/* routings to adding tables to list of changed in transaction tables */
inline static void list_include(CHANGED_TABLE_LIST** prev,
CHANGED_TABLE_LIST* curr,
CHANGED_TABLE_LIST* new_table)
{
if (new_table)
{
*prev = new_table;
(*prev)->next = curr;
}
}
/* add table to list of changed in transaction tables */
void THD::add_changed_table(TABLE *table)
{
DBUG_ENTER("THD::add_changed_table(table)");
DBUG_ASSERT((options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN)) &&
table->file->has_transactions());
add_changed_table(table->s->table_cache_key.str,
(long) table->s->table_cache_key.length);
DBUG_VOID_RETURN;
}
void THD::add_changed_table(const char *key, long key_length)
{
DBUG_ENTER("THD::add_changed_table(key)");
CHANGED_TABLE_LIST **prev_changed = &transaction.changed_tables;
CHANGED_TABLE_LIST *curr = transaction.changed_tables;
for (; curr; prev_changed = &(curr->next), curr = curr->next)
{
int cmp = (long)curr->key_length - (long)key_length;
if (cmp < 0)
{
list_include(prev_changed, curr, changed_table_dup(key, key_length));
DBUG_PRINT("info",
("key_length: %ld %u", key_length,
(*prev_changed)->key_length));
DBUG_VOID_RETURN;
}
else if (cmp == 0)
{
cmp = memcmp(curr->key, key, curr->key_length);
if (cmp < 0)
{
list_include(prev_changed, curr, changed_table_dup(key, key_length));
DBUG_PRINT("info",
("key_length: %ld %u", key_length,
(*prev_changed)->key_length));
DBUG_VOID_RETURN;
}
else if (cmp == 0)
{
DBUG_PRINT("info", ("already in list"));
DBUG_VOID_RETURN;
}
}
}
*prev_changed = changed_table_dup(key, key_length);
DBUG_PRINT("info", ("key_length: %ld %u", key_length,
(*prev_changed)->key_length));
DBUG_VOID_RETURN;
}
CHANGED_TABLE_LIST* THD::changed_table_dup(const char *key, long key_length)
{
CHANGED_TABLE_LIST* new_table =
(CHANGED_TABLE_LIST*) trans_alloc(ALIGN_SIZE(sizeof(CHANGED_TABLE_LIST))+
key_length + 1);
if (!new_table)
{
my_error(EE_OUTOFMEMORY, MYF(ME_BELL),
ALIGN_SIZE(sizeof(TABLE_LIST)) + key_length + 1);
killed= KILL_CONNECTION;
return 0;
}
new_table->key= ((char*)new_table)+ ALIGN_SIZE(sizeof(CHANGED_TABLE_LIST));
new_table->next = 0;
new_table->key_length = key_length;
::memcpy(new_table->key, key, key_length);
return new_table;
}
int THD::send_explain_fields(select_result *result)
{
List<Item> field_list;
Item *item;
CHARSET_INFO *cs= system_charset_info;
field_list.push_back(new Item_return_int("id",3, MYSQL_TYPE_LONGLONG));
field_list.push_back(new Item_empty_string("select_type", 19, cs));
field_list.push_back(item= new Item_empty_string("table", NAME_CHAR_LEN, cs));
item->maybe_null= 1;
if (lex->describe & DESCRIBE_PARTITIONS)
{
/* Maximum length of string that make_used_partitions_str() can produce */
item= new Item_empty_string("partitions", MAX_PARTITIONS * (1 + FN_LEN),
cs);
field_list.push_back(item);
item->maybe_null= 1;
}
field_list.push_back(item= new Item_empty_string("type", 10, cs));
item->maybe_null= 1;
field_list.push_back(item=new Item_empty_string("possible_keys",
NAME_CHAR_LEN*MAX_KEY, cs));
item->maybe_null=1;
field_list.push_back(item=new Item_empty_string("key", NAME_CHAR_LEN, cs));
item->maybe_null=1;
field_list.push_back(item=new Item_empty_string("key_len",
NAME_CHAR_LEN*MAX_KEY));
item->maybe_null=1;
field_list.push_back(item=new Item_empty_string("ref",
NAME_CHAR_LEN*MAX_REF_PARTS,
cs));
item->maybe_null=1;
field_list.push_back(item= new Item_return_int("rows", 10,
MYSQL_TYPE_LONGLONG));
if (lex->describe & DESCRIBE_EXTENDED)
{
field_list.push_back(item= new Item_float("filtered", 0.1234, 2, 4));
item->maybe_null=1;
}
item->maybe_null= 1;
field_list.push_back(new Item_empty_string("Extra", 255, cs));
return (result->send_fields(field_list,
Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF));
}
#ifdef SIGNAL_WITH_VIO_CLOSE
void THD::close_active_vio()
{
DBUG_ENTER("close_active_vio");
safe_mutex_assert_owner(&LOCK_thd_data);
#ifndef EMBEDDED_LIBRARY
if (active_vio)
{
vio_close(active_vio);
active_vio = 0;
}
#endif
DBUG_VOID_RETURN;
}
#endif
struct Item_change_record: public ilink
{
Item **place;
Item *old_value;
/* Placement new was hidden by `new' in ilink (TODO: check): */
static void *operator new(size_t size, void *mem) { return mem; }
static void operator delete(void *ptr, size_t size) {}
static void operator delete(void *ptr, void *mem) { /* never called */ }
};
/*
Register an item tree tree transformation, performed by the query
optimizer. We need a pointer to runtime_memroot because it may be !=
thd->mem_root (due to possible set_n_backup_active_arena called for thd).
*/
void THD::nocheck_register_item_tree_change(Item **place, Item *old_value,
MEM_ROOT *runtime_memroot)
{
Item_change_record *change;
/*
Now we use one node per change, which adds some memory overhead,
but still is rather fast as we use alloc_root for allocations.
A list of item tree changes of an average query should be short.
*/
void *change_mem= alloc_root(runtime_memroot, sizeof(*change));
if (change_mem == 0)
{
/*
OOM, thd->fatal_error() is called by the error handler of the
memroot. Just return.
*/
return;
}
change= new (change_mem) Item_change_record;
change->place= place;
change->old_value= old_value;
change_list.append(change);
}
void THD::rollback_item_tree_changes()
{
I_List_iterator<Item_change_record> it(change_list);
Item_change_record *change;
DBUG_ENTER("rollback_item_tree_changes");
while ((change= it++))
*change->place= change->old_value;
/* We can forget about changes memory: it's allocated in runtime memroot */
change_list.empty();
DBUG_VOID_RETURN;
}
/*****************************************************************************
** Functions to provide a interface to select results
*****************************************************************************/
select_result::select_result()
{
thd=current_thd;
nest_level= -1;
}
void select_result::send_error(uint errcode,const char *err)
{
my_message(errcode, err, MYF(0));
}
void select_result::cleanup()
{
/* do nothing */
}
bool select_result::check_simple_select() const
{
my_error(ER_SP_BAD_CURSOR_QUERY, MYF(0));
return TRUE;
}
static String default_line_term("\n",default_charset_info);
static String default_escaped("\\",default_charset_info);
static String default_field_term("\t",default_charset_info);
sql_exchange::sql_exchange(char *name,bool flag)
:file_name(name), opt_enclosed(0), dumpfile(flag), skip_lines(0)
{
field_term= &default_field_term;
enclosed= line_start= &my_empty_string;
line_term= &default_line_term;
escaped= &default_escaped;
cs= NULL;
}
bool sql_exchange::escaped_given(void)
{
return escaped != &default_escaped;
}
bool select_send::send_fields(List<Item> &list, uint flags)
{
bool res;
if (!(res= thd->protocol->send_fields(&list, flags)))
is_result_set_started= 1;
return res;
}
void select_send::abort()
{
DBUG_ENTER("select_send::abort");
if (is_result_set_started && thd->spcont &&
thd->spcont->find_handler(thd, thd->main_da.sql_errno(),
MYSQL_ERROR::WARN_LEVEL_ERROR))
{
/*
We're executing a stored procedure, have an open result
set, an SQL exception condition and a handler for it.
In this situation we must abort the current statement,
silence the error and start executing the continue/exit
handler.
Before aborting the statement, let's end the open result set, as
otherwise the client will hang due to the violation of the
client/server protocol.
*/
thd->protocol->end_partial_result_set(thd);
}
DBUG_VOID_RETURN;
}
/**
Cleanup an instance of this class for re-use
at next execution of a prepared statement/
stored procedure statement.
*/
void select_send::cleanup()
{
is_result_set_started= FALSE;
}
/* Send data to client. Returns 0 if ok */
bool select_send::send_data(List<Item> &items)
{
if (unit->offset_limit_cnt)
{ // using limit offset,count
unit->offset_limit_cnt--;
return 0;
}
/*
We may be passing the control from mysqld to the client: release the
InnoDB adaptive hash S-latch to avoid thread deadlocks if it was reserved
by thd
*/
ha_release_temporary_latches(thd);
List_iterator_fast<Item> li(items);
Protocol *protocol= thd->protocol;
char buff[MAX_FIELD_WIDTH];
String buffer(buff, sizeof(buff), &my_charset_bin);
DBUG_ENTER("select_send::send_data");
protocol->prepare_for_resend();
Item *item;
while ((item=li++))
{
if (item->send(protocol, &buffer))
{
protocol->free(); // Free used buffer
my_message(ER_OUT_OF_RESOURCES, ER(ER_OUT_OF_RESOURCES), MYF(0));
break;
}
/*
Reset buffer to its original state, as it may have been altered in
Item::send().
*/
buffer.set(buff, sizeof(buff), &my_charset_bin);
}
thd->sent_row_count++;
if (thd->is_error())
{
protocol->remove_last_row();
DBUG_RETURN(1);
}
if (thd->vio_ok())
DBUG_RETURN(protocol->write());
DBUG_RETURN(0);
}
bool select_send::send_eof()
{
/*
We may be passing the control from mysqld to the client: release the
InnoDB adaptive hash S-latch to avoid thread deadlocks if it was reserved
by thd
*/
ha_release_temporary_latches(thd);
/* Unlock tables before sending packet to gain some speed */
if (thd->lock)
{
mysql_unlock_tables(thd, thd->lock);
thd->lock=0;
}
/*
Don't send EOF if we're in error condition (which implies we've already
sent or are sending an error)
*/
if (thd->is_error())
return TRUE;
::my_eof(thd);
is_result_set_started= 0;
return FALSE;
}
/************************************************************************
Handling writing to file
************************************************************************/
void select_to_file::send_error(uint errcode,const char *err)
{
my_message(errcode, err, MYF(0));
if (file > 0)
{
(void) end_io_cache(&cache);
(void) my_close(file,MYF(0));
(void) my_delete(path,MYF(0)); // Delete file on error
file= -1;
}
}
bool select_to_file::send_eof()
{
int error= test(end_io_cache(&cache));
if (my_close(file,MYF(MY_WME)))
error= 1;
if (!error)
{
/*
In order to remember the value of affected rows for ROW_COUNT()
function, SELECT INTO has to have an own SQLCOM.
