mariadb/ibuf/ibuf0ibuf.c
marko 36c9bbc734 branches/innodb+: buf_get_volume_buffered(): When estimating the number of
records on a page, count each unique buffered record at most once.

ibuf_get_volume_buffered_hash(): New function, for inserting a hashed record
into a bit array.

ibuf_get_volume_buffered_count(): New function, refactored from
ibuf_get_volume_buffered(), for counting the unique records buffered for
the page.

ibuf_get_volume_buffered(): Define hash_bitmap, a bit array for identifying
duplicate records.  Hash collisions do not hurt correctness, only performance.
If the number of records on the page is estimated as 0, deletes will not be
buffered.

This patch is just for the record, as is rb://44.  In the tests run so far,
the function ibuf_get_volume_buffered() always seems to estimate the number
of records as 0, disabling all buffered deletes.
2008-11-05 10:25:07 +00:00

4336 lines
110 KiB
C

/******************************************************
Insert buffer
(c) 1997 Innobase Oy
Created 7/19/1997 Heikki Tuuri
*******************************************************/
#include "ibuf0ibuf.h"
#ifdef UNIV_NONINL
#include "ibuf0ibuf.ic"
#endif
#include "buf0buf.h"
#include "buf0rea.h"
#include "fsp0fsp.h"
#include "trx0sys.h"
#include "fil0fil.h"
#include "thr0loc.h"
#include "rem0rec.h"
#include "btr0cur.h"
#include "btr0pcur.h"
#include "btr0btr.h"
#include "sync0sync.h"
#include "dict0boot.h"
#include "fut0lst.h"
#include "lock0lock.h"
#include "log0recv.h"
#include "que0que.h"
/* STRUCTURE OF AN INSERT BUFFER RECORD
In versions < 4.1.x:
1. The first field is the page number.
2. The second field is an array which stores type info for each subsequent
field. We store the information which affects the ordering of records, and
also the physical storage size of an SQL NULL value. E.g., for CHAR(10) it
is 10 bytes.
3. Next we have the fields of the actual index record.
In versions >= 4.1.x:
Note that contary to what we planned in the 1990's, there will only be one
insert buffer tree, and that is in the system tablespace of InnoDB.
1. The first field is the space id.
2. The second field is a one-byte marker (0) which differentiates records from
the < 4.1.x storage format.
3. The third field is the page number.
4. The fourth field contains the type info, where we have also added 2 bytes to
store the charset. In the compressed table format of 5.0.x we must add more
information here so that we can build a dummy 'index' struct which 5.0.x
can use in the binary search on the index page in the ibuf merge phase.
5. The rest of the fields contain the fields of the actual index record.
In versions >= 5.0.3:
The first byte of the fourth field is an additional marker (0) if the record
is in the compact format. The presence of this marker can be detected by
looking at the length of the field modulo DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE.
The high-order bit of the character set field in the type info is the
"nullable" flag for the field.
In versions >= TODO:
The optional marker byte at the start of the fourth field is replaced by
mandatory 3 fields, totaling 4 bytes:
1. 2 bytes: Counter field, used to sort records within a (space id, page
no) in the order they were added. This is needed so that for example the
sequence of operations "INSERT x, DEL MARK x, INSERT x" is handled
correctly.
2. 1 byte: Operation type (see ibuf_op_t).
3. 1 byte: Flags. Currently only one flag exists, IBUF_REC_COMPACT.
To ensure older records, which do not have counters to enforce correct
sorting, are merged before any new records, ibuf_insert checks if we're
trying to insert to a position that contains old-style records, and if so,
refuses the insert. Thus, ibuf pages are gradually converted to the new
format as their corresponding buffer pool pages are read into memory.
*/
/* PREVENTING DEADLOCKS IN THE INSERT BUFFER SYSTEM
If an OS thread performs any operation that brings in disk pages from
non-system tablespaces into the buffer pool, or creates such a page there,
then the operation may have as a side effect an insert buffer index tree
compression. Thus, the tree latch of the insert buffer tree may be acquired
in the x-mode, and also the file space latch of the system tablespace may
be acquired in the x-mode.
Also, an insert to an index in a non-system tablespace can have the same
effect. How do we know this cannot lead to a deadlock of OS threads? There
is a problem with the i\o-handler threads: they break the latching order
because they own x-latches to pages which are on a lower level than the
insert buffer tree latch, its page latches, and the tablespace latch an
insert buffer operation can reserve.
The solution is the following: Let all the tree and page latches connected
with the insert buffer be later in the latching order than the fsp latch and
fsp page latches.
Insert buffer pages must be such that the insert buffer is never invoked
when these pages are accessed as this would result in a recursion violating
the latching order. We let a special i/o-handler thread take care of i/o to
the insert buffer pages and the ibuf bitmap pages, as well as the fsp bitmap
pages and the first inode page, which contains the inode of the ibuf tree: let
us call all these ibuf pages. To prevent deadlocks, we do not let a read-ahead
access both non-ibuf and ibuf pages.
Then an i/o-handler for the insert buffer never needs to access recursively the
insert buffer tree and thus obeys the latching order. On the other hand, other
i/o-handlers for other tablespaces may require access to the insert buffer,
but because all kinds of latches they need to access there are later in the
latching order, no violation of the latching order occurs in this case,
either.
A problem is how to grow and contract an insert buffer tree. As it is later
in the latching order than the fsp management, we have to reserve the fsp
latch first, before adding or removing pages from the insert buffer tree.
We let the insert buffer tree have its own file space management: a free
list of pages linked to the tree root. To prevent recursive using of the
insert buffer when adding pages to the tree, we must first load these pages
to memory, obtaining a latch on them, and only after that add them to the
free list of the insert buffer tree. More difficult is removing of pages
from the free list. If there is an excess of pages in the free list of the
ibuf tree, they might be needed if some thread reserves the fsp latch,
intending to allocate more file space. So we do the following: if a thread
reserves the fsp latch, we check the writer count field of the latch. If
this field has value 1, it means that the thread did not own the latch
before entering the fsp system, and the mtr of the thread contains no
modifications to the fsp pages. Now we are free to reserve the ibuf latch,
and check if there is an excess of pages in the free list. We can then, in a
separate mini-transaction, take them out of the free list and free them to
the fsp system.
To avoid deadlocks in the ibuf system, we divide file pages into three levels:
(1) non-ibuf pages,
(2) ibuf tree pages and the pages in the ibuf tree free list, and
(3) ibuf bitmap pages.
No OS thread is allowed to access higher level pages if it has latches to
lower level pages; even if the thread owns a B-tree latch it must not access
the B-tree non-leaf pages if it has latches on lower level pages. Read-ahead
is only allowed for level 1 and 2 pages. Dedicated i/o-handler threads handle
exclusively level 1 i/o. A dedicated i/o handler thread handles exclusively
level 2 i/o. However, if an OS thread does the i/o handling for itself, i.e.,
it uses synchronous aio, it can access any pages, as long as it obeys the
access order rules. */
/* Buffer pool size per the maximum insert buffer size */
#define IBUF_POOL_SIZE_PER_MAX_SIZE 2
/* Table name for the insert buffer. */
#define IBUF_TABLE_NAME "SYS_IBUF_TABLE"
/* The insert buffer control structure */
UNIV_INTERN ibuf_t* ibuf = NULL;
UNIV_INTERN ulint ibuf_flush_count = 0;
#ifdef UNIV_IBUF_COUNT_DEBUG
/* Dimensions for the ibuf_count array */
#define IBUF_COUNT_N_SPACES 4
#define IBUF_COUNT_N_PAGES 130000
/* Buffered entry counts for file pages, used in debugging */
static ulint ibuf_counts[IBUF_COUNT_N_SPACES][IBUF_COUNT_N_PAGES];
/**********************************************************************
Checks that the indexes to ibuf_counts[][] are within limits. */
UNIV_INLINE
void
ibuf_count_check(
/*=============*/
ulint space_id, /* in: space identifier */
ulint page_no) /* in: page number */
{
if (space_id < IBUF_COUNT_N_SPACES && page_no < IBUF_COUNT_N_PAGES) {
return;
}
fprintf(stderr,
"InnoDB: UNIV_IBUF_COUNT_DEBUG limits space_id and page_no\n"
"InnoDB: and breaks crash recovery.\n"
"InnoDB: space_id=%lu, should be 0<=space_id<%lu\n"
"InnoDB: page_no=%lu, should be 0<=page_no<%lu\n",
(ulint) space_id, (ulint) IBUF_COUNT_N_SPACES,
(ulint) page_no, (ulint) IBUF_COUNT_N_PAGES);
ut_error;
}
#endif
/* The start address for an insert buffer bitmap page bitmap */
#define IBUF_BITMAP PAGE_DATA
/* Offsets in bits for the bits describing a single page in the bitmap */
#define IBUF_BITMAP_FREE 0
#define IBUF_BITMAP_BUFFERED 2
#define IBUF_BITMAP_IBUF 3 /* TRUE if page is a part of the ibuf
tree, excluding the root page, or is
in the free list of the ibuf */
/* Number of bits describing a single page */
#define IBUF_BITS_PER_PAGE 4
#if IBUF_BITS_PER_PAGE % 2
# error "IBUF_BITS_PER_PAGE must be an even number!"
#endif
/* Various constants for checking the type of an ibuf record and extracting
data from it. For details, see the description of the record format at the
top of this file. */
#define IBUF_REC_INFO_SIZE 4 /* Combined size of info fields at
the beginning of the fourth field */
#if IBUF_REC_INFO_SIZE >= DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE
# error "IBUF_REC_INFO_SIZE >= DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE"
#endif
/* Offsets for the fields at the beginning of the fourth field */
#define IBUF_REC_OFFSET_COUNTER 0
#define IBUF_REC_OFFSET_TYPE 2
#define IBUF_REC_OFFSET_FLAGS 3
/* Record flag masks */
#define IBUF_REC_COMPACT 0x1 /* Whether the record is compact */
/* The mutex used to block pessimistic inserts to ibuf trees */
static mutex_t ibuf_pessimistic_insert_mutex;
/* The mutex protecting the insert buffer structs */
static mutex_t ibuf_mutex;
/* The mutex protecting the insert buffer bitmaps */
static mutex_t ibuf_bitmap_mutex;
/* The area in pages from which contract looks for page numbers for merge */
#define IBUF_MERGE_AREA 8
/* Inside the merge area, pages which have at most 1 per this number less
buffered entries compared to maximum volume that can buffered for a single
page are merged along with the page whose buffer became full */
#define IBUF_MERGE_THRESHOLD 4
/* In ibuf_contract at most this number of pages is read to memory in one
batch, in order to merge the entries for them in the insert buffer */
#define IBUF_MAX_N_PAGES_MERGED IBUF_MERGE_AREA
/* If the combined size of the ibuf trees exceeds ibuf->max_size by this
many pages, we start to contract it in connection to inserts there, using
non-synchronous contract */
#define IBUF_CONTRACT_ON_INSERT_NON_SYNC 0
/* Same as above, but use synchronous contract */
#define IBUF_CONTRACT_ON_INSERT_SYNC 5
/* Same as above, but no insert is done, only contract is called */
#define IBUF_CONTRACT_DO_NOT_INSERT 10
/* TODO: how to cope with drop table if there are records in the insert
buffer for the indexes of the table? Is there actually any problem,
because ibuf merge is done to a page when it is read in, and it is
still physically like the index page even if the index would have been
dropped! So, there seems to be no problem. */
/**********************************************************************
Sets the flag in the current OS thread local storage denoting that it is
inside an insert buffer routine. */
UNIV_INLINE
void
ibuf_enter(void)
/*============*/
{
ibool* ptr;
ptr = thr_local_get_in_ibuf_field();
ut_ad(*ptr == FALSE);
*ptr = TRUE;
}
/**********************************************************************
Sets the flag in the current OS thread local storage denoting that it is
exiting an insert buffer routine. */
UNIV_INLINE
void
ibuf_exit(void)
/*===========*/
{
ibool* ptr;
ptr = thr_local_get_in_ibuf_field();
ut_ad(*ptr == TRUE);
*ptr = FALSE;
}
/**********************************************************************
Returns TRUE if the current OS thread is performing an insert buffer
routine. */
UNIV_INTERN
ibool
ibuf_inside(void)
/*=============*/
/* out: TRUE if inside an insert buffer routine: for instance,
a read-ahead of non-ibuf pages is then forbidden */
{
return(*thr_local_get_in_ibuf_field());
}
/**********************************************************************
Gets the ibuf header page and x-latches it. */
static
page_t*
ibuf_header_page_get(
/*=================*/
/* out: insert buffer header page */
mtr_t* mtr) /* in: mtr */
{
buf_block_t* block;
ut_ad(!ibuf_inside());
block = buf_page_get(
IBUF_SPACE_ID, 0, FSP_IBUF_HEADER_PAGE_NO, RW_X_LATCH, mtr);
buf_block_dbg_add_level(block, SYNC_IBUF_HEADER);
return(buf_block_get_frame(block));
}
/**********************************************************************
Gets the root page and x-latches it. */
static
page_t*
ibuf_tree_root_get(
/*===============*/
/* out: insert buffer tree root page */
mtr_t* mtr) /* in: mtr */
{
buf_block_t* block;
ut_ad(ibuf_inside());
mtr_x_lock(dict_index_get_lock(ibuf->index), mtr);
block = buf_page_get(
IBUF_SPACE_ID, 0, FSP_IBUF_TREE_ROOT_PAGE_NO, RW_X_LATCH, mtr);
buf_block_dbg_add_level(block, SYNC_TREE_NODE);
return(buf_block_get_frame(block));
}
#ifdef UNIV_IBUF_COUNT_DEBUG
/**********************************************************************
Gets the ibuf count for a given page. */
UNIV_INTERN
ulint
ibuf_count_get(
/*===========*/
/* out: number of entries in the insert buffer
currently buffered for this page */
ulint space, /* in: space id */
ulint page_no)/* in: page number */
{
ibuf_count_check(space, page_no);
return(ibuf_counts[space][page_no]);
}
/**********************************************************************
Sets the ibuf count for a given page. */
static
void
ibuf_count_set(
/*===========*/
ulint space, /* in: space id */
ulint page_no,/* in: page number */
ulint val) /* in: value to set */
{
ibuf_count_check(space, page_no);
ut_a(val < UNIV_PAGE_SIZE);
ibuf_counts[space][page_no] = val;
}
#endif
/**********************************************************************
Updates the size information of the ibuf, assuming the segment size has not
changed. */
static
void
ibuf_size_update(
/*=============*/
const page_t* root, /* in: ibuf tree root */
mtr_t* mtr) /* in: mtr */
