mariadb/innobase/btr/btr0cur.c
heikki@donna.mysql.fi 314cdf3424 ut0ut.c Fixes for 64-bit Linux, bug fixes, compiler warning fixes
mem0pool.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
os0file.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
os0shm.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
os0sync.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
os0thread.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
page0page.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
que0que.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
row0ins.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
row0mysql.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
row0sel.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
row0upd.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
row0vers.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
srv0srv.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
srv0start.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
sync0arr.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
sync0rw.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
sync0sync.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
trx0rec.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
trx0trx.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
srv0srv.h	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
sync0rw.h	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
sync0sync.h	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
ut0dbg.h	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
lock0lock.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
log0log.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
log0recv.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
ibuf0ibuf.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
buf0buf.h	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
buf0buf.ic	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
hash0hash.ic	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
mach0data.ic	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
mem0mem.h	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
mem0pool.h	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
mtr0mtr.h	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
os0file.h	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
os0sync.h	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
os0sync.ic	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
os0thread.h	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
univ.i  	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
row0mysql.ic	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
com0shm.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
data0data.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
data0type.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
dict0crea.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
dict0dict.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
fil0fil.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
fsp0fsp.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
fut0lst.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
btr0sea.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
buf0buf.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
buf0flu.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
btr0btr.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
btr0cur.c	Fixes for 64-bit Linux, bug fixes, compiler warning fixes
2001-03-02 17:33:11 +02:00

2289 lines
57 KiB
C

/******************************************************
The index tree cursor
All changes that row operations make to a B-tree or the records
there must go through this module! Undo log records are written here
of every modify or insert of a clustered index record.
NOTE!!!
To make sure we do not run out of disk space during a pessimistic
insert or update, we have to reserve 2 x the height of the index tree
many pages in the tablespace before we start the operation, because
if leaf splitting has been started, it is difficult to undo, except
by crashing the database and doing a roll-forward.
(c) 1994-1996 Innobase Oy
Created 10/16/1994 Heikki Tuuri
*******************************************************/
#include "btr0cur.h"
#ifdef UNIV_NONINL
#include "btr0cur.ic"
#endif
#include "page0page.h"
#include "rem0rec.h"
#include "rem0cmp.h"
#include "btr0btr.h"
#include "btr0sea.h"
#include "row0upd.h"
#include "trx0rec.h"
#include "que0que.h"
#include "row0row.h"
#include "srv0srv.h"
#include "ibuf0ibuf.h"
#include "lock0lock.h"
ulint btr_cur_rnd = 0;
ulint btr_cur_n_non_sea = 0;
/* In the optimistic insert, if the insert does not fit, but this much space
can be released by page reorganize, then it is reorganized */
#define BTR_CUR_PAGE_REORGANIZE_LIMIT (UNIV_PAGE_SIZE / 32)
/* When estimating number of different kay values in an index sample
this many index pages */
#define BTR_KEY_VAL_ESTIMATE_N_PAGES 8
/***********************************************************************
Adds path information to the cursor for the current page, for which
the binary search has been performed. */
static
void
btr_cur_add_path_info(
/*==================*/
btr_cur_t* cursor, /* in: cursor positioned on a page */
ulint height, /* in: height of the page in tree;
0 means leaf node */
ulint root_height); /* in: root node height in tree */
/*==================== B-TREE SEARCH =========================*/
/************************************************************************
Latches the leaf page or pages requested. */
static
void
btr_cur_latch_leaves(
/*=================*/
dict_tree_t* tree, /* in: index tree */
page_t* page, /* in: leaf page where the search
converged */
ulint space, /* in: space id */
ulint page_no, /* in: page number of the leaf */
ulint latch_mode, /* in: BTR_SEARCH_LEAF, ... */
btr_cur_t* cursor, /* in: cursor */
mtr_t* mtr) /* in: mtr */
{
ulint left_page_no;
ulint right_page_no;
ut_ad(tree && page && mtr);
if (latch_mode == BTR_SEARCH_LEAF) {
btr_page_get(space, page_no, RW_S_LATCH, mtr);
} else if (latch_mode == BTR_MODIFY_LEAF) {
btr_page_get(space, page_no, RW_X_LATCH, mtr);
} else if (latch_mode == BTR_MODIFY_TREE) {
/* x-latch also brothers from left to right */
left_page_no = btr_page_get_prev(page, mtr);
if (left_page_no != FIL_NULL) {
btr_page_get(space, left_page_no, RW_X_LATCH, mtr);
}
btr_page_get(space, page_no, RW_X_LATCH, mtr);
right_page_no = btr_page_get_next(page, mtr);
if (right_page_no != FIL_NULL) {
btr_page_get(space, right_page_no, RW_X_LATCH, mtr);
}
} else if (latch_mode == BTR_SEARCH_PREV) {
/* s-latch also left brother */
left_page_no = btr_page_get_prev(page, mtr);
if (left_page_no != FIL_NULL) {
cursor->left_page = btr_page_get(space, left_page_no,
RW_S_LATCH, mtr);
}
btr_page_get(space, page_no, RW_S_LATCH, mtr);
} else if (latch_mode == BTR_MODIFY_PREV) {
/* x-latch also left brother */
left_page_no = btr_page_get_prev(page, mtr);