TODO: split from SQLCOM_SELECT
*/
::my_ok(thd,row_count);
}
file= -1;
return error;
}
void select_to_file::cleanup()
{
/* In case of error send_eof() may be not called: close the file here. */
if (file >= 0)
{
(void) end_io_cache(&cache);
(void) my_close(file,MYF(0));
file= -1;
}
path[0]= '\0';
row_count= 0;
}
select_to_file::~select_to_file()
{
if (file >= 0)
{ // This only happens in case of error
(void) end_io_cache(&cache);
(void) my_close(file,MYF(0));
file= -1;
}
}
/***************************************************************************
** Export of select to textfile
***************************************************************************/
select_export::~select_export()
{
thd->sent_row_count=row_count;
}
/*
Create file with IO cache
SYNOPSIS
create_file()
thd Thread handle
path File name
exchange Excange class
cache IO cache
RETURN
>= 0 File handle
-1 Error
*/
static File create_file(THD *thd, char *path, sql_exchange *exchange,
IO_CACHE *cache)
{
File file;
uint option= MY_UNPACK_FILENAME | MY_RELATIVE_PATH;
#ifdef DONT_ALLOW_FULL_LOAD_DATA_PATHS
option|= MY_REPLACE_DIR; // Force use of db directory
#endif
if (!dirname_length(exchange->file_name))
{
strxnmov(path, FN_REFLEN-1, mysql_real_data_home, thd->db ? thd->db : "",
NullS);
(void) fn_format(path, exchange->file_name, path, "", option);
}
else
(void) fn_format(path, exchange->file_name, mysql_real_data_home, "", option);
if (opt_secure_file_priv &&
strncmp(opt_secure_file_priv, path, strlen(opt_secure_file_priv)))
{
/* Write only allowed to dir or subdir specified by secure_file_priv */
my_error(ER_OPTION_PREVENTS_STATEMENT, MYF(0), "--secure-file-priv");
return -1;
}
if (!access(path, F_OK))
{
my_error(ER_FILE_EXISTS_ERROR, MYF(0), exchange->file_name);
return -1;
}
/* Create the file world readable */
if ((file= my_create(path, 0666, O_WRONLY|O_EXCL, MYF(MY_WME))) < 0)
return file;
#ifdef HAVE_FCHMOD
(void) fchmod(file, 0666); // Because of umask()
#else
(void) chmod(path, 0666);
#endif
if (init_io_cache(cache, file, 0L, WRITE_CACHE, 0L, 1, MYF(MY_WME)))
{
my_close(file, MYF(0));
my_delete(path, MYF(0)); // Delete file on error, it was just created
return -1;
}
return file;
}
int
select_export::prepare(List<Item> &list, SELECT_LEX_UNIT *u)
{
bool blob_flag=0;
bool string_results= FALSE, non_string_results= FALSE;
unit= u;
if ((uint) strlen(exchange->file_name) + NAME_LEN >= FN_REFLEN)
strmake(path,exchange->file_name,FN_REFLEN-1);
write_cs= exchange->cs ? exchange->cs : &my_charset_bin;
if ((file= create_file(thd, path, exchange, &cache)) < 0)
return 1;
/* Check if there is any blobs in data */
{
List_iterator_fast<Item> li(list);
Item *item;
while ((item=li++))
{
if (item->max_length >= MAX_BLOB_WIDTH)
{
blob_flag=1;
break;
}
if (item->result_type() == STRING_RESULT)
string_results= TRUE;
else
non_string_results= TRUE;
}
}
if (exchange->escaped->numchars() > 1 || exchange->enclosed->numchars() > 1)
{
my_error(ER_WRONG_FIELD_TERMINATORS, MYF(0));
return TRUE;
}
if (exchange->escaped->length() > 1 || exchange->enclosed->length() > 1 ||
!my_isascii(exchange->escaped->ptr()[0]) ||
!my_isascii(exchange->enclosed->ptr()[0]) ||
!exchange->field_term->is_ascii() || !exchange->line_term->is_ascii() ||
!exchange->line_start->is_ascii())
{
/*
Current LOAD DATA INFILE recognizes field/line separators "as is" without
converting from client charset to data file charset. So, it is supposed,
that input file of LOAD DATA INFILE consists of data in one charset and
separators in other charset. For the compatibility with that [buggy]
behaviour SELECT INTO OUTFILE implementation has been saved "as is" too,
but the new warning message has been added:
Non-ASCII separator arguments are not fully supported
*/
push_warning(thd, MYSQL_ERROR::WARN_LEVEL_WARN,
WARN_NON_ASCII_SEPARATOR_NOT_IMPLEMENTED,
ER(WARN_NON_ASCII_SEPARATOR_NOT_IMPLEMENTED));
}
field_term_length=exchange->field_term->length();
field_term_char= field_term_length ?
(int) (uchar) (*exchange->field_term)[0] : INT_MAX;
if (!exchange->line_term->length())
exchange->line_term=exchange->field_term; // Use this if it exists
field_sep_char= (exchange->enclosed->length() ?
(int) (uchar) (*exchange->enclosed)[0] : field_term_char);
if (exchange->escaped->length() && (exchange->escaped_given() ||
!(thd->variables.sql_mode & MODE_NO_BACKSLASH_ESCAPES)))
escape_char= (int) (uchar) (*exchange->escaped)[0];
else
escape_char= -1;
is_ambiguous_field_sep= test(strchr(ESCAPE_CHARS, field_sep_char));
is_unsafe_field_sep= test(strchr(NUMERIC_CHARS, field_sep_char));
line_sep_char= (exchange->line_term->length() ?
(int) (uchar) (*exchange->line_term)[0] : INT_MAX);
if (!field_term_length)
exchange->opt_enclosed=0;
if (!exchange->enclosed->length())
exchange->opt_enclosed=1; // A little quicker loop
fixed_row_size= (!field_term_length && !exchange->enclosed->length() &&
!blob_flag);
if ((is_ambiguous_field_sep && exchange->enclosed->is_empty() &&
(string_results || is_unsafe_field_sep)) ||
(exchange->opt_enclosed && non_string_results &&
field_term_length && strchr(NUMERIC_CHARS, field_term_char)))
{
push_warning(thd, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_AMBIGUOUS_FIELD_TERM, ER(ER_AMBIGUOUS_FIELD_TERM));
is_ambiguous_field_term= TRUE;
}
else
is_ambiguous_field_term= FALSE;
return 0;
}
#define NEED_ESCAPING(x) ((int) (uchar) (x) == escape_char || \
(enclosed ? (int) (uchar) (x) == field_sep_char \
: (int) (uchar) (x) == field_term_char) || \
(int) (uchar) (x) == line_sep_char || \
!(x))
bool select_export::send_data(List<Item> &items)
{
DBUG_ENTER("select_export::send_data");
char buff[MAX_FIELD_WIDTH],null_buff[2],space[MAX_FIELD_WIDTH];
char cvt_buff[MAX_FIELD_WIDTH];
String cvt_str(cvt_buff, sizeof(cvt_buff), write_cs);
bool space_inited=0;
String tmp(buff,sizeof(buff),&my_charset_bin),*res;
tmp.length(0);
if (unit->offset_limit_cnt)
{ // using limit offset,count
unit->offset_limit_cnt--;
DBUG_RETURN(0);
}
row_count++;
Item *item;
uint used_length=0,items_left=items.elements;
List_iterator_fast<Item> li(items);
if (my_b_write(&cache,(uchar*) exchange->line_start->ptr(),
exchange->line_start->length()))
goto err;
while ((item=li++))
{
Item_result result_type=item->result_type();
bool enclosed = (exchange->enclosed->length() &&
(!exchange->opt_enclosed || result_type == STRING_RESULT));
res=item->str_result(&tmp);
if (res && !my_charset_same(write_cs, res->charset()) &&
!my_charset_same(write_cs, &my_charset_bin))
{
const char *well_formed_error_pos;
const char *cannot_convert_error_pos;
const char *from_end_pos;
const char *error_pos;
uint32 bytes;
bytes= well_formed_copy_nchars(write_cs, cvt_buff, sizeof(cvt_buff),
res->charset(), res->ptr(), res->length(),
sizeof(cvt_buff),
&well_formed_error_pos,
&cannot_convert_error_pos,
&from_end_pos);
error_pos= well_formed_error_pos ? well_formed_error_pos
: cannot_convert_error_pos;
if (error_pos)
{
char printable_buff[32];
convert_to_printable(printable_buff, sizeof(printable_buff),
error_pos, res->ptr() + res->length() - error_pos,
res->charset(), 6);
push_warning_printf(thd, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_TRUNCATED_WRONG_VALUE_FOR_FIELD,
ER(ER_TRUNCATED_WRONG_VALUE_FOR_FIELD),
"string", printable_buff,
item->name, row_count);
}
cvt_str.length(bytes);
res= &cvt_str;
}
if (res && enclosed)
{
if (my_b_write(&cache,(uchar*) exchange->enclosed->ptr(),
exchange->enclosed->length()))
goto err;
}
if (!res)
{ // NULL
if (!fixed_row_size)
{
if (escape_char != -1) // Use \N syntax
{
null_buff[0]=escape_char;
null_buff[1]='N';
if (my_b_write(&cache,(uchar*) null_buff,2))
goto err;
}
else if (my_b_write(&cache,(uchar*) "NULL",4))
goto err;
}
else
{
used_length=0; // Fill with space
}
}
else
{
if (fixed_row_size)
used_length=min(res->length(),item->max_length);
else
used_length=res->length();
if ((result_type == STRING_RESULT || is_unsafe_field_sep) &&
escape_char != -1)
{
char *pos, *start, *end;
CHARSET_INFO *res_charset= res->charset();
CHARSET_INFO *character_set_client= thd->variables.
character_set_client;
bool check_second_byte= (res_charset == &my_charset_bin) &&
character_set_client->
escape_with_backslash_is_dangerous;
DBUG_ASSERT(character_set_client->mbmaxlen == 2 ||
!character_set_client->escape_with_backslash_is_dangerous);
for (start=pos=(char*) res->ptr(),end=pos+used_length ;
pos != end ;
pos++)
{
#ifdef USE_MB
if (use_mb(res_charset))
{
int l;
if ((l=my_ismbchar(res_charset, pos, end)))
{
pos += l-1;
continue;
}
}
#endif
/*
Special case when dumping BINARY/VARBINARY/BLOB values
for the clients with character sets big5, cp932, gbk and sjis,
which can have the escape character (0x5C "\" by default)
as the second byte of a multi-byte sequence.
If
- pos[0] is a valid multi-byte head (e.g 0xEE) and
- pos[1] is 0x00, which will be escaped as "\0",
then we'll get "0xEE + 0x5C + 0x30" in the output file.
If this file is later loaded using this sequence of commands:
mysql> create table t1 (a varchar(128)) character set big5;
mysql> LOAD DATA INFILE 'dump.txt' INTO TABLE t1;
then 0x5C will be misinterpreted as the second byte
of a multi-byte character "0xEE + 0x5C", instead of
escape character for 0x00.
To avoid this confusion, we'll escape the multi-byte
head character too, so the sequence "0xEE + 0x00" will be
dumped as "0x5C + 0xEE + 0x5C + 0x30".
Note, in the condition below we only check if
mbcharlen is equal to 2, because there are no
character sets with mbmaxlen longer than 2
and with escape_with_backslash_is_dangerous set.
DBUG_ASSERT before the loop makes that sure.