{
ut_ad(mutex_own(&ibuf_mutex));
ibuf->free_list_len = flst_get_len(root + PAGE_HEADER
+ PAGE_BTR_IBUF_FREE_LIST, mtr);
ibuf->height = 1 + btr_page_get_level(root, mtr);
/* the '1 +' is the ibuf header page */
ibuf->size = ibuf->seg_size - (1 + ibuf->free_list_len);
ibuf->empty = page_get_n_recs(root) == 0;
}
/**********************************************************************
Creates the insert buffer data structure at a database startup and initializes
the data structures for the insert buffer. */
UNIV_INTERN
void
ibuf_init_at_db_start(void)
/*=======================*/
{
page_t* root;
mtr_t mtr;
dict_table_t* table;
mem_heap_t* heap;
dict_index_t* index;
ulint n_used;
page_t* header_page;
ulint error;
ibuf = mem_alloc(sizeof(ibuf_t));
memset(ibuf, 0, sizeof(*ibuf));
/* Note that also a pessimistic delete can sometimes make a B-tree
grow in size, as the references on the upper levels of the tree can
change */
ibuf->max_size = buf_pool_get_curr_size() / UNIV_PAGE_SIZE
/ IBUF_POOL_SIZE_PER_MAX_SIZE;
mutex_create(&ibuf_pessimistic_insert_mutex,
SYNC_IBUF_PESS_INSERT_MUTEX);
mutex_create(&ibuf_mutex, SYNC_IBUF_MUTEX);
mutex_create(&ibuf_bitmap_mutex, SYNC_IBUF_BITMAP_MUTEX);
mtr_start(&mtr);
mutex_enter(&ibuf_mutex);
mtr_x_lock(fil_space_get_latch(IBUF_SPACE_ID, NULL), &mtr);
header_page = ibuf_header_page_get(&mtr);
fseg_n_reserved_pages(header_page + IBUF_HEADER + IBUF_TREE_SEG_HEADER,
&n_used, &mtr);
ibuf_enter();
ut_ad(n_used >= 2);
ibuf->seg_size = n_used;
{
buf_block_t* block;
block = buf_page_get(
IBUF_SPACE_ID, 0, FSP_IBUF_TREE_ROOT_PAGE_NO,
RW_X_LATCH, &mtr);
buf_block_dbg_add_level(block, SYNC_TREE_NODE);
root = buf_block_get_frame(block);
}
ibuf_size_update(root, &mtr);
mutex_exit(&ibuf_mutex);
mtr_commit(&mtr);
ibuf_exit();
heap = mem_heap_create(450);
/* Use old-style record format for the insert buffer. */
table = dict_mem_table_create(IBUF_TABLE_NAME, IBUF_SPACE_ID, 1, 0);
dict_mem_table_add_col(table, heap, "DUMMY_COLUMN", DATA_BINARY, 0, 0);
table->id = ut_dulint_add(DICT_IBUF_ID_MIN, IBUF_SPACE_ID);
dict_table_add_to_cache(table, heap);
mem_heap_free(heap);
index = dict_mem_index_create(
IBUF_TABLE_NAME, "CLUST_IND",
IBUF_SPACE_ID, DICT_CLUSTERED | DICT_UNIVERSAL | DICT_IBUF, 1);
dict_mem_index_add_field(index, "DUMMY_COLUMN", 0);
index->id = ut_dulint_add(DICT_IBUF_ID_MIN, IBUF_SPACE_ID);
error = dict_index_add_to_cache(table, index,
FSP_IBUF_TREE_ROOT_PAGE_NO, FALSE);
ut_a(error == DB_SUCCESS);
ibuf->index = dict_table_get_first_index(table);
}
/*************************************************************************
Initializes an ibuf bitmap page. */
UNIV_INTERN
void
ibuf_bitmap_page_init(
/*==================*/
buf_block_t* block, /* in: bitmap page */
mtr_t* mtr) /* in: mtr */
{
page_t* page;
ulint byte_offset;
ulint zip_size = buf_block_get_zip_size(block);
ut_a(ut_is_2pow(zip_size));
page = buf_block_get_frame(block);
fil_page_set_type(page, FIL_PAGE_IBUF_BITMAP);
/* Write all zeros to the bitmap */
if (!zip_size) {
byte_offset = UT_BITS_IN_BYTES(UNIV_PAGE_SIZE
* IBUF_BITS_PER_PAGE);
} else {
byte_offset = UT_BITS_IN_BYTES(zip_size * IBUF_BITS_PER_PAGE);
}
memset(page + IBUF_BITMAP, 0, byte_offset);
/* The remaining area (up to the page trailer) is uninitialized. */
mlog_write_initial_log_record(page, MLOG_IBUF_BITMAP_INIT, mtr);
}
/*************************************************************************
Parses a redo log record of an ibuf bitmap page init. */
UNIV_INTERN
byte*
ibuf_parse_bitmap_init(
/*===================*/
/* out: end of log record or NULL */
byte* ptr, /* in: buffer */
byte* end_ptr __attribute__((unused)), /* in: buffer end */
buf_block_t* block, /* in: block or NULL */
mtr_t* mtr) /* in: mtr or NULL */
{
ut_ad(ptr && end_ptr);
if (block) {
ibuf_bitmap_page_init(block, mtr);
}
return(ptr);
}
/************************************************************************
Gets the desired bits for a given page from a bitmap page. */
UNIV_INLINE
ulint
ibuf_bitmap_page_get_bits(
/*======================*/
/* out: value of bits */
const page_t* page, /* in: bitmap page */
ulint page_no,/* in: page whose bits to get */
ulint zip_size,/* in: compressed page size in bytes;
0 for uncompressed pages */
ulint bit, /* in: IBUF_BITMAP_FREE,
IBUF_BITMAP_BUFFERED, ... */
mtr_t* mtr __attribute__((unused)))
/* in: mtr containing an
x-latch to the bitmap page */
{
ulint byte_offset;
ulint bit_offset;
ulint map_byte;
ulint value;
ut_ad(bit < IBUF_BITS_PER_PAGE);
#if IBUF_BITS_PER_PAGE % 2
# error "IBUF_BITS_PER_PAGE % 2 != 0"
#endif
ut_ad(ut_is_2pow(zip_size));
ut_ad(mtr_memo_contains_page(mtr, page, MTR_MEMO_PAGE_X_FIX));
if (!zip_size) {
bit_offset = (page_no % UNIV_PAGE_SIZE) * IBUF_BITS_PER_PAGE
+ bit;
} else {
bit_offset = (page_no & (zip_size - 1)) * IBUF_BITS_PER_PAGE
+ bit;
}
byte_offset = bit_offset / 8;
bit_offset = bit_offset % 8;
ut_ad(byte_offset + IBUF_BITMAP < UNIV_PAGE_SIZE);
map_byte = mach_read_from_1(page + IBUF_BITMAP + byte_offset);
value = ut_bit_get_nth(map_byte, bit_offset);
if (bit == IBUF_BITMAP_FREE) {
ut_ad(bit_offset + 1 < 8);
value = value * 2 + ut_bit_get_nth(map_byte, bit_offset + 1);
}
return(value);
}
/************************************************************************
Sets the desired bit for a given page in a bitmap page. */
static
void
ibuf_bitmap_page_set_bits(
/*======================*/
page_t* page, /* in: bitmap page */
ulint page_no,/* in: page whose bits to set */
ulint zip_size,/* in: compressed page size in bytes;
0 for uncompressed pages */
ulint bit, /* in: IBUF_BITMAP_FREE, IBUF_BITMAP_BUFFERED, ... */
ulint val, /* in: value to set */
mtr_t* mtr) /* in: mtr containing an x-latch to the bitmap page */
{
ulint byte_offset;
ulint bit_offset;
ulint map_byte;
ut_ad(bit < IBUF_BITS_PER_PAGE);
#if IBUF_BITS_PER_PAGE % 2
# error "IBUF_BITS_PER_PAGE % 2 != 0"
#endif
ut_ad(ut_is_2pow(zip_size));
ut_ad(mtr_memo_contains_page(mtr, page, MTR_MEMO_PAGE_X_FIX));
#ifdef UNIV_IBUF_COUNT_DEBUG
ut_a((bit != IBUF_BITMAP_BUFFERED) || (val != FALSE)
|| (0 == ibuf_count_get(page_get_space_id(page),
page_no)));
#endif
if (!zip_size) {
bit_offset = (page_no % UNIV_PAGE_SIZE) * IBUF_BITS_PER_PAGE
+ bit;
} else {
bit_offset = (page_no & (zip_size - 1)) * IBUF_BITS_PER_PAGE
+ bit;
}
byte_offset = bit_offset / 8;
bit_offset = bit_offset % 8;
ut_ad(byte_offset + IBUF_BITMAP < UNIV_PAGE_SIZE);
map_byte = mach_read_from_1(page + IBUF_BITMAP + byte_offset);
if (bit == IBUF_BITMAP_FREE) {
ut_ad(bit_offset + 1 < 8);
ut_ad(val <= 3);
map_byte = ut_bit_set_nth(map_byte, bit_offset, val / 2);
map_byte = ut_bit_set_nth(map_byte, bit_offset + 1, val % 2);
} else {
ut_ad(val <= 1);
map_byte = ut_bit_set_nth(map_byte, bit_offset, val);
}
mlog_write_ulint(page + IBUF_BITMAP + byte_offset, map_byte,
MLOG_1BYTE, mtr);
}
/************************************************************************
Calculates the bitmap page number for a given page number. */
UNIV_INLINE
ulint
ibuf_bitmap_page_no_calc(
/*=====================*/
/* out: the bitmap page number where
the file page is mapped */
ulint zip_size, /* in: compressed page size in bytes;
0 for uncompressed pages */
ulint page_no) /* in: tablespace page number */
{
ut_ad(ut_is_2pow(zip_size));
if (!zip_size) {
return(FSP_IBUF_BITMAP_OFFSET
+ (page_no & ~(UNIV_PAGE_SIZE - 1)));
} else {
return(FSP_IBUF_BITMAP_OFFSET
+ (page_no & ~(zip_size - 1)));
}
}
/************************************************************************
Gets the ibuf bitmap page where the bits describing a given file page are
stored. */
static
page_t*
ibuf_bitmap_get_map_page(
/*=====================*/
/* out: bitmap page where the file page is mapped,
that is, the bitmap page containing the descriptor
bits for the file page; the bitmap page is
x-latched */
ulint space, /* in: space id of the file page */
ulint page_no,/* in: page number of the file page */
ulint zip_size,/* in: compressed page size in bytes;
0 for uncompressed pages */
mtr_t* mtr) /* in: mtr */
{
buf_block_t* block;
block = buf_page_get(space, zip_size,
ibuf_bitmap_page_no_calc(zip_size, page_no),
RW_X_LATCH, mtr);
buf_block_dbg_add_level(block, SYNC_IBUF_BITMAP);
return(buf_block_get_frame(block));
}
/****************************************************************************
Sets the free bits of the page in the ibuf bitmap. This is done in a separate
mini-transaction, hence this operation does not restrict further work to only
ibuf bitmap operations, which would result if the latch to the bitmap page
were kept. */
UNIV_INLINE
void
ibuf_set_free_bits_low(
/*===================*/
ulint zip_size,/* in: compressed page size in bytes;
0 for uncompressed pages */
const buf_block_t* block, /* in: index page; free bits are set if
the index is non-clustered and page
level is 0 */
ulint val, /* in: value to set: < 4 */
mtr_t* mtr) /* in/out: mtr */
{
page_t* bitmap_page;
ulint space;
ulint page_no;
if (!page_is_leaf(buf_block_get_frame(block))) {
return;
}
space = buf_block_get_space(block);
page_no = buf_block_get_page_no(block);
bitmap_page = ibuf_bitmap_get_map_page(space, page_no, zip_size, mtr);
#ifdef UNIV_IBUF_DEBUG
# if 0
fprintf(stderr,
"Setting space %lu page %lu free bits to %lu should be %lu\n",
space, page_no, val,
ibuf_index_page_calc_free(zip_size, block));
# endif
ut_a(val <= ibuf_index_page_calc_free(zip_size, block));
#endif /* UNIV_IBUF_DEBUG */
ibuf_bitmap_page_set_bits(bitmap_page, page_no, zip_size,
IBUF_BITMAP_FREE, val, mtr);
}
/****************************************************************************
Sets the free bit of the page in the ibuf bitmap. This is done in a separate
mini-transaction, hence this operation does not restrict further work to only
ibuf bitmap operations, which would result if the latch to the bitmap page
were kept. */
UNIV_INTERN
void
ibuf_set_free_bits_func(
/*====================*/
buf_block_t* block, /* in: index page of a non-clustered index;
free bit is reset if page level is 0 */
#ifdef UNIV_IBUF_DEBUG
ulint max_val,/* in: ULINT_UNDEFINED or a maximum
value which the bits must have before
setting; this is for debugging */
#endif /* UNIV_IBUF_DEBUG */
ulint val) /* in: value to set: < 4 */
{
mtr_t mtr;
page_t* page;
page_t* bitmap_page;
ulint space;
ulint page_no;
ulint zip_size;
page = buf_block_get_frame(block);
if (!page_is_leaf(page)) {
return;
}
mtr_start(&mtr);
space = buf_block_get_space(block);
page_no = buf_block_get_page_no(block);
zip_size = buf_block_get_zip_size(block);
bitmap_page = ibuf_bitmap_get_map_page(space, page_no, zip_size, &mtr);
#ifdef UNIV_IBUF_DEBUG
if (max_val != ULINT_UNDEFINED) {
ulint old_val;
old_val = ibuf_bitmap_page_get_bits(
bitmap_page, page_no, zip_size,
IBUF_BITMAP_FREE, &mtr);
# if 0
if (old_val != max_val) {
fprintf(stderr,
"Ibuf: page %lu old val %lu max val %lu\n",
page_get_page_no(page),
old_val, max_val);
}
# endif
ut_a(old_val <= max_val);
}
# if 0
fprintf(stderr, "Setting page no %lu free bits to %lu should be %lu\n",
page_get_page_no(page), val,
ibuf_index_page_calc_free(zip_size, block));
# endif
ut_a(val <= ibuf_index_page_calc_free(zip_size, block));
#endif /* UNIV_IBUF_DEBUG */
ibuf_bitmap_page_set_bits(bitmap_page, page_no, zip_size,
IBUF_BITMAP_FREE, val, &mtr);
mtr_commit(&mtr);
}
/****************************************************************************
Resets the free bits of the page in the ibuf bitmap. This is done in a
separate mini-transaction, hence this operation does not restrict
further work to only ibuf bitmap operations, which would result if the
latch to the bitmap page were kept. NOTE: The free bits in the insert
buffer bitmap must never exceed the free space on a page. It is safe
to decrement or reset the bits in the bitmap in a mini-transaction
that is committed before the mini-transaction that affects the free
space. */
UNIV_INTERN
void
ibuf_reset_free_bits(
/*=================*/
buf_block_t* block) /* in: index page; free bits are set to 0
if the index is a non-clustered
non-unique, and page level is 0 */
{
ibuf_set_free_bits(block, 0, ULINT_UNDEFINED);
}
/**************************************************************************
Updates the free bits for an uncompressed page to reflect the present
state. Does this in the mtr given, which means that the latching
order rules virtually prevent any further operations for this OS
thread until mtr is committed. NOTE: The free bits in the insert
buffer bitmap must never exceed the free space on a page. It is safe
to set the free bits in the same mini-transaction that updated the
page. */
UNIV_INTERN
void
ibuf_update_free_bits_low(
/*======================*/
const buf_block_t* block, /* in: index page */
ulint max_ins_size, /* in: value of
maximum insert size
with reorganize before
the latest operation
performed to the page */
mtr_t* mtr) /* in/out: mtr */
{
ulint before;
ulint after;
ut_a(!buf_block_get_page_zip(block));
before = ibuf_index_page_calc_free_bits(0, max_ins_size);
after = ibuf_index_page_calc_free(0, block);
/* This approach cannot be used on compressed pages, since the
computed value of "before" often does not match the current
state of the bitmap. This is because the free space may
increase or decrease when a compressed page is reorganized. */
if (before != after) {
ibuf_set_free_bits_low(0, block, after, mtr);
}
}
/**************************************************************************
Updates the free bits for a compressed page to reflect the present
state. Does this in the mtr given, which means that the latching
order rules virtually prevent any further operations for this OS
thread until mtr is committed. NOTE: The free bits in the insert
buffer bitmap must never exceed the free space on a page. It is safe
to set the free bits in the same mini-transaction that updated the
page. */
UNIV_INTERN
void
ibuf_update_free_bits_zip(
/*======================*/
buf_block_t* block, /* in/out: index page */
mtr_t* mtr) /* in/out: mtr */
{
page_t* bitmap_page;
ulint space;
ulint page_no;
ulint zip_size;
ulint after;
space = buf_block_get_space(block);
page_no = buf_block_get_page_no(block);
zip_size = buf_block_get_zip_size(block);
ut_a(page_is_leaf(buf_block_get_frame(block)));
ut_a(zip_size);
bitmap_page = ibuf_bitmap_get_map_page(space, page_no, zip_size, mtr);
after = ibuf_index_page_calc_free_zip(zip_size, block);
if (after == 0) {
/* We move the page to the front of the buffer pool LRU list:
the purpose of this is to prevent those pages to which we
cannot make inserts using the insert buffer from slipping
out of the buffer pool */
buf_page_make_young(&block->page);
}
ibuf_bitmap_page_set_bits(bitmap_page, page_no, zip_size,
IBUF_BITMAP_FREE, after, mtr);
}
/**************************************************************************
Updates the free bits for the two pages to reflect the present state.
