mirror of
https://github.com/MariaDB/server.git
synced 2025-01-18 13:02:28 +01:00
6ff211329f
- Encoding itself, implemented as a charset "filename". Originally planned to use '.' as an escape character, but now changed to '@' for two reasons: "ls" does not return file names starting with '.' considering them as a kind of hidden files; some platforms do not allow several dots in a file name. - replacing many calls of my_snprintf() and strnxmov() to the new build_table_filename(). - Adding MY_APPEND_EXT mysys flag, to append an extention rather that replace it. - Replacing all numeric constants in fn_format flag arguments to their mysys definitions, e.g. MY_UNPACK_FILENAME, - Predictability in several function/methods: when a table name can appear with or withot .frm extension. Some functions/methods were changed so accept names strictly with .frm, other - strictly without .frm extensions. Several DBUG_ASSERTs were added to check whether an extension is passed. Many files: table name to file name encoding mysql_priv.h: Prototypes for new table name encoding tools. ctype-utf8.c: Implementing "filename" charset for table name to file name encoding. row0mysql.c: Fixing table name prefix. mf_format.c: Adding MY_APPEND_EXT processing. Many files: Fixing tests. my_sys.h: Adding new flag to append rather than replace an extension. m_ctype.h: Adding "filename" charset definition.
3281 lines
98 KiB
C++
3281 lines
98 KiB
C++
/* Copyright (C) 2005 MySQL AB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
/*
|
|
This handler was developed by Mikael Ronstrom for version 5.1 of MySQL.
|
|
It is an abstraction layer on top of other handlers such as MyISAM,
|
|
InnoDB, Federated, Berkeley DB and so forth. Partitioned tables can also
|
|
be handled by a storage engine. The current example of this is NDB
|
|
Cluster that has internally handled partitioning. This have benefits in
|
|
that many loops needed in the partition handler can be avoided.
|
|
|
|
Partitioning has an inherent feature which in some cases is positive and
|
|
in some cases is negative. It splits the data into chunks. This makes
|
|
the data more manageable, queries can easily be parallelised towards the
|
|
parts and indexes are split such that there are less levels in the
|
|
index trees. The inherent disadvantage is that to use a split index
|
|
one has to scan all index parts which is ok for large queries but for
|
|
small queries it can be a disadvantage.
|
|
|
|
Partitioning lays the foundation for more manageable databases that are
|
|
extremely large. It does also lay the foundation for more parallelism
|
|
in the execution of queries. This functionality will grow with later
|
|
versions of MySQL.
|
|
|
|
You can enable it in your buld by doing the following during your build
|
|
process:
|
|
./configure --with-partition
|
|
|
|
The partition is setup to use table locks. It implements an partition "SHARE"
|
|
that is inserted into a hash by table name. You can use this to store
|
|
information of state that any partition handler object will be able to see
|
|
if it is using the same table.
|
|
|
|
Please read the object definition in ha_partition.h before reading the rest
|
|
if this file.
|
|
*/
|
|
|
|
#ifdef __GNUC__
|
|
#pragma implementation // gcc: Class implementation
|
|
#endif
|
|
|
|
#include "mysql_priv.h"
|
|
|
|
#include "ha_partition.h"
|
|
|
|
static const char *ha_par_ext= ".par";
|
|
#ifdef NOT_USED
|
|
static int free_share(PARTITION_SHARE * share);
|
|
static PARTITION_SHARE *get_share(const char *table_name, TABLE * table);
|
|
#endif
|
|
|
|
/****************************************************************************
|
|
MODULE create/delete handler object
|
|
****************************************************************************/
|
|
|
|
static handler *partition_create_handler(TABLE_SHARE *share);
|
|
|
|
handlerton partition_hton = {
|
|
MYSQL_HANDLERTON_INTERFACE_VERSION,
|
|
"partition",
|
|
SHOW_OPTION_YES,
|
|
"Partition Storage Engine Helper", /* A comment used by SHOW to describe an engine */
|
|
DB_TYPE_PARTITION_DB,
|
|
0, /* Method that initializes a storage engine */
|
|
0, /* slot */
|
|
0, /* savepoint size */
|
|
NULL /*ndbcluster_close_connection*/,
|
|
NULL, /* savepoint_set */
|
|
NULL, /* savepoint_rollback */
|
|
NULL, /* savepoint_release */
|
|
NULL /*ndbcluster_commit*/,
|
|
NULL /*ndbcluster_rollback*/,
|
|
NULL, /* prepare */
|
|
NULL, /* recover */
|
|
NULL, /* commit_by_xid */
|
|
NULL, /* rollback_by_xid */
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
partition_create_handler, /* Create a new handler */
|
|
NULL, /* Drop a database */
|
|
NULL, /* Panic call */
|
|
NULL, /* Start Consistent Snapshot */
|
|
NULL, /* Flush logs */
|
|
NULL, /* Show status */
|
|
HTON_NOT_USER_SELECTABLE | HTON_HIDDEN
|
|
};
|
|
|
|
static handler *partition_create_handler(TABLE_SHARE *share)
|
|
{
|
|
return new ha_partition(share);
|
|
}
|
|
|
|
|
|
ha_partition::ha_partition(TABLE_SHARE *share)
|
|
:handler(&partition_hton, share), m_part_info(NULL), m_create_handler(FALSE),
|
|
m_is_sub_partitioned(0)
|
|
{
|
|
DBUG_ENTER("ha_partition::ha_partition(table)");
|
|
init_handler_variables();
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
ha_partition::ha_partition(partition_info *part_info)
|
|
:handler(&partition_hton, NULL), m_part_info(part_info),
|
|
m_create_handler(TRUE),
|
|
m_is_sub_partitioned(is_sub_partitioned(m_part_info))
|
|
|
|
{
|
|
DBUG_ENTER("ha_partition::ha_partition(part_info)");
|
|
init_handler_variables();
|
|
DBUG_ASSERT(m_part_info);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
void ha_partition::init_handler_variables()
|
|
{
|
|
active_index= MAX_KEY;
|
|
m_file_buffer= NULL;
|
|
m_name_buffer_ptr= NULL;
|
|
m_engine_array= NULL;
|
|
m_file= NULL;
|
|
m_tot_parts= 0;
|
|
m_has_transactions= 0;
|
|
m_pkey_is_clustered= 0;
|
|
m_lock_type= F_UNLCK;
|
|
m_part_spec.start_part= NO_CURRENT_PART_ID;
|
|
m_scan_value= 2;
|
|
m_ref_length= 0;
|
|
m_part_spec.end_part= NO_CURRENT_PART_ID;
|
|
m_index_scan_type= partition_no_index_scan;
|
|
m_start_key.key= NULL;
|
|
m_start_key.length= 0;
|
|
m_myisam= FALSE;
|
|
m_innodb= FALSE;
|
|
m_extra_cache= FALSE;
|
|
m_extra_cache_size= 0;
|
|
m_table_flags= HA_FILE_BASED | HA_REC_NOT_IN_SEQ;
|
|
m_low_byte_first= 1;
|
|
m_part_field_array= NULL;
|
|
m_ordered_rec_buffer= NULL;
|
|
m_top_entry= NO_CURRENT_PART_ID;
|
|
m_rec_length= 0;
|
|
m_last_part= 0;
|
|
m_rec0= 0;
|
|
m_curr_key_info= 0;
|
|
/*
|
|
this allows blackhole to work properly
|
|
*/
|
|
m_no_locks= 0;
|
|
|
|
#ifdef DONT_HAVE_TO_BE_INITALIZED
|
|
m_start_key.flag= 0;
|
|
m_ordered= TRUE;
|
|
#endif
|
|
}
|
|
|
|
|
|
ha_partition::~ha_partition()
|
|
{
|
|
DBUG_ENTER("ha_partition::~ha_partition()");
|
|
if (m_file != NULL)
|
|
{
|
|
uint i;
|
|
for (i= 0; i < m_tot_parts; i++)
|
|
delete m_file[i];
|
|
}
|
|
my_free((char*) m_ordered_rec_buffer, MYF(MY_ALLOW_ZERO_PTR));
|
|
|
|
clear_handler_file();
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
The partition handler is only a layer on top of other engines. Thus it
|
|
can't really perform anything without the underlying handlers. Thus we
|
|
add this method as part of the allocation of a handler object.
|
|
|
|
1) Allocation of underlying handlers
|
|
If we have access to the partition info we will allocate one handler
|
|
instance for each partition.
|
|
2) Allocation without partition info
|
|
The cases where we don't have access to this information is when called
|
|
in preparation for delete_table and rename_table and in that case we
|
|
only need to set HA_FILE_BASED. In that case we will use the .par file
|
|
that contains information about the partitions and their engines and
|
|
the names of each partition.
|
|
3) Table flags initialisation
|
|
We need also to set table flags for the partition handler. This is not
|
|
static since it depends on what storage engines are used as underlying
|
|
handlers.
|
|
The table flags is set in this routine to simulate the behaviour of a
|
|
normal storage engine
|
|
The flag HA_FILE_BASED will be set independent of the underlying handlers
|
|
4) Index flags initialisation
|
|
When knowledge exists on the indexes it is also possible to initialise the
|
|
index flags. Again the index flags must be initialised by using the under-
|
|
lying handlers since this is storage engine dependent.
|
|
The flag HA_READ_ORDER will be reset for the time being to indicate no
|
|
ordered output is available from partition handler indexes. Later a merge
|
|
sort will be performed using the underlying handlers.
|
|
5) primary_key_is_clustered, has_transactions and low_byte_first is
|
|
calculated here.
|
|
*/
|
|
|
|
int ha_partition::ha_initialise()
|
|
{
|
|
handler **file_array, *file;
|
|
DBUG_ENTER("ha_partition::ha_initialise");
|
|
|
|
if (m_create_handler)
|
|
{
|
|
m_tot_parts= get_tot_partitions(m_part_info);
|
|
DBUG_ASSERT(m_tot_parts > 0);
|
|
if (new_handlers_from_part_info())
|
|
DBUG_RETURN(1);
|
|
}
|
|
else if (!table_share || !table_share->normalized_path.str)
|
|
{
|
|
/*
|
|
Called with dummy table share (delete, rename and alter table)
|
|
Don't need to set-up table flags other than
|
|
HA_FILE_BASED here
|
|
*/
|
|
m_table_flags|= HA_FILE_BASED | HA_REC_NOT_IN_SEQ;
|
|
DBUG_RETURN(0);
|
|
}
|
|
else if (get_from_handler_file(table_share->normalized_path.str))
|
|
{
|
|
my_error(ER_OUTOFMEMORY, MYF(0), 129); //Temporary fix TODO print_error
|
|
DBUG_RETURN(1);
|
|
}
|
|
/*
|
|
We create all underlying table handlers here. We do it in this special
|
|
method to be able to report allocation errors.
|
|
|
|
Set up table_flags, low_byte_first, primary_key_is_clustered and
|
|
has_transactions since they are called often in all kinds of places,
|
|
other parameters are calculated on demand.
|
|
HA_FILE_BASED is always set for partition handler since we use a
|
|
special file for handling names of partitions, engine types.
|
|
HA_CAN_GEOMETRY, HA_CAN_FULLTEXT, HA_CAN_SQL_HANDLER,
|
|
HA_CAN_INSERT_DELAYED is disabled until further investigated.
|
|
*/
|
|
m_table_flags= m_file[0]->table_flags();
|
|
m_low_byte_first= m_file[0]->low_byte_first();
|
|
m_has_transactions= TRUE;
|
|
m_pkey_is_clustered= TRUE;
|
|
file_array= m_file;
|
|
do
|
|
{
|
|
file= *file_array;
|
|
if (m_low_byte_first != file->low_byte_first())
|
|
{
|
|
// Cannot have handlers with different endian
|
|
my_error(ER_MIX_HANDLER_ERROR, MYF(0));
|
|
DBUG_RETURN(1);
|
|
}
|
|
if (!file->has_transactions())
|
|
m_has_transactions= FALSE;
|
|
if (!file->primary_key_is_clustered())
|
|
m_pkey_is_clustered= FALSE;
|
|
m_table_flags&= file->table_flags();
|
|
} while (*(++file_array));
|
|
m_table_flags&= ~(HA_CAN_GEOMETRY & HA_CAN_FULLTEXT &
|
|
HA_CAN_SQL_HANDLER & HA_CAN_INSERT_DELAYED);
|
|
m_table_flags|= HA_FILE_BASED | HA_REC_NOT_IN_SEQ;
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
/****************************************************************************
|
|
MODULE meta data changes
|
|
****************************************************************************/
|
|
/*
|
|
This method is used to calculate the partition name, service routine to
|
|
the del_ren_cre_table method.
|
|
*/
|
|
|
|
static void create_partition_name(char *out, const char *in1, const char *in2)
|
|
{
|
|
strxmov(out, in1, "_", in2, NullS);
|
|
}
|
|
|
|
/*
|
|
This method is used to calculate the partition name, service routine to
|
|
the del_ren_cre_table method.
|
|
*/
|
|
|
|
static void create_subpartition_name(char *out, const char *in1,
|
|
const char *in2, const char *in3)
|
|
{
|
|
strxmov(out, in1, "_", in2, "_", in3, NullS);
|
|
}
|
|
|
|
|
|
/*
|
|
Used to delete a table. By the time delete_table() has been called all
|
|
opened references to this table will have been closed (and your globally
|
|
shared references released. The variable name will just be the name of
|
|
the table. You will need to remove any files you have created at this
|
|
point.
|
|
|
|
If you do not implement this, the default delete_table() is called from
|
|
handler.cc and it will delete all files with the file extentions returned
|
|
by bas_ext().
|
|
|
|
Called from handler.cc by delete_table and ha_create_table(). Only used
|
|
during create if the table_flag HA_DROP_BEFORE_CREATE was specified for
|
|
the storage engine.
|
|
*/
|
|
|
|
int ha_partition::delete_table(const char *name)
|
|
{
|
|
int error;
|
|
DBUG_ENTER("ha_partition::delete_table");
|
|
if ((error= del_ren_cre_table(name, NULL, NULL, NULL)))
|
|
DBUG_RETURN(error);
|
|
DBUG_RETURN(handler::delete_table(name));
|
|
}
|
|
|
|
|
|
/*
|
|
Renames a table from one name to another from alter table call.
|
|
|
|
If you do not implement this, the default rename_table() is called from
|
|
handler.cc and it will delete all files with the file extentions returned
|
|
by bas_ext().
|
|
|
|
Called from sql_table.cc by mysql_rename_table().
|
|
*/
|
|
|
|
int ha_partition::rename_table(const char *from, const char *to)
|
|
{
|
|
int error;
|
|
DBUG_ENTER("ha_partition::rename_table");
|
|
if ((error= del_ren_cre_table(from, to, NULL, NULL)))
|
|
DBUG_RETURN(error);
|
|
DBUG_RETURN(handler::rename_table(from, to));
|
|
}
|
|
|
|
|
|
/*
|
|
create_handler_files is called to create any handler specific files
|
|
before opening the file with openfrm to later call ::create on the
|
|
file object.
|
|
In the partition handler this is used to store the names of partitions
|
|
and types of engines in the partitions.