if (left_page_no != FIL_NULL) {
cursor->left_page = btr_page_get(space, left_page_no,
RW_X_LATCH, mtr);
}
btr_page_get(space, page_no, RW_X_LATCH, mtr);
} else {
ut_error;
}
}
/************************************************************************
Searches an index tree and positions a tree cursor on a given level.
NOTE: n_fields_cmp in tuple must be set so that it cannot be compared
to node pointer page number fields on the upper levels of the tree!
Note that if mode is PAGE_CUR_LE, which is used in inserts, then
cursor->up_match and cursor->low_match both will have sensible values.
If mode is PAGE_CUR_GE, then up_match will a have a sensible value. */
void
btr_cur_search_to_nth_level(
/*========================*/
dict_index_t* index, /* in: index */
ulint level, /* in: the tree level of search */
dtuple_t* tuple, /* in: data tuple; NOTE: n_fields_cmp in
tuple must be set so that it cannot get
compared to the node ptr page number field! */
ulint mode, /* in: PAGE_CUR_L, ...;
NOTE that if the search is made using a unique
prefix of a record, mode should be
PAGE_CUR_LE, not PAGE_CUR_GE, as the latter
may end up on the previous page relative to the
record! Inserts should always be made using
PAGE_CUR_LE to search the position! */
ulint latch_mode, /* in: BTR_SEARCH_LEAF, ..., ORed with
BTR_INSERT and BTR_ESTIMATE;
cursor->left_page is used to store a pointer
to the left neighbor page, in the cases
BTR_SEARCH_PREV and BTR_MODIFY_PREV */
btr_cur_t* cursor, /* in/out: tree cursor; the cursor page is
s- or x-latched */
ulint has_search_latch,/* in: info on the latch mode the
caller currently has on btr_search_latch:
RW_S_LATCH, or 0 */
mtr_t* mtr) /* in: mtr */
{
dict_tree_t* tree;
page_cur_t* page_cursor;
page_t* page;
page_t* guess;
rec_t* node_ptr;
ulint page_no;
ulint space;
ulint up_match;
ulint up_bytes;
ulint low_match;
ulint low_bytes;
ulint height;
ulint savepoint;
ulint rw_latch;
ulint page_mode;
ulint insert_planned;
ulint buf_mode;
ulint estimate;
ulint root_height;
#ifdef BTR_CUR_ADAPT
btr_search_t* info;
#endif
/* Currently, PAGE_CUR_LE is the only search mode used for searches
ending to upper levels */
ut_ad(level == 0 || mode == PAGE_CUR_LE);
ut_ad(dict_tree_check_search_tuple(index->tree, tuple));
ut_ad(!(index->type & DICT_IBUF) || ibuf_inside());
ut_ad(dtuple_check_typed(tuple));
#ifdef UNIV_DEBUG
cursor->up_match = ULINT_UNDEFINED;
cursor->low_match = ULINT_UNDEFINED;
#endif
insert_planned = latch_mode & BTR_INSERT;
estimate = latch_mode & BTR_ESTIMATE;
latch_mode = latch_mode & ~(BTR_INSERT | BTR_ESTIMATE);
ut_ad(!insert_planned || (mode == PAGE_CUR_LE));
cursor->flag = BTR_CUR_BINARY;
cursor->index = index;
#ifndef BTR_CUR_ADAPT
guess = NULL;
#else
info = btr_search_get_info(index);
guess = info->root_guess;
#ifdef BTR_CUR_HASH_ADAPT
#ifdef UNIV_SEARCH_PERF_STAT
info->n_searches++;
#endif
if (latch_mode <= BTR_MODIFY_LEAF && info->last_hash_succ
&& !estimate
&& btr_search_guess_on_hash(index, info, tuple, mode,
latch_mode, cursor,
has_search_latch, mtr)) {
/* Search using the hash index succeeded */
ut_ad(cursor->up_match != ULINT_UNDEFINED
|| mode != PAGE_CUR_GE);
ut_ad(cursor->up_match != ULINT_UNDEFINED
|| mode != PAGE_CUR_LE);
ut_ad(cursor->low_match != ULINT_UNDEFINED
|| mode != PAGE_CUR_LE);
return;
}
#endif
#endif
#ifdef UNIV_SEARCH_PERF_STAT
btr_cur_n_non_sea++;
#endif
/* If the hash search did not succeed, do binary search down the
tree */
if (has_search_latch) {
/* Release possible search latch to obey latching order */
rw_lock_s_unlock(&btr_search_latch);
}
savepoint = mtr_set_savepoint(mtr);
tree = index->tree;
if (latch_mode == BTR_MODIFY_TREE) {
mtr_x_lock(dict_tree_get_lock(tree), mtr);
} else if (latch_mode == BTR_CONT_MODIFY_TREE) {
/* Do nothing */
ut_ad(mtr_memo_contains(mtr, dict_tree_get_lock(tree),
MTR_MEMO_X_LOCK));
} else {
mtr_s_lock(dict_tree_get_lock(tree), mtr);
}
page_cursor = btr_cur_get_page_cur(cursor);
space = dict_tree_get_space(tree);
page_no = dict_tree_get_page(tree);
up_match = 0;
up_bytes = 0;
low_match = 0;
low_bytes = 0;
height = ULINT_UNDEFINED;
rw_latch = RW_NO_LATCH;
buf_mode = BUF_GET;
if (mode == PAGE_CUR_GE) {
page_mode = PAGE_CUR_L;
} else if (mode == PAGE_CUR_G) {
page_mode = PAGE_CUR_LE;
} else if (mode == PAGE_CUR_LE) {
page_mode = PAGE_CUR_LE;
} else {
ut_ad(mode == PAGE_CUR_L);
page_mode = PAGE_CUR_L;
}
/* Loop and search until we arrive at the desired level */
for (;;) {
if ((height == 0) && (latch_mode <= BTR_MODIFY_LEAF)) {
rw_latch = latch_mode;
if (insert_planned && ibuf_should_try(index)) {
/* Try insert to the insert buffer if the
page is not in the buffer pool */
buf_mode = BUF_GET_IF_IN_POOL;
}
}
retry_page_get:
page = buf_page_get_gen(space, page_no, rw_latch, guess,
buf_mode,
#ifdef UNIV_SYNC_DEBUG
IB__FILE__, __LINE__,
#endif
mtr);
if (page == NULL) {
/* This must be a search to perform an insert;
try insert to the insert buffer */
ut_ad(buf_mode == BUF_GET_IF_IN_POOL);
ut_ad(insert_planned);
ut_ad(cursor->thr);
if (ibuf_should_try(index) &&
ibuf_insert(tuple, index, space, page_no,
cursor->thr)) {
/* Insertion to the insert buffer succeeded */
cursor->flag = BTR_CUR_INSERT_TO_IBUF;
return;
}
/* Insert to the insert buffer did not succeed:
retry page get */
buf_mode = BUF_GET;
goto retry_page_get;
}
#ifdef UNIV_SYNC_DEBUG
if (rw_latch != RW_NO_LATCH) {
buf_page_dbg_add_level(page, SYNC_TREE_NODE);
}
#endif
ut_ad(0 == ut_dulint_cmp(tree->id,
btr_page_get_index_id(page)));
if (height == ULINT_UNDEFINED) {
/* We are in the root node */
height = btr_page_get_level(page, mtr);
root_height = height;
cursor->tree_height = root_height + 1;
#ifdef BTR_CUR_ADAPT
if (page != guess) {
info->root_guess = page;
}
#endif
}
if (height == 0) {
if (rw_latch == RW_NO_LATCH) {
btr_cur_latch_leaves(tree, page, space,
page_no, latch_mode, cursor,
mtr);
}
if ((latch_mode != BTR_MODIFY_TREE)
&& (latch_mode != BTR_CONT_MODIFY_TREE)) {
/* Release the tree s-latch */
mtr_release_s_latch_at_savepoint(
mtr, savepoint,
dict_tree_get_lock(tree));
}
page_mode = mode;
}
page_cur_search_with_match(page, tuple, page_mode, &up_match,
&up_bytes, &low_match, &low_bytes,
page_cursor);
if (estimate) {
btr_cur_add_path_info(cursor, height, root_height);
}
/* If this is the desired level, leave the loop */
if (level == height) {
if (level > 0) {
/* x-latch the page */
btr_page_get(space, page_no, RW_X_LATCH, mtr);
}
break;
}
ut_ad(height > 0);
height--;
guess = NULL;
node_ptr = page_cur_get_rec(page_cursor);
/* Go to the child node */
page_no = btr_node_ptr_get_child_page_no(node_ptr);
}
if (level == 0) {
cursor->low_match = low_match;
cursor->low_bytes = low_bytes;
cursor->up_match = up_match;
cursor->up_bytes = up_bytes;
#ifdef BTR_CUR_ADAPT
btr_search_info_update(index, cursor);
#endif
ut_ad(cursor->up_match != ULINT_UNDEFINED
|| mode != PAGE_CUR_GE);
ut_ad(cursor->up_match != ULINT_UNDEFINED
|| mode != PAGE_CUR_LE);
ut_ad(cursor->low_match != ULINT_UNDEFINED
|| mode != PAGE_CUR_LE);
}
if (has_search_latch) {