Does this in the mtr given, which means that the latching order rules
virtually prevent any further operations until mtr is committed.
NOTE: The free bits in the insert buffer bitmap must never exceed the
free space on a page. It is safe to set the free bits in the same
mini-transaction that updated the pages. */
UNIV_INTERN
void
ibuf_update_free_bits_for_two_pages_low(
/*====================================*/
ulint zip_size,/* in: compressed page size in bytes;
0 for uncompressed pages */
buf_block_t* block1, /* in: index page */
buf_block_t* block2, /* in: index page */
mtr_t* mtr) /* in: mtr */
{
ulint state;
/* As we have to x-latch two random bitmap pages, we have to acquire
the bitmap mutex to prevent a deadlock with a similar operation
performed by another OS thread. */
mutex_enter(&ibuf_bitmap_mutex);
state = ibuf_index_page_calc_free(zip_size, block1);
ibuf_set_free_bits_low(zip_size, block1, state, mtr);
state = ibuf_index_page_calc_free(zip_size, block2);
ibuf_set_free_bits_low(zip_size, block2, state, mtr);
mutex_exit(&ibuf_bitmap_mutex);
}
/**************************************************************************
Returns TRUE if the page is one of the fixed address ibuf pages. */
UNIV_INLINE
ibool
ibuf_fixed_addr_page(
/*=================*/
/* out: TRUE if a fixed address ibuf i/o page */
ulint space, /* in: space id */
ulint zip_size,/* in: compressed page size in bytes;
0 for uncompressed pages */
ulint page_no)/* in: page number */
{
return((space == IBUF_SPACE_ID && page_no == IBUF_TREE_ROOT_PAGE_NO)
|| ibuf_bitmap_page(zip_size, page_no));
}
/***************************************************************************
Checks if a page is a level 2 or 3 page in the ibuf hierarchy of pages.
Must not be called when recv_no_ibuf_operations==TRUE. */
UNIV_INTERN
ibool
ibuf_page(
/*======*/
/* out: TRUE if level 2 or level 3 page */
ulint space, /* in: space id */
ulint zip_size,/* in: compressed page size in bytes, or 0 */
ulint page_no,/* in: page number */
mtr_t* mtr) /* in: mtr which will contain an x-latch to the
bitmap page if the page is not one of the fixed
address ibuf pages, or NULL, in which case a new
transaction is created. */
{
ibool ret;
mtr_t local_mtr;
page_t* bitmap_page;
ut_ad(!recv_no_ibuf_operations);
if (ibuf_fixed_addr_page(space, zip_size, page_no)) {
return(TRUE);
} else if (space != IBUF_SPACE_ID) {
return(FALSE);
}
ut_ad(fil_space_get_type(IBUF_SPACE_ID) == FIL_TABLESPACE);
if (mtr == NULL) {
mtr = &local_mtr;
mtr_start(mtr);
}
bitmap_page = ibuf_bitmap_get_map_page(space, page_no, zip_size, mtr);
ret = ibuf_bitmap_page_get_bits(bitmap_page, page_no, zip_size,
IBUF_BITMAP_IBUF, mtr);
if (mtr == &local_mtr) {
mtr_commit(mtr);
}
return(ret);
}
/************************************************************************
Returns the page number field of an ibuf record. */
static
ulint
ibuf_rec_get_page_no(
/*=================*/
/* out: page number */
const rec_t* rec) /* in: ibuf record */
{
const byte* field;
ulint len;
ut_ad(ibuf_inside());
ut_ad(rec_get_n_fields_old(rec) > 2);
field = rec_get_nth_field_old(rec, 1, &len);
if (len == 1) {
/* This is of the >= 4.1.x record format */
ut_a(trx_sys_multiple_tablespace_format);
field = rec_get_nth_field_old(rec, 2, &len);
} else {
ut_a(trx_doublewrite_must_reset_space_ids);
ut_a(!trx_sys_multiple_tablespace_format);
field = rec_get_nth_field_old(rec, 0, &len);
}
ut_a(len == 4);
return(mach_read_from_4(field));
}
/************************************************************************
Returns the space id field of an ibuf record. For < 4.1.x format records
returns 0. */
static
ulint
ibuf_rec_get_space(
/*===============*/
/* out: space id */
const rec_t* rec) /* in: ibuf record */
{
const byte* field;
ulint len;
ut_ad(ibuf_inside());
ut_ad(rec_get_n_fields_old(rec) > 2);
field = rec_get_nth_field_old(rec, 1, &len);
if (len == 1) {
/* This is of the >= 4.1.x record format */
ut_a(trx_sys_multiple_tablespace_format);
field = rec_get_nth_field_old(rec, 0, &len);
ut_a(len == 4);
return(mach_read_from_4(field));
}
ut_a(trx_doublewrite_must_reset_space_ids);
ut_a(!trx_sys_multiple_tablespace_format);
return(0);
}
/********************************************************************
Get various information about an ibuf record in >= 4.1.x format. */
static
void
ibuf_rec_get_info(
/*==============*/
const rec_t* rec, /* in: ibuf record */
ibuf_op_t* op, /* out: operation type, or NULL */
ibool* comp, /* out: compact flag, or NULL */
ulint* info_len, /* out: length of info fields at the
start of the fourth field, or
NULL */
ulint* counter) /* in: counter value, or NULL */
{
const byte* types;
ulint fields;
ulint len;
/* Local variables to shadow arguments. */
ibuf_op_t op_local;
ibool comp_local;
ulint info_len_local;
ulint counter_local;
ut_ad(ibuf_inside());
fields = rec_get_n_fields_old(rec);
ut_a(fields > 4);
types = rec_get_nth_field_old(rec, 3, &len);
info_len_local = len % DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE;
switch (info_len_local) {
case 0:
case 1:
op_local = IBUF_OP_INSERT;
comp_local = info_len_local;
ut_ad(!counter);
counter_local = ULINT_UNDEFINED;
break;
case IBUF_REC_INFO_SIZE:
op_local = (ibuf_op_t)types[IBUF_REC_OFFSET_TYPE];
comp_local = types[IBUF_REC_OFFSET_FLAGS] & IBUF_REC_COMPACT;
counter_local = mach_read_from_2(
types + IBUF_REC_OFFSET_COUNTER);
break;
default:
ut_error;
}
ut_a(op_local < IBUF_OP_COUNT);
ut_a((len - info_len_local) ==
(fields - 4) * DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE);
if (op) {
*op = op_local;
}
if (comp) {
*comp = comp_local;
}
if (info_len) {
*info_len = info_len_local;
}
if (counter) {
*counter = counter_local;
}
}
/********************************************************************
Returns the operation type field of an ibuf record. */
static
ibuf_op_t
ibuf_rec_get_op_type(
/*=================*/
/* out: operation type */
const rec_t* rec) /* in: ibuf record */
{
ulint len;
const byte* field;
ut_ad(ibuf_inside());
ut_ad(rec_get_n_fields_old(rec) > 2);
field = rec_get_nth_field_old(rec, 1, &len);
if (len > 1) {
/* This is a < 4.1.x format record */
return(IBUF_OP_INSERT);
} else {
ibuf_op_t op;
ibuf_rec_get_info(rec, &op, NULL, NULL, NULL);
return(op);
}
}
/********************************************************************
Read the first two bytes from a record's fourth field (counter field in new
records; something else in older records). */
UNIV_INTERN
ulint
ibuf_rec_get_counter(
/*=================*/
/* out: "counter" field,
or ULINT_UNDEFINED if for
some reason it can't be read */
const rec_t* rec) /* in: ibuf record */
{
const byte* ptr;
ulint len;
if (rec_get_n_fields_old(rec) < 4) {
return(ULINT_UNDEFINED);
}
ptr = rec_get_nth_field_old(rec, 3, &len);
if (len >= 2) {
return(mach_read_from_2(ptr));
} else {
return(ULINT_UNDEFINED);
}
}
/********************************************************************
Add accumulated operation counts to a permanent array. Both arrays must be
of size IBUF_OP_COUNT. */
static
void
ibuf_add_ops(
/*=========*/
ulint* arr, /* in/out: array to modify */
const ulint* ops) /* in: operation counts */
{
ulint i;
for (i = 0; i < IBUF_OP_COUNT; i++) {
arr[i] += ops[i];
}
}
/********************************************************************
Print operation counts. The array must be of size IBUF_OP_COUNT. */
static
void
ibuf_print_ops(
/*===========*/
const ulint* ops, /* in: operation counts */
FILE* file) /* in: file where to print */
{
static const char* op_names[] = {
"insert",
"delete mark",
"delete"
};
ulint i;
ut_a(UT_ARR_SIZE(op_names) == IBUF_OP_COUNT);
for (i = 0; i < IBUF_OP_COUNT; i++) {
fprintf(file, "%s %lu%s", op_names[i],
(ulong) ops[i], (i < (IBUF_OP_COUNT - 1)) ? ", " : "");
}
putc('\n', file);
}
/************************************************************************
Creates a dummy index for inserting a record to a non-clustered index.
*/
static
dict_index_t*
ibuf_dummy_index_create(
/*====================*/
/* out: dummy index */
ulint n, /* in: number of fields */
ibool comp) /* in: TRUE=use compact record format */
{
dict_table_t* table;
dict_index_t* index;
table = dict_mem_table_create("IBUF_DUMMY",
DICT_HDR_SPACE, n,
comp ? DICT_TF_COMPACT : 0);
index = dict_mem_index_create("IBUF_DUMMY", "IBUF_DUMMY",
DICT_HDR_SPACE, 0, n);
index->table = table;
/* avoid ut_ad(index->cached) in dict_index_get_n_unique_in_tree */
index->cached = TRUE;
return(index);
}
/************************************************************************
Add a column to the dummy index */
static
void
ibuf_dummy_index_add_col(
/*=====================*/
dict_index_t* index, /* in: dummy index */
const dtype_t* type, /* in: the data type of the column */
ulint len) /* in: length of the column */
{
ulint i = index->table->n_def;
dict_mem_table_add_col(index->table, NULL, NULL,
dtype_get_mtype(type),
dtype_get_prtype(type),
dtype_get_len(type));
dict_index_add_col(index, index->table,
dict_table_get_nth_col(index->table, i), len);
}
/************************************************************************
Deallocates a dummy index for inserting a record to a non-clustered index.
