mirror of
https://github.com/MariaDB/server.git
synced 2025-01-23 23:34:34 +01:00
99b5d9e21f
Enable atomics on solaris (using the libc functions as defined in atomic.h) if GCC atomic builtins are not present. There still remains some work to be done (by Vasil?). This patch makes changes to plug.in to check pthread_t size and presence of atomic functions when running on solaris. The same has to become a part of the generated Makefile.in when we bake our source. Reviewed by: Heikki rb://106
268 lines
7.9 KiB
Text
268 lines
7.9 KiB
Text
/*****************************************************************************
|
|
|
|
Copyright (c) 1995, 2009, Innobase Oy. All Rights Reserved.
|
|
Copyright (c) 2008, Google Inc.
|
|
|
|
Portions of this file contain modifications contributed and copyrighted by
|
|
Google, Inc. Those modifications are gratefully acknowledged and are described
|
|
briefly in the InnoDB documentation. The contributions by Google are
|
|
incorporated with their permission, and subject to the conditions contained in
|
|
the file COPYING.Google.
|
|
|
|
This program is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free Software
|
|
Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
|
Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
*****************************************************************************/
|
|
|
|
/******************************************************
|
|
Mutex, the basic synchronization primitive
|
|
|
|
Created 9/5/1995 Heikki Tuuri
|
|
*******************************************************/
|
|
|
|
/**********************************************************************
|
|
Sets the waiters field in a mutex. */
|
|
UNIV_INTERN
|
|
void
|
|
mutex_set_waiters(
|
|
/*==============*/
|
|
mutex_t* mutex, /* in: mutex */
|
|
ulint n); /* in: value to set */
|
|
/**********************************************************************
|
|
Reserves a mutex for the current thread. If the mutex is reserved, the
|
|
function spins a preset time (controlled by SYNC_SPIN_ROUNDS) waiting
|
|
for the mutex before suspending the thread. */
|
|
UNIV_INTERN
|
|
void
|
|
mutex_spin_wait(
|
|
/*============*/
|
|
mutex_t* mutex, /* in: pointer to mutex */
|
|
const char* file_name, /* in: file name where mutex
|
|
requested */
|
|
ulint line); /* in: line where requested */
|
|
#ifdef UNIV_SYNC_DEBUG
|
|
/**********************************************************************
|
|
Sets the debug information for a reserved mutex. */
|
|
UNIV_INTERN
|
|
void
|
|
mutex_set_debug_info(
|
|
/*=================*/
|
|
mutex_t* mutex, /* in: mutex */
|
|
const char* file_name, /* in: file where requested */
|
|
ulint line); /* in: line where requested */
|
|
#endif /* UNIV_SYNC_DEBUG */
|
|
/**********************************************************************
|
|
Releases the threads waiting in the primary wait array for this mutex. */
|
|
UNIV_INTERN
|
|
void
|
|
mutex_signal_object(
|
|
/*================*/
|
|
mutex_t* mutex); /* in: mutex */
|
|
|
|
/**********************************************************************
|
|
Performs an atomic test-and-set instruction to the lock_word field of a
|
|
mutex. */
|
|
UNIV_INLINE
|
|
byte
|
|
mutex_test_and_set(
|
|
/*===============*/
|
|
/* out: the previous value of lock_word: 0 or
|
|
1 */
|
|
mutex_t* mutex) /* in: mutex */
|
|
{
|
|
#if defined(_WIN32) && defined(UNIV_CAN_USE_X86_ASSEMBLER)
|
|
byte res;
|
|
byte* lw; /* assembler code is used to ensure that
|
|
lock_word is loaded from memory */
|
|
ut_ad(mutex);
|
|
ut_ad(sizeof(byte) == 1);
|
|
|
|
lw = &(mutex->lock_word);
|
|
|
|
__asm MOV ECX, lw
|
|
__asm MOV EDX, 1
|
|
__asm XCHG DL, BYTE PTR [ECX]
|
|
__asm MOV res, DL
|
|
|
|
/* The fence below would prevent this thread from
|
|
reading the data structure protected by the mutex
|
|
before the test-and-set operation is committed, but
|
|
the fence is apparently not needed:
|
|
|
|
In a posting to comp.arch newsgroup (August 10, 1997)
|
|
Andy Glew said that in P6 a LOCKed instruction like
|
|
XCHG establishes a fence with respect to memory reads
|
|
and writes and thus an explicit fence is not
|
|
needed. In P5 he seemed to agree with a previous
|
|
newsgroup poster that LOCKed instructions serialize
|
|
all instruction execution, and, consequently, also
|
|
memory operations. This is confirmed in Intel Software
|
|
Dev. Manual, Vol. 3. */
|
|
|
|
/* mutex_fence(); */
|
|
|
|
return(res);
|
|
#elif defined(HAVE_ATOMIC_BUILTINS)
|
|
return(os_atomic_test_and_set_byte(&mutex->lock_word, 1));
|
|
#else
|
|
ibool ret;
|
|
|
|
ret = os_fast_mutex_trylock(&(mutex->os_fast_mutex));
|
|
|
|
if (ret == 0) {
|
|
/* We check that os_fast_mutex_trylock does not leak
|
|
and allow race conditions */
|
|
ut_a(mutex->lock_word == 0);
|
|
|
|
mutex->lock_word = 1;
|
|
}
|
|
|
|
return((byte)ret);
|
|
#endif
|
|
}
|
|
|
|
/**********************************************************************
|
|
Performs a reset instruction to the lock_word field of a mutex. This
|
|
instruction also serializes memory operations to the program order. */
|
|
UNIV_INLINE
|
|
void
|
|
mutex_reset_lock_word(
|
|
/*==================*/
|
|
mutex_t* mutex) /* in: mutex */
|
|
{
|
|
#if defined(_WIN32) && defined(UNIV_CAN_USE_X86_ASSEMBLER)
|
|
byte* lw; /* assembler code is used to ensure that
|
|
lock_word is loaded from memory */
|
|
ut_ad(mutex);
|
|
|
|
lw = &(mutex->lock_word);
|
|
|
|
__asm MOV EDX, 0
|
|
__asm MOV ECX, lw
|
|
__asm XCHG DL, BYTE PTR [ECX]
|
|
#elif defined(HAVE_ATOMIC_BUILTINS)
|
|
/* In theory __sync_lock_release should be used to release the lock.