|
|
*/
|
|
|
|
int ha_partition::create_handler_files(const char *name)
|
|
{
|
|
DBUG_ENTER("ha_partition::create_handler_files()");
|
|
|
|
/*
|
|
We need to update total number of parts since we might write the handler
|
|
file as part of a partition management command
|
|
*/
|
|
m_tot_parts= get_tot_partitions(m_part_info);
|
|
if (create_handler_file(name))
|
|
{
|
|
my_error(ER_CANT_CREATE_HANDLER_FILE, MYF(0));
|
|
DBUG_RETURN(1);
|
|
}
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
create() is called to create a table. The variable name will have the name
|
|
of the table. When create() is called you do not need to worry about
|
|
opening the table. Also, the FRM file will have already been created so
|
|
adjusting create_info will not do you any good. You can overwrite the frm
|
|
file at this point if you wish to change the table definition, but there
|
|
are no methods currently provided for doing that.
|
|
|
|
Called from handle.cc by ha_create_table().
|
|
*/
|
|
|
|
int ha_partition::create(const char *name, TABLE *table_arg,
|
|
HA_CREATE_INFO *create_info)
|
|
{
|
|
char t_name[FN_REFLEN];
|
|
DBUG_ENTER("ha_partition::create");
|
|
|
|
strmov(t_name, name);
|
|
// *fn_ext(t_name)= 0;
|
|
DBUG_ASSERT(*fn_rext((char*)name) == '\0');
|
|
if (del_ren_cre_table(t_name, NULL, table_arg, create_info))
|
|
{
|
|
handler::delete_table(t_name);
|
|
DBUG_RETURN(1);
|
|
}
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
int ha_partition::drop_partitions(const char *path)
|
|
{
|
|
List_iterator<partition_element> part_it(m_part_info->partitions);
|
|
char part_name_buff[FN_REFLEN];
|
|
uint no_parts= m_part_info->no_parts;
|
|
uint no_subparts= m_part_info->no_subparts, i= 0;
|
|
int error= 1;
|
|
DBUG_ENTER("ha_partition::drop_partitions()");
|
|
|
|
do
|
|
{
|
|
partition_element *part_elem= part_it++;
|
|
if (part_elem->part_state == PART_IS_DROPPED)
|
|
{
|
|
/*
|
|
This part is to be dropped, meaning the part or all its subparts.
|
|
*/
|
|
if (is_sub_partitioned(m_part_info))
|
|
{
|
|
List_iterator<partition_element> sub_it(part_elem->subpartitions);
|
|
uint j= 0, part;
|
|
do
|
|
{
|
|
partition_element *sub_elem= sub_it++;
|
|
create_subpartition_name(part_name_buff, path,
|
|
part_elem->partition_name,
|
|
sub_elem->partition_name);
|
|
part= i * no_subparts + j;
|
|
DBUG_PRINT("info", ("Drop subpartition %s", part_name_buff));
|
|
error= m_file[part]->delete_table((const char *) part_name_buff);
|
|
} while (++j < no_subparts);
|
|
}
|
|
else
|
|
{
|
|
create_partition_name(part_name_buff, path,
|
|
part_elem->partition_name);
|
|
DBUG_PRINT("info", ("Drop partition %s", part_name_buff));
|
|
error= m_file[i]->delete_table((const char *) part_name_buff);
|
|
}
|
|
}
|
|
} while (++i < no_parts);
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
void ha_partition::update_create_info(HA_CREATE_INFO *create_info)
|
|
{
|
|
return;
|
|
}
|
|
|
|
|
|
char *ha_partition::update_table_comment(const char *comment)
|
|
{
|
|
return (char*) comment; // Nothing to change
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
Common routine to handle delete_table and rename_table.
|
|
The routine uses the partition handler file to get the
|
|
names of the partition instances. Both these routines
|
|
are called after creating the handler without table
|
|
object and thus the file is needed to discover the
|
|
names of the partitions and the underlying storage engines.
|
|
*/
|
|
|
|
uint ha_partition::del_ren_cre_table(const char *from,
|
|
const char *to,
|
|
TABLE *table_arg,
|
|
HA_CREATE_INFO *create_info)
|
|
{
|
|
int save_error= 0, error;
|
|
char from_buff[FN_REFLEN], to_buff[FN_REFLEN];
|
|
char *name_buffer_ptr;
|
|
uint i;
|
|
handler **file;
|
|
DBUG_ENTER("del_ren_cre_table()");
|
|
|
|
if (get_from_handler_file(from))
|
|
DBUG_RETURN(TRUE);
|
|
DBUG_ASSERT(m_file_buffer);
|
|
name_buffer_ptr= m_name_buffer_ptr;
|
|
file= m_file;
|
|
i= 0;
|
|
do
|
|
{
|
|
create_partition_name(from_buff, from, name_buffer_ptr);
|
|
if (to != NULL)
|
|
{ // Rename branch
|
|
create_partition_name(to_buff, to, name_buffer_ptr);
|
|
error= (*file)->rename_table((const char*) from_buff,
|
|
(const char*) to_buff);
|
|
}
|
|
else if (table_arg == NULL) // delete branch
|
|
error= (*file)->delete_table((const char*) from_buff);
|
|
else
|
|
{
|
|
set_up_table_before_create(table_arg, create_info, i);
|
|
error= (*file)->create(from_buff, table_arg, create_info);
|
|
}
|
|
name_buffer_ptr= strend(name_buffer_ptr) + 1;
|
|
if (error)
|
|
save_error= error;
|
|
i++;
|
|
} while (*(++file));
|
|
DBUG_RETURN(save_error);
|
|
}
|
|
|
|
|
|
partition_element *ha_partition::find_partition_element(uint part_id)
|
|
{
|
|
uint i;
|
|
uint curr_part_id= 0;
|
|
List_iterator_fast < partition_element > part_it(m_part_info->partitions);
|
|
|
|
for (i= 0; i < m_part_info->no_parts; i++)
|
|
{
|
|
partition_element *part_elem;
|
|
part_elem= part_it++;
|
|
if (m_is_sub_partitioned)
|
|
{
|
|
uint j;
|
|
List_iterator_fast <partition_element> sub_it(part_elem->subpartitions);
|
|
for (j= 0; j < m_part_info->no_subparts; j++)
|
|
{
|
|
part_elem= sub_it++;
|
|
if (part_id == curr_part_id++)
|
|
return part_elem;
|
|
}
|
|
}
|
|
else if (part_id == curr_part_id++)
|
|
return part_elem;
|
|
}
|
|
DBUG_ASSERT(0);
|
|
current_thd->fatal_error(); // Abort
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void ha_partition::set_up_table_before_create(TABLE *table,
|
|
HA_CREATE_INFO *info,
|
|
uint part_id)
|
|
{
|
|
/*
|
|
Set up
|
|
1) Comment on partition
|
|
2) MAX_ROWS, MIN_ROWS on partition
|
|
3) Index file name on partition
|
|
4) Data file name on partition
|
|
*/
|
|
partition_element *part_elem= find_partition_element(part_id);
|
|
if (!part_elem)
|
|
return; // Fatal error
|
|
table->s->max_rows= part_elem->part_max_rows;
|
|
table->s->min_rows= part_elem->part_min_rows;
|
|
info->index_file_name= part_elem->index_file_name;
|
|
info->data_file_name= part_elem->data_file_name;
|
|
}
|
|
|
|
|
|
/*
|
|
Routine used to add two names with '_' in between then. Service routine
|
|
to create_handler_file
|
|
Include the NULL in the count of characters since it is needed as separator
|
|
between the partition names.
|
|
*/
|
|
|
|
static uint name_add(char *dest, const char *first_name, const char *sec_name)
|
|
{
|
|
return (uint) (strxmov(dest, first_name, "_", sec_name, NullS) -dest) + 1;
|
|
}
|
|
|
|
|
|
/*
|
|
Method used to create handler file with names of partitions, their
|
|
engine types and the number of partitions.
|
|
*/
|
|
|
|
bool ha_partition::create_handler_file(const char *name)
|
|
{
|
|
partition_element *part_elem, *subpart_elem;
|
|
uint i, j, part_name_len, subpart_name_len;
|
|
uint tot_partition_words, tot_name_len;
|
|
uint tot_len_words, tot_len_byte, chksum, tot_name_words;
|
|
char *name_buffer_ptr;
|
|
uchar *file_buffer, *engine_array;
|
|
bool result= TRUE;
|
|
char file_name[FN_REFLEN];
|
|
File file;
|
|
List_iterator_fast < partition_element > part_it(m_part_info->partitions);
|
|
DBUG_ENTER("create_handler_file");
|
|
|
|
DBUG_PRINT("info", ("table name = %s", name));
|
|
tot_name_len= 0;
|
|
for (i= 0; i < m_part_info->no_parts; i++)
|
|
{
|
|
part_elem= part_it++;
|
|
part_name_len= strlen(part_elem->partition_name);
|
|
if (!m_is_sub_partitioned)
|
|
tot_name_len+= part_name_len + 1;
|
|
else
|
|
{
|
|
List_iterator_fast<partition_element> sub_it(part_elem->subpartitions);
|
|
for (j= 0; j < m_part_info->no_subparts; j++)
|
|
{
|
|
subpart_elem= sub_it++;
|
|
subpart_name_len= strlen(subpart_elem->partition_name);
|
|
tot_name_len+= part_name_len + subpart_name_len + 2;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
File format:
|
|
Length in words 4 byte
|
|
Checksum 4 byte
|
|
Total number of partitions 4 byte
|
|
Array of engine types n * 4 bytes where
|
|
n = (m_tot_parts + 3)/4
|
|
Length of name part in bytes 4 bytes
|
|
Name part m * 4 bytes where
|
|
m = ((length_name_part + 3)/4)*4
|
|
|
|
All padding bytes are zeroed
|
|
*/
|
|
tot_partition_words= (m_tot_parts + 3) / 4;
|
|
tot_name_words= (tot_name_len + 3) / 4;
|
|
tot_len_words= 4 + tot_partition_words + tot_name_words;
|
|
tot_len_byte= 4 * tot_len_words;
|
|
if (!(file_buffer= (uchar *) my_malloc(tot_len_byte, MYF(MY_ZEROFILL))))
|
|
DBUG_RETURN(TRUE);
|
|
engine_array= (file_buffer + 12);
|
|
name_buffer_ptr= (char*) (file_buffer + ((4 + tot_partition_words) * 4));
|
|
part_it.rewind();
|
|
for (i= 0; i < m_part_info->no_parts; i++)
|
|
{
|
|
part_elem= part_it++;
|
|
if (!m_is_sub_partitioned)
|
|
{
|
|
name_buffer_ptr= strmov(name_buffer_ptr, part_elem->partition_name)+1;
|
|
*engine_array= (uchar) ha_legacy_type(part_elem->engine_type);
|
|
DBUG_PRINT("info", ("engine: %u", *engine_array));
|
|
engine_array++;
|
|
}
|
|
else
|
|
{
|
|
List_iterator_fast<partition_element> sub_it(part_elem->subpartitions);
|
|
for (j= 0; j < m_part_info->no_subparts; j++)
|
|
{
|
|
subpart_elem= sub_it++;
|
|
name_buffer_ptr+= name_add(name_buffer_ptr,
|
|
part_elem->partition_name,
|
|
subpart_elem->partition_name);
|
|
*engine_array= (uchar) ha_legacy_type(part_elem->engine_type);
|
|
engine_array++;
|
|
}
|
|
}
|
|
}
|
|
chksum= 0;
|
|
int4store(file_buffer, tot_len_words);
|
|
int4store(file_buffer + 8, m_tot_parts);
|
|
int4store(file_buffer + 12 + (tot_partition_words * 4), tot_name_len);
|
|
for (i= 0; i < tot_len_words; i++)
|
|
chksum^= uint4korr(file_buffer + 4 * i);
|
|
int4store(file_buffer + 4, chksum);
|
|
/*
|
|
Remove .frm extension and replace with .par
|
|
Create and write and close file
|
|
to be used at open, delete_table and rename_table
|
|
*/
|
|
fn_format(file_name, name, "", ".par", MY_APPEND_EXT);
|
|
if ((file= my_create(file_name, CREATE_MODE, O_RDWR | O_TRUNC,
|
|
MYF(MY_WME))) >= 0)
|
|
{
|
|
result= my_write(file, (byte *) file_buffer, tot_len_byte,
|
|
MYF(MY_WME | MY_NABP));
|
|
VOID(my_close(file, MYF(0)));
|
|
}
|
|
else
|
|
result= TRUE;
|
|
my_free((char*) file_buffer, MYF(0));
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
void ha_partition::clear_handler_file()
|
|
{
|
|
my_free((char*) m_file_buffer, MYF(MY_ALLOW_ZERO_PTR));
|
|
my_free((char*) m_engine_array, MYF(MY_ALLOW_ZERO_PTR));
|
|
m_file_buffer= NULL;
|
|
m_name_buffer_ptr= NULL;
|
|
m_engine_array= NULL;
|
|
}
|
|
|
|
|
|
bool ha_partition::create_handlers()
|
|
{
|
|
uint i;
|
|
uint alloc_len= (m_tot_parts + 1) * sizeof(handler*);
|
|
DBUG_ENTER("create_handlers");
|
|
|
|
if (!(m_file= (handler **) sql_alloc(alloc_len)))
|
|
DBUG_RETURN(TRUE);
|
|
bzero(m_file, alloc_len);
|
|
for (i= 0; i < m_tot_parts; i++)
|
|
{
|
|
if (!(m_file[i]= get_new_handler(table_share, current_thd->mem_root,
|
|
m_engine_array[i])))
|
|
DBUG_RETURN(TRUE);
|
|
DBUG_PRINT("info", ("engine_type: %u", m_engine_array[i]));
|
|
}
|
|
m_file[m_tot_parts]= 0;
|
|
/* For the moment we only support partition over the same table engine */
|
|
if (m_engine_array[0] == &myisam_hton)
|
|
{
|
|
DBUG_PRINT("info", ("MyISAM"));
|
|
m_myisam= TRUE;
|
|
}
|
|
/* INNODB may not be compiled in... */
|
|
else if (ha_legacy_type(m_engine_array[0]) == DB_TYPE_INNODB)
|
|
{
|
|
DBUG_PRINT("info", ("InnoDB"));
|
|
m_innodb= TRUE;
|
|
}
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
bool ha_partition::new_handlers_from_part_info()
|
|
{
|
|
uint i, j;
|
|
partition_element *part_elem;
|
|
uint alloc_len= (m_tot_parts + 1) * sizeof(handler*);
|
|
List_iterator_fast <partition_element> part_it(m_part_info->partitions);
|
|
THD *thd= current_thd;
|
|
DBUG_ENTER("ha_partition::new_handlers_from_part_info");
|
|
|
|
if (!(m_file= (handler **) sql_alloc(alloc_len)))
|
|
goto error;
|
|
bzero(m_file, alloc_len);
|
|
DBUG_ASSERT(m_part_info->no_parts > 0);
|
|
|
|
i= 0;
|
|
/*
|
|
Don't know the size of the underlying storage engine, invent a number of
|
|
bytes allocated for error message if allocation fails
|
|
*/
|
|
alloc_len= 128;
|
|
do
|
|
{
|
|
part_elem= part_it++;
|
|
if (!(m_file[i]= get_new_handler(table_share, thd->mem_root,
|
|
part_elem->engine_type)))
|
|
goto error;
|
|
DBUG_PRINT("info", ("engine_type: %u", (uint) ha_legacy_type(part_elem->engine_type)));
|
|
if (m_is_sub_partitioned)
|
|
{
|
|
for (j= 0; j < m_part_info->no_subparts; j++)
|
|
{
|
|
if (!(m_file[i]= get_new_handler(table_share, thd->mem_root,
|
|
part_elem->engine_type)))
|
|
goto error;
|
|
DBUG_PRINT("info", ("engine_type: %u", (uint) ha_legacy_type(part_elem->engine_type)));
|
|
}
|
|
}
|
|
} while (++i < m_part_info->no_parts);
|
|
if (part_elem->engine_type == &myisam_hton)
|
|
{
|
|
DBUG_PRINT("info", ("MyISAM"));
|
|
m_myisam= TRUE;
|
|
}
|
|
DBUG_RETURN(FALSE);
|
|
error:
|
|
my_error(ER_OUTOFMEMORY, MYF(0), alloc_len);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
|
|
/*
|
|
Open handler file to get partition names, engine types and number of
|
|
partitions.