*/
static
void
ibuf_dummy_index_free(
/*==================*/
dict_index_t* index) /* in: dummy index */
{
dict_table_t* table = index->table;
dict_mem_index_free(index);
dict_mem_table_free(table);
}
/*************************************************************************
Builds the entry to insert into a non-clustered index when we have the
corresponding record in an ibuf index. */
UNIV_INLINE
dtuple_t*
ibuf_build_entry_pre_4_1_x(
/*=======================*/
/* out, own: entry to insert to
a non-clustered index; NOTE that
as we copy pointers to fields in
ibuf_rec, the caller must hold a
latch to the ibuf_rec page as long
as the entry is used! */
const rec_t* ibuf_rec, /* in: record in an insert buffer */
mem_heap_t* heap, /* in: heap where built */
dict_index_t** pindex) /* out, own: dummy index that
describes the entry */
{
ulint i;
ulint len;
const byte* types;
dtuple_t* tuple;
ulint n_fields;
ut_a(trx_doublewrite_must_reset_space_ids);
ut_a(!trx_sys_multiple_tablespace_format);
n_fields = rec_get_n_fields_old(ibuf_rec) - 2;
tuple = dtuple_create(heap, n_fields);
types = rec_get_nth_field_old(ibuf_rec, 1, &len);
ut_a(len == n_fields * DATA_ORDER_NULL_TYPE_BUF_SIZE);
for (i = 0; i < n_fields; i++) {
const byte* data;
dfield_t* field;
field = dtuple_get_nth_field(tuple, i);
data = rec_get_nth_field_old(ibuf_rec, i + 2, &len);
dfield_set_data(field, data, len);
dtype_read_for_order_and_null_size(
dfield_get_type(field),
types + i * DATA_ORDER_NULL_TYPE_BUF_SIZE);
}
*pindex = ibuf_dummy_index_create(n_fields, FALSE);
return(tuple);
}
/*************************************************************************
Builds the entry used to
1) IBUF_OP_INSERT: insert into a non-clustered index
2) IBUF_OP_DELETE_MARK: find the record whose delete-mark flag we need to
activate
3) IBUF_OP_DELETE: find the record we need to delete
when we have the corresponding record in an ibuf index. */
static
dtuple_t*
ibuf_build_entry_from_ibuf_rec(
/*===========================*/
/* out, own: entry to insert to
a non-clustered index; NOTE that
as we copy pointers to fields in
ibuf_rec, the caller must hold a
latch to the ibuf_rec page as long
as the entry is used! */
const rec_t* ibuf_rec, /* in: record in an insert buffer */
mem_heap_t* heap, /* in: heap where built */
dict_index_t** pindex) /* out, own: dummy index that
describes the entry */
{
dtuple_t* tuple;
dfield_t* field;
ulint n_fields;
const byte* types;
const byte* data;
ulint len;
ulint info_len;
ulint i;
ulint comp;
dict_index_t* index;
data = rec_get_nth_field_old(ibuf_rec, 1, &len);
if (len > 1) {
/* This a < 4.1.x format record */
return(ibuf_build_entry_pre_4_1_x(ibuf_rec, heap, pindex));
}
/* This a >= 4.1.x format record */
ut_a(trx_sys_multiple_tablespace_format);
ut_a(*data == 0);
ut_a(rec_get_n_fields_old(ibuf_rec) > 4);
n_fields = rec_get_n_fields_old(ibuf_rec) - 4;
tuple = dtuple_create(heap, n_fields);
types = rec_get_nth_field_old(ibuf_rec, 3, &len);
ibuf_rec_get_info(ibuf_rec, NULL, &comp, &info_len, NULL);
index = ibuf_dummy_index_create(n_fields, comp);
len -= info_len;
types += info_len;
ut_a(len == n_fields * DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE);
for (i = 0; i < n_fields; i++) {
field = dtuple_get_nth_field(tuple, i);
data = rec_get_nth_field_old(ibuf_rec, i + 4, &len);
dfield_set_data(field, data, len);
dtype_new_read_for_order_and_null_size(
dfield_get_type(field),
types + i * DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE);
ibuf_dummy_index_add_col(index, dfield_get_type(field), len);
}
/* Prevent an ut_ad() failure in page_zip_write_rec() by
adding system columns to the dummy table pointed to by the
dummy secondary index. The insert buffer is only used for
secondary indexes, whose records never contain any system
columns, such as DB_TRX_ID. */
ut_d(dict_table_add_system_columns(index->table, index->table->heap));
*pindex = index;
return(tuple);
}
/**********************************************************************
Get the data size. */
UNIV_INLINE
ulint
ibuf_rec_get_size(
/*==============*/
/* out: size of fields */
const rec_t* rec, /* in: ibuf record */
const byte* types, /* in: fields */
ulint n_fields, /* in: number of fields */
ibool pre_4_1) /* in: TRUE=pre-4.1 format,
FALSE=newer */
{
ulint i;
ulint field_offset;
ulint types_offset;
ulint size = 0;
if (pre_4_1) {
field_offset = 2;
types_offset = DATA_ORDER_NULL_TYPE_BUF_SIZE;
} else {
field_offset = 4;
types_offset = DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE;
}
for (i = 0; i < n_fields; i++) {
ulint len;
dtype_t dtype;
rec_get_nth_field_offs_old(rec, i + field_offset, &len);
if (len != UNIV_SQL_NULL) {
size += len;
} else if (pre_4_1) {
dtype_read_for_order_and_null_size(&dtype, types);
size += dtype_get_sql_null_size(&dtype);
} else {
dtype_new_read_for_order_and_null_size(&dtype, types);
size += dtype_get_sql_null_size(&dtype);
}
types += types_offset;
}
return(size);
}
/************************************************************************
Returns the space taken by a stored non-clustered index entry if converted to
an index record. */
static
ulint
ibuf_rec_get_volume(
/*================*/
/* out: size of index record in bytes
+ an upper limit of the space taken in the
page directory */
const rec_t* ibuf_rec)/* in: ibuf record */
{
ulint len;
const byte* data;
const byte* types;
ulint n_fields;
ulint data_size;
ibool pre_4_1;
ut_ad(ibuf_inside());
ut_ad(rec_get_n_fields_old(ibuf_rec) > 2);
data = rec_get_nth_field_old(ibuf_rec, 1, &len);
if (len > 1) {
/* < 4.1.x format record */
ut_a(trx_doublewrite_must_reset_space_ids);
ut_a(!trx_sys_multiple_tablespace_format);
pre_4_1 = TRUE;
n_fields = rec_get_n_fields_old(ibuf_rec) - 2;
types = rec_get_nth_field_old(ibuf_rec, 1, &len);
ut_ad(len == n_fields * DATA_ORDER_NULL_TYPE_BUF_SIZE);
} else {
/* >= 4.1.x format record */
ibuf_op_t op;
ibool comp;
ulint info_len;
ut_a(trx_sys_multiple_tablespace_format);
ut_a(*data == 0);
pre_4_1 = FALSE;
types = rec_get_nth_field_old(ibuf_rec, 3, &len);
ibuf_rec_get_info(ibuf_rec, &op, &comp, &info_len, NULL);
if (op == IBUF_OP_DELETE_MARK || op == IBUF_OP_DELETE) {
/* Delete-marking a record doesn't take any
additional space, and while deleting a record
actually frees up space, we have to play it safe and
pretend it takes no additional space (the record
might not exist, etc.). */
return(0);
} else if (comp) {
dtuple_t* entry;
ulint volume;
dict_index_t* dummy_index;
mem_heap_t* heap = mem_heap_create(500);
entry = ibuf_build_entry_from_ibuf_rec(
ibuf_rec, heap, &dummy_index);
volume = rec_get_converted_size(dummy_index, entry, 0);
ibuf_dummy_index_free(dummy_index);
mem_heap_free(heap);
return(volume + page_dir_calc_reserved_space(1));
}
types += info_len;
n_fields = rec_get_n_fields_old(ibuf_rec) - 4;
}
data_size = ibuf_rec_get_size(ibuf_rec, types, n_fields, pre_4_1);
return(data_size + rec_get_converted_extra_size(data_size, n_fields, 0)
+ page_dir_calc_reserved_space(1));
}
/*************************************************************************
Builds the tuple to insert to an ibuf tree when we have an entry for a
non-clustered index. */
static
dtuple_t*
ibuf_entry_build(
/*=============*/
/* out, own: entry to insert into an ibuf
index tree; NOTE that the original entry
must be kept because we copy pointers to its
fields */
ibuf_op_t op, /* in: operation type */
dict_index_t* index, /* in: non-clustered index */
const dtuple_t* entry, /* in: entry for a non-clustered index */
ulint space, /* in: space id */
ulint page_no,/* in: index page number where entry should
be inserted */
ulint counter,/* in: counter value */
mem_heap_t* heap) /* in: heap into which to build */
{
dtuple_t* tuple;
dfield_t* field;
const dfield_t* entry_field;
ulint n_fields;
ulint type_info_size;
byte* buf;
byte* buf2;
ulint i;
/* We have to build a tuple with the following fields:
1-4) These are described at the top of this file.
5) The rest of the fields are copied from the entry.
All fields in the tuple are ordered like the type binary in our
insert buffer tree. */
n_fields = dtuple_get_n_fields(entry);
tuple = dtuple_create(heap, n_fields + 4);
/* 1) Space Id */
field = dtuple_get_nth_field(tuple, 0);
buf = mem_heap_alloc(heap, 4);
mach_write_to_4(buf, space);
dfield_set_data(field, buf, 4);
/* 2) Marker byte */
field = dtuple_get_nth_field(tuple, 1);
buf = mem_heap_alloc(heap, 1);
/* We set the marker byte zero */
mach_write_to_1(buf, 0);
dfield_set_data(field, buf, 1);
/* 3) Page number */
field = dtuple_get_nth_field(tuple, 2);
buf = mem_heap_alloc(heap, 4);
mach_write_to_4(buf, page_no);
dfield_set_data(field, buf, 4);
/* 4) Type info, part #1 */
type_info_size = IBUF_REC_INFO_SIZE
+ n_fields * DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE;
buf2 = mem_heap_alloc(heap, type_info_size);
mach_write_to_2(buf2 + IBUF_REC_OFFSET_COUNTER, counter);
buf2[IBUF_REC_OFFSET_TYPE] = (byte) op;
buf2[IBUF_REC_OFFSET_FLAGS] = dict_table_is_comp(index->table)
? IBUF_REC_COMPACT : 0;
/* 5+) Fields from the entry */
for (i = 0; i < n_fields; i++) {
ulint fixed_len;
const dict_field_t* ifield;
/* We add 4 below because we have the 4 extra fields at the
start of an ibuf record */
field = dtuple_get_nth_field(tuple, i + 4);
entry_field = dtuple_get_nth_field(entry, i);
dfield_copy(field, entry_field);
ifield = dict_index_get_nth_field(index, i);
/* Prefix index columns of fixed-length columns are of
fixed length. However, in the function call below,
dfield_get_type(entry_field) contains the fixed length
of the column in the clustered index. Replace it with
the fixed length of the secondary index column. */
fixed_len = ifield->fixed_len;
#ifdef UNIV_DEBUG
if (fixed_len) {
/* dict_index_add_col() should guarantee these */
ut_ad(fixed_len <= (ulint)
dfield_get_type(entry_field)->len);
if (ifield->prefix_len) {
ut_ad(ifield->prefix_len == fixed_len);
} else {
ut_ad(fixed_len == (ulint)
dfield_get_type(entry_field)->len);
}
}
#endif /* UNIV_DEBUG */
dtype_new_store_for_order_and_null_size(
buf2 + IBUF_REC_INFO_SIZE
+ i * DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE,
dfield_get_type(entry_field), fixed_len);
}
/* 4) Type info, part #2 */
field = dtuple_get_nth_field(tuple, 3);
dfield_set_data(field, buf2, type_info_size);
/* Set all the types in the new tuple binary */
dtuple_set_types_binary(tuple, n_fields + 4);
return(tuple);
}
/*************************************************************************
Builds a search tuple used to search buffered inserts for an index page.
This is for < 4.1.x format records */
static
dtuple_t*
ibuf_search_tuple_build(
/*====================*/
/* out, own: search tuple */
ulint space, /* in: space id */
ulint page_no,/* in: index page number */
mem_heap_t* heap) /* in: heap into which to build */
{
dtuple_t* tuple;
dfield_t* field;
byte* buf;
ut_a(space == 0);
ut_a(trx_doublewrite_must_reset_space_ids);
ut_a(!trx_sys_multiple_tablespace_format);
tuple = dtuple_create(heap, 1);
/* Store the page number in tuple */
field = dtuple_get_nth_field(tuple, 0);
buf = mem_heap_alloc(heap, 4);
mach_write_to_4(buf, page_no);
dfield_set_data(field, buf, 4);
dtuple_set_types_binary(tuple, 1);
return(tuple);
}
/*************************************************************************
Builds a search tuple used to search buffered inserts for an index page.
This is for >= 4.1.x format records. */
static
dtuple_t*
ibuf_new_search_tuple_build(
/*========================*/
/* out, own: search tuple */
ulint space, /* in: space id */
ulint page_no,/* in: index page number */
mem_heap_t* heap) /* in: heap into which to build */
{
dtuple_t* tuple;
dfield_t* field;
byte* buf;
ut_a(trx_sys_multiple_tablespace_format);
tuple = dtuple_create(heap, 3);
/* Store the space id in tuple */
field = dtuple_get_nth_field(tuple, 0);
buf = mem_heap_alloc(heap, 4);
mach_write_to_4(buf, space);
dfield_set_data(field, buf, 4);
/* Store the new format record marker byte */
field = dtuple_get_nth_field(tuple, 1);
buf = mem_heap_alloc(heap, 1);
mach_write_to_1(buf, 0);
dfield_set_data(field, buf, 1);
/* Store the page number in tuple */
field = dtuple_get_nth_field(tuple, 2);
buf = mem_heap_alloc(heap, 4);
mach_write_to_4(buf, page_no);
dfield_set_data(field, buf, 4);
dtuple_set_types_binary(tuple, 3);
return(tuple);
}
/*************************************************************************
Checks if there are enough pages in the free list of the ibuf tree that we
dare to start a pessimistic insert to the insert buffer. */
UNIV_INLINE
ibool
ibuf_data_enough_free_for_insert(void)
/*==================================*/
/* out: TRUE if enough free pages in list */
{
ut_ad(mutex_own(&ibuf_mutex));
/* We want a big margin of free pages, because a B-tree can sometimes
grow in size also if records are deleted from it, as the node pointers
can change, and we must make sure that we are able to delete the
inserts buffered for pages that we read to the buffer pool, without
any risk of running out of free space in the insert buffer. */
return(ibuf->free_list_len >= (ibuf->size / 2) + 3 * ibuf->height);
}
/*************************************************************************
Checks if there are enough pages in the free list of the ibuf tree that we
should remove them and free to the file space management. */
UNIV_INLINE
ibool
ibuf_data_too_much_free(void)
/*=========================*/
/* out: TRUE if enough free pages in list */
{
ut_ad(mutex_own(&ibuf_mutex));
return(ibuf->free_list_len >= 3 + (ibuf->size / 2) + 3 * ibuf->height);
}
/*************************************************************************
Allocates a new page from the ibuf file segment and adds it to the free
list. */
static
ulint
ibuf_add_free_page(void)
/*====================*/
/* out: DB_SUCCESS, or DB_STRONG_FAIL
if no space left */
{
mtr_t mtr;
page_t* header_page;
ulint flags;
ulint zip_size;
ulint page_no;
page_t* page;
page_t* root;
page_t* bitmap_page;
mtr_start(&mtr);
/* Acquire the fsp latch before the ibuf header, obeying the latching
order */
mtr_x_lock(fil_space_get_latch(IBUF_SPACE_ID, &flags), &mtr);
zip_size = dict_table_flags_to_zip_size(flags);
header_page = ibuf_header_page_get(&mtr);
/* Allocate a new page: NOTE that if the page has been a part of a
non-clustered index which has subsequently been dropped, then the
page may have buffered inserts in the insert buffer, and these
should be deleted from there. These get deleted when the page
allocation creates the page in buffer. Thus the call below may end
up calling the insert buffer routines and, as we yet have no latches
to insert buffer tree pages, these routines can run without a risk
of a deadlock. This is the reason why we created a special ibuf
header page apart from the ibuf tree. */
page_no = fseg_alloc_free_page(
header_page + IBUF_HEADER + IBUF_TREE_SEG_HEADER, 0, FSP_UP,
&mtr);
if (page_no == FIL_NULL) {
mtr_commit(&mtr);
return(DB_STRONG_FAIL);
}
{
buf_block_t* block;
block = buf_page_get(
IBUF_SPACE_ID, 0, page_no, RW_X_LATCH, &mtr);
buf_block_dbg_add_level(block, SYNC_TREE_NODE_NEW);