|
|
Unfortunately, it does not work properly alone. The workaround is
|
|
that more conservative __sync_lock_test_and_set is used instead. */
|
|
os_atomic_test_and_set_byte(&mutex->lock_word, 0);
|
|
#else
|
|
mutex->lock_word = 0;
|
|
|
|
os_fast_mutex_unlock(&(mutex->os_fast_mutex));
|
|
#endif
|
|
}
|
|
|
|
/**********************************************************************
|
|
Gets the value of the lock word. */
|
|
UNIV_INLINE
|
|
byte
|
|
mutex_get_lock_word(
|
|
/*================*/
|
|
const mutex_t* mutex) /* in: mutex */
|
|
{
|
|
const volatile byte* ptr; /* declared volatile to ensure that
|
|
lock_word is loaded from memory */
|
|
ut_ad(mutex);
|
|
|
|
ptr = &(mutex->lock_word);
|
|
|
|
return(*ptr);
|
|
}
|
|
|
|
/**********************************************************************
|
|
Gets the waiters field in a mutex. */
|
|
UNIV_INLINE
|
|
ulint
|
|
mutex_get_waiters(
|
|
/*==============*/
|
|
/* out: value to set */
|
|
const mutex_t* mutex) /* in: mutex */
|
|
{
|
|
const volatile ulint* ptr; /* declared volatile to ensure that
|
|
the value is read from memory */
|
|
ut_ad(mutex);
|
|
|
|
ptr = &(mutex->waiters);
|
|
|
|
return(*ptr); /* Here we assume that the read of a single
|
|
word from memory is atomic */
|
|
}
|
|
|
|
/**********************************************************************
|
|
Unlocks a mutex owned by the current thread. */
|
|
UNIV_INLINE
|
|
void
|
|
mutex_exit(
|
|
/*=======*/
|
|
mutex_t* mutex) /* in: pointer to mutex */
|
|
{
|
|
ut_ad(mutex_own(mutex));
|
|
|
|
ut_d(mutex->thread_id = (os_thread_id_t) ULINT_UNDEFINED);
|
|
|
|
#ifdef UNIV_SYNC_DEBUG
|
|
sync_thread_reset_level(mutex);
|
|
#endif
|
|
mutex_reset_lock_word(mutex);
|
|
|
|
/* A problem: we assume that mutex_reset_lock word
|
|
is a memory barrier, that is when we read the waiters
|
|
field next, the read must be serialized in memory
|
|
after the reset. A speculative processor might
|
|
perform the read first, which could leave a waiting
|
|
thread hanging indefinitely.
|
|
|
|
Our current solution call every second
|
|
sync_arr_wake_threads_if_sema_free()
|
|
to wake up possible hanging threads if
|
|
they are missed in mutex_signal_object. */
|
|
|
|
if (mutex_get_waiters(mutex) != 0) {
|
|
|
|
mutex_signal_object(mutex);
|
|
}
|
|
|
|
#ifdef UNIV_SYNC_PERF_STAT
|
|
mutex_exit_count++;
|
|
#endif
|
|
}
|
|
|
|
/**********************************************************************
|
|
Locks a mutex for the current thread. If the mutex is reserved, the function
|
|
spins a preset time (controlled by SYNC_SPIN_ROUNDS), waiting for the mutex
|
|
before suspending the thread. */
|
|
UNIV_INLINE
|
|
void
|
|
mutex_enter_func(
|
|
/*=============*/
|
|
mutex_t* mutex, /* in: pointer to mutex */
|
|
const char* file_name, /* in: file name where locked */
|
|
ulint line) /* in: line where locked */
|
|
{
|
|
ut_ad(mutex_validate(mutex));
|
|
ut_ad(!mutex_own(mutex));
|
|
|
|
/* Note that we do not peek at the value of lock_word before trying
|
|
the atomic test_and_set; we could peek, and possibly save time. */
|
|
|
|
ut_d(mutex->count_using++);
|
|
|
|
if (!mutex_test_and_set(mutex)) {
|
|
ut_d(mutex->thread_id = os_thread_get_curr_id());
|
|
#ifdef UNIV_SYNC_DEBUG
|
|
mutex_set_debug_info(mutex, file_name, line);
|
|
#endif
|
|
return; /* Succeeded! */
|
|
}
|
|
|
|
mutex_spin_wait(mutex, file_name, line);
|
|
}
|