|
|
*/
|
|
|
|
bool ha_partition::get_from_handler_file(const char *name)
|
|
{
|
|
char buff[FN_REFLEN], *address_tot_name_len;
|
|
File file;
|
|
char *file_buffer, *name_buffer_ptr;
|
|
handlerton **engine_array;
|
|
uint i, len_bytes, len_words, tot_partition_words, tot_name_words, chksum;
|
|
DBUG_ENTER("ha_partition::get_from_handler_file");
|
|
DBUG_PRINT("enter", ("table name: '%s'", name));
|
|
|
|
if (m_file_buffer)
|
|
DBUG_RETURN(FALSE);
|
|
fn_format(buff, name, "", ha_par_ext, MY_APPEND_EXT);
|
|
|
|
/* Following could be done with my_stat to read in whole file */
|
|
if ((file= my_open(buff, O_RDONLY | O_SHARE, MYF(0))) < 0)
|
|
DBUG_RETURN(TRUE);
|
|
if (my_read(file, (byte *) & buff[0], 8, MYF(MY_NABP)))
|
|
goto err1;
|
|
len_words= uint4korr(buff);
|
|
len_bytes= 4 * len_words;
|
|
if (!(file_buffer= my_malloc(len_bytes, MYF(0))))
|
|
goto err1;
|
|
VOID(my_seek(file, 0, MY_SEEK_SET, MYF(0)));
|
|
if (my_read(file, (byte *) file_buffer, len_bytes, MYF(MY_NABP)))
|
|
goto err2;
|
|
|
|
chksum= 0;
|
|
for (i= 0; i < len_words; i++)
|
|
chksum ^= uint4korr((file_buffer) + 4 * i);
|
|
if (chksum)
|
|
goto err2;
|
|
m_tot_parts= uint4korr((file_buffer) + 8);
|
|
tot_partition_words= (m_tot_parts + 3) / 4;
|
|
if (!(engine_array= (handlerton **) my_malloc(m_tot_parts * sizeof(handlerton*),MYF(0))))
|
|
goto err2;
|
|
for (i= 0; i < m_tot_parts; i++)
|
|
engine_array[i]= ha_resolve_by_legacy_type(current_thd,
|
|
(enum legacy_db_type) *(uchar *) ((file_buffer) + 12 + i));
|
|
address_tot_name_len= file_buffer + 12 + 4 * tot_partition_words;
|
|
tot_name_words= (uint4korr(address_tot_name_len) + 3) / 4;
|
|
if (len_words != (tot_partition_words + tot_name_words + 4))
|
|
goto err2;
|
|
name_buffer_ptr= file_buffer + 16 + 4 * tot_partition_words;
|
|
VOID(my_close(file, MYF(0)));
|
|
m_file_buffer= file_buffer; // Will be freed in clear_handler_file()
|
|
m_name_buffer_ptr= name_buffer_ptr;
|
|
m_engine_array= engine_array;
|
|
if (!m_file && create_handlers())
|
|
{
|
|
clear_handler_file();
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
DBUG_RETURN(FALSE);
|
|
|
|
err2:
|
|
my_free(file_buffer, MYF(0));
|
|
err1:
|
|
VOID(my_close(file, MYF(0)));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
/****************************************************************************
|
|
MODULE open/close object
|
|
****************************************************************************/
|
|
/*
|
|
Used for opening tables. The name will be the name of the file.
|
|
A table is opened when it needs to be opened. For instance
|
|
when a request comes in for a select on the table (tables are not
|
|
open and closed for each request, they are cached).
|
|
|
|
Called from handler.cc by handler::ha_open(). The server opens all tables
|
|
by calling ha_open() which then calls the handler specific open().
|
|
*/
|
|
|
|
int ha_partition::open(const char *name, int mode, uint test_if_locked)
|
|
{
|
|
int error;
|
|
char name_buff[FN_REFLEN];
|
|
char *name_buffer_ptr= m_name_buffer_ptr;
|
|
handler **file;
|
|
uint alloc_len;
|
|
DBUG_ENTER("ha_partition::open");
|
|
|
|
ref_length= 0;
|
|
m_part_field_array= m_part_info->full_part_field_array;
|
|
if (get_from_handler_file(name))
|
|
DBUG_RETURN(1);
|
|
m_start_key.length= 0;
|
|
m_rec0= table->record[0];
|
|
m_rec_length= table->s->reclength;
|
|
alloc_len= m_tot_parts * (m_rec_length + PARTITION_BYTES_IN_POS);
|
|
alloc_len+= table->s->max_key_length;
|
|
if (!m_ordered_rec_buffer)
|
|
{
|
|
if (!(m_ordered_rec_buffer= (byte*)my_malloc(alloc_len, MYF(MY_WME))))
|
|
{
|
|
DBUG_RETURN(1);
|
|
}
|
|
{
|
|
/*
|
|
We set-up one record per partition and each record has 2 bytes in
|
|
front where the partition id is written. This is used by ordered
|
|
index_read.
|
|
We also set-up a reference to the first record for temporary use in
|
|
setting up the scan.
|
|
*/
|
|
char *ptr= (char*)m_ordered_rec_buffer;
|
|
uint i= 0;
|
|
do
|
|
{
|
|
int2store(ptr, i);
|
|
ptr+= m_rec_length + PARTITION_BYTES_IN_POS;
|
|
} while (++i < m_tot_parts);
|
|
m_start_key.key= (const byte*)ptr;
|
|
}
|
|
}
|
|
file= m_file;
|
|
do
|
|
{
|
|
create_partition_name(name_buff, name, name_buffer_ptr);
|
|
if ((error= (*file)->ha_open(table, (const char*) name_buff, mode,
|
|
test_if_locked)))
|
|
goto err_handler;
|
|
m_no_locks+= (*file)->lock_count();
|
|
name_buffer_ptr+= strlen(name_buffer_ptr) + 1;
|
|
set_if_bigger(ref_length, ((*file)->ref_length));
|
|
} while (*(++file));
|
|
/*
|
|
Add 2 bytes for partition id in position ref length.
|
|
ref_length=max_in_all_partitions(ref_length) + PARTITION_BYTES_IN_POS
|
|
*/
|
|
ref_length+= PARTITION_BYTES_IN_POS;
|
|
m_ref_length= ref_length;
|
|
/*
|
|
Release buffer read from .par file. It will not be reused again after
|
|
being opened once.
|
|
*/
|
|
clear_handler_file();
|
|
/*
|
|
Initialise priority queue, initialised to reading forward.
|
|
*/
|
|
if ((error= init_queue(&queue, m_tot_parts, (uint) PARTITION_BYTES_IN_POS,
|
|
0, key_rec_cmp, (void*)this)))
|
|
goto err_handler;
|
|
/*
|
|
Some handlers update statistics as part of the open call. This will in
|
|
some cases corrupt the statistics of the partition handler and thus
|
|
to ensure we have correct statistics we call info from open after
|
|
calling open on all individual handlers.
|
|
*/
|
|
info(HA_STATUS_VARIABLE | HA_STATUS_CONST);
|
|
DBUG_RETURN(0);
|
|
|
|
err_handler:
|
|
while (file-- != m_file)
|
|
(*file)->close();
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
/*
|
|
Closes a table. We call the free_share() function to free any resources
|
|
that we have allocated in the "shared" structure.
|
|
|
|
Called from sql_base.cc, sql_select.cc, and table.cc.
|
|
In sql_select.cc it is only used to close up temporary tables or during
|
|
the process where a temporary table is converted over to being a
|
|
myisam table.
|
|
For sql_base.cc look at close_data_tables().
|
|
*/
|
|
|
|
int ha_partition::close(void)
|
|
{
|
|
handler **file;
|
|
DBUG_ENTER("ha_partition::close");
|
|
|
|
delete_queue(&queue);
|
|
file= m_file;
|
|
do
|
|
{
|
|
(*file)->close();
|
|
} while (*(++file));
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
MODULE start/end statement
|
|
****************************************************************************/
|
|
/*
|
|
A number of methods to define various constants for the handler. In
|
|
the case of the partition handler we need to use some max and min
|
|
of the underlying handlers in most cases.
|
|
*/
|
|
|
|
/*
|
|
First you should go read the section "locking functions for mysql" in
|
|
lock.cc to understand this.
|
|
This create a lock on the table. If you are implementing a storage engine
|
|
that can handle transactions look at ha_berkely.cc to see how you will
|
|
want to goo about doing this. Otherwise you should consider calling
|
|
flock() here.
|
|
Originally this method was used to set locks on file level to enable
|
|
several MySQL Servers to work on the same data. For transactional
|
|
engines it has been "abused" to also mean start and end of statements
|
|
to enable proper rollback of statements and transactions. When LOCK
|
|
TABLES has been issued the start_stmt method takes over the role of
|
|
indicating start of statement but in this case there is no end of
|
|
statement indicator(?).
|
|
|
|
Called from lock.cc by lock_external() and unlock_external(). Also called
|
|
from sql_table.cc by copy_data_between_tables().
|
|
*/
|
|
|
|
int ha_partition::external_lock(THD *thd, int lock_type)
|
|
{
|
|
uint error;
|
|
handler **file;
|
|
DBUG_ENTER("ha_partition::external_lock");
|
|
file= m_file;
|
|
do
|
|
{
|
|
if ((error= (*file)->external_lock(thd, lock_type)))
|
|
{
|
|
if (lock_type != F_UNLCK)
|
|
goto err_handler;
|
|
}
|
|
} while (*(++file));
|
|
m_lock_type= lock_type; // For the future (2009?)
|
|
DBUG_RETURN(0);
|
|
|
|
err_handler:
|
|
while (file-- != m_file)
|
|
(*file)->external_lock(thd, F_UNLCK);
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
|
|
/*
|
|
The idea with handler::store_lock() is the following:
|
|
|
|
The statement decided which locks we should need for the table
|
|
for updates/deletes/inserts we get WRITE locks, for SELECT... we get
|
|
read locks.
|
|
|
|
Before adding the lock into the table lock handler (see thr_lock.c)
|
|
mysqld calls store lock with the requested locks. Store lock can now
|
|
modify a write lock to a read lock (or some other lock), ignore the
|
|
lock (if we don't want to use MySQL table locks at all) or add locks
|
|
for many tables (like we do when we are using a MERGE handler).
|
|
|
|
Berkeley DB for partition changes all WRITE locks to TL_WRITE_ALLOW_WRITE
|
|
(which signals that we are doing WRITES, but we are still allowing other
|
|
reader's and writer's.
|
|
|
|
When releasing locks, store_lock() are also called. In this case one
|
|
usually doesn't have to do anything.
|
|
|
|
store_lock is called when holding a global mutex to ensure that only
|
|
one thread at a time changes the locking information of tables.
|
|
|
|
In some exceptional cases MySQL may send a request for a TL_IGNORE;
|
|
This means that we are requesting the same lock as last time and this
|
|
should also be ignored. (This may happen when someone does a flush
|
|
table when we have opened a part of the tables, in which case mysqld
|
|
closes and reopens the tables and tries to get the same locks at last
|
|
time). In the future we will probably try to remove this.
|
|
|
|
Called from lock.cc by get_lock_data().
|
|
*/
|
|
|
|
THR_LOCK_DATA **ha_partition::store_lock(THD *thd,
|
|
THR_LOCK_DATA **to,
|
|
enum thr_lock_type lock_type)
|
|
{
|
|
handler **file;
|
|
DBUG_ENTER("ha_partition::store_lock");
|
|
file= m_file;
|
|
do
|
|
{
|
|
to= (*file)->store_lock(thd, to, lock_type);
|
|
} while (*(++file));
|
|
DBUG_RETURN(to);
|
|
}
|
|
|
|
|
|
int ha_partition::start_stmt(THD *thd, thr_lock_type lock_type)
|
|
{
|
|
int error= 0;
|
|
handler **file;
|
|
DBUG_ENTER("ha_partition::start_stmt");
|
|
file= m_file;
|
|
do
|
|
{
|
|
if ((error= (*file)->start_stmt(thd, lock_type)))
|
|
break;
|
|
} while (*(++file));
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
|
|
/*
|
|
Returns the number of store locks needed in call to store lock.
|
|
We return number of partitions since we call store_lock on each
|
|
underlying handler. Assists the above functions in allocating
|
|
sufficient space for lock structures.
|
|
*/
|
|
|
|
uint ha_partition::lock_count() const
|
|
{
|
|
DBUG_ENTER("ha_partition::lock_count");
|
|
DBUG_RETURN(m_no_locks);
|
|
}
|
|
|
|
|
|
/*
|
|
Record currently processed was not in the result set of the statement
|
|
and is thus unlocked. Used for UPDATE and DELETE queries.
|
|
*/
|
|
|
|
void ha_partition::unlock_row()
|
|
{
|
|
m_file[m_last_part]->unlock_row();
|
|
return;
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
MODULE change record
|
|
****************************************************************************/
|
|
|
|
/*
|
|
write_row() inserts a row. buf() is a byte array of data, normally record[0].
|
|
|
|
You can use the field information to extract the data from the native byte
|
|
array type.
|
|
|
|
Example of this would be:
|
|
for (Field **field=table->field ; *field ; field++)
|
|
{
|
|
...
|
|
}
|
|
|
|
See ha_tina.cc for an partition of extracting all of the data as strings.
|
|
ha_berekly.cc has an partition of how to store it intact by "packing" it
|
|
for ha_berkeley's own native storage type.
|
|
|
|
See the note for update_row() on auto_increments and timestamps. This
|
|
case also applied to write_row().
|
|
|
|
Called from item_sum.cc, item_sum.cc, sql_acl.cc, sql_insert.cc,
|
|
sql_insert.cc, sql_select.cc, sql_table.cc, sql_udf.cc, and sql_update.cc.
|
|
|
|
ADDITIONAL INFO:
|
|
|
|
Most handlers set timestamp when calling write row if any such fields
|
|
exists. Since we are calling an underlying handler we assume the
|
|
underlying handler will assume this responsibility.
|
|
|
|
Underlying handlers will also call update_auto_increment to calculate
|
|
the new auto increment value. We will catch the call to
|
|
get_auto_increment and ensure this increment value is maintained by
|
|
only one of the underlying handlers.
|
|
*/
|
|
|
|
int ha_partition::write_row(byte * buf)
|
|
{
|
|
uint32 part_id;
|
|
int error;
|
|
#ifdef NOT_NEEDED
|
|
byte *rec0= m_rec0;
|
|
#endif
|
|
DBUG_ENTER("ha_partition::write_row");
|
|
DBUG_ASSERT(buf == m_rec0);
|
|
|
|
#ifdef NOT_NEEDED
|
|
if (likely(buf == rec0))
|
|
#endif
|
|
error= m_part_info->get_partition_id(m_part_info, &part_id);
|
|
#ifdef NOT_NEEDED
|
|
else
|
|
{
|
|
set_field_ptr(m_part_field_array, buf, rec0);
|
|
error= m_part_info->get_partition_id(m_part_info, &part_id);
|
|
set_field_ptr(m_part_field_array, rec0, buf);
|
|
}
|
|
#endif
|
|
if (unlikely(error))
|
|
DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
|
|
m_last_part= part_id;
|
|
DBUG_PRINT("info", ("Insert in partition %d", part_id));
|
|
DBUG_RETURN(m_file[part_id]->write_row(buf));
|
|
}
|
|
|
|
|
|
/*
|
|
Yes, update_row() does what you expect, it updates a row. old_data will
|
|
have the previous row record in it, while new_data will have the newest
|
|
data in it.