page = buf_block_get_frame(block);
}
ibuf_enter();
mutex_enter(&ibuf_mutex);
root = ibuf_tree_root_get(&mtr);
/* Add the page to the free list and update the ibuf size data */
flst_add_last(root + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST,
page + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST_NODE, &mtr);
mlog_write_ulint(page + FIL_PAGE_TYPE, FIL_PAGE_IBUF_FREE_LIST,
MLOG_2BYTES, &mtr);
ibuf->seg_size++;
ibuf->free_list_len++;
/* Set the bit indicating that this page is now an ibuf tree page
(level 2 page) */
bitmap_page = ibuf_bitmap_get_map_page(
IBUF_SPACE_ID, page_no, zip_size, &mtr);
ibuf_bitmap_page_set_bits(
bitmap_page, page_no, zip_size, IBUF_BITMAP_IBUF, TRUE, &mtr);
mtr_commit(&mtr);
mutex_exit(&ibuf_mutex);
ibuf_exit();
return(DB_SUCCESS);
}
/*************************************************************************
Removes a page from the free list and frees it to the fsp system. */
static
void
ibuf_remove_free_page(void)
/*=======================*/
{
mtr_t mtr;
mtr_t mtr2;
page_t* header_page;
ulint flags;
ulint zip_size;
ulint page_no;
page_t* page;
page_t* root;
page_t* bitmap_page;
mtr_start(&mtr);
/* Acquire the fsp latch before the ibuf header, obeying the latching
order */
mtr_x_lock(fil_space_get_latch(IBUF_SPACE_ID, &flags), &mtr);
zip_size = dict_table_flags_to_zip_size(flags);
header_page = ibuf_header_page_get(&mtr);
/* Prevent pessimistic inserts to insert buffer trees for a while */
mutex_enter(&ibuf_pessimistic_insert_mutex);
ibuf_enter();
mutex_enter(&ibuf_mutex);
if (!ibuf_data_too_much_free()) {
mutex_exit(&ibuf_mutex);
ibuf_exit();
mutex_exit(&ibuf_pessimistic_insert_mutex);
mtr_commit(&mtr);
return;
}
mtr_start(&mtr2);
root = ibuf_tree_root_get(&mtr2);
page_no = flst_get_last(root + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST,
&mtr2).page;
/* NOTE that we must release the latch on the ibuf tree root
because in fseg_free_page we access level 1 pages, and the root
is a level 2 page. */
mtr_commit(&mtr2);
mutex_exit(&ibuf_mutex);
ibuf_exit();
/* Since pessimistic inserts were prevented, we know that the
page is still in the free list. NOTE that also deletes may take
pages from the free list, but they take them from the start, and
the free list was so long that they cannot have taken the last
page from it. */
fseg_free_page(header_page + IBUF_HEADER + IBUF_TREE_SEG_HEADER,
IBUF_SPACE_ID, page_no, &mtr);
#ifdef UNIV_DEBUG_FILE_ACCESSES
buf_page_reset_file_page_was_freed(IBUF_SPACE_ID, page_no);
#endif
ibuf_enter();
mutex_enter(&ibuf_mutex);
root = ibuf_tree_root_get(&mtr);
ut_ad(page_no == flst_get_last(root + PAGE_HEADER
+ PAGE_BTR_IBUF_FREE_LIST, &mtr).page);
{
buf_block_t* block;
block = buf_page_get(
IBUF_SPACE_ID, 0, page_no, RW_X_LATCH, &mtr);
buf_block_dbg_add_level(block, SYNC_TREE_NODE);
page = buf_block_get_frame(block);
}
/* Remove the page from the free list and update the ibuf size data */
flst_remove(root + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST,
page + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST_NODE, &mtr);
ibuf->seg_size--;
ibuf->free_list_len--;
mutex_exit(&ibuf_pessimistic_insert_mutex);
/* Set the bit indicating that this page is no more an ibuf tree page
(level 2 page) */
bitmap_page = ibuf_bitmap_get_map_page(
IBUF_SPACE_ID, page_no, zip_size, &mtr);
ibuf_bitmap_page_set_bits(
bitmap_page, page_no, zip_size, IBUF_BITMAP_IBUF, FALSE, &mtr);
#ifdef UNIV_DEBUG_FILE_ACCESSES
buf_page_set_file_page_was_freed(IBUF_SPACE_ID, page_no);
#endif
mtr_commit(&mtr);
mutex_exit(&ibuf_mutex);
ibuf_exit();
}
/***************************************************************************
Frees excess pages from the ibuf free list. This function is called when an OS
thread calls fsp services to allocate a new file segment, or a new page to a
file segment, and the thread did not own the fsp latch before this call. */
UNIV_INTERN
void
ibuf_free_excess_pages(void)
/*========================*/
{
ulint i;
#ifdef UNIV_SYNC_DEBUG
ut_ad(rw_lock_own(fil_space_get_latch(IBUF_SPACE_ID, NULL),
RW_LOCK_EX));
#endif /* UNIV_SYNC_DEBUG */
ut_ad(rw_lock_get_x_lock_count(
fil_space_get_latch(IBUF_SPACE_ID, NULL)) == 1);
ut_ad(!ibuf_inside());
/* NOTE: We require that the thread did not own the latch before,
because then we know that we can obey the correct latching order
for ibuf latches */
if (!ibuf) {
/* Not yet initialized; not sure if this is possible, but
does no harm to check for it. */
return;
}
/* Free at most a few pages at a time, so that we do not delay the
requested service too much */
for (i = 0; i < 4; i++) {
mutex_enter(&ibuf_mutex);
if (!ibuf_data_too_much_free()) {
mutex_exit(&ibuf_mutex);
return;
}
mutex_exit(&ibuf_mutex);
ibuf_remove_free_page();
}
}
/*************************************************************************
Reads page numbers from a leaf in an ibuf tree. */
static
ulint
ibuf_get_merge_page_nos(
/*====================*/
/* out: a lower limit for the combined volume
of records which will be merged */
ibool contract,/* in: TRUE if this function is called to
contract the tree, FALSE if this is called
when a single page becomes full and we look
if it pays to read also nearby pages */
rec_t* rec, /* in: record from which we read up and down
in the chain of records */
ulint* space_ids,/* in/out: space id's of the pages */
ib_int64_t* space_versions,/* in/out: tablespace version
timestamps; used to prevent reading in old
pages after DISCARD + IMPORT tablespace */
ulint* page_nos,/* in/out: buffer for at least
IBUF_MAX_N_PAGES_MERGED many page numbers;
the page numbers are in an ascending order */
ulint* n_stored)/* out: number of page numbers stored to
page_nos in this function */
{
ulint prev_page_no;
ulint prev_space_id;
ulint first_page_no;
ulint first_space_id;
ulint rec_page_no;
ulint rec_space_id;
ulint sum_volumes;
ulint volume_for_page;
ulint rec_volume;
ulint limit;
ulint n_pages;
*n_stored = 0;
limit = ut_min(IBUF_MAX_N_PAGES_MERGED, buf_pool->curr_size / 4);
if (page_rec_is_supremum(rec)) {
rec = page_rec_get_prev(rec);
}
if (page_rec_is_infimum(rec)) {
rec = page_rec_get_next(rec);
}
if (page_rec_is_supremum(rec)) {
return(0);
}
first_page_no = ibuf_rec_get_page_no(rec);
first_space_id = ibuf_rec_get_space(rec);
n_pages = 0;
prev_page_no = 0;
prev_space_id = 0;
/* Go backwards from the first rec until we reach the border of the
'merge area', or the page start or the limit of storeable pages is
reached */
while (!page_rec_is_infimum(rec) && UNIV_LIKELY(n_pages < limit)) {
rec_page_no = ibuf_rec_get_page_no(rec);
rec_space_id = ibuf_rec_get_space(rec);
if (rec_space_id != first_space_id
|| (rec_page_no / IBUF_MERGE_AREA)
!= (first_page_no / IBUF_MERGE_AREA)) {
break;
}
if (rec_page_no != prev_page_no
|| rec_space_id != prev_space_id) {
n_pages++;
}
prev_page_no = rec_page_no;
prev_space_id = rec_space_id;
rec = page_rec_get_prev(rec);
}
rec = page_rec_get_next(rec);
/* At the loop start there is no prev page; we mark this with a pair
of space id, page no (0, 0) for which there can never be entries in
the insert buffer */
prev_page_no = 0;
prev_space_id = 0;
sum_volumes = 0;
volume_for_page = 0;
while (*n_stored < limit) {
if (page_rec_is_supremum(rec)) {
/* When no more records available, mark this with
another 'impossible' pair of space id, page no */
rec_page_no = 1;
rec_space_id = 0;
} else {
rec_page_no = ibuf_rec_get_page_no(rec);
rec_space_id = ibuf_rec_get_space(rec);
ut_ad(rec_page_no > IBUF_TREE_ROOT_PAGE_NO);
}
#ifdef UNIV_IBUF_DEBUG
ut_a(*n_stored < IBUF_MAX_N_PAGES_MERGED);
#endif
if ((rec_space_id != prev_space_id
|| rec_page_no != prev_page_no)
&& (prev_space_id != 0 || prev_page_no != 0)) {
if ((prev_page_no == first_page_no
&& prev_space_id == first_space_id)
|| contract
|| (volume_for_page
> ((IBUF_MERGE_THRESHOLD - 1)
* 4 * UNIV_PAGE_SIZE
/ IBUF_PAGE_SIZE_PER_FREE_SPACE)
/ IBUF_MERGE_THRESHOLD)) {
space_ids[*n_stored] = prev_space_id;
space_versions[*n_stored]
= fil_space_get_version(prev_space_id);
page_nos[*n_stored] = prev_page_no;
(*n_stored)++;
sum_volumes += volume_for_page;
}
if (rec_space_id != first_space_id
|| rec_page_no / IBUF_MERGE_AREA
!= first_page_no / IBUF_MERGE_AREA) {
break;
}
volume_for_page = 0;
}
if (rec_page_no == 1 && rec_space_id == 0) {
/* Supremum record */
break;
}
rec_volume = ibuf_rec_get_volume(rec);
volume_for_page += rec_volume;
prev_page_no = rec_page_no;
prev_space_id = rec_space_id;
rec = page_rec_get_next(rec);
}
#ifdef UNIV_IBUF_DEBUG
ut_a(*n_stored <= IBUF_MAX_N_PAGES_MERGED);
#endif
#if 0
fprintf(stderr, "Ibuf merge batch %lu pages %lu volume\n",
*n_stored, sum_volumes);
#endif
return(sum_volumes);
}
/*************************************************************************
Contracts insert buffer trees by reading pages to the buffer pool. */
static
ulint
ibuf_contract_ext(
/*==============*/
/* out: a lower limit for the combined size in bytes
of entries which will be merged from ibuf trees to the
pages read, 0 if ibuf is empty */
ulint* n_pages,/* out: number of pages to which merged */
ibool sync) /* in: TRUE if the caller wants to wait for the
issued read with the highest tablespace address
to complete */
{
btr_pcur_t pcur;
ulint page_nos[IBUF_MAX_N_PAGES_MERGED];
ulint space_ids[IBUF_MAX_N_PAGES_MERGED];
ib_int64_t space_versions[IBUF_MAX_N_PAGES_MERGED];
ulint n_stored;
ulint sum_sizes;
mtr_t mtr;
*n_pages = 0;
ut_ad(!ibuf_inside());
mutex_enter(&ibuf_mutex);
if (ibuf->empty) {
mutex_exit(&ibuf_mutex);
return(0);
}
mtr_start(&mtr);
ibuf_enter();
/* Open a cursor to a randomly chosen leaf of the tree, at a random
position within the leaf */
btr_pcur_open_at_rnd_pos(ibuf->index, BTR_SEARCH_LEAF, &pcur, &mtr);
if (page_get_n_recs(btr_pcur_get_page(&pcur)) == 0) {
/* When the ibuf tree is emptied completely, the last record
is removed using an optimistic delete and ibuf_size_update
is not called, causing ibuf->empty to remain FALSE. If we do
not reset it to TRUE here then database shutdown will hang
in the loop in ibuf_contract_for_n_pages. */
ibuf->empty = TRUE;
ibuf_exit();
mtr_commit(&mtr);
btr_pcur_close(&pcur);
mutex_exit(&ibuf_mutex);
return(0);
}
mutex_exit(&ibuf_mutex);
sum_sizes = ibuf_get_merge_page_nos(TRUE, btr_pcur_get_rec(&pcur),
space_ids, space_versions,
page_nos, &n_stored);
#if 0 /* defined UNIV_IBUF_DEBUG */
fprintf(stderr, "Ibuf contract sync %lu pages %lu volume %lu\n",
sync, n_stored, sum_sizes);
#endif
ibuf_exit();
mtr_commit(&mtr);
btr_pcur_close(&pcur);
buf_read_ibuf_merge_pages(sync, space_ids, space_versions, page_nos,
n_stored);
*n_pages = n_stored;
return(sum_sizes + 1);
}
/*************************************************************************
Contracts insert buffer trees by reading pages to the buffer pool. */
UNIV_INTERN
ulint
ibuf_contract(
/*==========*/
/* out: a lower limit for the combined size in bytes
of entries which will be merged from ibuf trees to the
pages read, 0 if ibuf is empty */
ibool sync) /* in: TRUE if the caller wants to wait for the
issued read with the highest tablespace address
to complete */
{
ulint n_pages;
return(ibuf_contract_ext(&n_pages, sync));
}
/*************************************************************************
Contracts insert buffer trees by reading pages to the buffer pool. */
UNIV_INTERN
ulint
ibuf_contract_for_n_pages(
/*======================*/
/* out: a lower limit for the combined size in bytes
of entries which will be merged from ibuf trees to the
pages read, 0 if ibuf is empty */
ibool sync, /* in: TRUE if the caller wants to wait for the
issued read with the highest tablespace address
to complete */
ulint n_pages)/* in: try to read at least this many pages to
the buffer pool and merge the ibuf contents to
them */
{
ulint sum_bytes = 0;
ulint sum_pages = 0;
ulint n_bytes;
ulint n_pag2;
while (sum_pages < n_pages) {
n_bytes = ibuf_contract_ext(&n_pag2, sync);
if (n_bytes == 0) {
return(sum_bytes);
}
sum_bytes += n_bytes;
sum_pages += n_pag2;
}
return(sum_bytes);
}
/*************************************************************************
Contract insert buffer trees after insert if they are too big. */
UNIV_INLINE
void
ibuf_contract_after_insert(
/*=======================*/
ulint entry_size) /* in: size of a record which was inserted
into an ibuf tree */
{
ibool sync;
ulint sum_sizes;
ulint size;
mutex_enter(&ibuf_mutex);
if (ibuf->size < ibuf->max_size + IBUF_CONTRACT_ON_INSERT_NON_SYNC) {
mutex_exit(&ibuf_mutex);
return;
}
sync = FALSE;
if (ibuf->size >= ibuf->max_size + IBUF_CONTRACT_ON_INSERT_SYNC) {
sync = TRUE;
}
mutex_exit(&ibuf_mutex);
/* Contract at least entry_size many bytes */
sum_sizes = 0;
size = 1;
while ((size > 0) && (sum_sizes < entry_size)) {
size = ibuf_contract(sync);
sum_sizes += size;
}
}
/*************************************************************************
Determine if an insert buffer record has been encountered already. */
static
ibool
ibuf_get_volume_buffered_hash(
/*==========================*/
/* out: TRUE if a new record,
FALSE if possible duplicate */
const rec_t* rec, /* in: ibuf record in post-4.1 format */
byte* hash, /* in/out: hash array */
ulint size) /* in: size of hash array, in bytes */
{
ulint len;
ulint fold;
const byte* types;
ulint types_len;
ulint bitmask;
types = rec_get_nth_field_old(rec, 3, &types_len);
len = ibuf_rec_get_size(rec, types, rec_get_n_fields_old(rec) - 4,
FALSE);
fold = ut_fold_binary(types + types_len, len);
hash += (fold / 8) % size;
bitmask = 1 << (fold % 8);
if (*hash & bitmask) {
return(FALSE);
}
/* We have not seen this record yet. Insert it. */
*hash |= bitmask;
return(TRUE);
}
/*************************************************************************
Update the estimate of the number of records on a page. */
static
void
ibuf_get_volume_buffered_count(
/*===========================*/
const rec_t* rec, /* in: insert buffer record */
byte* hash, /* in/out: hash array */
ulint size, /* in: size of hash array, in bytes */
ulint* n_recs) /* in/out: estimated number of records
on the page that rec points to */
{
ulint len;
const byte* field;
ibuf_op_t ibuf_op;
ut_ad(ibuf_inside());
ut_ad(rec_get_n_fields_old(rec) > 2);
field = rec_get_nth_field_old(rec, 1, &len);
if (UNIV_UNLIKELY(len > 1)) {
/* This is a < 4.1.x format record. Ignore it in the
count, because deletes cannot be buffered if there are
old-style records for the page. */
return;
}
field = rec_get_nth_field_old(rec, 3, &len);
switch (UNIV_EXPECT(len % DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE,
IBUF_REC_INFO_SIZE)) {
default:
ut_error;
case 0:
case 1:
/* This record does not include an operation counter.
Ignore it in the count, because deletes cannot be
buffered if there are old-style records for the page. */
return;
case IBUF_REC_INFO_SIZE:
ibuf_op = (ibuf_op_t) field[IBUF_REC_OFFSET_TYPE];
break;
}
switch (ibuf_op) {
case IBUF_OP_INSERT:
/* Inserts can be done by
btr_cur_set_deleted_flag_for_ibuf(). Because
delete-mark and insert operations can be pointing to
the same records, we must not count duplicates. */
case IBUF_OP_DELETE_MARK:
/* There must be a record to delete-mark.