rw_lock_s_lock(&btr_search_latch);
}
}
/*********************************************************************
Opens a cursor at either end of an index. */
void
btr_cur_open_at_index_side(
/*=======================*/
ibool from_left, /* in: TRUE if open to the low end,
FALSE if to the high end */
dict_index_t* index, /* in: index */
ulint latch_mode, /* in: latch mode */
btr_cur_t* cursor, /* in: cursor */
mtr_t* mtr) /* in: mtr */
{
page_cur_t* page_cursor;
dict_tree_t* tree;
page_t* page;
ulint page_no;
ulint space;
ulint height;
ulint root_height;
rec_t* node_ptr;
ulint estimate;
estimate = latch_mode & BTR_ESTIMATE;
latch_mode = latch_mode & ~BTR_ESTIMATE;
tree = index->tree;
if (latch_mode == BTR_MODIFY_TREE) {
mtr_x_lock(dict_tree_get_lock(tree), mtr);
} else {
mtr_s_lock(dict_tree_get_lock(tree), mtr);
}
page_cursor = btr_cur_get_page_cur(cursor);
cursor->index = index;
space = dict_tree_get_space(tree);
page_no = dict_tree_get_page(tree);
height = ULINT_UNDEFINED;
for (;;) {
page = buf_page_get_gen(space, page_no, RW_NO_LATCH, NULL,
BUF_GET,
#ifdef UNIV_SYNC_DEBUG
IB__FILE__, __LINE__,
#endif
mtr);
ut_ad(0 == ut_dulint_cmp(tree->id,
btr_page_get_index_id(page)));
if (height == ULINT_UNDEFINED) {
/* We are in the root node */
height = btr_page_get_level(page, mtr);
root_height = height;
}
if (height == 0) {
btr_cur_latch_leaves(tree, page, space, page_no,
latch_mode, cursor, mtr);
}
if (from_left) {
page_cur_set_before_first(page, page_cursor);
} else {
page_cur_set_after_last(page, page_cursor);
}
if (estimate) {
btr_cur_add_path_info(cursor, height, root_height);
}
if (height == 0) {
break;
}
ut_ad(height > 0);
if (from_left) {
page_cur_move_to_next(page_cursor);
} else {
page_cur_move_to_prev(page_cursor);
}
height--;
node_ptr = page_cur_get_rec(page_cursor);
/* Go to the child node */
page_no = btr_node_ptr_get_child_page_no(node_ptr);
}
}
/**************************************************************************
Positions a cursor at a randomly chosen position within a B-tree. */
void
btr_cur_open_at_rnd_pos(
/*====================*/
dict_index_t* index, /* in: index */
ulint latch_mode, /* in: BTR_SEARCH_LEAF, ... */
btr_cur_t* cursor, /* in/out: B-tree cursor */
mtr_t* mtr) /* in: mtr */
{
page_cur_t* page_cursor;
dict_tree_t* tree;
page_t* page;
ulint page_no;
ulint space;
ulint height;
rec_t* node_ptr;
tree = index->tree;
if (latch_mode == BTR_MODIFY_TREE) {
mtr_x_lock(dict_tree_get_lock(tree), mtr);
} else {
mtr_s_lock(dict_tree_get_lock(tree), mtr);
}
page_cursor = btr_cur_get_page_cur(cursor);
cursor->index = index;
space = dict_tree_get_space(tree);
page_no = dict_tree_get_page(tree);
height = ULINT_UNDEFINED;
for (;;) {
page = buf_page_get_gen(space, page_no, RW_NO_LATCH, NULL,
BUF_GET,
#ifdef UNIV_SYNC_DEBUG
IB__FILE__, __LINE__,
#endif
mtr);
ut_ad(0 == ut_dulint_cmp(tree->id,
btr_page_get_index_id(page)));
if (height == ULINT_UNDEFINED) {
/* We are in the root node */
height = btr_page_get_level(page, mtr);
}
if (height == 0) {
btr_cur_latch_leaves(tree, page, space, page_no,
latch_mode, cursor, mtr);
}
page_cur_open_on_rnd_user_rec(page, page_cursor);
if (height == 0) {
break;
}
ut_ad(height > 0);
height--;
node_ptr = page_cur_get_rec(page_cursor);
/* Go to the child node */
page_no = btr_node_ptr_get_child_page_no(node_ptr);
}
}
/*==================== B-TREE INSERT =========================*/
/*****************************************************************
Inserts a record if there is enough space, or if enough space can
be freed by reorganizing. Differs from _optimistic_insert because
no heuristics is applied to whether it pays to use CPU time for
reorganizing the page or not. */
static
rec_t*
btr_cur_insert_if_possible(
/*=======================*/
/* out: pointer to inserted record if succeed,
else NULL */
btr_cur_t* cursor, /* in: cursor on page after which to insert;
cursor stays valid */
dtuple_t* tuple, /* in: tuple to insert; the size info need not
have been stored to tuple */
ibool* reorg, /* out: TRUE if reorganization occurred */
mtr_t* mtr) /* in: mtr */
{
page_cur_t* page_cursor;
page_t* page;
rec_t* rec;
ut_ad(dtuple_check_typed(tuple));
*reorg = FALSE;
page = btr_cur_get_page(cursor);
ut_ad(mtr_memo_contains(mtr, buf_block_align(page),
MTR_MEMO_PAGE_X_FIX));
page_cursor = btr_cur_get_page_cur(cursor);
/* Now, try the insert */
rec = page_cur_tuple_insert(page_cursor, tuple, mtr);
if (!rec) {
/* If record did not fit, reorganize */
btr_page_reorganize(page, mtr);
*reorg = TRUE;
page_cur_search(page, tuple, PAGE_CUR_LE, page_cursor);
rec = page_cur_tuple_insert(page_cursor, tuple, mtr);
}
return(rec);
}
/*****************************************************************
For an insert, checks the locks and does the undo logging if desired. */
UNIV_INLINE
ulint
btr_cur_ins_lock_and_undo(
/*======================*/
/* out: DB_SUCCESS, DB_WAIT_LOCK,
DB_FAIL, or error number */
ulint flags, /* in: undo logging and locking flags: if
not zero, the parameters index and thr
should be specified */
btr_cur_t* cursor, /* in: cursor on page after which to insert */
dtuple_t* entry, /* in: entry to insert */
que_thr_t* thr, /* in: query thread or NULL */
ibool* inherit)/* out: TRUE if the inserted new record maybe
should inherit LOCK_GAP type locks from the
successor record */
{
dict_index_t* index;
ulint err;
rec_t* rec;
dulint roll_ptr;
/* Check if we have to wait for a lock: enqueue an explicit lock
request if yes */
rec = btr_cur_get_rec(cursor);
index = cursor->index;
err = lock_rec_insert_check_and_lock(flags, rec, index, thr, inherit);
if (err != DB_SUCCESS) {
return(err);
}
if ((index->type & DICT_CLUSTERED) && !(index->type & DICT_IBUF)) {
err = trx_undo_report_row_operation(flags, TRX_UNDO_INSERT_OP,
thr, index, entry, NULL, 0, NULL,
&roll_ptr);
if (err != DB_SUCCESS) {
return(err);
}
/* Now we can fill in the roll ptr field in entry */
if (!(flags & BTR_KEEP_SYS_FLAG)) {
row_upd_index_entry_sys_field(entry, index,
DATA_ROLL_PTR, roll_ptr);
}
}
return(DB_SUCCESS);
}
/*****************************************************************
Tries to perform an insert to a page in an index tree, next to cursor.
It is assumed that mtr holds an x-latch on the page. The operation does
not succeed if there is too little space on the page. If there is just
one record on the page, the insert will always succeed; this is to
prevent trying to split a page with just one record. */
ulint
btr_cur_optimistic_insert(
/*======================*/
/* out: DB_SUCCESS, DB_WAIT_LOCK,
DB_FAIL, or error number */
ulint flags, /* in: undo logging and locking flags: if not
zero, the parameters index and thr should be
specified */
btr_cur_t* cursor, /* in: cursor on page after which to insert;
cursor stays valid */
dtuple_t* entry, /* in: entry to insert */
rec_t** rec, /* out: pointer to inserted record if
succeed */
que_thr_t* thr, /* in: query thread or NULL */
mtr_t* mtr) /* in: mtr */
{
dict_index_t* index;
page_cur_t* page_cursor;