*/
if ((NEED_ESCAPING(*pos) ||
(check_second_byte &&
my_mbcharlen(character_set_client, (uchar) *pos) == 2 &&
pos + 1 < end &&
NEED_ESCAPING(pos[1]))) &&
/*
Don't escape field_term_char by doubling - doubling is only
valid for ENCLOSED BY characters:
*/
(enclosed || !is_ambiguous_field_term ||
(int) (uchar) *pos != field_term_char))
{
char tmp_buff[2];
tmp_buff[0]= ((int) (uchar) *pos == field_sep_char &&
is_ambiguous_field_sep) ?
field_sep_char : escape_char;
tmp_buff[1]= *pos ? *pos : '0';
if (my_b_write(&cache,(uchar*) start,(uint) (pos-start)) ||
my_b_write(&cache,(uchar*) tmp_buff,2))
goto err;
start=pos+1;
}
}
if (my_b_write(&cache,(uchar*) start,(uint) (pos-start)))
goto err;
}
else if (my_b_write(&cache,(uchar*) res->ptr(),used_length))
goto err;
}
if (fixed_row_size)
{ // Fill with space
if (item->max_length > used_length)
{
/* QQ: Fix by adding a my_b_fill() function */
if (!space_inited)
{
space_inited=1;
bfill(space,sizeof(space),' ');
}
uint length=item->max_length-used_length;
for (; length > sizeof(space) ; length-=sizeof(space))
{
if (my_b_write(&cache,(uchar*) space,sizeof(space)))
goto err;
}
if (my_b_write(&cache,(uchar*) space,length))
goto err;
}
}
if (res && enclosed)
{
if (my_b_write(&cache, (uchar*) exchange->enclosed->ptr(),
exchange->enclosed->length()))
goto err;
}
if (--items_left)
{
if (my_b_write(&cache, (uchar*) exchange->field_term->ptr(),
field_term_length))
goto err;
}
}
if (my_b_write(&cache,(uchar*) exchange->line_term->ptr(),
exchange->line_term->length()))
goto err;
DBUG_RETURN(0);
err:
DBUG_RETURN(1);
}
/***************************************************************************
** Dump of select to a binary file
***************************************************************************/
int
select_dump::prepare(List<Item> &list __attribute__((unused)),
SELECT_LEX_UNIT *u)
{
unit= u;
return (int) ((file= create_file(thd, path, exchange, &cache)) < 0);
}
bool select_dump::send_data(List<Item> &items)
{
List_iterator_fast<Item> li(items);
char buff[MAX_FIELD_WIDTH];
String tmp(buff,sizeof(buff),&my_charset_bin),*res;
tmp.length(0);
Item *item;
DBUG_ENTER("select_dump::send_data");
if (unit->offset_limit_cnt)
{ // using limit offset,count
unit->offset_limit_cnt--;
DBUG_RETURN(0);
}
if (row_count++ > 1)
{
my_message(ER_TOO_MANY_ROWS, ER(ER_TOO_MANY_ROWS), MYF(0));
goto err;
}
while ((item=li++))
{
res=item->str_result(&tmp);
if (!res) // If NULL
{
if (my_b_write(&cache,(uchar*) "",1))
goto err;
}
else if (my_b_write(&cache,(uchar*) res->ptr(),res->length()))
{
my_error(ER_ERROR_ON_WRITE, MYF(0), path, my_errno);
goto err;
}
}
DBUG_RETURN(0);
err:
DBUG_RETURN(1);
}
select_subselect::select_subselect(Item_subselect *item_arg)
{
item= item_arg;
}
bool select_singlerow_subselect::send_data(List<Item> &items)
{
DBUG_ENTER("select_singlerow_subselect::send_data");
Item_singlerow_subselect *it= (Item_singlerow_subselect *)item;
if (it->assigned())
{
my_message(ER_SUBQUERY_NO_1_ROW, ER(ER_SUBQUERY_NO_1_ROW), MYF(0));
DBUG_RETURN(1);
}
if (unit->offset_limit_cnt)
{ // Using limit offset,count
unit->offset_limit_cnt--;
DBUG_RETURN(0);
}
List_iterator_fast<Item> li(items);
Item *val_item;
for (uint i= 0; (val_item= li++); i++)
it->store(i, val_item);
it->assigned(1);
DBUG_RETURN(0);
}
void select_max_min_finder_subselect::cleanup()
{
DBUG_ENTER("select_max_min_finder_subselect::cleanup");
cache= 0;
DBUG_VOID_RETURN;
}
bool select_max_min_finder_subselect::send_data(List<Item> &items)
{
DBUG_ENTER("select_max_min_finder_subselect::send_data");
Item_maxmin_subselect *it= (Item_maxmin_subselect *)item;
List_iterator_fast<Item> li(items);
Item *val_item= li++;
it->register_value();
if (it->assigned())
{
cache->store(val_item);
if ((this->*op)())
it->store(0, cache);
}
else
{
if (!cache)
{
cache= Item_cache::get_cache(val_item);
switch (val_item->result_type())
{
case REAL_RESULT:
op= &select_max_min_finder_subselect::cmp_real;
break;
case INT_RESULT:
op= &select_max_min_finder_subselect::cmp_int;
break;
case STRING_RESULT:
op= &select_max_min_finder_subselect::cmp_str;
break;
case DECIMAL_RESULT:
op= &select_max_min_finder_subselect::cmp_decimal;
break;
case ROW_RESULT:
// This case should never be choosen
DBUG_ASSERT(0);
op= 0;
}
}
cache->store(val_item);
it->store(0, cache);
}
it->assigned(1);
DBUG_RETURN(0);
}
bool select_max_min_finder_subselect::cmp_real()
{
Item *maxmin= ((Item_singlerow_subselect *)item)->element_index(0);
double val1= cache->val_real(), val2= maxmin->val_real();
if (fmax)
return (cache->null_value && !maxmin->null_value) ||
(!cache->null_value && !maxmin->null_value &&
val1 > val2);
return (maxmin->null_value && !cache->null_value) ||
(!cache->null_value && !maxmin->null_value &&
val1 < val2);
}
bool select_max_min_finder_subselect::cmp_int()
{
Item *maxmin= ((Item_singlerow_subselect *)item)->element_index(0);
longlong val1= cache->val_int(), val2= maxmin->val_int();
if (fmax)
return (cache->null_value && !maxmin->null_value) ||
(!cache->null_value && !maxmin->null_value &&
val1 > val2);
return (maxmin->null_value && !cache->null_value) ||
(!cache->null_value && !maxmin->null_value &&
val1 < val2);
}
bool select_max_min_finder_subselect::cmp_decimal()
{
Item *maxmin= ((Item_singlerow_subselect *)item)->element_index(0);
my_decimal cval, *cvalue= cache->val_decimal(&cval);
my_decimal mval, *mvalue= maxmin->val_decimal(&mval);
if (fmax)
return (cache->null_value && !maxmin->null_value) ||
(!cache->null_value && !maxmin->null_value &&
my_decimal_cmp(cvalue, mvalue) > 0) ;
return (maxmin->null_value && !cache->null_value) ||
(!cache->null_value && !maxmin->null_value &&
my_decimal_cmp(cvalue,mvalue) < 0);
}
bool select_max_min_finder_subselect::cmp_str()
{
String *val1, *val2, buf1, buf2;
Item *maxmin= ((Item_singlerow_subselect *)item)->element_index(0);
/*
as far as both operand is Item_cache buf1 & buf2 will not be used,
but added for safety
*/
val1= cache->val_str(&buf1);
val2= maxmin->val_str(&buf1);
if (fmax)
return (cache->null_value && !maxmin->null_value) ||
(!cache->null_value && !maxmin->null_value &&
sortcmp(val1, val2, cache->collation.collation) > 0) ;
return (maxmin->null_value && !cache->null_value) ||
(!cache->null_value && !maxmin->null_value &&
sortcmp(val1, val2, cache->collation.collation) < 0);
}
bool select_exists_subselect::send_data(List<Item> &items)
{
DBUG_ENTER("select_exists_subselect::send_data");
Item_exists_subselect *it= (Item_exists_subselect *)item;
if (unit->offset_limit_cnt)
{ // Using limit offset,count
unit->offset_limit_cnt--;
DBUG_RETURN(0);
}
it->value= 1;
it->assigned(1);
DBUG_RETURN(0);
}
/***************************************************************************
Dump of select to variables
***************************************************************************/
int select_dumpvar::prepare(List<Item> &list, SELECT_LEX_UNIT *u)
{
unit= u;
if (var_list.elements != list.elements)
{
my_message(ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT,
ER(ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT), MYF(0));
return 1;
}
return 0;
}
bool select_dumpvar::check_simple_select() const
{
my_error(ER_SP_BAD_CURSOR_SELECT, MYF(0));
return TRUE;
}
void select_dumpvar::cleanup()
{
row_count= 0;
}
Query_arena::Type Query_arena::type() const
{
DBUG_ASSERT(0); /* Should never be called */
return STATEMENT;
}
void Query_arena::free_items()
{
Item *next;
DBUG_ENTER("Query_arena::free_items");
/* This works because items are allocated with sql_alloc() */
for (; free_list; free_list= next)
{
next= free_list->next;
free_list->delete_self();
}
/* Postcondition: free_list is 0 */
DBUG_VOID_RETURN;
}
void Query_arena::set_query_arena(Query_arena *set)
{
mem_root= set->mem_root;
free_list= set->free_list;
state= set->state;
}
void Query_arena::cleanup_stmt()
{
DBUG_ASSERT(! "Query_arena::cleanup_stmt() not implemented");
}
/*
Statement functions
*/
Statement::Statement(LEX *lex_arg, MEM_ROOT *mem_root_arg,
enum enum_state state_arg, ulong id_arg)
:Query_arena(mem_root_arg, state_arg),
id(id_arg),
mark_used_columns(MARK_COLUMNS_READ),
lex(lex_arg),
query(0),
query_length(0),
cursor(0),
db(NULL),
db_length(0)
{
name.str= NULL;
}
Query_arena::Type Statement::type() const
{
return STATEMENT;
}
void Statement::set_statement(Statement *stmt)
{
id= stmt->id;
mark_used_columns= stmt->mark_used_columns;
lex= stmt->lex;
query= stmt->query;
query_length= stmt->query_length;
cursor= stmt->cursor;
}
void
Statement::set_n_backup_statement(Statement *stmt, Statement *backup)
{
DBUG_ENTER("Statement::set_n_backup_statement");
backup->set_statement(this);
set_statement(stmt);
DBUG_VOID_RETURN;
}
void Statement::restore_backup_statement(Statement *stmt, Statement *backup)
{
DBUG_ENTER("Statement::restore_backup_statement");
stmt->set_statement(this);
set_statement(backup);
DBUG_VOID_RETURN;
}
void THD::end_statement()
{
/* Cleanup SQL processing state to reuse this statement in next query. */
lex_end(lex);
delete lex->result;
lex->result= 0;
/* Note that free_list is freed in cleanup_after_query() */
/*
Don't free mem_root, as mem_root is freed in the end of dispatch_command
(once for any command).