See if this record has been already buffered. */
if (ibuf_get_volume_buffered_hash(rec, hash, size)) {
(*n_recs)++;
}
break;
case IBUF_OP_DELETE:
/* A record will be removed from the page. */
if (*n_recs > 0) {
(*n_recs)--;
}
break;
default:
ut_error;
}
}
/*************************************************************************
Gets an upper limit for the combined size of entries buffered in the insert
buffer for a given page. */
static
ulint
ibuf_get_volume_buffered(
/*=====================*/
/* out: upper limit for the volume of
buffered inserts for the index page, in bytes;
we may also return UNIV_PAGE_SIZE, if the
entries for the index page span several
pages in the insert buffer */
btr_pcur_t* pcur, /* in: pcur positioned at a place in an
insert buffer tree where we would insert an
entry for the index page whose number is
page_no, latch mode has to be BTR_MODIFY_PREV
or BTR_MODIFY_TREE */
ulint space, /* in: space id */
ulint page_no,/* in: page number of an index page */
ulint* n_recs, /* out: minimum number of records on the page
after the buffered changes have been applied */
mtr_t* mtr) /* in: mtr */
{
ulint volume;
rec_t* rec;
page_t* page;
ulint prev_page_no;
page_t* prev_page;
ulint next_page_no;
page_t* next_page;
byte hash_bitmap[128]; /* bitmap of buffered records */
ut_a(trx_sys_multiple_tablespace_format);
ut_ad((pcur->latch_mode == BTR_MODIFY_PREV)
|| (pcur->latch_mode == BTR_MODIFY_TREE));
/* Count the volume of records earlier in the alphabetical order than
pcur */
volume = 0;
*n_recs = 0;
rec = btr_pcur_get_rec(pcur);
page = page_align(rec);
if (page_rec_is_supremum(rec)) {
rec = page_rec_get_prev(rec);
}
for (;;) {
if (page_rec_is_infimum(rec)) {
break;
}
if (page_no != ibuf_rec_get_page_no(rec)
|| space != ibuf_rec_get_space(rec)) {
goto count_later;
}
volume += ibuf_rec_get_volume(rec);
rec = page_rec_get_prev(rec);
}
/* Look at the previous page */
prev_page_no = btr_page_get_prev(page, mtr);
if (prev_page_no == FIL_NULL) {
goto count_later;
}
{
buf_block_t* block;
block = buf_page_get(
IBUF_SPACE_ID, 0, prev_page_no, RW_X_LATCH, mtr);
buf_block_dbg_add_level(block, SYNC_TREE_NODE);
prev_page = buf_block_get_frame(block);
}
#ifdef UNIV_BTR_DEBUG
ut_a(btr_page_get_next(prev_page, mtr)
== page_get_page_no(page));
#endif /* UNIV_BTR_DEBUG */
rec = page_get_supremum_rec(prev_page);
rec = page_rec_get_prev(rec);
for (;;) {
if (page_rec_is_infimum(rec)) {
/* We cannot go to yet a previous page, because we
do not have the x-latch on it, and cannot acquire one
because of the latching order: we have to give up */
return(UNIV_PAGE_SIZE);
}
if (page_no != ibuf_rec_get_page_no(rec)
|| space != ibuf_rec_get_space(rec)) {
goto count_later;
}
volume += ibuf_rec_get_volume(rec);
rec = page_rec_get_prev(rec);
}
count_later:
memset(hash_bitmap, 0, sizeof hash_bitmap);
rec = btr_pcur_get_rec(pcur);
if (!page_rec_is_supremum(rec)) {
rec = page_rec_get_next(rec);
}
for (;;) {
if (page_rec_is_supremum(rec)) {
break;
}
if (page_no != ibuf_rec_get_page_no(rec)
|| space != ibuf_rec_get_space(rec)) {
return(volume);
}
volume += ibuf_rec_get_volume(rec);
ibuf_get_volume_buffered_count(
rec, hash_bitmap, sizeof hash_bitmap, n_recs);
rec = page_rec_get_next(rec);
}
/* Look at the next page */
next_page_no = btr_page_get_next(page, mtr);
if (next_page_no == FIL_NULL) {
return(volume);
}
{
buf_block_t* block;
block = buf_page_get(
IBUF_SPACE_ID, 0, next_page_no, RW_X_LATCH, mtr);
buf_block_dbg_add_level(block, SYNC_TREE_NODE);
next_page = buf_block_get_frame(block);
}
#ifdef UNIV_BTR_DEBUG
ut_a(btr_page_get_prev(next_page, mtr) == page_get_page_no(page));
#endif /* UNIV_BTR_DEBUG */
rec = page_get_infimum_rec(next_page);
rec = page_rec_get_next(rec);
for (;;) {
if (page_rec_is_supremum(rec)) {
/* We give up */
return(UNIV_PAGE_SIZE);
}
if (page_no != ibuf_rec_get_page_no(rec)
|| space != ibuf_rec_get_space(rec)) {
return(volume);
}
volume += ibuf_rec_get_volume(rec);
ibuf_get_volume_buffered_count(
rec, hash_bitmap, sizeof hash_bitmap, n_recs);
rec = page_rec_get_next(rec);
}
}
/*************************************************************************
Reads the biggest tablespace id from the high end of the insert buffer
tree and updates the counter in fil_system. */
UNIV_INTERN
void
ibuf_update_max_tablespace_id(void)
/*===============================*/
{
ulint max_space_id;
const rec_t* rec;
const byte* field;
ulint len;
btr_pcur_t pcur;
mtr_t mtr;
ut_a(!dict_table_is_comp(ibuf->index->table));
ibuf_enter();
mtr_start(&mtr);
btr_pcur_open_at_index_side(
FALSE, ibuf->index, BTR_SEARCH_LEAF, &pcur, TRUE, &mtr);
btr_pcur_move_to_prev(&pcur, &mtr);
if (btr_pcur_is_before_first_on_page(&pcur)) {
/* The tree is empty */
max_space_id = 0;
} else {
rec = btr_pcur_get_rec(&pcur);
field = rec_get_nth_field_old(rec, 0, &len);
ut_a(len == 4);
max_space_id = mach_read_from_4(field);
}
mtr_commit(&mtr);
ibuf_exit();
/* printf("Maximum space id in insert buffer %lu\n", max_space_id); */
fil_set_max_space_id_if_bigger(max_space_id);
}
/********************************************************************
Helper function for ibuf_set_entry_counter. Checks if rec is for (space,
page_no), and if so, reads counter value from it and returns that + 1.
Otherwise, returns 0. */
static
ulint
ibuf_get_entry_counter_low(
/*=======================*/
/* out: new counter value */
const rec_t* rec, /* in: insert buffer record */
ulint space, /* in: space id */
ulint page_no) /* in: page number */
{
ulint counter;
const byte* field;
ulint len;
ut_ad(ibuf_inside());
ut_ad(rec_get_n_fields_old(rec) > 2);
field = rec_get_nth_field_old(rec, 1, &len);
if (UNIV_UNLIKELY(len != 1)) {
/* pre-4.1 format */
ut_a(trx_doublewrite_must_reset_space_ids);
ut_a(!trx_sys_multiple_tablespace_format);
return(ULINT_UNDEFINED);
}
ut_a(trx_sys_multiple_tablespace_format);
/* Check the tablespace identifier. */
field = rec_get_nth_field_old(rec, 0, &len);
ut_a(len == 4);
if (mach_read_from_4(field) != space) {
return(ULINT_UNDEFINED);
}
/* Check the page offset. */
field = rec_get_nth_field_old(rec, 2, &len);
ut_a(len == 4);
if (mach_read_from_4(field) != page_no) {
return(ULINT_UNDEFINED);
}
/* Check if the record contains a counter field. */
field = rec_get_nth_field_old(rec, 3, &len);
switch (len % DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE) {
default:
ut_error;
case 0: /* ROW_FORMAT=REDUNDANT */
case 1: /* ROW_FORMAT=COMPACT */
return(ULINT_UNDEFINED);
case IBUF_REC_INFO_SIZE:
counter = mach_read_from_2(field + IBUF_REC_OFFSET_COUNTER);
ut_a(counter < 0xFFFF);
return(counter + 1);
}
}
/********************************************************************
Set the counter field in entry to the correct value based on the current
last record in ibuf for (space, page_no). */
static
ibool
ibuf_set_entry_counter(
/*===================*/
/* out: FALSE if we should abort
this insertion to ibuf */
dtuple_t* entry, /* in/out: entry to patch */
ulint space, /* in: space id of entry */
ulint page_no, /* in: page number of entry */
btr_pcur_t* pcur, /* in: pcur positioned on the record
found by btr_pcur_open(.., entry,
PAGE_CUR_LE, ..., pcur, ...) */
ibool is_optimistic, /* in: is this an optimistic insert */
mtr_t* mtr) /* in: mtr */
{
ulint counter;
dfield_t* field;
byte* data;
/* pcur points to either a user rec or to a page's infimum record. */
if (btr_pcur_is_on_user_rec(pcur)) {
counter = ibuf_get_entry_counter_low(
btr_pcur_get_rec(pcur), space, page_no);
if (UNIV_UNLIKELY(counter == ULINT_UNDEFINED)) {
/* The record lacks a counter field.
Such old records must be merged before
new records can be buffered. */
return(FALSE);
}
} else if (btr_pcur_is_before_first_in_tree(pcur, mtr)) {
/* Ibuf tree is either completely empty, or the insert
position is at the very first record of a non-empty tree. In
either case we have no previous records for (space,
page_no). */
counter = 0;
} else if (btr_pcur_is_before_first_on_page(pcur)) {
btr_cur_t* cursor = btr_pcur_get_btr_cur(pcur);
if (cursor->low_match < 3) {
/* If low_match < 3, we know that the father node
pointer did not contain the searched for (space,
page_no), which means that the search ended on the
right page regardless of the counter value, and
since we're at the infimum record, there are no
existing records. */
counter = 0;
} else {
rec_t* rec;
const page_t* page;
buf_block_t* block;
page_t* prev_page;
ulint prev_page_no;
ut_a(cursor->ibuf_cnt != ULINT_UNDEFINED);
page = btr_pcur_get_page(pcur);
prev_page_no = btr_page_get_prev(page, mtr);
ut_a(prev_page_no != FIL_NULL);
block = buf_page_get(
IBUF_SPACE_ID, 0, prev_page_no,
RW_X_LATCH, mtr);
buf_block_dbg_add_level(block, SYNC_TREE_NODE);
prev_page = buf_block_get_frame(block);
rec = page_rec_get_prev(
page_get_supremum_rec(prev_page));
ut_ad(page_rec_is_user_rec(rec));
counter = ibuf_get_entry_counter_low(
rec, space, page_no);
if (UNIV_UNLIKELY(counter == ULINT_UNDEFINED)) {
/* The record lacks a counter field.