|
|
Keep in mind that the server can do updates based on ordering if an
|
|
ORDER BY clause was used. Consecutive ordering is not guarenteed.
|
|
|
|
Currently new_data will not have an updated auto_increament record, or
|
|
and updated timestamp field. You can do these for partition by doing these:
|
|
if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_UPDATE)
|
|
table->timestamp_field->set_time();
|
|
if (table->next_number_field && record == table->record[0])
|
|
update_auto_increment();
|
|
|
|
Called from sql_select.cc, sql_acl.cc, sql_update.cc, and sql_insert.cc.
|
|
new_data is always record[0]
|
|
old_data is normally record[1] but may be anything
|
|
|
|
*/
|
|
|
|
int ha_partition::update_row(const byte *old_data, byte *new_data)
|
|
{
|
|
uint32 new_part_id, old_part_id;
|
|
int error;
|
|
DBUG_ENTER("ha_partition::update_row");
|
|
|
|
if ((error= get_parts_for_update(old_data, new_data, table->record[0],
|
|
m_part_info, &old_part_id, &new_part_id)))
|
|
{
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
/*
|
|
TODO:
|
|
set_internal_auto_increment=
|
|
max(set_internal_auto_increment, new_data->auto_increment)
|
|
*/
|
|
m_last_part= new_part_id;
|
|
if (new_part_id == old_part_id)
|
|
{
|
|
DBUG_PRINT("info", ("Update in partition %d", new_part_id));
|
|
DBUG_RETURN(m_file[new_part_id]->update_row(old_data, new_data));
|
|
}
|
|
else
|
|
{
|
|
DBUG_PRINT("info", ("Update from partition %d to partition %d",
|
|
old_part_id, new_part_id));
|
|
if ((error= m_file[new_part_id]->write_row(new_data)))
|
|
DBUG_RETURN(error);
|
|
if ((error= m_file[old_part_id]->delete_row(old_data)))
|
|
{
|
|
#ifdef IN_THE_FUTURE
|
|
(void) m_file[new_part_id]->delete_last_inserted_row(new_data);
|
|
#endif
|
|
DBUG_RETURN(error);
|
|
}
|
|
}
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
This will delete a row. buf will contain a copy of the row to be deleted.
|
|
The server will call this right after the current row has been read
|
|
(from either a previous rnd_xxx() or index_xxx() call).
|
|
If you keep a pointer to the last row or can access a primary key it will
|
|
make doing the deletion quite a bit easier.
|
|
Keep in mind that the server does no guarentee consecutive deletions.
|
|
ORDER BY clauses can be used.
|
|
|
|
Called in sql_acl.cc and sql_udf.cc to manage internal table information.
|
|
Called in sql_delete.cc, sql_insert.cc, and sql_select.cc. In sql_select
|
|
it is used for removing duplicates while in insert it is used for REPLACE
|
|
calls.
|
|
|
|
buf is either record[0] or record[1]
|
|
|
|
*/
|
|
|
|
int ha_partition::delete_row(const byte *buf)
|
|
{
|
|
uint32 part_id;
|
|
int error;
|
|
DBUG_ENTER("ha_partition::delete_row");
|
|
|
|
if ((error= get_part_for_delete(buf, m_rec0, m_part_info, &part_id)))
|
|
{
|
|
DBUG_RETURN(error);
|
|
}
|
|
m_last_part= part_id;
|
|
DBUG_RETURN(m_file[part_id]->delete_row(buf));
|
|
}
|
|
|
|
|
|
/*
|
|
Used to delete all rows in a table. Both for cases of truncate and
|
|
for cases where the optimizer realizes that all rows will be
|
|
removed as a result of a SQL statement.
|
|
|
|
Called from item_sum.cc by Item_func_group_concat::clear(),
|
|
Item_sum_count_distinct::clear(), and Item_func_group_concat::clear().
|
|
Called from sql_delete.cc by mysql_delete().
|
|
Called from sql_select.cc by JOIN::reinit().
|
|
Called from sql_union.cc by st_select_lex_unit::exec().
|
|
*/
|
|
|
|
int ha_partition::delete_all_rows()
|
|
{
|
|
int error;
|
|
handler **file;
|
|
DBUG_ENTER("ha_partition::delete_all_rows");
|
|
file= m_file;
|
|
do
|
|
{
|
|
if ((error= (*file)->delete_all_rows()))
|
|
DBUG_RETURN(error);
|
|
} while (*(++file));
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
/*
|
|
rows == 0 means we will probably insert many rows
|
|
*/
|
|
|
|
void ha_partition::start_bulk_insert(ha_rows rows)
|
|
{
|
|
handler **file;
|
|
DBUG_ENTER("ha_partition::start_bulk_insert");
|
|
if (!rows)
|
|
{
|
|
/* Avoid allocation big caches in all underlaying handlers */
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
rows= rows/m_tot_parts + 1;
|
|
file= m_file;
|
|
do
|
|
{
|
|
(*file)->start_bulk_insert(rows);
|
|
} while (*(++file));
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
int ha_partition::end_bulk_insert()
|
|
{
|
|
int error= 0;
|
|
handler **file;
|
|
DBUG_ENTER("ha_partition::end_bulk_insert");
|
|
|
|
file= m_file;
|
|
do
|
|
{
|
|
int tmp;
|
|
/* We want to execute end_bulk_insert() on all handlers */
|
|
if ((tmp= (*file)->end_bulk_insert()))
|
|
error= tmp;
|
|
} while (*(++file));
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
/****************************************************************************
|
|
MODULE full table scan
|
|
****************************************************************************/
|
|
/*
|
|
Initialize engine for random reads
|
|
|
|
SYNOPSIS
|
|
ha_partition::rnd_init()
|
|
scan 0 Initialize for random reads through rnd_pos()
|
|
1 Initialize for random scan through rnd_next()
|
|
|
|
NOTES
|
|
rnd_init() is called when the server wants the storage engine to do a
|
|
table scan or when the server wants to access data through rnd_pos.
|
|
|
|
When scan is used we will scan one handler partition at a time.
|
|
When preparing for rnd_pos we will init all handler partitions.
|
|
No extra cache handling is needed when scannning is not performed.
|
|
|
|
Before initialising we will call rnd_end to ensure that we clean up from
|
|
any previous incarnation of a table scan.
|
|
Called from filesort.cc, records.cc, sql_handler.cc, sql_select.cc,
|
|
sql_table.cc, and sql_update.cc.
|
|
*/
|
|
|
|
int ha_partition::rnd_init(bool scan)
|
|
{
|
|
int error;
|
|
handler **file;
|
|
DBUG_ENTER("ha_partition::rnd_init");
|
|
|
|
include_partition_fields_in_used_fields();
|
|
if (scan)
|
|
{
|
|
/*
|
|
rnd_end() is needed for partitioning to reset internal data if scan
|
|
is already in use
|
|
*/
|
|
|
|
rnd_end();
|
|
if (partition_scan_set_up(rec_buf(0), FALSE))
|
|
{
|
|
/*
|
|
The set of partitions to scan is empty. We return success and return
|
|
end of file on first rnd_next.
|
|
*/
|
|
DBUG_RETURN(0);
|
|
}
|
|
/*
|
|
We will use the partition set in our scan, using the start and stop
|
|
partition and checking each scan before start dependent on bittfields.
|
|
*/
|
|
late_extra_cache(m_part_spec.start_part);
|
|
DBUG_PRINT("info", ("rnd_init on partition %d",m_part_spec.start_part));
|
|
error= m_file[m_part_spec.start_part]->ha_rnd_init(1);
|
|
m_scan_value= 1; // Scan active
|
|
if (error)
|
|
m_scan_value= 2; // No scan active
|
|
DBUG_RETURN(error);
|
|
}
|
|
file= m_file;
|
|
do
|
|
{
|
|
if ((error= (*file)->ha_rnd_init(0)))
|
|
goto err;
|
|
} while (*(++file));
|
|
m_scan_value= 0;
|
|
DBUG_RETURN(0);
|
|
|
|
err:
|
|
while (file--)
|
|
(*file)->ha_rnd_end();
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
|
|
int ha_partition::rnd_end()
|
|
{
|
|
handler **file;
|
|
DBUG_ENTER("ha_partition::rnd_end");
|
|
switch (m_scan_value) {
|
|
case 2: // Error
|
|
break;
|
|
case 1: // Table scan
|
|
if (m_part_spec.start_part != NO_CURRENT_PART_ID)
|
|
{
|
|
late_extra_no_cache(m_part_spec.start_part);
|
|
m_file[m_part_spec.start_part]->ha_rnd_end();
|
|
}
|
|
break;
|
|
case 0:
|
|
file= m_file;
|
|
do
|
|
{
|
|
(*file)->ha_rnd_end();
|
|
} while (*(++file));
|
|
break;
|
|
}
|
|
m_part_spec.start_part= NO_CURRENT_PART_ID;
|
|
m_scan_value= 2;
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
read next row during full table scan (scan in random row order)
|
|
|
|
SYNOPSIS
|
|
rnd_next()
|
|
buf buffer that should be filled with data
|
|
|
|
This is called for each row of the table scan. When you run out of records
|
|
you should return HA_ERR_END_OF_FILE.
|
|
The Field structure for the table is the key to getting data into buf
|
|
in a manner that will allow the server to understand it.
|
|
|
|
Called from filesort.cc, records.cc, sql_handler.cc, sql_select.cc,
|
|
sql_table.cc, and sql_update.cc.
|
|
*/
|
|
|
|
int ha_partition::rnd_next(byte *buf)
|
|
{
|
|
DBUG_ASSERT(m_scan_value);
|
|
uint part_id= m_part_spec.start_part; // Cache of this variable
|
|
handler *file= m_file[part_id];
|
|
int result= HA_ERR_END_OF_FILE;
|
|
DBUG_ENTER("ha_partition::rnd_next");
|
|
|
|
DBUG_ASSERT(m_scan_value == 1);
|
|
|
|
if (part_id > m_part_spec.end_part)
|
|
{
|
|
/*
|
|
The original set of partitions to scan was empty and thus we report
|
|
the result here.
|
|
*/
|
|
goto end;
|
|
}
|
|
while (TRUE)
|
|
{
|
|
if ((result= file->rnd_next(buf)))
|
|
{
|
|
if (result == HA_ERR_RECORD_DELETED)
|
|
continue; // Probably MyISAM
|
|
|
|
if (result != HA_ERR_END_OF_FILE)
|
|
break; // Return error
|
|
|
|
/* End current partition */
|
|
late_extra_no_cache(part_id);
|
|
DBUG_PRINT("info", ("rnd_end on partition %d", part_id));
|
|
if ((result= file->ha_rnd_end()))
|
|
break;
|
|
/* Shift to next partition */
|
|
if (++part_id > m_part_spec.end_part)
|
|
{
|
|
result= HA_ERR_END_OF_FILE;
|
|
break;
|
|
}
|
|
file= m_file[part_id];
|
|
DBUG_PRINT("info", ("rnd_init on partition %d", part_id));
|
|
if ((result= file->ha_rnd_init(1)))
|
|
break;
|
|
late_extra_cache(part_id);
|
|
}
|
|
else
|
|
{
|
|
m_part_spec.start_part= part_id;
|
|
m_last_part= part_id;
|
|
table->status= 0;
|
|
DBUG_RETURN(0);
|
|
}
|
|
}
|
|
|
|
end:
|
|
m_part_spec.start_part= NO_CURRENT_PART_ID;
|
|
table->status= STATUS_NOT_FOUND;
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
inline void store_part_id_in_pos(byte *pos, uint part_id)
|
|
{
|
|
int2store(pos, part_id);
|
|
}
|
|
|
|
inline uint get_part_id_from_pos(const byte *pos)
|
|
{
|
|
return uint2korr(pos);
|
|
}
|
|
|
|
/*
|
|
position() is called after each call to rnd_next() if the data needs
|
|
to be ordered. You can do something like the following to store
|
|
the position:
|
|
ha_store_ptr(ref, ref_length, current_position);
|
|
|
|
The server uses ref to store data. ref_length in the above case is
|
|
the size needed to store current_position. ref is just a byte array
|
|
that the server will maintain. If you are using offsets to mark rows, then
|
|
current_position should be the offset. If it is a primary key like in
|
|
BDB, then it needs to be a primary key.
|
|
|
|
Called from filesort.cc, sql_select.cc, sql_delete.cc and sql_update.cc.
|
|
*/
|
|
|
|
void ha_partition::position(const byte *record)
|
|
{
|
|
handler *file= m_file[m_last_part];
|
|
DBUG_ENTER("ha_partition::position");
|
|
file->position(record);
|
|
store_part_id_in_pos(ref, m_last_part);
|
|
memcpy((ref + PARTITION_BYTES_IN_POS), file->ref,
|
|
(ref_length - PARTITION_BYTES_IN_POS));
|
|
|
|
#ifdef SUPPORTING_PARTITION_OVER_DIFFERENT_ENGINES
|
|
#ifdef HAVE_purify
|
|
bzero(ref + PARTITION_BYTES_IN_POS + ref_length, max_ref_length-ref_length);
|
|
#endif /* HAVE_purify */
|
|
#endif
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
/*
|
|
This is like rnd_next, but you are given a position to use
|
|
to determine the row. The position will be of the type that you stored in
|
|
ref. You can use ha_get_ptr(pos,ref_length) to retrieve whatever key
|
|
or position you saved when position() was called.
|
|
Called from filesort.cc records.cc sql_insert.cc sql_select.cc
|
|
sql_update.cc.
|
|
*/
|
|
|
|
int ha_partition::rnd_pos(byte * buf, byte *pos)
|
|
{
|
|
uint part_id;
|
|
handler *file;
|
|
DBUG_ENTER("ha_partition::rnd_pos");
|
|
|
|
part_id= get_part_id_from_pos((const byte *) pos);
|
|
DBUG_ASSERT(part_id < m_tot_parts);
|
|
file= m_file[part_id];
|
|
m_last_part= part_id;
|
|
DBUG_RETURN(file->rnd_pos(buf, (pos + PARTITION_BYTES_IN_POS)));
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
MODULE index scan
|
|
****************************************************************************/
|
|
/*
|
|
Positions an index cursor to the index specified in the handle. Fetches the
|
|
row if available. If the key value is null, begin at the first key of the
|
|
index.
|
|
|
|
There are loads of optimisations possible here for the partition handler.
|
|
The same optimisations can also be checked for full table scan although
|
|
only through conditions and not from index ranges.
|
|
Phase one optimisations:
|
|
Check if the fields of the partition function are bound. If so only use
|
|
the single partition it becomes bound to.
|
|
Phase two optimisations:
|
|
If it can be deducted through range or list partitioning that only a
|
|
subset of the partitions are used, then only use those partitions.
|
|
*/
|
|
|
|
/*
|
|
index_init is always called before starting index scans (except when
|
|
starting through index_read_idx and using read_range variants).