page_t* page;
ulint max_size;
rec_t* dummy_rec;
ulint level;
ibool reorg;
ibool inherit;
ulint rec_size;
ulint data_size;
ulint extra_size;
ulint type;
ulint err;
ut_ad(dtuple_check_typed(entry));
page = btr_cur_get_page(cursor);
index = cursor->index;
ut_ad(mtr_memo_contains(mtr, buf_block_align(page),
MTR_MEMO_PAGE_X_FIX));
max_size = page_get_max_insert_size_after_reorganize(page, 1);
level = btr_page_get_level(page, mtr);
/* Calculate the record size when entry is converted to a record */
data_size = dtuple_get_data_size(entry);
extra_size = rec_get_converted_extra_size(data_size,
dtuple_get_n_fields(entry));
rec_size = data_size + extra_size;
if (rec_size >= page_get_free_space_of_empty() / 2) {
return(DB_TOO_BIG_RECORD);
}
/* If there have been many consecutive inserts, and we are on the leaf
level, check if we have to split the page to reserve enough free space
for future updates of records. */
type = index->type;
if ((type & DICT_CLUSTERED)
&& (dict_tree_get_space_reserve(index->tree) + rec_size > max_size)
&& (page_get_n_recs(page) >= 2)
&& (0 == level)
&& (btr_page_get_split_rec_to_right(cursor, &dummy_rec)
|| btr_page_get_split_rec_to_left(cursor, &dummy_rec))) {
return(DB_FAIL);
}
if (!(((max_size >= rec_size)
&& (max_size >= BTR_CUR_PAGE_REORGANIZE_LIMIT))
|| (page_get_max_insert_size(page, 1) >= rec_size)
|| (page_get_n_recs(page) <= 1))) {
return(DB_FAIL);
}
/* Check locks and write to the undo log, if specified */
err = btr_cur_ins_lock_and_undo(flags, cursor, entry, thr, &inherit);
if (err != DB_SUCCESS) {
return(err);
}
page_cursor = btr_cur_get_page_cur(cursor);
reorg = FALSE;
/* Now, try the insert */
*rec = page_cur_insert_rec_low(page_cursor, entry, data_size,
NULL, mtr);
if (!(*rec)) {
/* If the record did not fit, reorganize */
btr_page_reorganize(page, mtr);
ut_ad(page_get_max_insert_size(page, 1) == max_size);
reorg = TRUE;
page_cur_search(page, entry, PAGE_CUR_LE, page_cursor);
*rec = page_cur_tuple_insert(page_cursor, entry, mtr);
ut_a(*rec); /* <- We calculated above the record would fit */
}
#ifdef BTR_CUR_HASH_ADAPT
if (!reorg && (0 == level) && (cursor->flag == BTR_CUR_HASH)) {
btr_search_update_hash_node_on_insert(cursor);
} else {
btr_search_update_hash_on_insert(cursor);
}
#endif
if (!(flags & BTR_NO_LOCKING_FLAG) && inherit) {
lock_update_insert(*rec);
}
/* printf("Insert to page %lu, max ins size %lu, rec %lu ind type %lu\n",
buf_frame_get_page_no(page), max_size,
rec_size + PAGE_DIR_SLOT_SIZE, type);
*/
if (!(type & (DICT_CLUSTERED | DICT_UNIQUE))) {
/* We have added a record to page: update its free bits */
ibuf_update_free_bits_if_full(cursor->index, page, max_size,
rec_size + PAGE_DIR_SLOT_SIZE);
}
return(DB_SUCCESS);
}
/*****************************************************************
Performs an insert on a page of an index tree. It is assumed that mtr
holds an x-latch on the tree and on the cursor page. If the insert is
made on the leaf level, to avoid deadlocks, mtr must also own x-latches
to brothers of page, if those brothers exist. */
ulint
btr_cur_pessimistic_insert(
/*=======================*/
/* out: DB_SUCCESS or error number */
ulint flags, /* in: undo logging and locking flags: if not
zero, the parameter thr should be
specified; if no undo logging is specified,
then the caller must have reserved enough
free extents in the file space so that the
insertion will certainly succeed */
btr_cur_t* cursor, /* in: cursor after which to insert;
cursor stays valid */
dtuple_t* entry, /* in: entry to insert */
rec_t** rec, /* out: pointer to inserted record if
succeed */
que_thr_t* thr, /* in: query thread or NULL */
mtr_t* mtr) /* in: mtr */
{
page_t* page;
ulint err;
ibool dummy_inh;
ibool success;
ulint n_extents = 0;
ut_ad(dtuple_check_typed(entry));
page = btr_cur_get_page(cursor);
ut_ad(mtr_memo_contains(mtr,
dict_tree_get_lock(btr_cur_get_tree(cursor)),
MTR_MEMO_X_LOCK));
ut_ad(mtr_memo_contains(mtr, buf_block_align(page),
MTR_MEMO_PAGE_X_FIX));
/* Try first an optimistic insert; reset the cursor flag: we do not
assume anything of how it was positioned */
cursor->flag = BTR_CUR_BINARY;
err = btr_cur_optimistic_insert(flags, cursor, entry, rec, thr, mtr);
if (err != DB_FAIL) {
return(err);
}
/* Retry with a pessimistic insert. Check locks and write to undo log,
if specified */
err = btr_cur_ins_lock_and_undo(flags, cursor, entry, thr, &dummy_inh);
if (err != DB_SUCCESS) {
return(err);
}
if (!(flags & BTR_NO_UNDO_LOG_FLAG)) {
/* First reserve enough free space for the file segments
of the index tree, so that the insert will not fail because
of lack of space */
n_extents = cursor->tree_height / 16 + 3;
success = fsp_reserve_free_extents(cursor->index->space,
n_extents, FSP_NORMAL, mtr);
if (!success) {
err = DB_OUT_OF_FILE_SPACE;
return(err);
}
}
if (dict_tree_get_page(cursor->index->tree)
== buf_frame_get_page_no(page)) {
/* The page is the root page */
*rec = btr_root_raise_and_insert(cursor, entry, mtr);
} else {
*rec = btr_page_split_and_insert(cursor, entry, mtr);
}
btr_cur_position(cursor->index, page_rec_get_prev(*rec), cursor);
#ifdef BTR_CUR_ADAPT
btr_search_update_hash_on_insert(cursor);
#endif
if (!(flags & BTR_NO_LOCKING_FLAG)) {
lock_update_insert(*rec);
}
err = DB_SUCCESS;
if (n_extents > 0) {
fil_space_release_free_extents(cursor->index->space, n_extents);
}
return(err);
}
/*==================== B-TREE UPDATE =========================*/
/* Only clustered index records are modified using these functions */
/*****************************************************************
For an update, checks the locks and does the undo logging. */
UNIV_INLINE
ulint
btr_cur_upd_lock_and_undo(
/*======================*/
/* out: DB_SUCCESS, DB_WAIT_LOCK, or error
number */
ulint flags, /* in: undo logging and locking flags */
btr_cur_t* cursor, /* in: cursor on record to update */
upd_t* update, /* in: update vector */
ulint cmpl_info,/* in: compiler info on secondary index
updates */
que_thr_t* thr, /* in: query thread */
dulint* roll_ptr)/* out: roll pointer */
{
dict_index_t* index;
rec_t* rec;
ulint err;
ut_ad(cursor && update && thr && roll_ptr);
/* Only clustered index records are updated using this function */
ut_ad((cursor->index)->type & DICT_CLUSTERED);
rec = btr_cur_get_rec(cursor);
index = cursor->index;
/* Check if we have to wait for a lock: enqueue an explicit lock
request if yes */
err = DB_SUCCESS;
if (!(flags & BTR_NO_LOCKING_FLAG)) {
err = lock_clust_rec_modify_check_and_lock(flags, rec, index,
thr);
if (err != DB_SUCCESS) {
return(err);
}
}
/* Append the info about the update in the undo log */
err = trx_undo_report_row_operation(flags, TRX_UNDO_MODIFY_OP, thr,
index, NULL, update,
cmpl_info, rec, roll_ptr);
return(err);
}
/***************************************************************
Writes a redo log record of updating a record in-place. */
UNIV_INLINE
void
btr_cur_update_in_place_log(
/*========================*/
ulint flags, /* in: flags */
rec_t* rec, /* in: record */