*/
}
void THD::set_n_backup_active_arena(Query_arena *set, Query_arena *backup)
{
DBUG_ENTER("THD::set_n_backup_active_arena");
DBUG_ASSERT(backup->is_backup_arena == FALSE);
backup->set_query_arena(this);
set_query_arena(set);
#ifndef DBUG_OFF
backup->is_backup_arena= TRUE;
#endif
DBUG_VOID_RETURN;
}
void THD::restore_active_arena(Query_arena *set, Query_arena *backup)
{
DBUG_ENTER("THD::restore_active_arena");
DBUG_ASSERT(backup->is_backup_arena);
set->set_query_arena(this);
set_query_arena(backup);
#ifndef DBUG_OFF
backup->is_backup_arena= FALSE;
#endif
DBUG_VOID_RETURN;
}
Statement::~Statement()
{
}
C_MODE_START
static uchar *
get_statement_id_as_hash_key(const uchar *record, size_t *key_length,
my_bool not_used __attribute__((unused)))
{
const Statement *statement= (const Statement *) record;
*key_length= sizeof(statement->id);
return (uchar *) &((const Statement *) statement)->id;
}
static void delete_statement_as_hash_key(void *key)
{
delete (Statement *) key;
}
static uchar *get_stmt_name_hash_key(Statement *entry, size_t *length,
my_bool not_used __attribute__((unused)))
{
*length= entry->name.length;
return (uchar*) entry->name.str;
}
C_MODE_END
Statement_map::Statement_map() :
last_found_statement(0)
{
enum
{
START_STMT_HASH_SIZE = 16,
START_NAME_HASH_SIZE = 16
};
hash_init(&st_hash, &my_charset_bin, START_STMT_HASH_SIZE, 0, 0,
get_statement_id_as_hash_key,
delete_statement_as_hash_key, MYF(0));
hash_init(&names_hash, system_charset_info, START_NAME_HASH_SIZE, 0, 0,
(hash_get_key) get_stmt_name_hash_key,
NULL,MYF(0));
}
/*
Insert a new statement to the thread-local statement map.
DESCRIPTION
If there was an old statement with the same name, replace it with the
new one. Otherwise, check if max_prepared_stmt_count is not reached yet,
increase prepared_stmt_count, and insert the new statement. It's okay
to delete an old statement and fail to insert the new one.
POSTCONDITIONS
All named prepared statements are also present in names_hash.
Statement names in names_hash are unique.
The statement is added only if prepared_stmt_count < max_prepard_stmt_count
last_found_statement always points to a valid statement or is 0
RETURN VALUE
0 success
1 error: out of resources or max_prepared_stmt_count limit has been
reached. An error is sent to the client, the statement is deleted.
*/
int Statement_map::insert(THD *thd, Statement *statement)
{
if (my_hash_insert(&st_hash, (uchar*) statement))
{
/*
Delete is needed only in case of an insert failure. In all other
cases hash_delete will also delete the statement.
*/
delete statement;
my_error(ER_OUT_OF_RESOURCES, MYF(0));
goto err_st_hash;
}
if (statement->name.str && my_hash_insert(&names_hash, (uchar*) statement))
{
my_error(ER_OUT_OF_RESOURCES, MYF(0));
goto err_names_hash;
}
pthread_mutex_lock(&LOCK_prepared_stmt_count);
/*
We don't check that prepared_stmt_count is <= max_prepared_stmt_count
because we would like to allow to lower the total limit
of prepared statements below the current count. In that case
no new statements can be added until prepared_stmt_count drops below
the limit.
*/
if (prepared_stmt_count >= max_prepared_stmt_count)
{
pthread_mutex_unlock(&LOCK_prepared_stmt_count);
my_error(ER_MAX_PREPARED_STMT_COUNT_REACHED, MYF(0),
max_prepared_stmt_count);
goto err_max;
}
prepared_stmt_count++;
pthread_mutex_unlock(&LOCK_prepared_stmt_count);
last_found_statement= statement;
return 0;
err_max:
if (statement->name.str)
hash_delete(&names_hash, (uchar*) statement);
err_names_hash:
hash_delete(&st_hash, (uchar*) statement);
err_st_hash:
return 1;
}
void Statement_map::close_transient_cursors()
{
#ifdef TO_BE_IMPLEMENTED
Statement *stmt;
while ((stmt= transient_cursor_list.head()))
stmt->close_cursor(); /* deletes itself from the list */
#endif
}
void Statement_map::erase(Statement *statement)
{
if (statement == last_found_statement)
last_found_statement= 0;
if (statement->name.str)
hash_delete(&names_hash, (uchar *) statement);
hash_delete(&st_hash, (uchar *) statement);
pthread_mutex_lock(&LOCK_prepared_stmt_count);
DBUG_ASSERT(prepared_stmt_count > 0);
prepared_stmt_count--;
pthread_mutex_unlock(&LOCK_prepared_stmt_count);
}
void Statement_map::reset()
{
/* Must be first, hash_free will reset st_hash.records */
pthread_mutex_lock(&LOCK_prepared_stmt_count);
DBUG_ASSERT(prepared_stmt_count >= st_hash.records);
prepared_stmt_count-= st_hash.records;
pthread_mutex_unlock(&LOCK_prepared_stmt_count);
my_hash_reset(&names_hash);
my_hash_reset(&st_hash);
last_found_statement= 0;
}
Statement_map::~Statement_map()
{
/* Must go first, hash_free will reset st_hash.records */
pthread_mutex_lock(&LOCK_prepared_stmt_count);
DBUG_ASSERT(prepared_stmt_count >= st_hash.records);
prepared_stmt_count-= st_hash.records;
pthread_mutex_unlock(&LOCK_prepared_stmt_count);
hash_free(&names_hash);
hash_free(&st_hash);
}
bool select_dumpvar::send_data(List<Item> &items)
{
List_iterator_fast<my_var> var_li(var_list);
List_iterator<Item> it(items);
Item *item;
my_var *mv;
DBUG_ENTER("select_dumpvar::send_data");
if (unit->offset_limit_cnt)
{ // using limit offset,count
unit->offset_limit_cnt--;
DBUG_RETURN(0);
}
if (row_count++)
{
my_message(ER_TOO_MANY_ROWS, ER(ER_TOO_MANY_ROWS), MYF(0));
DBUG_RETURN(1);
}
while ((mv= var_li++) && (item= it++))
{
if (mv->local)
{
if (thd->spcont->set_variable(thd, mv->offset, &item))
DBUG_RETURN(1);
}
else
{
Item_func_set_user_var *suv= new Item_func_set_user_var(mv->s, item);
suv->fix_fields(thd, 0);
suv->save_item_result(item);
suv->update();
}
}
DBUG_RETURN(thd->is_error());
}
bool select_dumpvar::send_eof()
{
if (! row_count)
push_warning(thd, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_SP_FETCH_NO_DATA, ER(ER_SP_FETCH_NO_DATA));
/*
In order to remember the value of affected rows for ROW_COUNT()
function, SELECT INTO has to have an own SQLCOM.
TODO: split from SQLCOM_SELECT
*/
::my_ok(thd,row_count);
return 0;
}
/****************************************************************************
TMP_TABLE_PARAM
****************************************************************************/
void TMP_TABLE_PARAM::init()
{
DBUG_ENTER("TMP_TABLE_PARAM::init");
DBUG_PRINT("enter", ("this: 0x%lx", (ulong)this));
field_count= sum_func_count= func_count= hidden_field_count= 0;
group_parts= group_length= group_null_parts= 0;
quick_group= 1;
table_charset= 0;
precomputed_group_by= 0;
DBUG_VOID_RETURN;
}
void thd_increment_bytes_sent(ulong length)
{
THD *thd=current_thd;
if (likely(thd != 0))
{ /* current_thd==0 when close_connection() calls net_send_error() */
thd->status_var.bytes_sent+= length;
}
}
void thd_increment_bytes_received(ulong length)
{
current_thd->status_var.bytes_received+= length;
}
void thd_increment_net_big_packet_count(ulong length)
{
current_thd->status_var.net_big_packet_count+= length;
}
void THD::set_status_var_init()
{
bzero((char*) &status_var, sizeof(status_var));
}
void Security_context::init()
{
host= user= priv_user= ip= 0;
host_or_ip= "connecting host";
priv_host[0]= '\0';
master_access= 0;
#ifndef NO_EMBEDDED_ACCESS_CHECKS
db_access= NO_ACCESS;
#endif
}
void Security_context::destroy()
{
// If not pointer to constant
if (host != my_localhost)
safeFree(host);
if (user != delayed_user)
safeFree(user);
safeFree(ip);
}
void Security_context::skip_grants()
{
/* privileges for the user are unknown everything is allowed */
host_or_ip= (char *)"";
master_access= ~NO_ACCESS;
priv_user= (char *)"";
*priv_host= '\0';
}
bool Security_context::set_user(char *user_arg)
{
safeFree(user);
user= my_strdup(user_arg, MYF(0));
return user == 0;
}
#ifndef NO_EMBEDDED_ACCESS_CHECKS
/**
Initialize this security context from the passed in credentials
and activate it in the current thread.
@param thd
@param definer_user
@param definer_host
@param db
@param[out] backup Save a pointer to the current security context
in the thread. In case of success it points to the
saved old context, otherwise it points to NULL.
During execution of a statement, multiple security contexts may
be needed:
- the security context of the authenticated user, used as the
default security context for all top-level statements
- in case of a view or a stored program, possibly the security
context of the definer of the routine, if the object is
defined with SQL SECURITY DEFINER option.
The currently "active" security context is parameterized in THD
member security_ctx. By default, after a connection is
established, this member points at the "main" security context
- the credentials of the authenticated user.
Later, if we would like to execute some sub-statement or a part
of a statement under credentials of a different user, e.g.
definer of a procedure, we authenticate this user in a local
instance of Security_context by means of this method (and
ultimately by means of acl_getroot_no_password), and make the
local instance active in the thread by re-setting
thd->security_ctx pointer.
Note, that the life cycle and memory management of the "main" and
temporary security contexts are different.
For the main security context, the memory for user/host/ip is
allocated on system heap, and the THD class frees this memory in
its destructor. The only case when contents of the main security
context may change during its life time is when someone issued
CHANGE USER command.
Memory management of a "temporary" security context is
responsibility of the module that creates it.
@retval TRUE there is no user with the given credentials. The erro
is reported in the thread.
@retval FALSE success
*/
bool
Security_context::
change_security_context(THD *thd,
LEX_STRING *definer_user,
LEX_STRING *definer_host,
LEX_STRING *db,
Security_context **backup)
{
bool needs_change;
DBUG_ENTER("Security_context::change_security_context");
DBUG_ASSERT(definer_user->str && definer_host->str);
*backup= NULL;
/*
The current security context may have NULL members
if we have just started the thread and not authenticated
any user. This use case is currently in events worker thread.
*/
needs_change= (thd->security_ctx->priv_user == NULL ||
strcmp(definer_user->str, thd->security_ctx->priv_user) ||
thd->security_ctx->priv_host == NULL ||
my_strcasecmp(system_charset_info, definer_host->str,
thd->security_ctx->priv_host));
if (needs_change)
{
if (acl_getroot_no_password(this, definer_user->str, definer_host->str,
definer_host->str, db->str))
{
my_error(ER_NO_SUCH_USER, MYF(0), definer_user->str,
definer_host->str);
DBUG_RETURN(TRUE);
}
*backup= thd->security_ctx;
thd->security_ctx= this;
}
DBUG_RETURN(FALSE);
}
void
Security_context::restore_security_context(THD *thd,
Security_context *backup)
{
if (backup)
thd->security_ctx= backup;
}
#endif
bool Security_context::user_matches(Security_context *them)
{
return ((user != NULL) && (them->user != NULL) &&
!strcmp(user, them->user));
}
/****************************************************************************
Handling of open and locked tables states.