|
|
*/
|
|
|
|
int ha_partition::index_init(uint inx, bool sorted)
|
|
{
|
|
int error= 0;
|
|
handler **file;
|
|
DBUG_ENTER("ha_partition::index_init");
|
|
|
|
active_index= inx;
|
|
m_part_spec.start_part= NO_CURRENT_PART_ID;
|
|
m_start_key.length= 0;
|
|
m_ordered= sorted;
|
|
m_curr_key_info= table->key_info+inx;
|
|
include_partition_fields_in_used_fields();
|
|
|
|
file= m_file;
|
|
do
|
|
{
|
|
/* TODO RONM: Change to index_init() when code is stable */
|
|
if ((error= (*file)->ha_index_init(inx, sorted)))
|
|
{
|
|
DBUG_ASSERT(0); // Should never happen
|
|
break;
|
|
}
|
|
} while (*(++file));
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
|
|
/*
|
|
index_end is called at the end of an index scan to clean up any
|
|
things needed to clean up.
|
|
*/
|
|
|
|
int ha_partition::index_end()
|
|
{
|
|
int error= 0;
|
|
handler **file;
|
|
DBUG_ENTER("ha_partition::index_end");
|
|
|
|
active_index= MAX_KEY;
|
|
m_part_spec.start_part= NO_CURRENT_PART_ID;
|
|
file= m_file;
|
|
do
|
|
{
|
|
int tmp;
|
|
/* We want to execute index_end() on all handlers */
|
|
/* TODO RONM: Change to index_end() when code is stable */
|
|
if ((tmp= (*file)->ha_index_end()))
|
|
error= tmp;
|
|
} while (*(++file));
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
|
|
/*
|
|
index_read starts a new index scan using a start key. The MySQL Server
|
|
will check the end key on its own. Thus to function properly the
|
|
partitioned handler need to ensure that it delivers records in the sort
|
|
order of the MySQL Server.
|
|
index_read can be restarted without calling index_end on the previous
|
|
index scan and without calling index_init. In this case the index_read
|
|
is on the same index as the previous index_scan. This is particularly
|
|
used in conjuntion with multi read ranges.
|
|
*/
|
|
|
|
int ha_partition::index_read(byte * buf, const byte * key,
|
|
uint key_len, enum ha_rkey_function find_flag)
|
|
{
|
|
DBUG_ENTER("ha_partition::index_read");
|
|
end_range= 0;
|
|
DBUG_RETURN(common_index_read(buf, key, key_len, find_flag));
|
|
}
|
|
|
|
|
|
int ha_partition::common_index_read(byte *buf, const byte *key, uint key_len,
|
|
enum ha_rkey_function find_flag)
|
|
{
|
|
int error;
|
|
DBUG_ENTER("ha_partition::common_index_read");
|
|
|
|
memcpy((void*)m_start_key.key, key, key_len);
|
|
m_start_key.length= key_len;
|
|
m_start_key.flag= find_flag;
|
|
m_index_scan_type= partition_index_read;
|
|
|
|
if ((error= partition_scan_set_up(buf, TRUE)))
|
|
{
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
if (!m_ordered_scan_ongoing ||
|
|
(find_flag == HA_READ_KEY_EXACT &&
|
|
(key_len >= m_curr_key_info->key_length ||
|
|
key_len == 0)))
|
|
{
|
|
/*
|
|
We use unordered index scan either when read_range is used and flag
|
|
is set to not use ordered or when an exact key is used and in this
|
|
case all records will be sorted equal and thus the sort order of the
|
|
resulting records doesn't matter.
|
|
We also use an unordered index scan when the number of partitions to
|
|
scan is only one.
|
|
The unordered index scan will use the partition set created.
|
|
Need to set unordered scan ongoing since we can come here even when
|
|
it isn't set.
|
|
*/
|
|
m_ordered_scan_ongoing= FALSE;
|
|
error= handle_unordered_scan_next_partition(buf);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
In all other cases we will use the ordered index scan. This will use
|
|
the partition set created by the get_partition_set method.
|
|
*/
|
|
error= handle_ordered_index_scan(buf);
|
|
}
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
|
|
/*
|
|
index_first() asks for the first key in the index.
|
|
This is similar to index_read except that there is no start key since
|
|
the scan starts from the leftmost entry and proceeds forward with
|
|
index_next.
|
|
|
|
Called from opt_range.cc, opt_sum.cc, sql_handler.cc,
|
|
and sql_select.cc.
|
|
*/
|
|
|
|
int ha_partition::index_first(byte * buf)
|
|
{
|
|
DBUG_ENTER("ha_partition::index_first");
|
|
end_range= 0;
|
|
m_index_scan_type= partition_index_first;
|
|
DBUG_RETURN(common_first_last(buf));
|
|
}
|
|
|
|
|
|
/*
|
|
index_last() asks for the last key in the index.
|
|
This is similar to index_read except that there is no start key since
|
|
the scan starts from the rightmost entry and proceeds forward with
|
|
index_prev.
|
|
|
|
Called from opt_range.cc, opt_sum.cc, sql_handler.cc,
|
|
and sql_select.cc.
|
|
*/
|
|
|
|
int ha_partition::index_last(byte * buf)
|
|
{
|
|
DBUG_ENTER("ha_partition::index_last");
|
|
m_index_scan_type= partition_index_last;
|
|
DBUG_RETURN(common_first_last(buf));
|
|
}
|
|
|
|
int ha_partition::common_first_last(byte *buf)
|
|
{
|
|
int error;
|
|
if ((error= partition_scan_set_up(buf, FALSE)))
|
|
return error;
|
|
if (!m_ordered_scan_ongoing)
|
|
return handle_unordered_scan_next_partition(buf);
|
|
return handle_ordered_index_scan(buf);
|
|
}
|
|
|
|
/*
|
|
Positions an index cursor to the index specified in key. Fetches the
|
|
row if any. This is only used to read whole keys.
|
|
TODO: Optimise this code to avoid index_init and index_end
|
|
*/
|
|
|
|
int ha_partition::index_read_idx(byte * buf, uint index, const byte * key,
|
|
uint key_len,
|
|
enum ha_rkey_function find_flag)
|
|
{
|
|
int res;
|
|
DBUG_ENTER("ha_partition::index_read_idx");
|
|
index_init(index, 0);
|
|
res= index_read(buf, key, key_len, find_flag);
|
|
index_end();
|
|
DBUG_RETURN(res);
|
|
}
|
|
|
|
/*
|
|
This is used in join_read_last_key to optimise away an ORDER BY.
|
|
Can only be used on indexes supporting HA_READ_ORDER
|
|
*/
|
|
|
|
int ha_partition::index_read_last(byte *buf, const byte *key, uint keylen)
|
|
{
|
|
DBUG_ENTER("ha_partition::index_read_last");
|
|
m_ordered= TRUE; // Safety measure
|
|
DBUG_RETURN(index_read(buf, key, keylen, HA_READ_PREFIX_LAST));
|
|
}
|
|
|
|
|
|
/*
|
|
Used to read forward through the index.
|
|
*/
|
|
|
|
int ha_partition::index_next(byte * buf)
|
|
{
|
|
DBUG_ENTER("ha_partition::index_next");
|
|
/*
|
|
TODO(low priority):
|
|
If we want partition to work with the HANDLER commands, we
|
|
must be able to do index_last() -> index_prev() -> index_next()
|
|
*/
|
|
DBUG_ASSERT(m_index_scan_type != partition_index_last);
|
|
if (!m_ordered_scan_ongoing)
|
|
{
|
|
DBUG_RETURN(handle_unordered_next(buf, FALSE));
|
|
}
|
|
DBUG_RETURN(handle_ordered_next(buf, FALSE));
|
|
}
|
|
|
|
|
|
/*
|
|
This routine is used to read the next but only if the key is the same
|
|
as supplied in the call.
|
|
*/
|
|
|
|
int ha_partition::index_next_same(byte *buf, const byte *key, uint keylen)
|
|
{
|
|
DBUG_ENTER("ha_partition::index_next_same");
|
|
DBUG_ASSERT(keylen == m_start_key.length);
|
|
DBUG_ASSERT(m_index_scan_type != partition_index_last);
|
|
if (!m_ordered_scan_ongoing)
|
|
DBUG_RETURN(handle_unordered_next(buf, TRUE));
|
|
DBUG_RETURN(handle_ordered_next(buf, TRUE));
|
|
}
|
|
|
|
/*
|
|
Used to read backwards through the index.
|
|
*/
|
|
|
|
int ha_partition::index_prev(byte * buf)
|
|
{
|
|
DBUG_ENTER("ha_partition::index_prev");
|
|
/* TODO: read comment in index_next */
|
|
DBUG_ASSERT(m_index_scan_type != partition_index_first);
|
|
DBUG_RETURN(handle_ordered_prev(buf));
|
|
}
|
|
|
|
|
|
/*
|
|
We reimplement read_range_first since we don't want the compare_key
|
|
check at the end. This is already performed in the partition handler.
|
|
read_range_next is very much different due to that we need to scan
|
|
all underlying handlers.
|
|
*/
|
|
|
|
int ha_partition::read_range_first(const key_range *start_key,
|
|
const key_range *end_key,
|
|
bool eq_range_arg, bool sorted)
|
|
{
|
|
int error;
|
|
DBUG_ENTER("ha_partition::read_range_first");
|
|
m_ordered= sorted;
|
|
eq_range= eq_range_arg;
|
|
end_range= 0;
|
|
if (end_key)
|
|
{
|
|
end_range= &save_end_range;
|
|
save_end_range= *end_key;
|
|
key_compare_result_on_equal=
|
|
((end_key->flag == HA_READ_BEFORE_KEY) ? 1 :
|
|
(end_key->flag == HA_READ_AFTER_KEY) ? -1 : 0);
|
|
}
|
|
range_key_part= m_curr_key_info->key_part;
|
|
|
|
if (!start_key) // Read first record
|
|
{
|
|
m_index_scan_type= partition_index_first;
|
|
error= common_first_last(m_rec0);
|
|
}
|
|
else
|
|
{
|
|
error= common_index_read(m_rec0,
|
|
start_key->key,
|
|
start_key->length, start_key->flag);
|
|
}
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
|
|
int ha_partition::read_range_next()
|
|
{
|
|
DBUG_ENTER("ha_partition::read_range_next");
|
|
if (m_ordered)
|
|
{
|
|
DBUG_RETURN(handler::read_range_next());
|
|
}
|
|
DBUG_RETURN(handle_unordered_next(m_rec0, eq_range));
|
|
}
|
|
|
|
|
|
int ha_partition::partition_scan_set_up(byte * buf, bool idx_read_flag)
|
|
{
|
|
DBUG_ENTER("ha_partition::partition_scan_set_up");
|
|
|
|
if (idx_read_flag)
|
|
get_partition_set(table,buf,active_index,&m_start_key,&m_part_spec);
|
|
else
|
|
get_partition_set(table, buf, MAX_KEY, 0, &m_part_spec);
|
|
if (m_part_spec.start_part > m_part_spec.end_part)
|
|
{
|
|
/*
|
|
We discovered a partition set but the set was empty so we report
|
|
key not found.
|
|
*/
|
|
DBUG_PRINT("info", ("scan with no partition to scan"));
|
|
DBUG_RETURN(HA_ERR_END_OF_FILE);
|
|
}
|
|
if (m_part_spec.start_part == m_part_spec.end_part)
|
|
{
|
|
/*
|
|
We discovered a single partition to scan, this never needs to be
|
|
performed using the ordered index scan.
|
|
*/
|
|
DBUG_PRINT("info", ("index scan using the single partition %d",
|
|
m_part_spec.start_part));
|
|
m_ordered_scan_ongoing= FALSE;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
Set m_ordered_scan_ongoing according how the scan should be done
|
|
*/
|
|
m_ordered_scan_ongoing= m_ordered;
|
|
}
|
|
DBUG_ASSERT(m_part_spec.start_part < m_tot_parts &&
|
|
m_part_spec.end_part < m_tot_parts);
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
Unordered Index Scan Routines
|
|
****************************************************************************/
|
|
/*
|
|
These routines are used to scan partitions without considering order.
|
|
This is performed in two situations.
|
|
1) In read_multi_range this is the normal case
|
|
2) When performing any type of index_read, index_first, index_last where
|
|
all fields in the partition function is bound. In this case the index
|
|
scan is performed on only one partition and thus it isn't necessary to
|
|
perform any sort.
|
|
*/
|
|
|
|
int ha_partition::handle_unordered_next(byte *buf, bool next_same)
|
|
{
|
|
handler *file= file= m_file[m_part_spec.start_part];
|
|
int error;
|
|
DBUG_ENTER("ha_partition::handle_unordered_next");
|
|
|
|
/*
|
|
We should consider if this should be split into two functions as
|
|
next_same is alwas a local constant
|
|
*/
|
|
if (next_same)
|
|
{
|
|
if (!(error= file->index_next_same(buf, m_start_key.key,
|
|
m_start_key.length)))
|
|
{
|
|
m_last_part= m_part_spec.start_part;
|
|
DBUG_RETURN(0);
|
|
}
|
|
}
|
|
else if (!(error= file->index_next(buf)))
|
|
{
|
|
if (compare_key(end_range) <= 0)
|
|
{
|
|
m_last_part= m_part_spec.start_part;
|
|
DBUG_RETURN(0); // Row was in range
|
|
}
|
|
error= HA_ERR_END_OF_FILE;
|
|
}
|
|
|
|
if (error == HA_ERR_END_OF_FILE)
|
|
{
|
|
m_part_spec.start_part++; // Start using next part
|
|
error= handle_unordered_scan_next_partition(buf);
|
|
}
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
|
|
/*
|
|
This routine is used to start the index scan on the next partition.
|
|
Both initial start and after completing scan on one partition.
|
|
*/
|
|
|
|
int ha_partition::handle_unordered_scan_next_partition(byte * buf)
|
|
{
|
|
uint i;
|
|
DBUG_ENTER("ha_partition::handle_unordered_scan_next_partition");
|
|
|
|
for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++)
|
|
{
|
|
int error;
|
|
handler *file= m_file[i];
|
|
|
|
m_part_spec.start_part= i;
|
|
switch (m_index_scan_type) {
|
|
case partition_index_read:
|
|
DBUG_PRINT("info", ("index_read on partition %d", i));
|
|
error= file->index_read(buf, m_start_key.key,
|
|
m_start_key.length,
|
|
m_start_key.flag);
|
|
break;
|
|
case partition_index_first:
|
|
DBUG_PRINT("info", ("index_first on partition %d", i));
|
|
error= file->index_first(buf);
|
|
break;
|
|
default:
|
|
DBUG_ASSERT(FALSE);
|
|
DBUG_RETURN(1);
|
|
}
|
|
if (!error)
|
|
{
|
|
if (compare_key(end_range) <= 0)
|
|
{
|
|
m_last_part= i;
|
|
DBUG_RETURN(0);
|
|
}
|
|
error= HA_ERR_END_OF_FILE;
|
|
}
|
|
if ((error != HA_ERR_END_OF_FILE) && (error != HA_ERR_KEY_NOT_FOUND))
|
|
DBUG_RETURN(error);
|
|
DBUG_PRINT("info", ("HA_ERR_END_OF_FILE on partition %d", i));
|
|
}
|
|
m_part_spec.start_part= NO_CURRENT_PART_ID;
|
|
DBUG_RETURN(HA_ERR_END_OF_FILE);
|
|
}
|
|
|
|
|
|
/*
|
|
This part contains the logic to handle index scans that require ordered
|
|
output. This includes all except those started by read_range_first with
|
|
the flag ordered set to FALSE. Thus most direct index_read and all
|
|
index_first and index_last.