dict_index_t* index, /* in: index where cursor positioned */
upd_t* update, /* in: update vector */
trx_t* trx, /* in: transaction */
dulint roll_ptr, /* in: roll ptr */
mtr_t* mtr) /* in: mtr */
{
byte* log_ptr;
log_ptr = mlog_open(mtr, 30 + MLOG_BUF_MARGIN);
log_ptr = mlog_write_initial_log_record_fast(rec,
MLOG_REC_UPDATE_IN_PLACE, log_ptr, mtr);
mach_write_to_1(log_ptr, flags);
log_ptr++;
log_ptr = row_upd_write_sys_vals_to_log(index, trx, roll_ptr, log_ptr,
mtr);
mach_write_to_2(log_ptr, rec - buf_frame_align(rec));
log_ptr += 2;
row_upd_index_write_log(update, log_ptr, mtr);
}
/***************************************************************
Parses a redo log record of updating a record in-place. */
byte*
btr_cur_parse_update_in_place(
/*==========================*/
/* out: end of log record or NULL */
byte* ptr, /* in: buffer */
byte* end_ptr,/* in: buffer end */
page_t* page) /* in: page or NULL */
{
ulint flags;
rec_t* rec;
upd_t* update;
ulint pos;
dulint trx_id;
dulint roll_ptr;
ulint rec_offset;
mem_heap_t* heap;
if (end_ptr < ptr + 1) {
return(NULL);
}
flags = mach_read_from_1(ptr);
ptr++;
ptr = row_upd_parse_sys_vals(ptr, end_ptr, &pos, &trx_id, &roll_ptr);
if (ptr == NULL) {
return(NULL);
}
if (end_ptr < ptr + 2) {
return(NULL);
}
rec_offset = mach_read_from_2(ptr);
ptr += 2;
heap = mem_heap_create(256);
ptr = row_upd_index_parse(ptr, end_ptr, heap, &update);
if (ptr == NULL) {
mem_heap_free(heap);
return(NULL);
}
if (!page) {
mem_heap_free(heap);
return(ptr);
}
rec = page + rec_offset;
/* We do not need to reserve btr_search_latch, as the page is only
being recovered, and there cannot be a hash index to it. */
if (!(flags & BTR_KEEP_SYS_FLAG)) {
row_upd_rec_sys_fields_in_recovery(rec, pos, trx_id, roll_ptr);
}
row_upd_rec_in_place(rec, update);
mem_heap_free(heap);
return(ptr);
}
/*****************************************************************
Updates a record when the update causes no size changes in its fields. */
ulint
btr_cur_update_in_place(
/*====================*/
/* out: DB_SUCCESS or error number */
ulint flags, /* in: undo logging and locking flags */
btr_cur_t* cursor, /* in: cursor on the record to update;
cursor stays valid and positioned on the
same record */
upd_t* update, /* in: update vector */
ulint cmpl_info,/* in: compiler info on secondary index
updates */
que_thr_t* thr, /* in: query thread */
mtr_t* mtr) /* in: mtr */
{
dict_index_t* index;
buf_block_t* block;
ulint err;
rec_t* rec;
dulint roll_ptr;
trx_t* trx;
/* Only clustered index records are updated using this function */
ut_ad((cursor->index)->type & DICT_CLUSTERED);
rec = btr_cur_get_rec(cursor);
index = cursor->index;
trx = thr_get_trx(thr);
/* Do lock checking and undo logging */
err = btr_cur_upd_lock_and_undo(flags, cursor, update, cmpl_info,
thr, &roll_ptr);
if (err != DB_SUCCESS) {
return(err);
}
block = buf_block_align(rec);
if (block->is_hashed) {
rw_lock_x_lock(&btr_search_latch);
}
if (!(flags & BTR_KEEP_SYS_FLAG)) {
row_upd_rec_sys_fields(rec, index, trx, roll_ptr);
}
/* FIXME: in a mixed tree, all records may not have enough ordering
fields for btr search: */
row_upd_rec_in_place(rec, update);
if (block->is_hashed) {
rw_lock_x_unlock(&btr_search_latch);
}
btr_cur_update_in_place_log(flags, rec, index, update, trx, roll_ptr,
mtr);
return(DB_SUCCESS);
}
/*****************************************************************
Tries to update a record on a page in an index tree. It is assumed that mtr
holds an x-latch on the page. The operation does not succeed if there is too
little space on the page or if the update would result in too empty a page,
so that tree compression is recommended. */
ulint
btr_cur_optimistic_update(
/*======================*/
/* out: DB_SUCCESS, or DB_OVERFLOW if the
updated record does not fit, DB_UNDERFLOW
if the page would become too empty */
ulint flags, /* in: undo logging and locking flags */
btr_cur_t* cursor, /* in: cursor on the record to update;
cursor stays valid and positioned on the
same record */
upd_t* update, /* in: update vector; this must also
contain trx id and roll ptr fields */
ulint cmpl_info,/* in: compiler info on secondary index
updates */
que_thr_t* thr, /* in: query thread */
mtr_t* mtr) /* in: mtr */
{
dict_index_t* index;
page_cur_t* page_cursor;
ulint err;
page_t* page;
rec_t* rec;
ulint max_size;
ulint new_rec_size;
ulint old_rec_size;
dtuple_t* new_entry;
dulint roll_ptr;
trx_t* trx;
mem_heap_t* heap;
ibool reorganized = FALSE;
/* Only clustered index records are updated using this function */
ut_ad((cursor->index)->type & DICT_CLUSTERED);
page = btr_cur_get_page(cursor);
rec = btr_cur_get_rec(cursor);
index = cursor->index;
ut_ad(mtr_memo_contains(mtr, buf_block_align(page),
MTR_MEMO_PAGE_X_FIX));
if (!row_upd_changes_field_size(rec, index, update)) {
/* The simplest and most common case: the update does not
change the size of any field */
return(btr_cur_update_in_place(flags, cursor, update,
cmpl_info, thr, mtr));
}
page_cursor = btr_cur_get_page_cur(cursor);
heap = mem_heap_create(1024);
new_entry = row_rec_to_index_entry(ROW_COPY_DATA, index, rec, heap);
row_upd_clust_index_replace_new_col_vals(new_entry, update);
old_rec_size = rec_get_size(rec);
new_rec_size = rec_get_converted_size(new_entry);
if (new_rec_size >= page_get_free_space_of_empty() / 2) {
mem_heap_free(heap);
return(DB_TOO_BIG_RECORD);
}
max_size = old_rec_size
+ page_get_max_insert_size_after_reorganize(page, 1);
if (page_get_data_size(page) - old_rec_size + new_rec_size
< BTR_CUR_PAGE_COMPRESS_LIMIT) {
/* The page would become too empty */
mem_heap_free(heap);
return(DB_UNDERFLOW);
}
if (!(((max_size >= BTR_CUR_PAGE_REORGANIZE_LIMIT)
&& (max_size >= new_rec_size))
|| (page_get_n_recs(page) <= 1))) {
/* There was not enough space, or it did not pay to
reorganize: for simplicity, we decide what to do assuming a
reorganization is needed, though it might not be necessary */
mem_heap_free(heap);
return(DB_OVERFLOW);
}
/* Do lock checking and undo logging */
err = btr_cur_upd_lock_and_undo(flags, cursor, update, cmpl_info, thr,
&roll_ptr);
if (err != DB_SUCCESS) {
mem_heap_free(heap);
return(err);
}
/* Ok, we may do the replacement. Store on the page infimum the
explicit locks on rec, before deleting rec (see the comment in
.._pessimistic_update). */
lock_rec_store_on_page_infimum(rec);
btr_search_update_hash_on_delete(cursor);
page_cur_delete_rec(page_cursor, mtr);
page_cur_move_to_prev(page_cursor);
trx = thr_get_trx(thr);
if (!(flags & BTR_KEEP_SYS_FLAG)) {
row_upd_index_entry_sys_field(new_entry, index, DATA_ROLL_PTR,
roll_ptr);
row_upd_index_entry_sys_field(new_entry, index, DATA_TRX_ID,
trx->id);
}
rec = btr_cur_insert_if_possible(cursor, new_entry, &reorganized, mtr);
ut_a(rec); /* <- We calculated above the insert would fit */
/* Restore the old explicit lock state on the record */
lock_rec_restore_from_page_infimum(rec, page);
page_cur_move_to_next(page_cursor);
mem_heap_free(heap);
return(DB_SUCCESS);