Such old records must be merged before
new records can be buffered. */
return(FALSE);
}
if (counter < cursor->ibuf_cnt) {
/* Search ended on the wrong page. */
if (is_optimistic) {
/* In an optimistic insert, we can
shift the insert position to the left
page, since it only needs an X-latch
on the page itself, which the
original search acquired for us. */
btr_cur_position(
ibuf->index, rec, block,
btr_pcur_get_btr_cur(pcur));
} else {
/* We can't shift the insert
position to the left page in a
pessimistic insert since it would
require an X-latch on the left
page's left page, so we have to
abort. */
return(FALSE);
}
} else {
/* The counter field in the father node is
the same as we would insert; we don't know
whether the insert should go to this page or
the left page (the later fields can differ),
so refuse the insert. */
return(FALSE);
}
}
}
/* Patch counter value in already built entry. */
field = dtuple_get_nth_field(entry, 3);
data = dfield_get_data(field);
mach_write_to_2(data + IBUF_REC_OFFSET_COUNTER, counter);
return(TRUE);
}
/*************************************************************************
Makes an index insert to the insert buffer, instead of directly to the disk
page, if this is possible. */
static
ulint
ibuf_insert_low(
/*============*/
/* out: DB_SUCCESS, DB_FAIL, DB_STRONG_FAIL */
ulint mode, /* in: BTR_MODIFY_PREV or BTR_MODIFY_TREE */
ibuf_op_t op, /* in: operation type */
const dtuple_t* entry, /* in: index entry to insert */
ulint entry_size,
/* in: rec_get_converted_size(index, entry) */
dict_index_t* index, /* in: index where to insert; must not be
unique or clustered */
ulint space, /* in: space id where to insert */
ulint zip_size,/* in: compressed page size in bytes, or 0 */
ulint page_no,/* in: page number where to insert */
que_thr_t* thr) /* in: query thread */
{
big_rec_t* dummy_big_rec;
btr_pcur_t pcur;
btr_cur_t* cursor;
dtuple_t* ibuf_entry;
mem_heap_t* heap;
ulint buffered;
ulint min_n_recs;
rec_t* ins_rec;
ibool old_bit_value;
page_t* bitmap_page;
page_t* root;
ulint err;
ibool do_merge;
ulint space_ids[IBUF_MAX_N_PAGES_MERGED];
ib_int64_t space_versions[IBUF_MAX_N_PAGES_MERGED];
ulint page_nos[IBUF_MAX_N_PAGES_MERGED];
ulint n_stored;
ulint bits;
mtr_t mtr;
mtr_t bitmap_mtr;
ut_a(!dict_index_is_clust(index));
ut_ad(dtuple_check_typed(entry));
ut_ad(ut_is_2pow(zip_size));
ut_a(op < IBUF_OP_COUNT);
ut_a(trx_sys_multiple_tablespace_format);
do_merge = FALSE;
mutex_enter(&ibuf_mutex);
if (ibuf->size >= ibuf->max_size + IBUF_CONTRACT_DO_NOT_INSERT) {
/* Insert buffer is now too big, contract it but do not try
to insert */
mutex_exit(&ibuf_mutex);
#ifdef UNIV_IBUF_DEBUG
fputs("Ibuf too big\n", stderr);
#endif
/* Use synchronous contract (== TRUE) */
ibuf_contract(TRUE);
return(DB_STRONG_FAIL);
}
mutex_exit(&ibuf_mutex);
if (mode == BTR_MODIFY_TREE) {
mutex_enter(&ibuf_pessimistic_insert_mutex);
ibuf_enter();
mutex_enter(&ibuf_mutex);
while (!ibuf_data_enough_free_for_insert()) {
mutex_exit(&ibuf_mutex);
ibuf_exit();
mutex_exit(&ibuf_pessimistic_insert_mutex);
err = ibuf_add_free_page();
if (err == DB_STRONG_FAIL) {
return(err);
}
mutex_enter(&ibuf_pessimistic_insert_mutex);
ibuf_enter();
mutex_enter(&ibuf_mutex);
}
} else {
ibuf_enter();
}
heap = mem_heap_create(512);
/* Build the entry which contains the space id and the page number
as the first fields and the type information for other fields, and
which will be inserted to the insert buffer. Using a counter value
of 0xFFFF we find the last record for (space, page_no), from which
we can then read the counter value N and use N + 1 in the record we
insert. (We patch the ibuf_entry's counter field to the correct
value just before actually inserting the entry.) */
ibuf_entry = ibuf_entry_build(
op, index, entry, space, page_no, 0xFFFF, heap);
/* Open a cursor to the insert buffer tree to calculate if we can add
the new entry to it without exceeding the free space limit for the
page. */
mtr_start(&mtr);
btr_pcur_open(ibuf->index, ibuf_entry, PAGE_CUR_LE, mode, &pcur, &mtr);
/* Don't buffer deletes if the page has been read in to the buffer
pool. */
if (op == IBUF_OP_DELETE && buf_pool_watch_occurred(space, page_no)) {
err = DB_STRONG_FAIL;
goto function_exit;
}
/* Find out the volume of already buffered inserts for the same index
page */
buffered = ibuf_get_volume_buffered(&pcur, space, page_no,
&min_n_recs, &mtr);
if (op == IBUF_OP_DELETE && min_n_recs == 0) {
/* The page could become empty after the record is
deleted. Refuse to buffer the operation. */
err = DB_STRONG_FAIL;
goto function_exit;
}
#ifdef UNIV_IBUF_COUNT_DEBUG
ut_a((buffered == 0) || ibuf_count_get(space, page_no));
#endif
mtr_start(&bitmap_mtr);
bitmap_page = ibuf_bitmap_get_map_page(space, page_no,
zip_size, &bitmap_mtr);
/* We check if the index page is suitable for buffered entries */
if (buf_page_peek(space, page_no)
|| lock_rec_expl_exist_on_page(space, page_no)) {
err = DB_STRONG_FAIL;
mtr_commit(&bitmap_mtr);
goto function_exit;
}
bits = ibuf_bitmap_page_get_bits(bitmap_page, page_no, zip_size,
IBUF_BITMAP_FREE, &bitmap_mtr);
if (buffered + entry_size + page_dir_calc_reserved_space(1)
> ibuf_index_page_calc_free_from_bits(zip_size, bits)) {
mtr_commit(&bitmap_mtr);
/* It may not fit */
err = DB_STRONG_FAIL;
do_merge = TRUE;
ibuf_get_merge_page_nos(
FALSE, btr_pcur_get_rec(&pcur),
space_ids, space_versions, page_nos, &n_stored);
goto function_exit;
}
/* Patch correct counter value to the entry to insert. This can
change the insert position, which can result in the need to abort in
some cases. */
if (!ibuf_set_entry_counter(ibuf_entry, space, page_no, &pcur,
mode == BTR_MODIFY_PREV, &mtr)) {
err = DB_STRONG_FAIL;
mtr_commit(&bitmap_mtr);
goto function_exit;
}
/* Set the bitmap bit denoting that the insert buffer contains
buffered entries for this index page, if the bit is not set yet */
old_bit_value = ibuf_bitmap_page_get_bits(
bitmap_page, page_no, zip_size,
IBUF_BITMAP_BUFFERED, &bitmap_mtr);
if (!old_bit_value) {
ibuf_bitmap_page_set_bits(bitmap_page, page_no, zip_size,
IBUF_BITMAP_BUFFERED, TRUE,
&bitmap_mtr);
}
mtr_commit(&bitmap_mtr);
cursor = btr_pcur_get_btr_cur(&pcur);
if (mode == BTR_MODIFY_PREV) {
err = btr_cur_optimistic_insert(BTR_NO_LOCKING_FLAG, cursor,
ibuf_entry, &ins_rec,
&dummy_big_rec, 0, thr, &mtr);
if (err == DB_SUCCESS) {
/* Update the page max trx id field */
page_update_max_trx_id(btr_cur_get_block(cursor), NULL,
thr_get_trx(thr)->id);
}
} else {
ut_ad(mode == BTR_MODIFY_TREE);
/* We acquire an x-latch to the root page before the insert,
because a pessimistic insert releases the tree x-latch,
which would cause the x-latching of the root after that to
break the latching order. */
root = ibuf_tree_root_get(&mtr);
err = btr_cur_pessimistic_insert(BTR_NO_LOCKING_FLAG
| BTR_NO_UNDO_LOG_FLAG,
cursor,
ibuf_entry, &ins_rec,
&dummy_big_rec, 0, thr, &mtr);
if (err == DB_SUCCESS) {
/* Update the page max trx id field */
page_update_max_trx_id(btr_cur_get_block(cursor), NULL,
thr_get_trx(thr)->id);
}
ibuf_size_update(root, &mtr);
}
function_exit:
#ifdef UNIV_IBUF_COUNT_DEBUG
if (err == DB_SUCCESS) {
fprintf(stderr,
"Incrementing ibuf count of space %lu page %lu\n"
"from %lu by 1\n", space, page_no,
ibuf_count_get(space, page_no));
ibuf_count_set(space, page_no,
ibuf_count_get(space, page_no) + 1);
}
#endif
if (mode == BTR_MODIFY_TREE) {
mutex_exit(&ibuf_mutex);
mutex_exit(&ibuf_pessimistic_insert_mutex);
}
mtr_commit(&mtr);
btr_pcur_close(&pcur);
ibuf_exit();
mem_heap_free(heap);
if (err == DB_SUCCESS) {
mutex_enter(&ibuf_mutex);
ibuf->empty = FALSE;
mutex_exit(&ibuf_mutex);
if (mode == BTR_MODIFY_TREE) {
ibuf_contract_after_insert(entry_size);
}
}
if (do_merge) {
#ifdef UNIV_IBUF_DEBUG
ut_a(n_stored <= IBUF_MAX_N_PAGES_MERGED);
#endif
buf_read_ibuf_merge_pages(FALSE, space_ids, space_versions,
page_nos, n_stored);
}
return(err);
}
/*************************************************************************
Buffer an operation in the insert/delete buffer, instead of doing it
directly to the disk page, if this is possible. Does not do it if the index
is clustered or unique. */
UNIV_INTERN
ibool
ibuf_insert(
/*========*/
/* out: TRUE if success */
ibuf_op_t op, /* in: operation type */
const dtuple_t* entry, /* in: index entry to insert */
dict_index_t* index, /* in: index where to insert */
ulint space, /* in: space id where to insert */
ulint zip_size,/* in: compressed page size in bytes, or 0 */
ulint page_no,/* in: page number where to insert */
que_thr_t* thr) /* in: query thread */
{
ulint err;
ulint entry_size;
ibool comp = dict_table_is_comp(index->table);
ut_a(trx_sys_multiple_tablespace_format);
ut_ad(dtuple_check_typed(entry));
ut_ad(ut_is_2pow(zip_size));
ut_a(op < IBUF_OP_COUNT);
ut_a(!dict_index_is_clust(index));
entry_size = rec_get_converted_size(index, entry, 0);
if (entry_size >= (page_get_free_space_of_empty(comp) / 2)) {
return(FALSE);
}
err = ibuf_insert_low(BTR_MODIFY_PREV, op, entry, entry_size,
index, space, zip_size, page_no, thr);
if (err == DB_FAIL) {
err = ibuf_insert_low(BTR_MODIFY_TREE, op, entry, entry_size,
index, space, zip_size, page_no, thr);
}
if (err == DB_SUCCESS) {
#ifdef UNIV_IBUF_DEBUG
/* fprintf(stderr, "Ibuf insert for page no %lu of index %s\n",
page_no, index->name); */
#endif
return(TRUE);
} else {
ut_a(err == DB_STRONG_FAIL);
return(FALSE);
}
}
/************************************************************************
During merge, inserts to an index page a secondary index entry extracted
from the insert buffer. */
static
void
ibuf_insert_to_index_page(
/*======================*/
dtuple_t* entry, /* in: buffered entry to insert */
buf_block_t* block, /* in/out: index page where the buffered entry
should be placed */
dict_index_t* index, /* in: record descriptor */
mtr_t* mtr) /* in: mtr */
{
page_cur_t page_cur;
ulint low_match;
page_t* page = buf_block_get_frame(block);
rec_t* rec;
page_t* bitmap_page;
ulint old_bits;
ut_ad(ibuf_inside());
ut_ad(dtuple_check_typed(entry));
if (UNIV_UNLIKELY(dict_table_is_comp(index->table)
!= (ibool)!!page_is_comp(page))) {
fputs("InnoDB: Trying to insert a record from"
" the insert buffer to an index page\n"
"InnoDB: but the 'compact' flag does not match!\n",
stderr);
goto dump;
}
rec = page_rec_get_next(page_get_infimum_rec(page));
if (page_rec_is_supremum(rec)) {
/* Empty pages can result from buffered delete operations.
The first record from the free list can be used to find the
father node. */
rec = page_header_get_ptr(page, PAGE_FREE);
if (UNIV_UNLIKELY(rec == NULL)) {
fputs("InnoDB: Trying to insert a record from"
" the insert buffer to an index page\n"
"InnoDB: but the index page is empty!\n",
stderr);
goto dump;
}
}
if (UNIV_UNLIKELY(rec_get_n_fields(rec, index)
!= dtuple_get_n_fields(entry))) {
fputs("InnoDB: Trying to insert a record from"
" the insert buffer to an index page\n"
"InnoDB: but the number of fields does not match!\n",
stderr);
dump:
buf_page_print(page, 0);
dtuple_print(stderr, entry);
fputs("InnoDB: The table where where"
" this index record belongs\n"
"InnoDB: is now probably corrupt."
" Please run CHECK TABLE on\n"
"InnoDB: your tables.\n"
"InnoDB: Submit a detailed bug report to"
" http://bugs.mysql.com!\n", stderr);
return;
}
low_match = page_cur_search(block, index, entry,
PAGE_CUR_LE, &page_cur);
if (low_match == dtuple_get_n_fields(entry)) {
page_zip_des_t* page_zip;
rec = page_cur_get_rec(&page_cur);
page_zip = buf_block_get_page_zip(block);
btr_cur_set_deleted_flag_for_ibuf(rec, page_zip, FALSE, mtr);
} else {
rec = page_cur_tuple_insert(&page_cur, entry, index, 0, mtr);
if (UNIV_LIKELY(rec != NULL)) {
return;
}
/* If the record did not fit, reorganize */
btr_page_reorganize(block, index, mtr);
page_cur_search(block, index, entry, PAGE_CUR_LE, &page_cur);
/* This time the record must fit */
if (UNIV_UNLIKELY
(!page_cur_tuple_insert(&page_cur, entry, index,
0, mtr))) {
ulint space;
ulint page_no;
ulint zip_size;
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: Error: Insert buffer insert"
" fails; page free %lu,"
" dtuple size %lu\n",
(ulong) page_get_max_insert_size(
page, 1),
(ulong) rec_get_converted_size(
index, entry, 0));
fputs("InnoDB: Cannot insert index record ",
stderr);
dtuple_print(stderr, entry);
fputs("\nInnoDB: The table where"
" this index record belongs\n"
"InnoDB: is now probably corrupt."
" Please run CHECK TABLE on\n"
"InnoDB: that table.\n", stderr);
space = page_get_space_id(page);
zip_size = buf_block_get_zip_size(block);
page_no = page_get_page_no(page);
bitmap_page = ibuf_bitmap_get_map_page(
space, page_no, zip_size, mtr);
old_bits = ibuf_bitmap_page_get_bits(
bitmap_page, page_no, zip_size,
IBUF_BITMAP_FREE, mtr);
fprintf(stderr,
"InnoDB: space %lu, page %lu,"
" zip_size %lu, bitmap bits %lu\n",
(ulong) space, (ulong) page_no,
(ulong) zip_size, (ulong) old_bits);
fputs("InnoDB: Submit a detailed bug report"
" to http://bugs.mysql.com\n", stderr);
}
}
}
/********************************************************************
During merge, sets the delete mark on a record for a secondary index
entry. */
static
void
ibuf_set_del_mark(
/*==============*/
const dtuple_t* entry, /* in: entry */
buf_block_t* block, /* in/out: block */
const dict_index_t* index, /* in: record descriptor */
mtr_t* mtr) /* in: mtr */
{
page_cur_t page_cur;
ulint low_match;
ut_ad(ibuf_inside());
ut_ad(dtuple_check_typed(entry));
low_match = page_cur_search(
block, index, entry, PAGE_CUR_LE, &page_cur);
if (low_match == dtuple_get_n_fields(entry)) {
rec_t* rec;
page_zip_des_t* page_zip;
rec = page_cur_get_rec(&page_cur);
page_zip = page_cur_get_page_zip(&page_cur);
btr_cur_set_deleted_flag_for_ibuf(rec, page_zip, TRUE, mtr);
} else {
/* This can happen benignly in some situations. */
}
}
/********************************************************************
During merge, delete a record for a secondary index entry. */
static
void
ibuf_delete(
/*========*/
const dtuple_t* entry, /* in: entry */
buf_block_t* block, /* in/out: block */
dict_index_t* index, /* in: record descriptor */
mtr_t* mtr) /* in: mtr */
{
page_cur_t page_cur;
ulint low_match;
ut_ad(ibuf_inside());
ut_ad(dtuple_check_typed(entry));
low_match = page_cur_search(
block, index, entry, PAGE_CUR_LE, &page_cur);