|
|
|
|
We implement ordering by keeping one record plus a key buffer for each
|
|
partition. Every time a new entry is requested we will fetch a new
|
|
entry from the partition that is currently not filled with an entry.
|
|
Then the entry is put into its proper sort position.
|
|
|
|
Returning a record is done by getting the top record, copying the
|
|
record to the request buffer and setting the partition as empty on
|
|
entries.
|
|
*/
|
|
|
|
int ha_partition::handle_ordered_index_scan(byte *buf)
|
|
{
|
|
uint i, j= 0;
|
|
bool found= FALSE;
|
|
bool reverse_order= FALSE;
|
|
DBUG_ENTER("ha_partition::handle_ordered_index_scan");
|
|
|
|
m_top_entry= NO_CURRENT_PART_ID;
|
|
queue_remove_all(&queue);
|
|
for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++)
|
|
{
|
|
int error;
|
|
byte *rec_buf_ptr= rec_buf(i);
|
|
handler *file= m_file[i];
|
|
|
|
switch (m_index_scan_type) {
|
|
case partition_index_read:
|
|
error= file->index_read(rec_buf_ptr,
|
|
m_start_key.key,
|
|
m_start_key.length,
|
|
m_start_key.flag);
|
|
reverse_order= FALSE;
|
|
break;
|
|
case partition_index_first:
|
|
error= file->index_first(rec_buf_ptr);
|
|
reverse_order= FALSE;
|
|
break;
|
|
case partition_index_last:
|
|
error= file->index_last(rec_buf_ptr);
|
|
reverse_order= TRUE;
|
|
break;
|
|
default:
|
|
DBUG_ASSERT(FALSE);
|
|
DBUG_RETURN(HA_ERR_END_OF_FILE);
|
|
}
|
|
if (!error)
|
|
{
|
|
found= TRUE;
|
|
/*
|
|
Initialise queue without order first, simply insert
|
|
*/
|
|
queue_element(&queue, j++)= (byte*)queue_buf(i);
|
|
}
|
|
else if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
|
|
{
|
|
DBUG_RETURN(error);
|
|
}
|
|
}
|
|
if (found)
|
|
{
|
|
/*
|
|
We found at least one partition with data, now sort all entries and
|
|
after that read the first entry and copy it to the buffer to return in.
|
|
*/
|
|
queue_set_max_at_top(&queue, reverse_order);
|
|
queue_set_cmp_arg(&queue, (void*)m_curr_key_info);
|
|
queue.elements= j;
|
|
queue_fix(&queue);
|
|
return_top_record(buf);
|
|
DBUG_PRINT("info", ("Record returned from partition %d", m_top_entry));
|
|
DBUG_RETURN(0);
|
|
}
|
|
DBUG_RETURN(HA_ERR_END_OF_FILE);
|
|
}
|
|
|
|
|
|
void ha_partition::return_top_record(byte *buf)
|
|
{
|
|
uint part_id;
|
|
byte *key_buffer= queue_top(&queue);
|
|
byte *rec_buffer= key_buffer + PARTITION_BYTES_IN_POS;
|
|
part_id= uint2korr(key_buffer);
|
|
memcpy(buf, rec_buffer, m_rec_length);
|
|
m_last_part= part_id;
|
|
m_top_entry= part_id;
|
|
}
|
|
|
|
|
|
int ha_partition::handle_ordered_next(byte *buf, bool next_same)
|
|
{
|
|
int error;
|
|
uint part_id= m_top_entry;
|
|
handler *file= m_file[part_id];
|
|
DBUG_ENTER("ha_partition::handle_ordered_next");
|
|
|
|
if (!next_same)
|
|
error= file->index_next(rec_buf(part_id));
|
|
else
|
|
error= file->index_next_same(rec_buf(part_id), m_start_key.key,
|
|
m_start_key.length);
|
|
if (error)
|
|
{
|
|
if (error == HA_ERR_END_OF_FILE)
|
|
{
|
|
/* Return next buffered row */
|
|
queue_remove(&queue, (uint) 0);
|
|
if (queue.elements)
|
|
{
|
|
DBUG_PRINT("info", ("Record returned from partition %u (2)",
|
|
m_top_entry));
|
|
return_top_record(buf);
|
|
error= 0;
|
|
}
|
|
}
|
|
DBUG_RETURN(error);
|
|
}
|
|
queue_replaced(&queue);
|
|
return_top_record(buf);
|
|
DBUG_PRINT("info", ("Record returned from partition %u", m_top_entry));
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
int ha_partition::handle_ordered_prev(byte *buf)
|
|
{
|
|
int error;
|
|
uint part_id= m_top_entry;
|
|
handler *file= m_file[part_id];
|
|
DBUG_ENTER("ha_partition::handle_ordered_prev");
|
|
if ((error= file->index_prev(rec_buf(part_id))))
|
|
{
|
|
if (error == HA_ERR_END_OF_FILE)
|
|
{
|
|
queue_remove(&queue, (uint) 0);
|
|
if (queue.elements)
|
|
{
|
|
return_top_record(buf);
|
|
DBUG_PRINT("info", ("Record returned from partition %d (2)",
|
|
m_top_entry));
|
|
error= 0;
|
|
}
|
|
}
|
|
DBUG_RETURN(error);
|
|
}
|
|
queue_replaced(&queue);
|
|
return_top_record(buf);
|
|
DBUG_PRINT("info", ("Record returned from partition %d", m_top_entry));
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
void ha_partition::include_partition_fields_in_used_fields()
|
|
{
|
|
DBUG_ENTER("ha_partition::include_partition_fields_in_used_fields");
|
|
Field **ptr= m_part_field_array;
|
|
do
|
|
{
|
|
ha_set_bit_in_read_set((*ptr)->fieldnr);
|
|
} while (*(++ptr));
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
MODULE information calls
|
|
****************************************************************************/
|
|
|
|
/*
|
|
These are all first approximations of the extra, info, scan_time
|
|
and read_time calls
|
|
*/
|
|
|
|
/*
|
|
::info() is used to return information to the optimizer.
|
|
Currently this table handler doesn't implement most of the fields
|
|
really needed. SHOW also makes use of this data
|
|
Another note, if your handler doesn't proved exact record count,
|
|
you will probably want to have the following in your code:
|
|
if (records < 2)
|
|
records = 2;
|
|
The reason is that the server will optimize for cases of only a single
|
|
record. If in a table scan you don't know the number of records
|
|
it will probably be better to set records to two so you can return
|
|
as many records as you need.
|
|
|
|
Along with records a few more variables you may wish to set are:
|
|
records
|
|
deleted
|
|
data_file_length
|
|
index_file_length
|
|
delete_length
|
|
check_time
|
|
Take a look at the public variables in handler.h for more information.
|
|
|
|
Called in:
|
|
filesort.cc
|
|
ha_heap.cc
|
|
item_sum.cc
|
|
opt_sum.cc
|
|
sql_delete.cc
|
|
sql_delete.cc
|
|
sql_derived.cc
|
|
sql_select.cc
|
|
sql_select.cc
|
|
sql_select.cc
|
|
sql_select.cc
|
|
sql_select.cc
|
|
sql_show.cc
|
|
sql_show.cc
|
|
sql_show.cc
|
|
sql_show.cc
|
|
sql_table.cc
|
|
sql_union.cc
|
|
sql_update.cc
|
|
|
|
Some flags that are not implemented
|
|
HA_STATUS_POS:
|
|
This parameter is never used from the MySQL Server. It is checked in a
|
|
place in MyISAM so could potentially be used by MyISAM specific programs.
|
|
HA_STATUS_NO_LOCK:
|
|
This is declared and often used. It's only used by MyISAM.
|
|
It means that MySQL doesn't need the absolute latest statistics
|
|
information. This may save the handler from doing internal locks while
|
|
retrieving statistics data.
|
|
*/
|
|
|
|
void ha_partition::info(uint flag)
|
|
{
|
|
handler *file, **file_array;
|
|
DBUG_ENTER("ha_partition:info");
|
|
|
|
if (flag & HA_STATUS_AUTO)
|
|
{
|
|
DBUG_PRINT("info", ("HA_STATUS_AUTO"));
|
|
/*
|
|
The auto increment value is only maintained by the first handler
|
|
so we will only call this.
|
|
*/
|
|
m_file[0]->info(HA_STATUS_AUTO);
|
|
}
|
|
if (flag & HA_STATUS_VARIABLE)
|
|
{
|
|
DBUG_PRINT("info", ("HA_STATUS_VARIABLE"));
|
|
/*
|
|
Calculates statistical variables
|
|
records: Estimate of number records in table
|
|
We report sum (always at least 2)
|
|
deleted: Estimate of number holes in the table due to
|
|
deletes
|
|
We report sum
|
|
data_file_length: Length of data file, in principle bytes in table
|
|
We report sum
|
|
index_file_length: Length of index file, in principle bytes in
|
|
indexes in the table
|
|
We report sum
|
|
mean_record_length:Mean record length in the table
|
|
We calculate this
|
|
check_time: Time of last check (only applicable to MyISAM)
|
|
We report last time of all underlying handlers
|
|
*/
|
|
records= 0;
|
|
deleted= 0;
|
|
data_file_length= 0;
|
|
index_file_length= 0;
|
|
check_time= 0;
|
|
file_array= m_file;
|
|
do
|
|
{
|
|
file= *file_array;
|
|
file->info(HA_STATUS_VARIABLE);
|
|
records+= file->records;
|
|
deleted+= file->deleted;
|
|
data_file_length+= file->data_file_length;
|
|
index_file_length+= file->index_file_length;
|
|
if (file->check_time > check_time)
|
|
check_time= file->check_time;
|
|
} while (*(++file_array));
|
|
if (records < 2 &&
|
|
m_table_flags & HA_NOT_EXACT_COUNT)
|
|
records= 2;
|
|
if (records > 0)
|
|
mean_rec_length= (ulong) (data_file_length / records);
|
|
else
|
|
mean_rec_length= 1; //? What should we set here
|
|
}
|
|
if (flag & HA_STATUS_CONST)
|
|
{
|
|
DBUG_PRINT("info", ("HA_STATUS_CONST"));
|
|
/*
|
|
Recalculate loads of constant variables. MyISAM also sets things
|
|
directly on the table share object.
|
|
|
|
Check whether this should be fixed since handlers should not
|
|
change things directly on the table object.
|
|
|
|
Monty comment: This should NOT be changed! It's the handlers
|
|
responsibility to correct table->s->keys_xxxx information if keys
|
|
have been disabled.
|
|
|
|
The most important parameters set here is records per key on
|
|
all indexes. block_size and primar key ref_length.
|
|
|
|
For each index there is an array of rec_per_key.
|
|
As an example if we have an index with three attributes a,b and c
|
|
we will have an array of 3 rec_per_key.
|
|
rec_per_key[0] is an estimate of number of records divided by
|
|
number of unique values of the field a.
|
|
rec_per_key[1] is an estimate of the number of records divided
|
|
by the number of unique combinations of the fields a and b.
|
|
rec_per_key[2] is an estimate of the number of records divided
|
|
by the number of unique combinations of the fields a,b and c.
|
|
|
|
Many handlers only set the value of rec_per_key when all fields
|
|
are bound (rec_per_key[2] in the example above).
|
|
|
|
If the handler doesn't support statistics, it should set all of the
|
|
above to 0.
|
|
|
|
We will allow the first handler to set the rec_per_key and use
|
|
this as an estimate on the total table.
|
|
|
|
max_data_file_length: Maximum data file length
|
|
We ignore it, is only used in
|
|
SHOW TABLE STATUS
|
|
max_index_file_length: Maximum index file length
|
|
We ignore it since it is never used
|
|
block_size: Block size used
|
|
We set it to the value of the first handler
|
|
sortkey: Never used at any place so ignored
|
|
ref_length: We set this to the value calculated
|
|
and stored in local object
|
|
raid_type: Set by first handler (MyISAM)
|
|
raid_chunks: Set by first handler (MyISAM)
|
|
raid_chunksize: Set by first handler (MyISAM)
|
|
create_time: Creation time of table
|
|
Set by first handler
|
|
|
|
So we calculate these constants by using the variables on the first
|
|
handler.
|
|
*/
|
|
|
|
file= m_file[0];
|
|
file->info(HA_STATUS_CONST);
|
|
create_time= file->create_time;
|
|
raid_type= file->raid_type;
|
|
raid_chunks= file->raid_chunks;
|
|
raid_chunksize= file->raid_chunksize;
|
|
ref_length= m_ref_length;
|
|
}
|
|
if (flag & HA_STATUS_ERRKEY)
|
|
{
|
|
handler *file= m_file[m_last_part];
|
|
DBUG_PRINT("info", ("info: HA_STATUS_ERRKEY"));
|
|
/*
|
|
This flag is used to get index number of the unique index that
|
|
reported duplicate key
|
|
We will report the errkey on the last handler used and ignore the rest
|
|
*/
|
|
file->info(HA_STATUS_ERRKEY);
|
|
if (file->errkey != (uint) -1)
|
|
errkey= file->errkey;
|
|
}
|
|
if (flag & HA_STATUS_TIME)
|
|
{
|
|
DBUG_PRINT("info", ("info: HA_STATUS_TIME"));
|
|
/*
|
|
This flag is used to set the latest update time of the table.
|
|
Used by SHOW commands
|
|
We will report the maximum of these times
|
|
*/
|
|
update_time= 0;
|
|
file_array= m_file;
|
|
do
|
|
{
|
|
file= *file_array;
|
|
file->info(HA_STATUS_TIME);
|
|
if (file->update_time > update_time)
|
|
update_time= file->update_time;
|
|
} while (*(++file_array));
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
extra() is called whenever the server wishes to send a hint to
|
|
the storage engine. The MyISAM engine implements the most hints.
|
|
|
|
We divide the parameters into the following categories:
|
|
1) Parameters used by most handlers
|
|
2) Parameters used by some non-MyISAM handlers
|
|
3) Parameters used only by MyISAM
|
|
4) Parameters only used by temporary tables for query processing
|
|
5) Parameters only used by MyISAM internally
|
|
6) Parameters not used at all
|
|
|
|
The partition handler need to handle category 1), 2) and 3).
|
|
|
|
1) Parameters used by most handlers
|
|
-----------------------------------
|
|
HA_EXTRA_RESET:
|
|
This option is used by most handlers and it resets the handler state
|
|
to the same state as after an open call. This includes releasing
|
|
any READ CACHE or WRITE CACHE or other internal buffer used.
|
|
|
|
It is called from the reset method in the handler interface. There are
|
|
three instances where this is called.
|
|
1) After completing a INSERT ... SELECT ... query the handler for the
|
|
table inserted into is reset
|
|
2) It is called from close_thread_table which in turn is called from
|
|
close_thread_tables except in the case where the tables are locked
|
|
in which case ha_commit_stmt is called instead.
|
|
It is only called from here if flush_version hasn't changed and the
|
|
table is not an old table when calling close_thread_table.
|
|
close_thread_tables is called from many places as a general clean up
|
|
function after completing a query.
|
|
3) It is called when deleting the QUICK_RANGE_SELECT object if the
|
|
QUICK_RANGE_SELECT object had its own handler object. It is called
|
|
immediatley before close of this local handler object.
|
|
HA_EXTRA_KEYREAD:
|
|
HA_EXTRA_NO_KEYREAD:
|
|
These parameters are used to provide an optimisation hint to the handler.