}
/*****************************************************************
If, in a split, a new supremum record was created as the predecessor of the
updated record, the supremum record must inherit exactly the locks on the
updated record. In the split it may have inherited locks from the successor
of the updated record, which is not correct. This function restores the
right locks for the new supremum. */
static
void
btr_cur_pess_upd_restore_supremum(
/*==============================*/
rec_t* rec, /* in: updated record */
mtr_t* mtr) /* in: mtr */
{
page_t* page;
page_t* prev_page;
ulint space;
ulint prev_page_no;
page = buf_frame_align(rec);
if (page_rec_get_next(page_get_infimum_rec(page)) != rec) {
/* Updated record is not the first user record on its page */
return;
}
space = buf_frame_get_space_id(page);
prev_page_no = btr_page_get_prev(page, mtr);
ut_ad(prev_page_no != FIL_NULL);
prev_page = buf_page_get_with_no_latch(space, prev_page_no, mtr);
/* We must already have an x-latch to prev_page! */
ut_ad(mtr_memo_contains(mtr, buf_block_align(prev_page),
MTR_MEMO_PAGE_X_FIX));
lock_rec_reset_and_inherit_gap_locks(page_get_supremum_rec(prev_page),
rec);
}
/*****************************************************************
Performs an update of a record on a page of a tree. It is assumed
that mtr holds an x-latch on the tree and on the cursor page. If the
update is made on the leaf level, to avoid deadlocks, mtr must also
own x-latches to brothers of page, if those brothers exist. */
ulint
btr_cur_pessimistic_update(
/*=======================*/
/* out: DB_SUCCESS or error code */
ulint flags, /* in: undo logging, locking, and rollback
flags */
btr_cur_t* cursor, /* in: cursor on the record to update;
cursor does not stay valid */
upd_t* update, /* in: update vector; this is allowed also
contain trx id and roll ptr fields, but
the values in update vector have no effect */
ulint cmpl_info,/* in: compiler info on secondary index
updates */
que_thr_t* thr, /* in: query thread */
mtr_t* mtr) /* in: mtr */
{
dict_index_t* index;
page_t* page;
dict_tree_t* tree;
rec_t* rec;
page_cur_t* page_cursor;
dtuple_t* new_entry;
mem_heap_t* heap;
ulint err;
ulint optim_err;
ibool dummy_reorganized;
dulint roll_ptr;
trx_t* trx;
ibool was_first;
ibool success;
ulint n_extents = 0;
page = btr_cur_get_page(cursor);
rec = btr_cur_get_rec(cursor);
index = cursor->index;
tree = index->tree;
ut_ad(index->type & DICT_CLUSTERED);
ut_ad(mtr_memo_contains(mtr, dict_tree_get_lock(tree),
MTR_MEMO_X_LOCK));
ut_ad(mtr_memo_contains(mtr, buf_block_align(page),
MTR_MEMO_PAGE_X_FIX));
optim_err = btr_cur_optimistic_update(flags, cursor, update,
cmpl_info, thr, mtr);
if (optim_err != DB_UNDERFLOW && optim_err != DB_OVERFLOW) {
return(optim_err);
}
/* Do lock checking and undo logging */
err = btr_cur_upd_lock_and_undo(flags, cursor, update, cmpl_info,
thr, &roll_ptr);
if (err != DB_SUCCESS) {
return(err);
}
if (optim_err == DB_OVERFLOW) {
/* First reserve enough free space for the file segments
of the index tree, so that the update will not fail because
of lack of space */
n_extents = cursor->tree_height / 16 + 3;
success = fsp_reserve_free_extents(cursor->index->space,
n_extents, FSP_NORMAL, mtr);
if (!success) {
err = DB_OUT_OF_FILE_SPACE;
return(err);
}
}
heap = mem_heap_create(1024);
trx = thr_get_trx(thr);
new_entry = row_rec_to_index_entry(ROW_COPY_DATA, index, rec, heap);
row_upd_clust_index_replace_new_col_vals(new_entry, update);
if (!(flags & BTR_KEEP_SYS_FLAG)) {
row_upd_index_entry_sys_field(new_entry, index, DATA_ROLL_PTR,
roll_ptr);
row_upd_index_entry_sys_field(new_entry, index, DATA_TRX_ID,
trx->id);
}
page_cursor = btr_cur_get_page_cur(cursor);
/* Store state of explicit locks on rec on the page infimum record,
before deleting rec. The page infimum acts as a dummy carrier of the
locks, taking care also of lock releases, before we can move the locks
back on the actual record. There is a special case: if we are
inserting on the root page and the insert causes a call of
btr_root_raise_and_insert. Therefore we cannot in the lock system
delete the lock structs set on the root page even if the root
page carries just node pointers. */
lock_rec_store_on_page_infimum(rec);
btr_search_update_hash_on_delete(cursor);
page_cur_delete_rec(page_cursor, mtr);
page_cur_move_to_prev(page_cursor);
if (optim_err == DB_UNDERFLOW) {
rec = btr_cur_insert_if_possible(cursor, new_entry,
&dummy_reorganized, mtr);
ut_a(rec); /* <- We knew the insert would fit */
lock_rec_restore_from_page_infimum(rec, page);
btr_cur_compress_if_useful(cursor, mtr);
err = DB_SUCCESS;
mem_heap_free(heap);
goto return_after_reservations;
}
if (page_cur_is_before_first(page_cursor)) {
/* The record to be updated was positioned as the first user
record on its page */
was_first = TRUE;
} else {
was_first = FALSE;
}
/* The first parameter means that no lock checking and undo logging
is made in the insert */
err = btr_cur_pessimistic_insert(BTR_NO_UNDO_LOG_FLAG
| BTR_NO_LOCKING_FLAG
| BTR_KEEP_SYS_FLAG,
cursor, new_entry, &rec, NULL, mtr);
ut_a(rec);
ut_a(err == DB_SUCCESS);
lock_rec_restore_from_page_infimum(rec, page);
/* If necessary, restore also the correct lock state for a new,
preceding supremum record created in a page split. While the old
record was nonexistent, the supremum might have inherited its locks
from a wrong record. */
if (!was_first) {
btr_cur_pess_upd_restore_supremum(rec, mtr);
}
mem_heap_free(heap);
return_after_reservations:
if (n_extents > 0) {
fil_space_release_free_extents(cursor->index->space, n_extents);
}
return(err);
}
/*==================== B-TREE DELETE MARK AND UNMARK ===============*/
/********************************************************************
Writes the redo log record for delete marking or unmarking of an index
record. */
UNIV_INLINE
void
btr_cur_del_mark_set_clust_rec_log(
/*===============================*/
ulint flags, /* in: flags */
rec_t* rec, /* in: record */
dict_index_t* index, /* in: index of the record */
ibool val, /* in: value to set */
trx_t* trx, /* in: deleting transaction */
dulint roll_ptr,/* in: roll ptr to the undo log record */
mtr_t* mtr) /* in: mtr */
{
byte* log_ptr;
log_ptr = mlog_open(mtr, 30);
log_ptr = mlog_write_initial_log_record_fast(rec,
MLOG_REC_CLUST_DELETE_MARK, log_ptr, mtr);
mach_write_to_1(log_ptr, flags);
log_ptr++;
mach_write_to_1(log_ptr, val);
log_ptr++;
log_ptr = row_upd_write_sys_vals_to_log(index, trx, roll_ptr, log_ptr,
mtr);
mach_write_to_2(log_ptr, rec - buf_frame_align(rec));
log_ptr += 2;
mlog_close(mtr, log_ptr);
}
/********************************************************************
Parses the redo log record for delete marking or unmarking of a clustered
index record. */
byte*
btr_cur_parse_del_mark_set_clust_rec(
/*=================================*/
/* out: end of log record or NULL */
byte* ptr, /* in: buffer */
byte* end_ptr,/* in: buffer end */
page_t* page) /* in: page or NULL */
{
ulint flags;
ibool val;