This is used when we want to open/lock (and then close) some tables when
we already have a set of tables open and locked. We use these methods for
access to mysql.proc table to find definitions of stored routines.
****************************************************************************/
void THD::reset_n_backup_open_tables_state(Open_tables_state *backup)
{
DBUG_ENTER("reset_n_backup_open_tables_state");
backup->set_open_tables_state(this);
reset_open_tables_state();
state_flags|= Open_tables_state::BACKUPS_AVAIL;
DBUG_VOID_RETURN;
}
void THD::restore_backup_open_tables_state(Open_tables_state *backup)
{
DBUG_ENTER("restore_backup_open_tables_state");
/*
Before we will throw away current open tables state we want
to be sure that it was properly cleaned up.
*/
DBUG_ASSERT(open_tables == 0 && temporary_tables == 0 &&
handler_tables == 0 && derived_tables == 0 &&
lock == 0 && locked_tables == 0 &&
prelocked_mode == NON_PRELOCKED &&
m_reprepare_observer == NULL);
set_open_tables_state(backup);
DBUG_VOID_RETURN;
}
/**
Check the killed state of a user thread
@param thd user thread
@retval 0 the user thread is active
@retval 1 the user thread has been killed
*/
extern "C" int thd_killed(const MYSQL_THD thd)
{
return(thd->killed);
}
/**
Return the thread id of a user thread
@param thd user thread
@return thread id
*/
extern "C" unsigned long thd_get_thread_id(const MYSQL_THD thd)
{
return((unsigned long)thd->thread_id);
}
#ifdef INNODB_COMPATIBILITY_HOOKS
extern "C" struct charset_info_st *thd_charset(MYSQL_THD thd)
{
return(thd->charset());
}
extern "C" char **thd_query(MYSQL_THD thd)
{
return(&thd->query);
}
extern "C" int thd_slave_thread(const MYSQL_THD thd)
{
return(thd->slave_thread);
}
extern "C" int thd_non_transactional_update(const MYSQL_THD thd)
{
return(thd->transaction.all.modified_non_trans_table);
}
extern "C" int thd_binlog_format(const MYSQL_THD thd)
{
if (mysql_bin_log.is_open() && (thd->options & OPTION_BIN_LOG))
return (int) thd->variables.binlog_format;
else
return BINLOG_FORMAT_UNSPEC;
}
extern "C" void thd_mark_transaction_to_rollback(MYSQL_THD thd, bool all)
{
mark_transaction_to_rollback(thd, all);
}
#endif // INNODB_COMPATIBILITY_HOOKS */
/****************************************************************************
Handling of statement states in functions and triggers.
This is used to ensure that the function/trigger gets a clean state
to work with and does not cause any side effects of the calling statement.
It also allows most stored functions and triggers to replicate even
if they are used items that would normally be stored in the binary
replication (like last_insert_id() etc...)
The following things is done
- Disable binary logging for the duration of the statement
- Disable multi-result-sets for the duration of the statement
- Value of last_insert_id() is saved and restored
- Value set by 'SET INSERT_ID=#' is reset and restored
- Value for found_rows() is reset and restored
- examined_row_count is added to the total
- cuted_fields is added to the total
- new savepoint level is created and destroyed
NOTES:
Seed for random() is saved for the first! usage of RAND()
We reset examined_row_count and cuted_fields and add these to the
result to ensure that if we have a bug that would reset these within
a function, we are not loosing any rows from the main statement.
We do not reset value of last_insert_id().
****************************************************************************/
void THD::reset_sub_statement_state(Sub_statement_state *backup,
uint new_state)
{
#ifndef EMBEDDED_LIBRARY
/* BUG#33029, if we are replicating from a buggy master, reset
auto_inc_intervals_forced to prevent substatement
(triggers/functions) from using erroneous INSERT_ID value
*/
if (rpl_master_erroneous_autoinc(this))
{
DBUG_ASSERT(backup->auto_inc_intervals_forced.nb_elements() == 0);
auto_inc_intervals_forced.swap(&backup->auto_inc_intervals_forced);
}
#endif
backup->options= options;
backup->in_sub_stmt= in_sub_stmt;
backup->enable_slow_log= enable_slow_log;
backup->limit_found_rows= limit_found_rows;
backup->examined_row_count= examined_row_count;
backup->sent_row_count= sent_row_count;
backup->cuted_fields= cuted_fields;
backup->client_capabilities= client_capabilities;
backup->savepoints= transaction.savepoints;
backup->first_successful_insert_id_in_prev_stmt=
first_successful_insert_id_in_prev_stmt;
backup->first_successful_insert_id_in_cur_stmt=
first_successful_insert_id_in_cur_stmt;
if ((!lex->requires_prelocking() || is_update_query(lex->sql_command)) &&
!is_current_stmt_binlog_format_row())
{
options&= ~OPTION_BIN_LOG;
}
if ((backup->options & OPTION_BIN_LOG) && is_update_query(lex->sql_command)&&
!is_current_stmt_binlog_format_row())
mysql_bin_log.start_union_events(this, this->query_id);
/* Disable result sets */
client_capabilities &= ~CLIENT_MULTI_RESULTS;
in_sub_stmt|= new_state;
examined_row_count= 0;
sent_row_count= 0;
cuted_fields= 0;
transaction.savepoints= 0;
first_successful_insert_id_in_cur_stmt= 0;
}
void THD::restore_sub_statement_state(Sub_statement_state *backup)
{
#ifndef EMBEDDED_LIBRARY
/* BUG#33029, if we are replicating from a buggy master, restore
auto_inc_intervals_forced so that the top statement can use the
INSERT_ID value set before this statement.
*/
if (rpl_master_erroneous_autoinc(this))
{
backup->auto_inc_intervals_forced.swap(&auto_inc_intervals_forced);
DBUG_ASSERT(backup->auto_inc_intervals_forced.nb_elements() == 0);
}
#endif
/*
To save resources we want to release savepoints which were created
during execution of function or trigger before leaving their savepoint
level. It is enough to release first savepoint set on this level since
all later savepoints will be released automatically.
*/
if (transaction.savepoints)
{
SAVEPOINT *sv;
for (sv= transaction.savepoints; sv->prev; sv= sv->prev)
{}
/* ha_release_savepoint() never returns error. */
(void)ha_release_savepoint(this, sv);
}
transaction.savepoints= backup->savepoints;
options= backup->options;
in_sub_stmt= backup->in_sub_stmt;
enable_slow_log= backup->enable_slow_log;
first_successful_insert_id_in_prev_stmt=
backup->first_successful_insert_id_in_prev_stmt;
first_successful_insert_id_in_cur_stmt=
backup->first_successful_insert_id_in_cur_stmt;
limit_found_rows= backup->limit_found_rows;
sent_row_count= backup->sent_row_count;
client_capabilities= backup->client_capabilities;
/*
If we've left sub-statement mode, reset the fatal error flag.
Otherwise keep the current value, to propagate it up the sub-statement
stack.
*/
if (!in_sub_stmt)
is_fatal_sub_stmt_error= FALSE;
if ((options & OPTION_BIN_LOG) && is_update_query(lex->sql_command) &&
!is_current_stmt_binlog_format_row())
mysql_bin_log.stop_union_events(this);
/*
The following is added to the old values as we are interested in the
total complexity of the query
*/
examined_row_count+= backup->examined_row_count;
cuted_fields+= backup->cuted_fields;
}
void THD::set_statement(Statement *stmt)
{
pthread_mutex_lock(&LOCK_thd_data);
Statement::set_statement(stmt);
pthread_mutex_unlock(&LOCK_thd_data);
}
/** Assign a new value to thd->query. */
void THD::set_query(char *query_arg, uint32 query_length_arg)
{
pthread_mutex_lock(&LOCK_thd_data);
query= query_arg;
query_length= query_length_arg;
pthread_mutex_unlock(&LOCK_thd_data);
}
/**
Mark transaction to rollback and mark error as fatal to a sub-statement.
@param thd Thread handle
@param all TRUE <=> rollback main transaction.
*/
void mark_transaction_to_rollback(THD *thd, bool all)
{
if (thd)
{
thd->is_fatal_sub_stmt_error= TRUE;
thd->transaction_rollback_request= all;
}
}
/***************************************************************************
Handling of XA id cacheing
***************************************************************************/
pthread_mutex_t LOCK_xid_cache;
HASH xid_cache;
extern "C" uchar *xid_get_hash_key(const uchar *, size_t *, my_bool);
extern "C" void xid_free_hash(void *);
uchar *xid_get_hash_key(const uchar *ptr, size_t *length,
my_bool not_used __attribute__((unused)))
{
*length=((XID_STATE*)ptr)->xid.key_length();
return ((XID_STATE*)ptr)->xid.key();
}
void xid_free_hash(void *ptr)
{
if (!((XID_STATE*)ptr)->in_thd)
my_free((uchar*)ptr, MYF(0));
}
bool xid_cache_init()
{
pthread_mutex_init(&LOCK_xid_cache, MY_MUTEX_INIT_FAST);
return hash_init(&xid_cache, &my_charset_bin, 100, 0, 0,
xid_get_hash_key, xid_free_hash, 0) != 0;
}
void xid_cache_free()
{
if (hash_inited(&xid_cache))
{
hash_free(&xid_cache);
pthread_mutex_destroy(&LOCK_xid_cache);
}
}
XID_STATE *xid_cache_search(XID *xid)
{
pthread_mutex_lock(&LOCK_xid_cache);
XID_STATE *res=(XID_STATE *)hash_search(&xid_cache, xid->key(), xid->key_length());
pthread_mutex_unlock(&LOCK_xid_cache);
return res;
}
bool xid_cache_insert(XID *xid, enum xa_states xa_state)
{
XID_STATE *xs;
my_bool res;
pthread_mutex_lock(&LOCK_xid_cache);
if (hash_search(&xid_cache, xid->key(), xid->key_length()))
res=0;
else if (!(xs=(XID_STATE *)my_malloc(sizeof(*xs), MYF(MY_WME))))
res=1;
else
{
xs->xa_state=xa_state;
xs->xid.set(xid);
xs->in_thd=0;
res=my_hash_insert(&xid_cache, (uchar*)xs);
}
pthread_mutex_unlock(&LOCK_xid_cache);
return res;
}
bool xid_cache_insert(XID_STATE *xid_state)
{
pthread_mutex_lock(&LOCK_xid_cache);
DBUG_ASSERT(hash_search(&xid_cache, xid_state->xid.key(),
xid_state->xid.key_length())==0);
my_bool res=my_hash_insert(&xid_cache, (uchar*)xid_state);
pthread_mutex_unlock(&LOCK_xid_cache);
return res;
}
void xid_cache_delete(XID_STATE *xid_state)
{
pthread_mutex_lock(&LOCK_xid_cache);
hash_delete(&xid_cache, (uchar *)xid_state);
pthread_mutex_unlock(&LOCK_xid_cache);
}
/**
Decide on logging format to use for the statement and issue errors
or warnings as needed. The decision depends on the following
parameters:
- The logging mode, i.e., the value of binlog_format. Can be
statement, mixed, or row.