|
|
If HA_EXTRA_KEYREAD is set it is enough to read the index fields, for
|
|
many handlers this means that the index-only scans can be used and it
|
|
is not necessary to use the real records to satisfy this part of the
|
|
query. Index-only scans is a very important optimisation for disk-based
|
|
indexes. For main-memory indexes most indexes contain a reference to the
|
|
record and thus KEYREAD only says that it is enough to read key fields.
|
|
HA_EXTRA_NO_KEYREAD disables this for the handler, also HA_EXTRA_RESET
|
|
will disable this option.
|
|
The handler will set HA_KEYREAD_ONLY in its table flags to indicate this
|
|
feature is supported.
|
|
HA_EXTRA_FLUSH:
|
|
Indication to flush tables to disk, called at close_thread_table to
|
|
ensure disk based tables are flushed at end of query execution.
|
|
|
|
2) Parameters used by some non-MyISAM handlers
|
|
----------------------------------------------
|
|
HA_EXTRA_RETRIEVE_ALL_COLS:
|
|
Many handlers have implemented optimisations to avoid fetching all
|
|
fields when retrieving data. In certain situations all fields need
|
|
to be retrieved even though the query_id is not set on all field
|
|
objects.
|
|
|
|
It is called from copy_data_between_tables where all fields are
|
|
copied without setting query_id before calling the handlers.
|
|
It is called from UPDATE statements when the fields of the index
|
|
used is updated or ORDER BY is used with UPDATE.
|
|
And finally when calculating checksum of a table using the CHECKSUM
|
|
command.
|
|
HA_EXTRA_RETRIEVE_PRIMARY_KEY:
|
|
In some situations it is mandatory to retrieve primary key fields
|
|
independent of the query id's. This extra flag specifies that fetch
|
|
of primary key fields is mandatory.
|
|
HA_EXTRA_KEYREAD_PRESERVE_FIELDS:
|
|
This is a strictly InnoDB feature that is more or less undocumented.
|
|
When it is activated InnoDB copies field by field from its fetch
|
|
cache instead of all fields in one memcpy. Have no idea what the
|
|
purpose of this is.
|
|
Cut from include/my_base.h:
|
|
When using HA_EXTRA_KEYREAD, overwrite only key member fields and keep
|
|
other fields intact. When this is off (by default) InnoDB will use memcpy
|
|
to overwrite entire row.
|
|
HA_EXTRA_IGNORE_DUP_KEY:
|
|
HA_EXTRA_NO_IGNORE_DUP_KEY:
|
|
Informs the handler to we will not stop the transaction if we get an
|
|
duplicate key errors during insert/upate.
|
|
Always called in pair, triggered by INSERT IGNORE and other similar
|
|
SQL constructs.
|
|
Not used by MyISAM.
|
|
|
|
3) Parameters used only by MyISAM
|
|
---------------------------------
|
|
HA_EXTRA_NORMAL:
|
|
Only used in MyISAM to reset quick mode, not implemented by any other
|
|
handler. Quick mode is also reset in MyISAM by HA_EXTRA_RESET.
|
|
|
|
It is called after completing a successful DELETE query if the QUICK
|
|
option is set.
|
|
|
|
HA_EXTRA_QUICK:
|
|
When the user does DELETE QUICK FROM table where-clause; this extra
|
|
option is called before the delete query is performed and
|
|
HA_EXTRA_NORMAL is called after the delete query is completed.
|
|
Temporary tables used internally in MySQL always set this option
|
|
|
|
The meaning of quick mode is that when deleting in a B-tree no merging
|
|
of leafs is performed. This is a common method and many large DBMS's
|
|
actually only support this quick mode since it is very difficult to
|
|
merge leaves in a tree used by many threads concurrently.
|
|
|
|
HA_EXTRA_CACHE:
|
|
This flag is usually set with extra_opt along with a cache size.
|
|
The size of this buffer is set by the user variable
|
|
record_buffer_size. The value of this cache size is the amount of
|
|
data read from disk in each fetch when performing a table scan.
|
|
This means that before scanning a table it is normal to call
|
|
extra with HA_EXTRA_CACHE and when the scan is completed to call
|
|
HA_EXTRA_NO_CACHE to release the cache memory.
|
|
|
|
Some special care is taken when using this extra parameter since there
|
|
could be a write ongoing on the table in the same statement. In this
|
|
one has to take special care since there might be a WRITE CACHE as
|
|
well. HA_EXTRA_CACHE specifies using a READ CACHE and using
|
|
READ CACHE and WRITE CACHE at the same time is not possible.
|
|
|
|
Only MyISAM currently use this option.
|
|
|
|
It is set when doing full table scans using rr_sequential and
|
|
reset when completing such a scan with end_read_record
|
|
(resetting means calling extra with HA_EXTRA_NO_CACHE).
|
|
|
|
It is set in filesort.cc for MyISAM internal tables and it is set in
|
|
a multi-update where HA_EXTRA_CACHE is called on a temporary result
|
|
table and after that ha_rnd_init(0) on table to be updated
|
|
and immediately after that HA_EXTRA_NO_CACHE on table to be updated.
|
|
|
|
Apart from that it is always used from init_read_record but not when
|
|
used from UPDATE statements. It is not used from DELETE statements
|
|
with ORDER BY and LIMIT but it is used in normal scan loop in DELETE
|
|
statements. The reason here is that DELETE's in MyISAM doesn't move
|
|
existings data rows.
|
|
|
|
It is also set in copy_data_between_tables when scanning the old table
|
|
to copy over to the new table.
|
|
And it is set in join_init_read_record where quick objects are used
|
|
to perform a scan on the table. In this case the full table scan can
|
|
even be performed multiple times as part of the nested loop join.
|
|
|
|
For purposes of the partition handler it is obviously necessary to have
|
|
special treatment of this extra call. If we would simply pass this
|
|
extra call down to each handler we would allocate
|
|
cache size * no of partitions amount of memory and this is not
|
|
necessary since we will only scan one partition at a time when doing
|
|
full table scans.
|
|
|
|
Thus we treat it by first checking whether we have MyISAM handlers in
|
|
the table, if not we simply ignore the call and if we have we will
|
|
record the call but will not call any underlying handler yet. Then
|
|
when performing the sequential scan we will check this recorded value
|
|
and call extra_opt whenever we start scanning a new partition.
|
|
|
|
monty: Neads to be fixed so that it's passed to all handlers when we
|
|
move to another partition during table scan.
|
|
|
|
HA_EXTRA_NO_CACHE:
|
|
When performing a UNION SELECT HA_EXTRA_NO_CACHE is called from the
|
|
flush method in the select_union class.
|
|
It is used to some extent when insert delayed inserts.
|
|
See HA_EXTRA_RESET_STATE for use in conjunction with delete_all_rows().
|
|
|
|
It should be ok to call HA_EXTRA_NO_CACHE on all underlying handlers
|
|
if they are MyISAM handlers. Other handlers we can ignore the call
|
|
for. If no cache is in use they will quickly return after finding
|
|
this out. And we also ensure that all caches are disabled and no one
|
|
is left by mistake.
|
|
In the future this call will probably be deleted an we will instead call
|
|
::reset();
|
|
|
|
HA_EXTRA_WRITE_CACHE:
|
|
See above, called from various places. It is mostly used when we
|
|
do INSERT ... SELECT
|
|
No special handling to save cache space is developed currently.
|
|
|
|
HA_EXTRA_PREPARE_FOR_UPDATE:
|
|
This is called as part of a multi-table update. When the table to be
|
|
updated is also scanned then this informs MyISAM handler to drop any
|
|
caches if dynamic records are used (fixed size records do not care
|
|
about this call). We pass this along to all underlying MyISAM handlers
|
|
and ignore it for the rest.
|
|
|
|
HA_EXTRA_PREPARE_FOR_DELETE:
|
|
Only used by MyISAM, called in preparation for a DROP TABLE.
|
|
It's used mostly by Windows that cannot handle dropping an open file.
|
|
On other platforms it has the same effect as HA_EXTRA_FORCE_REOPEN.
|
|
|
|
HA_EXTRA_READCHECK:
|
|
HA_EXTRA_NO_READCHECK:
|
|
Only one call to HA_EXTRA_NO_READCHECK from ha_open where it says that
|
|
this is not needed in SQL. The reason for this call is that MyISAM sets
|
|
the READ_CHECK_USED in the open call so the call is needed for MyISAM
|
|
to reset this feature.
|
|
The idea with this parameter was to inform of doing/not doing a read
|
|
check before applying an update. Since SQL always performs a read before
|
|
applying the update No Read Check is needed in MyISAM as well.
|
|
|
|
This is a cut from Docs/myisam.txt
|
|
Sometimes you might want to force an update without checking whether
|
|
another user has changed the record since you last read it. This is
|
|
somewhat dangerous, so it should ideally not be used. That can be
|
|
accomplished by wrapping the mi_update() call in two calls to mi_extra(),
|
|
using these functions:
|
|
HA_EXTRA_NO_READCHECK=5 No readcheck on update
|
|
HA_EXTRA_READCHECK=6 Use readcheck (def)
|
|
|
|
HA_EXTRA_FORCE_REOPEN:
|
|
Only used by MyISAM, called when altering table, closing tables to
|
|
enforce a reopen of the table files.
|
|
|
|
4) Parameters only used by temporary tables for query processing
|
|
----------------------------------------------------------------
|
|
HA_EXTRA_RESET_STATE:
|
|
Same as HA_EXTRA_RESET except that buffers are not released. If there is
|
|
a READ CACHE it is reinit'ed. A cache is reinit'ed to restart reading
|
|
or to change type of cache between READ CACHE and WRITE CACHE.
|
|
|
|
This extra function is always called immediately before calling
|
|
delete_all_rows on the handler for temporary tables.
|
|
There are cases however when HA_EXTRA_RESET_STATE isn't called in
|
|
a similar case for a temporary table in sql_union.cc and in two other
|
|
cases HA_EXTRA_NO_CACHE is called before and HA_EXTRA_WRITE_CACHE
|
|
called afterwards.
|
|
The case with HA_EXTRA_NO_CACHE and HA_EXTRA_WRITE_CACHE means
|
|
disable caching, delete all rows and enable WRITE CACHE. This is
|
|
used for temporary tables containing distinct sums and a
|
|
functional group.
|
|
|
|
The only case that delete_all_rows is called on non-temporary tables
|
|
is in sql_delete.cc when DELETE FROM table; is called by a user.
|
|
In this case no special extra calls are performed before or after this
|
|
call.
|
|
|
|
The partition handler should not need to bother about this one. It
|
|
should never be called.
|
|
|
|
HA_EXTRA_NO_ROWS:
|
|
Don't insert rows indication to HEAP and MyISAM, only used by temporary
|
|
tables used in query processing.
|
|
Not handled by partition handler.
|
|
|
|
5) Parameters only used by MyISAM internally
|
|
--------------------------------------------
|
|
HA_EXTRA_REINIT_CACHE:
|
|
This call reinitialises the READ CACHE described above if there is one
|
|
and otherwise the call is ignored.
|
|
|
|
We can thus safely call it on all underlying handlers if they are
|
|
MyISAM handlers. It is however never called so we don't handle it at all.
|
|
HA_EXTRA_FLUSH_CACHE:
|
|
Flush WRITE CACHE in MyISAM. It is only from one place in the code.
|
|
This is in sql_insert.cc where it is called if the table_flags doesn't
|
|
contain HA_DUPP_POS. The only handler having the HA_DUPP_POS set is the
|
|
MyISAM handler and so the only handler not receiving this call is MyISAM.
|
|
Thus in effect this call is called but never used. Could be removed
|
|
from sql_insert.cc
|
|
HA_EXTRA_NO_USER_CHANGE:
|
|
Only used by MyISAM, never called.
|
|
Simulates lock_type as locked.
|
|
HA_EXTRA_WAIT_LOCK:
|
|
HA_EXTRA_WAIT_NOLOCK:
|
|
Only used by MyISAM, called from MyISAM handler but never from server
|
|
code on top of the handler.
|
|
Sets lock_wait on/off
|
|
HA_EXTRA_NO_KEYS:
|
|
Only used MyISAM, only used internally in MyISAM handler, never called
|
|
from server level.
|
|
HA_EXTRA_KEYREAD_CHANGE_POS:
|
|
HA_EXTRA_REMEMBER_POS:
|
|
HA_EXTRA_RESTORE_POS:
|
|
HA_EXTRA_PRELOAD_BUFFER_SIZE:
|
|
HA_EXTRA_CHANGE_KEY_TO_DUP:
|
|
HA_EXTRA_CHANGE_KEY_TO_UNIQUE:
|
|
Only used by MyISAM, never called.
|
|
|
|
6) Parameters not used at all
|
|
-----------------------------
|
|
HA_EXTRA_KEY_CACHE:
|
|
HA_EXTRA_NO_KEY_CACHE:
|
|
This parameters are no longer used and could be removed.