ulint pos;
dulint trx_id;
dulint roll_ptr;
ulint offset;
rec_t* rec;
if (end_ptr < ptr + 2) {
return(NULL);
}
flags = mach_read_from_1(ptr);
ptr++;
val = mach_read_from_1(ptr);
ptr++;
ptr = row_upd_parse_sys_vals(ptr, end_ptr, &pos, &trx_id, &roll_ptr);
if (ptr == NULL) {
return(NULL);
}
if (end_ptr < ptr + 2) {
return(NULL);
}
offset = mach_read_from_2(ptr);
ptr += 2;
if (page) {
rec = page + offset;
if (!(flags & BTR_KEEP_SYS_FLAG)) {
row_upd_rec_sys_fields_in_recovery(rec, pos, trx_id,
roll_ptr);
}
/* We do not need to reserve btr_search_latch, as the page
is only being recovered, and there cannot be a hash index to
it. */
rec_set_deleted_flag(rec, val);
}
return(ptr);
}
/***************************************************************
Marks a clustered index record deleted. Writes an undo log record to
undo log on this delete marking. Writes in the trx id field the id
of the deleting transaction, and in the roll ptr field pointer to the
undo log record created. */
ulint
btr_cur_del_mark_set_clust_rec(
/*===========================*/
/* out: DB_SUCCESS, DB_LOCK_WAIT, or error
number */
ulint flags, /* in: undo logging and locking flags */
btr_cur_t* cursor, /* in: cursor */
ibool val, /* in: value to set */
que_thr_t* thr, /* in: query thread */
mtr_t* mtr) /* in: mtr */
{
dict_index_t* index;
buf_block_t* block;
dulint roll_ptr;
ulint err;
rec_t* rec;
trx_t* trx;
rec = btr_cur_get_rec(cursor);
index = cursor->index;
ut_ad(index->type & DICT_CLUSTERED);
ut_ad(rec_get_deleted_flag(rec) == FALSE);
err = lock_clust_rec_modify_check_and_lock(flags, rec, index, thr);
if (err != DB_SUCCESS) {
return(err);
}
err = trx_undo_report_row_operation(flags, TRX_UNDO_MODIFY_OP, thr,
index, NULL, NULL, 0, rec,
&roll_ptr);
if (err != DB_SUCCESS) {
return(err);
}
block = buf_block_align(rec);
if (block->is_hashed) {
rw_lock_x_lock(&btr_search_latch);
}
rec_set_deleted_flag(rec, val);
trx = thr_get_trx(thr);
if (!(flags & BTR_KEEP_SYS_FLAG)) {
row_upd_rec_sys_fields(rec, index, trx, roll_ptr);
}
if (block->is_hashed) {
rw_lock_x_unlock(&btr_search_latch);
}
btr_cur_del_mark_set_clust_rec_log(flags, rec, index, val, trx,
roll_ptr, mtr);
return(DB_SUCCESS);
}
/********************************************************************
Writes the redo log record for a delete mark setting of a secondary
index record. */
UNIV_INLINE
void
btr_cur_del_mark_set_sec_rec_log(
/*=============================*/
rec_t* rec, /* in: record */
ibool val, /* in: value to set */
mtr_t* mtr) /* in: mtr */
{
byte* log_ptr;
log_ptr = mlog_open(mtr, 30);
log_ptr = mlog_write_initial_log_record_fast(rec,
MLOG_REC_SEC_DELETE_MARK, log_ptr, mtr);
mach_write_to_1(log_ptr, val);
log_ptr++;
mach_write_to_2(log_ptr, rec - buf_frame_align(rec));
log_ptr += 2;
mlog_close(mtr, log_ptr);
}
/********************************************************************
Parses the redo log record for delete marking or unmarking of a secondary
index record. */
byte*
btr_cur_parse_del_mark_set_sec_rec(
/*===============================*/
/* out: end of log record or NULL */
byte* ptr, /* in: buffer */
byte* end_ptr,/* in: buffer end */
page_t* page) /* in: page or NULL */
{
ibool val;
ulint offset;
rec_t* rec;
if (end_ptr < ptr + 3) {
return(NULL);
}
val = mach_read_from_1(ptr);
ptr++;
offset = mach_read_from_2(ptr);
ptr += 2;
if (page) {
rec = page + offset;
/* We do not need to reserve btr_search_latch, as the page
is only being recovered, and there cannot be a hash index to
it. */
rec_set_deleted_flag(rec, val);
}
return(ptr);
}
/***************************************************************
Sets a secondary index record delete mark to TRUE or FALSE. */
ulint
btr_cur_del_mark_set_sec_rec(
/*=========================*/
/* out: DB_SUCCESS, DB_LOCK_WAIT, or error
number */
ulint flags, /* in: locking flag */
btr_cur_t* cursor, /* in: cursor */
ibool val, /* in: value to set */
que_thr_t* thr, /* in: query thread */
mtr_t* mtr) /* in: mtr */
{
buf_block_t* block;
rec_t* rec;
ulint err;
rec = btr_cur_get_rec(cursor);
err = lock_sec_rec_modify_check_and_lock(flags, rec, cursor->index,
thr);
if (err != DB_SUCCESS) {
return(err);
}
block = buf_block_align(rec);
if (block->is_hashed) {
rw_lock_x_lock(&btr_search_latch);
}
rec_set_deleted_flag(rec, val);
if (block->is_hashed) {
rw_lock_x_unlock(&btr_search_latch);
}
btr_cur_del_mark_set_sec_rec_log(rec, val, mtr);
return(DB_SUCCESS);
}
/***************************************************************
Sets a secondary index record delete mark to FALSE. This function is only
used by the insert buffer insert merge mechanism. */
void
btr_cur_del_unmark_for_ibuf(
/*========================*/
rec_t* rec, /* in: record to delete unmark */
mtr_t* mtr) /* in: mtr */
{
/* We do not need to reserve btr_search_latch, as the page has just
been read to the buffer pool and there cannot be a hash index to it. */
rec_set_deleted_flag(rec, FALSE);
btr_cur_del_mark_set_sec_rec_log(rec, FALSE, mtr);
}
/*==================== B-TREE RECORD REMOVE =========================*/
/*****************************************************************
Tries to compress a page of the tree on the leaf level. It is assumed
that mtr holds an x-latch on the tree and on the cursor page. To avoid
deadlocks, mtr must also own x-latches to brothers of page, if those
brothers exist. NOTE: it is assumed that the caller has reserved enough
free extents so that the compression will always succeed if done! */
void
btr_cur_compress(
/*=============*/
btr_cur_t* cursor, /* in: cursor on the page to compress;
cursor does not stay valid */
mtr_t* mtr) /* in: mtr */
{
ut_ad(mtr_memo_contains(mtr,
dict_tree_get_lock(btr_cur_get_tree(cursor)),
MTR_MEMO_X_LOCK));
ut_ad(mtr_memo_contains(mtr, buf_block_align(
btr_cur_get_page(cursor)),
MTR_MEMO_PAGE_X_FIX));
ut_ad(btr_page_get_level(btr_cur_get_page(cursor), mtr) == 0);
btr_compress(cursor, mtr);
}
/*****************************************************************
Tries to compress a page of the tree if it seems useful. It is assumed
that mtr holds an x-latch on the tree and on the cursor page. To avoid
deadlocks, mtr must also own x-latches to brothers of page, if those
brothers exist. NOTE: it is assumed that the caller has reserved enough
free extents so that the compression will always succeed if done! */
ibool
btr_cur_compress_if_useful(
/*=======================*/
/* out: TRUE if compression occurred */
btr_cur_t* cursor, /* in: cursor on the page to compress;
cursor does not stay valid if compression
occurs */
mtr_t* mtr) /* in: mtr */
{
ut_ad(mtr_memo_contains(mtr,
dict_tree_get_lock(btr_cur_get_tree(cursor)),
MTR_MEMO_X_LOCK));
ut_ad(mtr_memo_contains(mtr, buf_block_align(
btr_cur_get_page(cursor)),
MTR_MEMO_PAGE_X_FIX));
if (btr_cur_compress_recommendation(cursor, mtr)) {
btr_compress(cursor, mtr);
return(TRUE);
}
return(FALSE);
}
/***********************************************************
Removes the record on which the tree cursor is positioned on a leaf page.