- The type of statement. There are three types of statements:
"normal" safe statements; unsafe statements; and row injections.
An unsafe statement is one that, if logged in statement format,
might produce different results when replayed on the slave (e.g.,
INSERT DELAYED). A row injection is either a BINLOG statement, or
a row event executed by the slave's SQL thread.
- The capabilities of tables modified by the statement. The
*capabilities vector* for a table is a set of flags associated
with the table. Currently, it only includes two flags: *row
capability flag* and *statement capability flag*.
The row capability flag is set if and only if the engine can
handle row-based logging. The statement capability flag is set if
and only if the table can handle statement-based logging.
Decision table for logging format
---------------------------------
The following table summarizes how the format and generated
warning/error depends on the tables' capabilities, the statement
type, and the current binlog_format.
Row capable N NNNNNNNNN YYYYYYYYY YYYYYYYYY
Statement capable N YYYYYYYYY NNNNNNNNN YYYYYYYYY
Statement type * SSSUUUIII SSSUUUIII SSSUUUIII
binlog_format * SMRSMRSMR SMRSMRSMR SMRSMRSMR
Logged format - SS-SS---- -RR-RR-RR SRRSRR-RR
Warning/Error 1 --2332444 5--5--6-- ---7--6--
Legend
------
Row capable: N - Some table not row-capable, Y - All tables row-capable
Stmt capable: N - Some table not stmt-capable, Y - All tables stmt-capable
Statement type: (S)afe, (U)nsafe, or Row (I)njection
binlog_format: (S)TATEMENT, (M)IXED, or (R)OW
Logged format: (S)tatement or (R)ow
Warning/Error: Warnings and error messages are as follows:
1. Error: Cannot execute statement: binlogging impossible since both
row-incapable engines and statement-incapable engines are
involved.
2. Error: Cannot execute statement: binlogging impossible since
BINLOG_FORMAT = ROW and at least one table uses a storage engine
limited to statement-logging.
3. Warning: Unsafe statement binlogged as statement since storage
engine is limited to statement-logging.
4. Error: Cannot execute row injection: binlogging impossible since
at least one table uses a storage engine limited to
statement-logging.
5. Error: Cannot execute statement: binlogging impossible since
BINLOG_FORMAT = STATEMENT and at least one table uses a storage
engine limited to row-logging.
6. Error: Cannot execute row injection: binlogging impossible since
BINLOG_FORMAT = STATEMENT.
7. Warning: Unsafe statement binlogged in statement format since
BINLOG_FORMAT = STATEMENT.
In addition, we can produce the following error (not depending on
the variables of the decision diagram):
8. Error: Cannot execute statement: binlogging impossible since more
than one engine is involved and at least one engine is
self-logging.
For each error case above, the statement is prevented from being
logged, we report an error, and roll back the statement. For
warnings, we set the thd->binlog_flags variable: the warning will be
printed only if the statement is successfully logged.
@see THD::binlog_query
@param[in] thd Client thread
@param[in] tables Tables involved in the query
@retval 0 No error; statement can be logged.
@retval -1 One of the error conditions above applies (1, 2, 4, 5, or 6).
*/
int THD::decide_logging_format(TABLE_LIST *tables)
{
DBUG_ENTER("THD::decide_logging_format");
DBUG_PRINT("info", ("query: %s", query));
DBUG_PRINT("info", ("variables.binlog_format: %ld",
variables.binlog_format));
DBUG_PRINT("info", ("lex->get_stmt_unsafe_flags(): 0x%x",
lex->get_stmt_unsafe_flags()));
/*
We should not decide logging format if the binlog is closed or
binlogging is off, or if the statement is filtered out from the
binlog by filtering rules.
*/
if (mysql_bin_log.is_open() && (options & OPTION_BIN_LOG) &&
!(variables.binlog_format == BINLOG_FORMAT_STMT &&
!binlog_filter->db_ok(db)))
{
/*
Compute one bit field with the union of all the engine
capabilities, and one with the intersection of all the engine
capabilities.
*/
handler::Table_flags flags_some_set= 0;
handler::Table_flags flags_all_set=
HA_BINLOG_ROW_CAPABLE | HA_BINLOG_STMT_CAPABLE;
my_bool multi_engine= FALSE;
void* prev_ht= NULL;
#ifndef DBUG_OFF
{
static const char *prelocked_mode_name[] = {
"NON_PRELOCKED",
"PRELOCKED",
"PRELOCKED_UNDER_LOCK_TABLES",
};
DBUG_PRINT("debug", ("prelocked_mode: %s",
prelocked_mode_name[prelocked_mode]));
}
#endif
/*
Get the capabilities vector for all involved storage engines and
mask out the flags for the binary log.
*/
for (TABLE_LIST *table= tables; table; table= table->next_global)
{
if (table->placeholder())
continue;
if (table->table->s->table_category == TABLE_CATEGORY_PERFORMANCE)
lex->set_stmt_unsafe(LEX::BINLOG_STMT_UNSAFE_SYSTEM_TABLE);
if (table->lock_type >= TL_WRITE_ALLOW_WRITE)
{
handler::Table_flags const flags= table->table->file->ha_table_flags();
DBUG_PRINT("info", ("table: %s; ha_table_flags: 0x%llx",
table->table_name, flags));
if (prev_ht && prev_ht != table->table->file->ht)
multi_engine= TRUE;
prev_ht= table->table->file->ht;
flags_all_set &= flags;
flags_some_set |= flags;
}
}
DBUG_PRINT("info", ("flags_all_set: 0x%llx", flags_all_set));
DBUG_PRINT("info", ("flags_some_set: 0x%llx", flags_some_set));
DBUG_PRINT("info", ("multi_engine: %d", multi_engine));
int error= 0;
int unsafe_flags;
/*
If more than one engine is involved in the statement and at
least one is doing it's own logging (is *self-logging*), the
statement cannot be logged atomically, so we generate an error
rather than allowing the binlog to become corrupt.
*/
if (multi_engine &&
(flags_some_set & HA_HAS_OWN_BINLOGGING))
{
my_error((error= ER_BINLOG_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE),
MYF(0));
}
/* both statement-only and row-only engines involved */
if ((flags_all_set & (HA_BINLOG_STMT_CAPABLE | HA_BINLOG_ROW_CAPABLE)) == 0)
{
/*
1. Error: Binary logging impossible since both row-incapable
engines and statement-incapable engines are involved
*/
my_error((error= ER_BINLOG_ROW_ENGINE_AND_STMT_ENGINE), MYF(0));
}
/* statement-only engines involved */
else if ((flags_all_set & HA_BINLOG_ROW_CAPABLE) == 0)
{
if (lex->is_stmt_row_injection())
{
/*
4. Error: Cannot execute row injection since table uses
storage engine limited to statement-logging
*/
my_error((error= ER_BINLOG_ROW_INJECTION_AND_STMT_ENGINE), MYF(0));
}
else if (variables.binlog_format == BINLOG_FORMAT_ROW)
{
/*
2. Error: Cannot modify table that uses a storage engine
limited to statement-logging when BINLOG_FORMAT = ROW
*/
my_error((error= ER_BINLOG_ROW_MODE_AND_STMT_ENGINE), MYF(0));
}
else if ((unsafe_flags= lex->get_stmt_unsafe_flags()) != 0)
{
/*
3. Warning: Unsafe statement binlogged as statement since
storage engine is limited to statement-logging.
*/
binlog_unsafe_warning_flags|=
(1 << BINLOG_STMT_WARNING_UNSAFE_AND_STMT_ENGINE) |
(unsafe_flags << BINLOG_STMT_WARNING_COUNT);
DBUG_PRINT("info", ("Scheduling warning to be issued by "
"binlog_query: %s",
ER(ER_BINLOG_UNSAFE_AND_STMT_ENGINE)));
DBUG_PRINT("info", ("binlog_unsafe_warning_flags: 0x%x",
binlog_unsafe_warning_flags));
}
/* log in statement format! */
}
/* no statement-only engines */
else
{
/* binlog_format = STATEMENT */
if (variables.binlog_format == BINLOG_FORMAT_STMT)
{
if (lex->is_stmt_row_injection())
{
/*
6. Error: Cannot execute row injection since
BINLOG_FORMAT = STATEMENT
*/
my_error((error= ER_BINLOG_ROW_INJECTION_AND_STMT_MODE), MYF(0));
}
else if ((flags_all_set & HA_BINLOG_STMT_CAPABLE) == 0)
{
/*
5. Error: Cannot modify table that uses a storage engine
limited to row-logging when binlog_format = STATEMENT
*/
my_error((error= ER_BINLOG_STMT_MODE_AND_ROW_ENGINE), MYF(0), "");
}
else if ((unsafe_flags= lex->get_stmt_unsafe_flags()) != 0)
{
/*
7. Warning: Unsafe statement logged as statement due to
binlog_format = STATEMENT
*/
binlog_unsafe_warning_flags|=
(1 << BINLOG_STMT_WARNING_UNSAFE_AND_STMT_MODE) |
(unsafe_flags << BINLOG_STMT_WARNING_COUNT);
DBUG_PRINT("info", ("Scheduling warning to be issued by "
"binlog_query: '%s'",
ER(ER_BINLOG_UNSAFE_STATEMENT)));
DBUG_PRINT("info", ("binlog_stmt_flags: 0x%x",
binlog_unsafe_warning_flags));
}
/* log in statement format! */
}
/* No statement-only engines and binlog_format != STATEMENT.
I.e., nothing prevents us from row logging if needed. */
else
{
if (lex->is_stmt_unsafe() || lex->is_stmt_row_injection()
|| (flags_all_set & HA_BINLOG_STMT_CAPABLE) == 0)
{
/* log in row format! */
set_current_stmt_binlog_format_row_if_mixed();
}
}
}
if (error) {
DBUG_PRINT("info", ("decision: no logging since an error was generated"));
DBUG_RETURN(-1);
}
DBUG_PRINT("info", ("decision: logging in %s format",
is_current_stmt_binlog_format_row() ?
"ROW" : "STATEMENT"));
}
#ifndef DBUG_OFF
else
DBUG_PRINT("info", ("decision: no logging since "
"mysql_bin_log.is_open() = %d "
"and (options & OPTION_BIN_LOG) = 0x%llx "
"and binlog_format = %d "
"and binlog_filter->db_ok(db) = %d",
mysql_bin_log.is_open(),
(options & OPTION_BIN_LOG),
variables.binlog_format,
binlog_filter->db_ok(db)));
#endif
DBUG_RETURN(0);
}
/*
Implementation of interface to write rows to the binary log through the
thread. The thread is responsible for writing the rows it has
inserted/updated/deleted.
*/
#ifndef MYSQL_CLIENT
/*
Template member function for ensuring that there is an rows log
event of the apropriate type before proceeding.
PRE CONDITION:
- Events of type 'RowEventT' have the type code 'type_code'.
POST CONDITION:
If a non-NULL pointer is returned, the pending event for thread 'thd' will
be an event of type 'RowEventT' (which have the type code 'type_code')
will either empty or have enough space to hold 'needed' bytes. In
addition, the columns bitmap will be correct for the row, meaning that
the pending event will be flushed if the columns in the event differ from
the columns suppled to the function.