|
|
*/
|
|
|
|
int ha_partition::extra(enum ha_extra_function operation)
|
|
{
|
|
DBUG_ENTER("ha_partition:extra");
|
|
DBUG_PRINT("info", ("operation: %d", (int) operation));
|
|
|
|
switch (operation) {
|
|
/* Category 1), used by most handlers */
|
|
case HA_EXTRA_KEYREAD:
|
|
case HA_EXTRA_NO_KEYREAD:
|
|
case HA_EXTRA_FLUSH:
|
|
DBUG_RETURN(loop_extra(operation));
|
|
|
|
/* Category 2), used by non-MyISAM handlers */
|
|
case HA_EXTRA_IGNORE_DUP_KEY:
|
|
case HA_EXTRA_NO_IGNORE_DUP_KEY:
|
|
case HA_EXTRA_RETRIEVE_ALL_COLS:
|
|
case HA_EXTRA_RETRIEVE_PRIMARY_KEY:
|
|
case HA_EXTRA_KEYREAD_PRESERVE_FIELDS:
|
|
{
|
|
if (!m_myisam)
|
|
DBUG_RETURN(loop_extra(operation));
|
|
break;
|
|
}
|
|
|
|
/* Category 3), used by MyISAM handlers */
|
|
case HA_EXTRA_NORMAL:
|
|
case HA_EXTRA_QUICK:
|
|
case HA_EXTRA_NO_READCHECK:
|
|
case HA_EXTRA_PREPARE_FOR_UPDATE:
|
|
case HA_EXTRA_PREPARE_FOR_DELETE:
|
|
case HA_EXTRA_FORCE_REOPEN:
|
|
{
|
|
if (m_myisam)
|
|
DBUG_RETURN(loop_extra(operation));
|
|
break;
|
|
}
|
|
case HA_EXTRA_CACHE:
|
|
{
|
|
prepare_extra_cache(0);
|
|
break;
|
|
}
|
|
case HA_EXTRA_NO_CACHE:
|
|
{
|
|
m_extra_cache= FALSE;
|
|
m_extra_cache_size= 0;
|
|
DBUG_RETURN(loop_extra(operation));
|
|
}
|
|
default:
|
|
{
|
|
/* Temporary crash to discover what is wrong */
|
|
DBUG_ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
This will in the future be called instead of extra(HA_EXTRA_RESET) as this
|
|
is such a common call
|
|
*/
|
|
|
|
int ha_partition::reset(void)
|
|
{
|
|
int result= 0, tmp;
|
|
handler **file;
|
|
DBUG_ENTER("ha_partition::reset");
|
|
file= m_file;
|
|
if (m_part_info)
|
|
bitmap_clear_all(&m_part_info->used_partitions);
|
|
do
|
|
{
|
|
if ((tmp= (*file)->reset()))
|
|
result= tmp;
|
|
} while (*(++file));
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
int ha_partition::extra_opt(enum ha_extra_function operation, ulong cachesize)
|
|
{
|
|
DBUG_ENTER("ha_partition::extra_opt()");
|
|
DBUG_ASSERT(HA_EXTRA_CACHE == operation);
|
|
prepare_extra_cache(cachesize);
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
void ha_partition::prepare_extra_cache(uint cachesize)
|
|
{
|
|
DBUG_ENTER("ha_partition::prepare_extra_cache()");
|
|
|
|
m_extra_cache= TRUE;
|
|
m_extra_cache_size= cachesize;
|
|
if (m_part_spec.start_part != NO_CURRENT_PART_ID)
|
|
{
|
|
DBUG_ASSERT(m_part_spec.start_part == 0);
|
|
late_extra_cache(0);
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
int ha_partition::loop_extra(enum ha_extra_function operation)
|
|
{
|
|
int result= 0, tmp;
|
|
handler **file;
|
|
DBUG_ENTER("ha_partition::loop_extra()");
|
|
for (file= m_file; *file; file++)
|
|
{
|
|
if ((tmp= (*file)->extra(operation)))
|
|
result= tmp;
|
|
}
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
void ha_partition::late_extra_cache(uint partition_id)
|
|
{
|
|
handler *file;
|
|
DBUG_ENTER("ha_partition::late_extra_cache");
|
|
if (!m_extra_cache)
|
|
DBUG_VOID_RETURN;
|
|
file= m_file[partition_id];
|
|
if (m_extra_cache_size == 0)
|
|
VOID(file->extra(HA_EXTRA_CACHE));
|
|
else
|
|
VOID(file->extra_opt(HA_EXTRA_CACHE, m_extra_cache_size));
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
void ha_partition::late_extra_no_cache(uint partition_id)
|
|
{
|
|
handler *file;
|
|
DBUG_ENTER("ha_partition::late_extra_no_cache");
|
|
if (!m_extra_cache)
|
|
DBUG_VOID_RETURN;
|
|
file= m_file[partition_id];
|
|
VOID(file->extra(HA_EXTRA_NO_CACHE));
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
MODULE optimiser support
|
|
****************************************************************************/
|
|
|
|
const key_map *ha_partition::keys_to_use_for_scanning()
|
|
{
|
|
DBUG_ENTER("ha_partition::keys_to_use_for_scanning");
|
|
DBUG_RETURN(m_file[0]->keys_to_use_for_scanning());
|
|
}
|
|
|
|
double ha_partition::scan_time()
|
|
{
|
|
double scan_time= 0;
|
|
handler **file;
|
|
DBUG_ENTER("ha_partition::scan_time");
|
|
|
|
for (file= m_file; *file; file++)
|
|
scan_time+= (*file)->scan_time();
|
|
DBUG_RETURN(scan_time);
|
|
}
|
|
|
|
|
|
/*
|
|
This will be optimised later to include whether or not the index can
|
|
be used with partitioning. To achieve we need to add another parameter
|
|
that specifies how many of the index fields that are bound in the ranges.
|
|
Possibly added as a new call to handlers.
|
|
*/
|
|
|
|
double ha_partition::read_time(uint index, uint ranges, ha_rows rows)
|
|
{
|
|
DBUG_ENTER("ha_partition::read_time");
|
|
DBUG_RETURN(m_file[0]->read_time(index, ranges, rows));
|
|
}
|
|
|
|
/*
|
|
Given a starting key, and an ending key estimate the number of rows that
|
|
will exist between the two. end_key may be empty which in case determine
|
|
if start_key matches any rows.
|
|
|
|
Called from opt_range.cc by check_quick_keys().
|
|
|
|
monty: MUST be called for each range and added.
|
|
Note that MySQL will assume that if this returns 0 there is no
|
|
matching rows for the range!
|
|
*/
|
|
|
|
ha_rows ha_partition::records_in_range(uint inx, key_range *min_key,
|
|
key_range *max_key)
|
|
{
|
|
ha_rows in_range= 0;
|
|
handler **file;
|
|
DBUG_ENTER("ha_partition::records_in_range");
|
|
|
|
file= m_file;
|
|
do
|
|
{
|
|
in_range+= (*file)->records_in_range(inx, min_key, max_key);
|
|
} while (*(++file));
|
|
DBUG_RETURN(in_range);
|
|
}
|
|
|
|
|
|
ha_rows ha_partition::estimate_rows_upper_bound()
|
|
{
|
|
ha_rows rows, tot_rows= 0;
|
|
handler **file;
|
|
DBUG_ENTER("ha_partition::estimate_rows_upper_bound");
|
|
|
|
file= m_file;
|
|
do
|
|
{
|
|
rows= (*file)->estimate_rows_upper_bound();
|
|
if (rows == HA_POS_ERROR)
|
|
DBUG_RETURN(HA_POS_ERROR);
|
|
tot_rows+= rows;
|
|
} while (*(++file));
|
|
DBUG_RETURN(tot_rows);
|
|
}
|
|
|
|
|
|
uint8 ha_partition::table_cache_type()
|
|
{
|
|
DBUG_ENTER("ha_partition::table_cache_type");
|
|
DBUG_RETURN(m_file[0]->table_cache_type());
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
MODULE print messages
|
|
****************************************************************************/
|
|
|
|
const char *ha_partition::index_type(uint inx)
|
|
{
|
|
DBUG_ENTER("ha_partition::index_type");
|
|
DBUG_RETURN(m_file[0]->index_type(inx));
|
|
}
|
|
|
|
|
|
void ha_partition::print_error(int error, myf errflag)
|
|
{
|
|
DBUG_ENTER("ha_partition::print_error");
|
|
/* Should probably look for my own errors first */
|
|
/* monty: needs to be called for the last used partition ! */
|
|
if (error == HA_ERR_NO_PARTITION_FOUND)
|
|
my_error(ER_NO_PARTITION_FOR_GIVEN_VALUE, MYF(0),
|
|
m_part_info->part_expr->val_int());
|
|
else
|
|
m_file[0]->print_error(error, errflag);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
bool ha_partition::get_error_message(int error, String *buf)
|
|
{
|
|
DBUG_ENTER("ha_partition::get_error_message");
|
|
/* Should probably look for my own errors first */
|
|
/* monty: needs to be called for the last used partition ! */
|
|
DBUG_RETURN(m_file[0]->get_error_message(error, buf));
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
MODULE handler characteristics
|
|
****************************************************************************/
|
|
/*
|
|
If frm_error() is called then we will use this to to find out what file
|
|
extensions exist for the storage engine. This is also used by the default
|
|
rename_table and delete_table method in handler.cc.
|
|
*/
|
|
|
|
static const char *ha_partition_ext[]=
|
|
{
|
|
ha_par_ext, NullS
|
|
};
|
|
|
|
const char **ha_partition::bas_ext() const
|
|
{ return ha_partition_ext; }
|
|
|
|
|
|
uint ha_partition::min_of_the_max_uint(uint (handler::*operator_func)(void) const) const
|
|
{
|
|
handler **file;
|
|
uint min_of_the_max= ((*m_file)->*operator_func)();
|
|
|
|
for (file= m_file+1; *file; file++)
|
|
{
|
|
uint tmp= ((*file)->*operator_func)();
|
|
set_if_smaller(min_of_the_max, tmp);
|
|
}
|
|
return min_of_the_max;
|
|
}
|
|
|
|
|
|
uint ha_partition::max_supported_key_parts() const
|
|
{
|
|
return min_of_the_max_uint(&handler::max_supported_key_parts);
|
|
}
|
|
|
|
|
|
uint ha_partition::max_supported_key_length() const
|
|
{
|
|
return min_of_the_max_uint(&handler::max_supported_key_length);
|
|
}
|
|
|
|
|
|
uint ha_partition::max_supported_key_part_length() const
|
|
{
|
|
return min_of_the_max_uint(&handler::max_supported_key_part_length);
|
|
}
|
|
|
|
|
|
uint ha_partition::max_supported_record_length() const
|
|
{
|
|
return min_of_the_max_uint(&handler::max_supported_record_length);
|
|
}
|
|
|
|
|
|
uint ha_partition::max_supported_keys() const
|
|
{
|
|
return min_of_the_max_uint(&handler::max_supported_keys);
|
|
}
|
|
|
|
|
|
uint ha_partition::extra_rec_buf_length() const
|
|
{
|
|
handler **file;
|
|
uint max= (*m_file)->extra_rec_buf_length();
|
|
for (file= m_file, file++; *file; file++)
|
|
if (max < (*file)->extra_rec_buf_length())
|
|
max= (*file)->extra_rec_buf_length();
|
|
return max;
|
|
}
|
|
|
|
|
|
uint ha_partition::min_record_length(uint options) const
|
|
{
|
|
handler **file;
|
|
uint max= (*m_file)->min_record_length(options);
|
|
for (file= m_file, file++; *file; file++)
|
|
if (max < (*file)->min_record_length(options))
|
|
max= (*file)->min_record_length(options);
|
|
return max;
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
MODULE compare records
|
|
****************************************************************************/
|
|
/*
|
|
We get two references and need to check if those records are the same.
|
|
If they belong to different partitions we decide that they are not
|
|
the same record. Otherwise we use the particular handler to decide if
|
|
they are the same. Sort in partition id order if not equal.
|
|
*/
|
|
|
|
int ha_partition::cmp_ref(const byte *ref1, const byte *ref2)
|
|
{
|
|
uint part_id;
|
|
my_ptrdiff_t diff1, diff2;
|
|
handler *file;
|
|
DBUG_ENTER("ha_partition::cmp_ref");
|
|
if ((ref1[0] == ref2[0]) && (ref1[1] == ref2[1]))
|
|
{
|
|
part_id= get_part_id_from_pos(ref1);
|
|
file= m_file[part_id];
|
|
DBUG_ASSERT(part_id < m_tot_parts);
|
|
DBUG_RETURN(file->cmp_ref((ref1 + PARTITION_BYTES_IN_POS),
|
|
(ref2 + PARTITION_BYTES_IN_POS)));
|
|
}
|
|
diff1= ref2[1] - ref1[1];
|
|
diff2= ref2[0] - ref1[0];
|
|
if (diff1 > 0)
|
|
{
|
|
DBUG_RETURN(-1);
|
|
}
|
|
if (diff1 < 0)
|
|
{
|
|
DBUG_RETURN(+1);
|
|
}
|
|
if (diff2 > 0)
|
|
{
|
|
DBUG_RETURN(-1);
|
|
}
|
|
DBUG_RETURN(+1);
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
MODULE auto increment
|
|
****************************************************************************/
|
|
|
|
void ha_partition::restore_auto_increment()
|
|
{
|
|
DBUG_ENTER("ha_partition::restore_auto_increment");
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
This method is called by update_auto_increment which in turn is called
|
|
by the individual handlers as part of write_row. We will always let
|
|
the first handler keep track of the auto increment value for all
|
|
partitions.
|
|
*/
|
|
|
|
ulonglong ha_partition::get_auto_increment()
|
|
{
|
|
DBUG_ENTER("ha_partition::get_auto_increment");
|
|
DBUG_RETURN(m_file[0]->get_auto_increment());
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
MODULE initialise handler for HANDLER call
|
|
****************************************************************************/
|
|
|
|
void ha_partition::init_table_handle_for_HANDLER()
|
|
{
|
|
return;
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
MODULE Partition Share
|
|
****************************************************************************/
|
|
/*
|
|
Service routines for ... methods.
|
|
-------------------------------------------------------------------------
|
|
Variables for partition share methods. A hash used to track open tables.
|
|
A mutex for the hash table and an init variable to check if hash table
|
|
is initialised.
|
|
There is also a constant ending of the partition handler file name.
|
|
*/
|
|
|
|
#ifdef NOT_USED
|
|
static HASH partition_open_tables;
|
|
static pthread_mutex_t partition_mutex;
|
|
static int partition_init= 0;
|
|
|
|
|
|
/*
|
|
Function we use in the creation of our hash to get key.
|
|
*/
|
|
static byte *partition_get_key(PARTITION_SHARE *share, uint *length,
|
|
my_bool not_used __attribute__ ((unused)))
|
|
{
|
|
*length= share->table_name_length;
|
|
return (byte *) share->table_name;
|
|
}
|
|
|
|
/*
|
|
Example of simple lock controls. The "share" it creates is structure we
|
|
will pass to each partition handler. Do you have to have one of these?
|
|
Well, you have pieces that are used for locking, and they are needed to
|
|
function.
|
|
*/
|
|
|
|
|
|
static PARTITION_SHARE *get_share(const char *table_name, TABLE *table)
|
|
{
|
|
PARTITION_SHARE *share;
|
|
uint length;
|
|
char *tmp_name;
|
|
|
|
/*
|
|
So why does this exist? There is no way currently to init a storage
|
|
engine.
|
|
Innodb and BDB both have modifications to the server to allow them to
|
|
do this. Since you will not want to do this, this is probably the next
|
|
best method.
|
|
*/
|
|
if (!partition_init)
|
|
{
|
|
/* Hijack a mutex for init'ing the storage engine */
|
|
pthread_mutex_lock(&LOCK_mysql_create_db);
|
|
if (!partition_init)
|
|
{
|
|
partition_init++;
|
|
VOID(pthread_mutex_init(&partition_mutex, MY_MUTEX_INIT_FAST));
|
|
(void) hash_init(&partition_open_tables, system_charset_info, 32, 0, 0,
|
|
(hash_get_key) partition_get_key, 0, 0);
|
|
}
|
|
pthread_mutex_unlock(&LOCK_mysql_create_db);
|
|
}
|
|
pthread_mutex_lock(&partition_mutex);
|
|
length= (uint) strlen(table_name);
|
|
|
|
if (!(share= (PARTITION_SHARE *) hash_search(&partition_open_tables,
|
|
(byte *) table_name, length)))
|
|
{
|
|
if (!(share= (PARTITION_SHARE *)
|
|
my_multi_malloc(MYF(MY_WME | MY_ZEROFILL),
|
|
&share, sizeof(*share),
|
|
&tmp_name, length + 1, NullS)))
|
|
{
|
|
pthread_mutex_unlock(&partition_mutex);
|
|
return NULL;
|
|
}
|
|
|
|
share->use_count= 0;
|
|
share->table_name_length= length;
|
|
share->table_name= tmp_name;
|
|
strmov(share->table_name, table_name);
|
|
if (my_hash_insert(&partition_open_tables, (byte *) share))
|
|
goto error;
|
|
thr_lock_init(&share->lock);
|
|
pthread_mutex_init(&share->mutex, MY_MUTEX_INIT_FAST);
|
|
}
|
|
share->use_count++;
|
|
pthread_mutex_unlock(&partition_mutex);
|
|
|
|
return share;
|
|
|
|
error:
|
|
pthread_mutex_unlock(&partition_mutex);
|
|
my_free((gptr) share, MYF(0));
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
Free lock controls. We call this whenever we close a table. If the table
|
|
had the last reference to the share then we free memory associated with
|
|
it.
|
|
*/
|
|
|
|
static int free_share(PARTITION_SHARE *share)
|
|
{
|
|
pthread_mutex_lock(&partition_mutex);
|
|
if (!--share->use_count)
|
|
{
|
|
hash_delete(&partition_open_tables, (byte *) share);
|
|
thr_lock_delete(&share->lock);
|
|
pthread_mutex_destroy(&share->mutex);
|
|
my_free((gptr) share, MYF(0));
|
|
}
|
|
pthread_mutex_unlock(&partition_mutex);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* NOT_USED */
|