It is assumed that the mtr has an x-latch on the page where the cursor is
positioned, but no latch on the whole tree. */
ibool
btr_cur_optimistic_delete(
/*======================*/
/* out: TRUE if success, i.e., the page
did not become too empty */
btr_cur_t* cursor, /* in: cursor on leaf page, on the record to
delete; cursor stays valid: if deletion
succeeds, on function exit it points to the
successor of the deleted record */
mtr_t* mtr) /* in: mtr */
{
page_t* page;
ulint max_ins_size;
ut_ad(mtr_memo_contains(mtr, buf_block_align(btr_cur_get_page(cursor)),
MTR_MEMO_PAGE_X_FIX));
/* This is intended only for leaf page deletions */
page = btr_cur_get_page(cursor);
ut_ad(btr_page_get_level(page, mtr) == 0);
if (btr_cur_can_delete_without_compress(cursor, mtr)) {
lock_update_delete(btr_cur_get_rec(cursor));
btr_search_update_hash_on_delete(cursor);
max_ins_size = page_get_max_insert_size_after_reorganize(page,
1);
page_cur_delete_rec(btr_cur_get_page_cur(cursor), mtr);
ibuf_update_free_bits_low(cursor->index, page, max_ins_size,
mtr);
return(TRUE);
}
return(FALSE);
}
/*****************************************************************
Removes the record on which the tree cursor is positioned. Tries
to compress the page if its fillfactor drops below a threshold
or if it is the only page on the level. It is assumed that mtr holds
an x-latch on the tree and on the cursor page. To avoid deadlocks,
mtr must also own x-latches to brothers of page, if those brothers
exist. */
ibool
btr_cur_pessimistic_delete(
/*=======================*/
/* out: TRUE if compression occurred */
ulint* err, /* out: DB_SUCCESS or DB_OUT_OF_FILE_SPACE;
the latter may occur because we may have
to update node pointers on upper levels,
and in the case of variable length keys
these may actually grow in size */
ibool has_reserved_extents, /* in: TRUE if the
caller has already reserved enough free
extents so that he knows that the operation
will succeed */
btr_cur_t* cursor, /* in: cursor on the record to delete;
if compression does not occur, the cursor
stays valid: it points to successor of
deleted record on function exit */
mtr_t* mtr) /* in: mtr */
{
page_t* page;
dict_tree_t* tree;
rec_t* rec;
dtuple_t* node_ptr;
ulint n_extents = 0;
ibool success;
ibool ret = FALSE;
mem_heap_t* heap;
page = btr_cur_get_page(cursor);
tree = btr_cur_get_tree(cursor);
ut_ad(mtr_memo_contains(mtr, dict_tree_get_lock(tree),
MTR_MEMO_X_LOCK));
ut_ad(mtr_memo_contains(mtr, buf_block_align(page),
MTR_MEMO_PAGE_X_FIX));
if (!has_reserved_extents) {
/* First reserve enough free space for the file segments
of the index tree, so that the node pointer updates will
not fail because of lack of space */
n_extents = cursor->tree_height / 32 + 1;
success = fsp_reserve_free_extents(cursor->index->space,
n_extents, FSP_CLEANING, mtr);
if (!success) {
*err = DB_OUT_OF_FILE_SPACE;
return(FALSE);
}
}
if ((page_get_n_recs(page) < 2)
&& (dict_tree_get_page(btr_cur_get_tree(cursor))
!= buf_frame_get_page_no(page))) {
/* If there is only one record, drop the whole page in
btr_discard_page, if this is not the root page */
btr_discard_page(cursor, mtr);
*err = DB_SUCCESS;
ret = TRUE;
goto return_after_reservations;
}
rec = btr_cur_get_rec(cursor);
lock_update_delete(rec);
if ((btr_page_get_level(page, mtr) > 0)
&& (page_rec_get_next(page_get_infimum_rec(page)) == rec)) {
if (btr_page_get_prev(page, mtr) == FIL_NULL) {
/* If we delete the leftmost node pointer on a
non-leaf level, we must mark the new leftmost node
pointer as the predefined minimum record */
btr_set_min_rec_mark(page_rec_get_next(rec), mtr);
} else {
/* Otherwise, if we delete the leftmost node pointer
on a page, we have to change the father node pointer
so that it is equal to the new leftmost node pointer
on the page */
btr_node_ptr_delete(tree, page, mtr);
heap = mem_heap_create(256);
node_ptr = dict_tree_build_node_ptr(
tree, page_rec_get_next(rec),
buf_frame_get_page_no(page),
heap);
btr_insert_on_non_leaf_level(tree,
btr_page_get_level(page, mtr) + 1,
node_ptr, mtr);
mem_heap_free(heap);
}
}
btr_search_update_hash_on_delete(cursor);
page_cur_delete_rec(btr_cur_get_page_cur(cursor), mtr);
ut_ad(btr_check_node_ptr(tree, page, mtr));
*err = DB_SUCCESS;
return_after_reservations:
if (ret == FALSE) {
ret = btr_cur_compress_if_useful(cursor, mtr);
}
if (n_extents > 0) {
fil_space_release_free_extents(cursor->index->space, n_extents);
}
return(ret);
}
/***********************************************************************
Adds path information to the cursor for the current page, for which
the binary search has been performed. */
static
void
btr_cur_add_path_info(
/*==================*/
btr_cur_t* cursor, /* in: cursor positioned on a page */
ulint height, /* in: height of the page in tree;
0 means leaf node */
ulint root_height) /* in: root node height in tree */
{
btr_path_t* slot;
rec_t* rec;
ut_a(cursor->path_arr);
if (root_height >= BTR_PATH_ARRAY_N_SLOTS - 1) {
/* Do nothing; return empty path */
slot = cursor->path_arr;
slot->nth_rec = ULINT_UNDEFINED;
return;
}
if (height == 0) {
/* Mark end of slots for path */
slot = cursor->path_arr + root_height + 1;
slot->nth_rec = ULINT_UNDEFINED;
}
rec = btr_cur_get_rec(cursor);
slot = cursor->path_arr + (root_height - height);
slot->nth_rec = page_rec_get_n_recs_before(rec);
slot->n_recs = page_get_n_recs(buf_frame_align(rec));
}
/***********************************************************************
Estimates the number of rows in a given index range. */
ulint
btr_estimate_n_rows_in_range(
/*=========================*/
/* out: estimated number of rows */
dict_index_t* index, /* in: index */
dtuple_t* tuple1, /* in: range start, may also be empty tuple */
ulint mode1, /* in: search mode for range start */
dtuple_t* tuple2, /* in: range end, may also be empty tuple */
ulint mode2) /* in: search mode for range end */
{
btr_path_t path1[BTR_PATH_ARRAY_N_SLOTS];
btr_path_t path2[BTR_PATH_ARRAY_N_SLOTS];
btr_cur_t cursor;
btr_path_t* slot1;
btr_path_t* slot2;
ibool diverged;
ulint n_rows;
ulint i;
mtr_t mtr;
mtr_start(&mtr);
cursor.path_arr = path1;
if (dtuple_get_n_fields(tuple1) > 0) {
btr_cur_search_to_nth_level(index, 0, tuple1, mode1,
BTR_SEARCH_LEAF | BTR_ESTIMATE,
&cursor, 0, &mtr);
} else {
btr_cur_open_at_index_side(TRUE, index,
BTR_SEARCH_LEAF | BTR_ESTIMATE,
&cursor, &mtr);
}
mtr_commit(&mtr);
mtr_start(&mtr);
cursor.path_arr = path2;
if (dtuple_get_n_fields(tuple2) > 0) {
btr_cur_search_to_nth_level(index, 0, tuple2, mode2,
BTR_SEARCH_LEAF | BTR_ESTIMATE,
&cursor, 0, &mtr);
} else {
btr_cur_open_at_index_side(FALSE, index,
BTR_SEARCH_LEAF | BTR_ESTIMATE,
&cursor, &mtr);
}
mtr_commit(&mtr);
/* We have the path information for the range in path1 and path2 */
n_rows = 1;
diverged = FALSE;
for (i = 0; ; i++) {
ut_ad(i < BTR_PATH_ARRAY_N_SLOTS);
slot1 = path1 + i;
slot2 = path2 + i;
if (slot1->nth_rec == ULINT_UNDEFINED
|| slot2->nth_rec == ULINT_UNDEFINED) {
return(n_rows);
}
if (!diverged && slot1->nth_rec != slot2->nth_rec) {
if (slot1->nth_rec < slot2->nth_rec) {
n_rows = slot2->nth_rec - slot1->nth_rec;
} else {
/* Maybe the tree has changed between
searches */
return(10);
}
diverged = TRUE;
} else if (diverged) {
n_rows = (n_rows * (slot1->n_recs + slot2->n_recs))
/ 2;
}
}
}
/***********************************************************************
Estimates the number of different key values in a given index. */
ulint
btr_estimate_number_of_different_key_vals(
/*======================================*/
/* out: estimated number of key values */
dict_index_t* index) /* in: index */
{
btr_cur_t cursor;
page_t* page;
rec_t* rec;
ulint total_n_recs = 0;
ulint n_diff_in_page;
ulint n_diff = 0;
ulint matched_fields;
ulint matched_bytes;
ulint i;
mtr_t mtr;
if (index->type & DICT_UNIQUE) {
return(index->table->stat_n_rows);
}
/* We sample some pages in the index to get an estimate */
for (i = 0; i < BTR_KEY_VAL_ESTIMATE_N_PAGES; i++) {
mtr_start(&mtr);
btr_cur_open_at_rnd_pos(index, BTR_SEARCH_LEAF, &cursor, &mtr);
/* Count the number of different key values minus one on this
index page: we subtract one because otherwise our algorithm
would give a wrong estimate for an index where there is
just one key value */
page = btr_cur_get_page(&cursor);
rec = page_get_infimum_rec(page);
rec = page_rec_get_next(rec);
n_diff_in_page = 0;
while (rec != page_get_supremum_rec(page)
&& page_rec_get_next(rec)
!= page_get_supremum_rec(page)) {
matched_fields = 0;
matched_bytes = 0;
cmp_rec_rec_with_match(rec, page_rec_get_next(rec),
index, &matched_fields,
&matched_bytes);
if (matched_fields <
dict_index_get_n_ordering_defined_by_user(
index)) {
n_diff_in_page++;
}
rec = page_rec_get_next(rec);
}
n_diff += n_diff_in_page;
total_n_recs += page_get_n_recs(page);
mtr_commit(&mtr);
}
if (n_diff == 0) {
/* We play safe and assume that there are just two different
key values in the index */
return(2);
}
return(index->table->stat_n_rows / (total_n_recs / n_diff));
}