RETURNS
If no error, a non-NULL pending event (either one which already existed or
the newly created one).
If error, NULL.
*/
template <class RowsEventT> Rows_log_event*
THD::binlog_prepare_pending_rows_event(TABLE* table, uint32 serv_id,
MY_BITMAP const* cols,
size_t colcnt,
size_t needed,
bool is_transactional,
RowsEventT *hint __attribute__((unused)))
{
DBUG_ENTER("binlog_prepare_pending_rows_event");
/* Pre-conditions */
DBUG_ASSERT(table->s->table_map_id != ~0UL);
/* Fetch the type code for the RowsEventT template parameter */
int const type_code= RowsEventT::TYPE_CODE;
/*
There is no good place to set up the transactional data, so we
have to do it here.
*/
if (binlog_setup_trx_data())
DBUG_RETURN(NULL);
Rows_log_event* pending= binlog_get_pending_rows_event();
if (unlikely(pending && !pending->is_valid()))
DBUG_RETURN(NULL);
/*
Check if the current event is non-NULL and a write-rows
event. Also check if the table provided is mapped: if it is not,
then we have switched to writing to a new table.
If there is no pending event, we need to create one. If there is a pending
event, but it's not about the same table id, or not of the same type
(between Write, Update and Delete), or not the same affected columns, or
going to be too big, flush this event to disk and create a new pending
event.
*/
if (!pending ||
pending->server_id != serv_id ||
pending->get_table_id() != table->s->table_map_id ||
pending->get_type_code() != type_code ||
pending->get_data_size() + needed > opt_binlog_rows_event_max_size ||
pending->get_width() != colcnt ||
!bitmap_cmp(pending->get_cols(), cols))
{
/* Create a new RowsEventT... */
Rows_log_event* const
ev= new RowsEventT(this, table, table->s->table_map_id, cols,
is_transactional);
if (unlikely(!ev))
DBUG_RETURN(NULL);
ev->server_id= serv_id; // I don't like this, it's too easy to forget.
/*
flush the pending event and replace it with the newly created
event...
*/
if (unlikely(mysql_bin_log.flush_and_set_pending_rows_event(this, ev)))
{
delete ev;
DBUG_RETURN(NULL);
}
DBUG_RETURN(ev); /* This is the new pending event */
}
DBUG_RETURN(pending); /* This is the current pending event */
}
#ifdef HAVE_EXPLICIT_TEMPLATE_INSTANTIATION
/*
Instantiate the versions we need, we have -fno-implicit-template as
compiling option.
*/
template Rows_log_event*
THD::binlog_prepare_pending_rows_event(TABLE*, uint32, MY_BITMAP const*,
size_t, size_t, bool,
Write_rows_log_event*);
template Rows_log_event*
THD::binlog_prepare_pending_rows_event(TABLE*, uint32, MY_BITMAP const*,
size_t colcnt, size_t, bool,
Delete_rows_log_event *);
template Rows_log_event*
THD::binlog_prepare_pending_rows_event(TABLE*, uint32, MY_BITMAP const*,
size_t colcnt, size_t, bool,
Update_rows_log_event *);
#endif
#ifdef NOT_USED
static char const*
field_type_name(enum_field_types type)
{
switch (type) {
case MYSQL_TYPE_DECIMAL:
return "MYSQL_TYPE_DECIMAL";
case MYSQL_TYPE_TINY:
return "MYSQL_TYPE_TINY";
case MYSQL_TYPE_SHORT:
return "MYSQL_TYPE_SHORT";
case MYSQL_TYPE_LONG:
return "MYSQL_TYPE_LONG";
case MYSQL_TYPE_FLOAT:
return "MYSQL_TYPE_FLOAT";
case MYSQL_TYPE_DOUBLE:
return "MYSQL_TYPE_DOUBLE";
case MYSQL_TYPE_NULL:
return "MYSQL_TYPE_NULL";
case MYSQL_TYPE_TIMESTAMP:
return "MYSQL_TYPE_TIMESTAMP";
case MYSQL_TYPE_LONGLONG:
return "MYSQL_TYPE_LONGLONG";
case MYSQL_TYPE_INT24:
return "MYSQL_TYPE_INT24";
case MYSQL_TYPE_DATE:
return "MYSQL_TYPE_DATE";
case MYSQL_TYPE_TIME:
return "MYSQL_TYPE_TIME";
case MYSQL_TYPE_DATETIME:
return "MYSQL_TYPE_DATETIME";
case MYSQL_TYPE_YEAR:
return "MYSQL_TYPE_YEAR";
case MYSQL_TYPE_NEWDATE:
return "MYSQL_TYPE_NEWDATE";
case MYSQL_TYPE_VARCHAR:
return "MYSQL_TYPE_VARCHAR";
case MYSQL_TYPE_BIT:
return "MYSQL_TYPE_BIT";
case MYSQL_TYPE_NEWDECIMAL:
return "MYSQL_TYPE_NEWDECIMAL";
case MYSQL_TYPE_ENUM:
return "MYSQL_TYPE_ENUM";
case MYSQL_TYPE_SET:
return "MYSQL_TYPE_SET";
case MYSQL_TYPE_TINY_BLOB:
return "MYSQL_TYPE_TINY_BLOB";
case MYSQL_TYPE_MEDIUM_BLOB:
return "MYSQL_TYPE_MEDIUM_BLOB";
case MYSQL_TYPE_LONG_BLOB:
return "MYSQL_TYPE_LONG_BLOB";
case MYSQL_TYPE_BLOB:
return "MYSQL_TYPE_BLOB";
case MYSQL_TYPE_VAR_STRING:
return "MYSQL_TYPE_VAR_STRING";
case MYSQL_TYPE_STRING:
return "MYSQL_TYPE_STRING";
case MYSQL_TYPE_GEOMETRY:
return "MYSQL_TYPE_GEOMETRY";
}
return "Unknown";
}
#endif
namespace {
/**
Class to handle temporary allocation of memory for row data.
The responsibilities of the class is to provide memory for
packing one or two rows of packed data (depending on what
constructor is called).
In order to make the allocation more efficient for "simple" rows,
i.e., rows that do not contain any blobs, a pointer to the
allocated memory is of memory is stored in the table structure
for simple rows. If memory for a table containing a blob field
is requested, only memory for that is allocated, and subsequently
released when the object is destroyed.
*/
class Row_data_memory {
public:
/**
Build an object to keep track of a block-local piece of memory
for storing a row of data.
@param table
Table where the pre-allocated memory is stored.
@param length
Length of data that is needed, if the record contain blobs.
*/
Row_data_memory(TABLE *table, size_t const len1)
: m_memory(0)
{
#ifndef DBUG_OFF
m_alloc_checked= FALSE;
#endif
allocate_memory(table, len1);
m_ptr[0]= has_memory() ? m_memory : 0;
m_ptr[1]= 0;
}
Row_data_memory(TABLE *table, size_t const len1, size_t const len2)
: m_memory(0)
{
#ifndef DBUG_OFF
m_alloc_checked= FALSE;
#endif
allocate_memory(table, len1 + len2);
m_ptr[0]= has_memory() ? m_memory : 0;
m_ptr[1]= has_memory() ? m_memory + len1 : 0;
}
~Row_data_memory()
{
if (m_memory != 0 && m_release_memory_on_destruction)
my_free((uchar*) m_memory, MYF(MY_WME));
}
/**
Is there memory allocated?
@retval true There is memory allocated
@retval false Memory allocation failed
*/
bool has_memory() const {
#ifndef DBUG_OFF
m_alloc_checked= TRUE;
#endif
return m_memory != 0;
}
uchar *slot(uint s)
{
DBUG_ASSERT(s < sizeof(m_ptr)/sizeof(*m_ptr));
DBUG_ASSERT(m_ptr[s] != 0);
DBUG_ASSERT(m_alloc_checked == TRUE);
return m_ptr[s];
}
private:
void allocate_memory(TABLE *const table, size_t const total_length)
{
if (table->s->blob_fields == 0)
{
/*
The maximum length of a packed record is less than this
length. We use this value instead of the supplied length
when allocating memory for records, since we don't know how
the memory will be used in future allocations.
Since table->s->reclength is for unpacked records, we have
to add two bytes for each field, which can potentially be
added to hold the length of a packed field.
*/
size_t const maxlen= table->s->reclength + 2 * table->s->fields;
/*
Allocate memory for two records if memory hasn't been
allocated. We allocate memory for two records so that it can
be used when processing update rows as well.
*/
if (table->write_row_record == 0)
table->write_row_record=
(uchar *) alloc_root(&table->mem_root, 2 * maxlen);
m_memory= table->write_row_record;
m_release_memory_on_destruction= FALSE;
}
else
{
m_memory= (uchar *) my_malloc(total_length, MYF(MY_WME));
m_release_memory_on_destruction= TRUE;
}
}
#ifndef DBUG_OFF
mutable bool m_alloc_checked;
#endif
bool m_release_memory_on_destruction;
uchar *m_memory;
uchar *m_ptr[2];
};
}
int THD::binlog_write_row(TABLE* table, bool is_trans,
MY_BITMAP const* cols, size_t colcnt,
uchar const *record)
{
DBUG_ASSERT(is_current_stmt_binlog_format_row() && mysql_bin_log.is_open());
/*
Pack records into format for transfer. We are allocating more
memory than needed, but that doesn't matter.
*/
Row_data_memory memory(table, max_row_length(table, record));
if (!memory.has_memory())
return HA_ERR_OUT_OF_MEM;
uchar *row_data= memory.slot(0);
size_t const len= pack_row(table, cols, row_data, record);
Rows_log_event* const ev=
binlog_prepare_pending_rows_event(table, server_id, cols, colcnt,
len, is_trans,
static_cast<Write_rows_log_event*>(0));
if (unlikely(ev == 0))
return HA_ERR_OUT_OF_MEM;
return ev->add_row_data(row_data, len);
}
int THD::binlog_update_row(TABLE* table, bool is_trans,
MY_BITMAP const* cols, size_t colcnt,
const uchar *before_record,
const uchar *after_record)
{
DBUG_ASSERT(is_current_stmt_binlog_format_row() && mysql_bin_log.is_open());
size_t const before_maxlen = max_row_length(table, before_record);
size_t const after_maxlen = max_row_length(table, after_record);
Row_data_memory row_data(table, before_maxlen, after_maxlen);
if (!row_data.has_memory())
return HA_ERR_OUT_OF_MEM;
uchar *before_row= row_data.slot(0);
uchar *after_row= row_data.slot(1);
size_t const before_size= pack_row(table, cols, before_row,
before_record);
size_t const after_size= pack_row(table, cols, after_row,
after_record);
/*
Don't print debug messages when running valgrind since they can
trigger false warnings.
*/
#ifndef HAVE_purify
DBUG_DUMP("before_record", before_record, table->s->reclength);
DBUG_DUMP("after_record", after_record, table->s->reclength);
DBUG_DUMP("before_row", before_row, before_size);
DBUG_DUMP("after_row", after_row, after_size);
#endif
Rows_log_event* const ev=
binlog_prepare_pending_rows_event(table, server_id, cols, colcnt,
before_size + after_size, is_trans,
static_cast<Update_rows_log_event*>(0));
if (unlikely(ev == 0))
return HA_ERR_OUT_OF_MEM;
return
ev->add_row_data(before_row, before_size) ||
ev->add_row_data(after_row, after_size);
}
int THD::binlog_delete_row(TABLE* table, bool is_trans,
MY_BITMAP const* cols, size_t colcnt,
uchar const *record)
{
DBUG_ASSERT(is_current_stmt_binlog_format_row() && mysql_bin_log.is_open());
/*
Pack records into format for transfer. We are allocating more
memory than needed, but that doesn't matter.
*/
Row_data_memory memory(table, max_row_length(table, record));
if (unlikely(!memory.has_memory()))
return HA_ERR_OUT_OF_MEM;
uchar *row_data= memory.slot(0);
size_t const len= pack_row(table, cols, row_data, record);
Rows_log_event* const ev=
binlog_prepare_pending_rows_event(table, server_id, cols, colcnt,
len, is_trans,
static_cast<Delete_rows_log_event*>(0));
if (unlikely(ev == 0))
return HA_ERR_OUT_OF_MEM;
return ev->add_row_data(row_data, len);
}
int THD::binlog_remove_pending_rows_event(bool clear_maps)
{
DBUG_ENTER("THD::binlog_remove_pending_rows_event");
if (!mysql_bin_log.is_open())
DBUG_RETURN(0);
mysql_bin_log.remove_pending_rows_event(this);
if (clear_maps)
binlog_table_maps= 0;
DBUG_RETURN(0);
}
int THD::binlog_flush_pending_rows_event(bool stmt_end)
{
DBUG_ENTER("THD::binlog_flush_pending_rows_event");
/*
We shall flush the pending event even if we are not in row-based
mode: it might be the case that we left row-based mode before
flushing anything (e.g., if we have explicitly locked tables).
*/
if (!mysql_bin_log.is_open())
DBUG_RETURN(0);
/*
Mark the event as the last event of a statement if the stmt_end
flag is set.
*/
int error= 0;
if (Rows_log_event *pending= binlog_get_pending_rows_event())
{
if (stmt_end)
{
pending->set_flags(Rows_log_event::STMT_END_F);
pending->flags|= LOG_EVENT_UPDATE_TABLE_MAP_VERSION_F;
binlog_table_maps= 0;
}
error= mysql_bin_log.flush_and_set_pending_rows_event(this, 0);
}
DBUG_RETURN(error);
}
#if !defined(DBUG_OFF) && !defined(_lint)
static const char *
show_query_type(THD::enum_binlog_query_type qtype)
{
switch (qtype) {
case THD::ROW_QUERY_TYPE:
return "ROW";
case THD::STMT_QUERY_TYPE:
return "STMT";
case THD::QUERY_TYPE_COUNT:
default:
DBUG_ASSERT(0 <= qtype && qtype < THD::QUERY_TYPE_COUNT);
}
static char buf[64];
sprintf(buf, "UNKNOWN#%d", qtype);
return buf;
}
#endif
/**
Auxiliary method used by @c binlog_query() to raise warnings.
The type of warning and the type of unsafeness is stored in
THD::binlog_unsafe_warning_flags.
*/
void THD::issue_unsafe_warnings()
{
DBUG_ENTER("issue_unsafe_warnings");
/*
Ensure that binlog_unsafe_warning_flags is big enough to hold all
bits. This is actually a constant expression.
*/
DBUG_ASSERT(BINLOG_STMT_WARNING_COUNT + 2 * LEX::BINLOG_STMT_UNSAFE_COUNT <=
sizeof(binlog_unsafe_warning_flags) * CHAR_BIT);
/**
@note The order of the elements of this array must correspond to
the order of elements in enum_binlog_stmt_unsafe.
*/
static const int explanations[LEX::BINLOG_STMT_UNSAFE_COUNT] =
{
ER_BINLOG_UNSAFE_LIMIT,
ER_BINLOG_UNSAFE_INSERT_DELAYED,
ER_BINLOG_UNSAFE_SYSTEM_TABLE,
ER_BINLOG_UNSAFE_TWO_AUTOINC_COLUMNS,
ER_BINLOG_UNSAFE_UDF,
ER_BINLOG_UNSAFE_SYSTEM_VARIABLE,
ER_BINLOG_UNSAFE_SYSTEM_FUNCTION
};
uint32 flags= binlog_unsafe_warning_flags;
/* No warnings (yet) for this statement. */
if (flags == 0)
DBUG_VOID_RETURN;
/* Get the types of unsafeness that affect the current statement. */
uint32 unsafe_type_flags= flags >> BINLOG_STMT_WARNING_COUNT;
DBUG_ASSERT((unsafe_type_flags & LEX::BINLOG_STMT_UNSAFE_ALL_FLAGS) != 0);
/*
Clear: (1) bits above BINLOG_STMT_UNSAFE_COUNT; (2) bits for
warnings that have been printed already.
*/
unsafe_type_flags &= (LEX::BINLOG_STMT_UNSAFE_ALL_FLAGS ^
(unsafe_type_flags >> LEX::BINLOG_STMT_UNSAFE_COUNT));
/* If all warnings have been printed already, return. */
if (unsafe_type_flags == 0)
DBUG_VOID_RETURN;
/* Figure out which error code to issue. */
int err;
if (binlog_unsafe_warning_flags &
(1 << BINLOG_STMT_WARNING_UNSAFE_AND_STMT_ENGINE))
err= ER_BINLOG_UNSAFE_AND_STMT_ENGINE;
else {
DBUG_ASSERT(binlog_unsafe_warning_flags &
(1 << BINLOG_STMT_WARNING_UNSAFE_AND_STMT_MODE));
err= ER_BINLOG_UNSAFE_STATEMENT;
}
DBUG_PRINT("info", ("flags: 0x%x err: %d", unsafe_type_flags, err));
/*
For each unsafe_type, check if the statement is unsafe in this way
and issue a warning.
*/
for (int unsafe_type=0;
unsafe_type < LEX::BINLOG_STMT_UNSAFE_COUNT;
unsafe_type++)
{
if ((unsafe_type_flags & (1 << unsafe_type)) != 0)
{
push_warning_printf(this, MYSQL_ERROR::WARN_LEVEL_NOTE, err,
ER(ER_BINLOG_UNSAFE_WARNING_SHORT),
ER(err), ER(explanations[unsafe_type]));
if (global_system_variables.log_warnings)
sql_print_warning(ER(ER_BINLOG_UNSAFE_WARNING_LONG),
ER(err), ER(explanations[unsafe_type]), query);
}
}
/*
Mark these unsafe types as already printed, to avoid printing
warnings for them again.
*/
binlog_unsafe_warning_flags|= unsafe_type_flags <<
(BINLOG_STMT_WARNING_COUNT + LEX::BINLOG_STMT_UNSAFE_COUNT);
DBUG_VOID_RETURN;
}
/**
Log the current query.
The query will be logged in either row format or statement format
depending on the value of @c current_stmt_binlog_format_row field and
the value of the @c qtype parameter.
This function must be called:
- After the all calls to ha_*_row() functions have been issued.
- After any writes to system tables. Rationale: if system tables
were written after a call to this function, and the master crashes
after the call to this function and before writing the system
tables, then the master and slave get out of sync.
- Before tables are unlocked and closed.
@see decide_logging_format
@retval 0 Success
@retval nonzero If there is a failure when writing the query (e.g.,
write failure), then the error code is returned.
*/
int THD::binlog_query(THD::enum_binlog_query_type qtype, char const *query_arg,
ulong query_len, bool is_trans, bool suppress_use,
int errcode)
{
DBUG_ENTER("THD::binlog_query");
DBUG_PRINT("enter", ("qtype: %s query: '%s'",
show_query_type(qtype), query_arg));
DBUG_ASSERT(query_arg && mysql_bin_log.is_open());
/*
If we are not in prelocked mode, mysql_unlock_tables() will be
called after this binlog_query(), so we have to flush the pending
rows event with the STMT_END_F set to unlock all tables at the
slave side as well.
If we are in prelocked mode, the flushing will be done inside the
top-most close_thread_tables().
*/
if (this->prelocked_mode == NON_PRELOCKED)
if (int error= binlog_flush_pending_rows_event(TRUE))
DBUG_RETURN(error);
/*
Warnings for unsafe statements logged in statement format are
printed here instead of in decide_logging_format(). This is
because the warnings should be printed only if the statement is
actually logged. When executing decide_logging_format(), we cannot
know for sure if the statement will be logged.
*/
if (sql_log_bin_toplevel)
issue_unsafe_warnings();
switch (qtype) {
/*
ROW_QUERY_TYPE means that the statement may be logged either in
row format or in statement format. If
current_stmt_binlog_format is row, it means that the
statement has already been logged in row format and hence shall
not be logged again.
*/
case THD::ROW_QUERY_TYPE:
DBUG_PRINT("debug",
("is_current_stmt_binlog_format_row: %d",
is_current_stmt_binlog_format_row()));
if (is_current_stmt_binlog_format_row())
DBUG_RETURN(0);
/* Fall through */
/*
STMT_QUERY_TYPE means that the query must be logged in statement
format; it cannot be logged in row format. This is typically
used by DDL statements. It is an error to use this query type
if current_stmt_binlog_format_row is row.
@todo Currently there are places that call this method with
STMT_QUERY_TYPE and current_stmt_binlog_format is row. Fix those
places and add assert to ensure correct behavior. /Sven
*/
case THD::STMT_QUERY_TYPE:
/*
The MYSQL_LOG::write() function will set the STMT_END_F flag and
flush the pending rows event if necessary.
*/
{
Query_log_event qinfo(this, query_arg, query_len, is_trans, suppress_use,
errcode);
qinfo.flags|= LOG_EVENT_UPDATE_TABLE_MAP_VERSION_F;
/*
Binlog table maps will be irrelevant after a Query_log_event
(they are just removed on the slave side) so after the query
log event is written to the binary log, we pretend that no
table maps were written.
*/
int error= mysql_bin_log.write(&qinfo);
binlog_table_maps= 0;
DBUG_RETURN(error);
}
break;
case THD::QUERY_TYPE_COUNT:
default:
DBUG_ASSERT(0 <= qtype && qtype < QUERY_TYPE_COUNT);
}
DBUG_RETURN(0);
}
bool Discrete_intervals_list::append(ulonglong start, ulonglong val,
ulonglong incr)
{
DBUG_ENTER("Discrete_intervals_list::append");
/* first, see if this can be merged with previous */
if ((head == NULL) || tail->merge_if_contiguous(start, val, incr))
{
/* it cannot, so need to add a new interval */
Discrete_interval *new_interval= new Discrete_interval(start, val, incr);
DBUG_RETURN(append(new_interval));
}
DBUG_RETURN(0);
}
bool Discrete_intervals_list::append(Discrete_interval *new_interval)
{
DBUG_ENTER("Discrete_intervals_list::append");
if (unlikely(new_interval == NULL))
DBUG_RETURN(1);
DBUG_PRINT("info",("adding new auto_increment interval"));
if (head == NULL)
head= current= new_interval;
else
tail->next= new_interval;
tail= new_interval;
elements++;
DBUG_RETURN(0);
}
#endif /* !defined(MYSQL_CLIENT) */