if (low_match == dtuple_get_n_fields(entry)) {
page_zip_des_t* page_zip= buf_block_get_page_zip(block);
page_t* page = buf_block_get_frame(block);
rec_t* rec = page_cur_get_rec(&page_cur);
/* TODO: the below should probably be a separate function,
it's a bastardized version of btr_cur_optimistic_delete. */
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
mem_heap_t* heap = NULL;
ulint max_ins_size;
rec_offs_init(offsets_);
offsets = rec_get_offsets(
rec, index, offsets, ULINT_UNDEFINED, &heap);
lock_update_delete(block, rec);
if (!page_zip) {
max_ins_size
= page_get_max_insert_size_after_reorganize(
page, 1);
}
#ifdef UNIV_ZIP_DEBUG
ut_a(!page_zip || page_zip_validate(page_zip, page));
#endif /* UNIV_ZIP_DEBUG */
page_cur_delete_rec(&page_cur, index, offsets, mtr);
#ifdef UNIV_ZIP_DEBUG
ut_a(!page_zip || page_zip_validate(page_zip, page));
#endif /* UNIV_ZIP_DEBUG */
if (page_zip) {
ibuf_update_free_bits_zip(block, mtr);
} else {
ibuf_update_free_bits_low(block, max_ins_size, mtr);
}
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
} else {
/* This can happen benignly in some situations: either when
we crashed at just the right time, or on database startup
when we redo some old log entries (due to worse stored
position granularity on disk than in memory). */
}
}
/*************************************************************************
Deletes from ibuf the record on which pcur is positioned. If we have to
resort to a pessimistic delete, this function commits mtr and closes
the cursor. */
static
ibool
ibuf_delete_rec(
/*============*/
/* out: TRUE if mtr was committed and pcur
closed in this operation */
ulint space, /* in: space id */
ulint page_no,/* in: index page number where the record
should belong */
btr_pcur_t* pcur, /* in: pcur positioned on the record to
delete, having latch mode BTR_MODIFY_LEAF */
const dtuple_t* search_tuple,
/* in: search tuple for entries of page_no */
mtr_t* mtr) /* in: mtr */
{
ibool success;
page_t* root;
ulint err;
ut_ad(ibuf_inside());
ut_ad(page_rec_is_user_rec(btr_pcur_get_rec(pcur)));
ut_ad(ibuf_rec_get_page_no(btr_pcur_get_rec(pcur)) == page_no);
ut_ad(ibuf_rec_get_space(btr_pcur_get_rec(pcur)) == space);
success = btr_cur_optimistic_delete(btr_pcur_get_btr_cur(pcur), mtr);
if (success) {
#ifdef UNIV_IBUF_COUNT_DEBUG
fprintf(stderr,
"Decrementing ibuf count of space %lu page %lu\n"
"from %lu by 1\n", space, page_no,
ibuf_count_get(space, page_no));
ibuf_count_set(space, page_no,
ibuf_count_get(space, page_no) - 1);
#endif
return(FALSE);
}
ut_ad(page_rec_is_user_rec(btr_pcur_get_rec(pcur)));
ut_ad(ibuf_rec_get_page_no(btr_pcur_get_rec(pcur)) == page_no);
ut_ad(ibuf_rec_get_space(btr_pcur_get_rec(pcur)) == space);
/* We have to resort to a pessimistic delete from ibuf */
btr_pcur_store_position(pcur, mtr);
btr_pcur_commit_specify_mtr(pcur, mtr);
mutex_enter(&ibuf_mutex);
mtr_start(mtr);
success = btr_pcur_restore_position(BTR_MODIFY_TREE, pcur, mtr);
if (!success) {
if (fil_space_get_flags(space) == ULINT_UNDEFINED) {
/* The tablespace has been dropped. It is possible
that another thread has deleted the insert buffer
entry. Do not complain. */
goto func_exit;
}
fprintf(stderr,
"InnoDB: ERROR: Submit the output to"
" http://bugs.mysql.com\n"
"InnoDB: ibuf cursor restoration fails!\n"
"InnoDB: ibuf record inserted to page %lu\n",
(ulong) page_no);
fflush(stderr);
rec_print_old(stderr, btr_pcur_get_rec(pcur));
rec_print_old(stderr, pcur->old_rec);
dtuple_print(stderr, search_tuple);
rec_print_old(stderr,
page_rec_get_next(btr_pcur_get_rec(pcur)));
fflush(stderr);
btr_pcur_commit_specify_mtr(pcur, mtr);
fputs("InnoDB: Validating insert buffer tree:\n", stderr);
if (!btr_validate_index(ibuf->index, NULL)) {
ut_error;
}
fprintf(stderr, "InnoDB: ibuf tree ok\n");
fflush(stderr);
goto func_exit;
}
root = ibuf_tree_root_get(mtr);
btr_cur_pessimistic_delete(&err, TRUE, btr_pcur_get_btr_cur(pcur),
RB_NONE, mtr);
ut_a(err == DB_SUCCESS);
#ifdef UNIV_IBUF_COUNT_DEBUG
ibuf_count_set(space, page_no, ibuf_count_get(space, page_no) - 1);
#endif
ibuf_size_update(root, mtr);
btr_pcur_commit_specify_mtr(pcur, mtr);
func_exit:
btr_pcur_close(pcur);
mutex_exit(&ibuf_mutex);
return(TRUE);
}
/*************************************************************************
When an index page is read from a disk to the buffer pool, this function
applies any buffered operations to the page and deletes the entries from the
insert buffer. If the page is not read, but created in the buffer pool, this
function deletes its buffered entries from the insert buffer; there can
exist entries for such a page if the page belonged to an index which
subsequently was dropped. */
UNIV_INTERN
void
ibuf_merge_or_delete_for_page(
/*==========================*/
buf_block_t* block, /* in: if page has been read from
disk, pointer to the page x-latched,
else NULL */
ulint space, /* in: space id of the index page */
ulint page_no,/* in: page number of the index page */
ulint zip_size,/* in: compressed page size in bytes,
or 0 */
ibool update_ibuf_bitmap)/* in: normally this is set
to TRUE, but if we have deleted or are
deleting the tablespace, then we
naturally do not want to update a
non-existent bitmap page */
{
mem_heap_t* heap;
btr_pcur_t pcur;
dtuple_t* search_tuple;
#ifdef UNIV_IBUF_DEBUG
ulint volume;
#endif
page_zip_des_t* page_zip = NULL;
ibool tablespace_being_deleted = FALSE;
ibool corruption_noticed = FALSE;
mtr_t mtr;
/* Counts for merged & discarded operations. */
ulint mops[IBUF_OP_COUNT];
ulint dops[IBUF_OP_COUNT];
ut_ad(!block || buf_block_get_space(block) == space);
ut_ad(!block || buf_block_get_page_no(block) == page_no);
ut_ad(!block || buf_block_get_zip_size(block) == zip_size);
if (srv_force_recovery >= SRV_FORCE_NO_IBUF_MERGE) {
return;
} else if (trx_sys_hdr_page(space, page_no)) {
return;
} else if (ibuf_fixed_addr_page(space, 0, page_no)
|| fsp_descr_page(0, page_no)) {
/* This assumes that the uncompressed page size
is a power-of-2 multiple of zip_size. */
return;
}
if (UNIV_LIKELY(update_ibuf_bitmap)) {
ut_a(ut_is_2pow(zip_size));
if (ibuf_fixed_addr_page(space, zip_size, page_no)
|| fsp_descr_page(zip_size, page_no)) {
return;
}
/* If the following returns FALSE, we get the counter
incremented, and must decrement it when we leave this
function. When the counter is > 0, that prevents tablespace
from being dropped. */
tablespace_being_deleted = fil_inc_pending_ibuf_merges(space);
if (UNIV_UNLIKELY(tablespace_being_deleted)) {
/* Do not try to read the bitmap page from space;
just delete the ibuf records for the page */
block = NULL;
update_ibuf_bitmap = FALSE;
} else {
page_t* bitmap_page;
mtr_start(&mtr);
bitmap_page = ibuf_bitmap_get_map_page(
space, page_no, zip_size, &mtr);
if (!ibuf_bitmap_page_get_bits(bitmap_page, page_no,
zip_size,
IBUF_BITMAP_BUFFERED,
&mtr)) {
/* No inserts buffered for this page */
mtr_commit(&mtr);
if (!tablespace_being_deleted) {
fil_decr_pending_ibuf_merges(space);
}
return;
}
mtr_commit(&mtr);
}
} else if (block
&& (ibuf_fixed_addr_page(space, zip_size, page_no)
|| fsp_descr_page(zip_size, page_no))) {
return;
}
ibuf_enter();
heap = mem_heap_create(512);
if (!trx_sys_multiple_tablespace_format) {
ut_a(trx_doublewrite_must_reset_space_ids);
search_tuple = ibuf_search_tuple_build(space, page_no, heap);
} else {
search_tuple = ibuf_new_search_tuple_build(space, page_no,
heap);
}
if (block) {
/* Move the ownership of the x-latch on the page to this OS
thread, so that we can acquire a second x-latch on it. This
is needed for the insert operations to the index page to pass
the debug checks. */
rw_lock_x_lock_move_ownership(&(block->lock));
page_zip = buf_block_get_page_zip(block);
if (UNIV_UNLIKELY(fil_page_get_type(block->frame)
!= FIL_PAGE_INDEX)
|| UNIV_UNLIKELY(!page_is_leaf(block->frame))) {
page_t* bitmap_page;
corruption_noticed = TRUE;
ut_print_timestamp(stderr);
mtr_start(&mtr);
fputs(" InnoDB: Dump of the ibuf bitmap page:\n",
stderr);
bitmap_page = ibuf_bitmap_get_map_page(space, page_no,
zip_size, &mtr);
buf_page_print(bitmap_page, 0);
mtr_commit(&mtr);
fputs("\nInnoDB: Dump of the page:\n", stderr);
buf_page_print(block->frame, 0);
fprintf(stderr,
"InnoDB: Error: corruption in the tablespace."
" Bitmap shows insert\n"
"InnoDB: buffer records to page n:o %lu"
" though the page\n"
"InnoDB: type is %lu, which is"
" not an index leaf page!\n"
"InnoDB: We try to resolve the problem"
" by skipping the insert buffer\n"
"InnoDB: merge for this page."
" Please run CHECK TABLE on your tables\n"
"InnoDB: to determine if they are corrupt"
" after this.\n\n"
"InnoDB: Please submit a detailed bug report"
" to http://bugs.mysql.com\n\n",
(ulong) page_no,
(ulong)
fil_page_get_type(block->frame));
}
}
memset(mops, 0, sizeof(mops));
memset(dops, 0, sizeof(dops));
#ifdef UNIV_IBUF_DEBUG
volume = 0;
#endif
loop:
mtr_start(&mtr);
if (block) {
ibool success;
success = buf_page_get_known_nowait(
RW_X_LATCH, block,
BUF_KEEP_OLD, __FILE__, __LINE__, &mtr);
ut_a(success);
buf_block_dbg_add_level(block, SYNC_TREE_NODE);
}
/* Position pcur in the insert buffer at the first entry for this
index page */
btr_pcur_open_on_user_rec(
ibuf->index, search_tuple, PAGE_CUR_GE, BTR_MODIFY_LEAF,
&pcur, &mtr);
if (!btr_pcur_is_on_user_rec(&pcur)) {
ut_ad(btr_pcur_is_after_last_in_tree(&pcur, &mtr));
goto reset_bit;
}
for (;;) {
rec_t* rec;
ut_ad(btr_pcur_is_on_user_rec(&pcur));
rec = btr_pcur_get_rec(&pcur);
/* Check if the entry is for this index page */
if (ibuf_rec_get_page_no(rec) != page_no
|| ibuf_rec_get_space(rec) != space) {
if (block) {
page_header_reset_last_insert(
block->frame, page_zip, &mtr);
}
goto reset_bit;
}
if (UNIV_UNLIKELY(corruption_noticed)) {
fputs("InnoDB: Discarding record\n ", stderr);
rec_print_old(stderr, rec);
fputs("\nInnoDB: from the insert buffer!\n\n", stderr);
} else if (block) {
/* Now we have at pcur a record which should be
inserted to the index page; NOTE that the call below
copies pointers to fields in rec, and we must
keep the latch to the rec page until the
insertion is finished! */
dtuple_t* entry;
dulint max_trx_id;
dict_index_t* dummy_index;
ibuf_op_t op = ibuf_rec_get_op_type(rec);
max_trx_id = page_get_max_trx_id(page_align(rec));
page_update_max_trx_id(block, page_zip, max_trx_id);
entry = ibuf_build_entry_from_ibuf_rec(
rec, heap, &dummy_index);
#ifdef UNIV_IBUF_DEBUG
if (op == IBUF_OP_INSERT) {
volume += rec_get_converted_size(
dummy_index, entry, 0);
volume += page_dir_calc_reserved_space(1);
ut_a(volume <= 4 * UNIV_PAGE_SIZE
/ IBUF_PAGE_SIZE_PER_FREE_SPACE);
}
#endif
switch (op) {
case IBUF_OP_INSERT:
ibuf_insert_to_index_page(
entry, block, dummy_index, &mtr);
break;
case IBUF_OP_DELETE_MARK:
ibuf_set_del_mark(
entry, block, dummy_index, &mtr);
break;
case IBUF_OP_DELETE:
ibuf_delete(entry, block, dummy_index, &mtr);
break;
default:
ut_error;
}
mops[op]++;
ibuf_dummy_index_free(dummy_index);
} else {
dops[ibuf_rec_get_op_type(rec)]++;
}
/* Delete the record from ibuf */
if (ibuf_delete_rec(space, page_no, &pcur, search_tuple,
&mtr)) {
/* Deletion was pessimistic and mtr was committed:
we start from the beginning again */
goto loop;
} else if (btr_pcur_is_after_last_on_page(&pcur)) {
mtr_commit(&mtr);
btr_pcur_close(&pcur);
goto loop;
}
}
reset_bit:
if (UNIV_LIKELY(update_ibuf_bitmap)) {
page_t* bitmap_page;
bitmap_page = ibuf_bitmap_get_map_page(
space, page_no, zip_size, &mtr);
ibuf_bitmap_page_set_bits(
bitmap_page, page_no, zip_size,
IBUF_BITMAP_BUFFERED, FALSE, &mtr);
if (block) {
ulint old_bits = ibuf_bitmap_page_get_bits(
bitmap_page, page_no, zip_size,
IBUF_BITMAP_FREE, &mtr);
ulint new_bits = ibuf_index_page_calc_free(
zip_size, block);
if (old_bits != new_bits) {
ibuf_bitmap_page_set_bits(
bitmap_page, page_no, zip_size,
IBUF_BITMAP_FREE, new_bits, &mtr);
}
}
}
mtr_commit(&mtr);
btr_pcur_close(&pcur);
mem_heap_free(heap);
/* Protect our statistics keeping from race conditions */
mutex_enter(&ibuf_mutex);
ibuf->n_merges++;
ibuf_add_ops(ibuf->n_merged_ops, mops);
ibuf_add_ops(ibuf->n_discarded_ops, dops);
mutex_exit(&ibuf_mutex);
if (update_ibuf_bitmap && !tablespace_being_deleted) {
fil_decr_pending_ibuf_merges(space);
}
ibuf_exit();
#ifdef UNIV_IBUF_COUNT_DEBUG
ut_a(ibuf_count_get(space, page_no) == 0);
#endif
}
/*************************************************************************
Deletes all entries in the insert buffer for a given space id. This is used
in DISCARD TABLESPACE and IMPORT TABLESPACE.
NOTE: this does not update the page free bitmaps in the space. The space will
become CORRUPT when you call this function! */
UNIV_INTERN
void
ibuf_delete_for_discarded_space(
/*============================*/
ulint space) /* in: space id */
{
mem_heap_t* heap;
btr_pcur_t pcur;
dtuple_t* search_tuple;
rec_t* ibuf_rec;
ulint page_no;
ibool closed;
mtr_t mtr;
/* Counts for discarded operations. */
ulint dops[IBUF_OP_COUNT];
heap = mem_heap_create(512);
/* Use page number 0 to build the search tuple so that we get the
cursor positioned at the first entry for this space id */
search_tuple = ibuf_new_search_tuple_build(space, 0, heap);
memset(dops, 0, sizeof(dops));
loop:
ibuf_enter();
mtr_start(&mtr);
/* Position pcur in the insert buffer at the first entry for the
space */
btr_pcur_open_on_user_rec(
ibuf->index, search_tuple, PAGE_CUR_GE, BTR_MODIFY_LEAF,
&pcur, &mtr);
if (!btr_pcur_is_on_user_rec(&pcur)) {
ut_ad(btr_pcur_is_after_last_in_tree(&pcur, &mtr));
goto leave_loop;
}
for (;;) {
ut_ad(btr_pcur_is_on_user_rec(&pcur));
ibuf_rec = btr_pcur_get_rec(&pcur);
/* Check if the entry is for this space */
if (ibuf_rec_get_space(ibuf_rec) != space) {
goto leave_loop;
}
page_no = ibuf_rec_get_page_no(ibuf_rec);
dops[ibuf_rec_get_op_type(ibuf_rec)]++;
/* Delete the record from ibuf */
closed = ibuf_delete_rec(space, page_no, &pcur, search_tuple,
&mtr);
if (closed) {
/* Deletion was pessimistic and mtr was committed:
we start from the beginning again */
ibuf_exit();
goto loop;
}
if (btr_pcur_is_after_last_on_page(&pcur)) {
mtr_commit(&mtr);
btr_pcur_close(&pcur);
ibuf_exit();
goto loop;
}
}
leave_loop:
mtr_commit(&mtr);
btr_pcur_close(&pcur);
/* Protect our statistics keeping from race conditions */
mutex_enter(&ibuf_mutex);
ibuf_add_ops(ibuf->n_discarded_ops, dops);
mutex_exit(&ibuf_mutex);
ibuf_exit();
mem_heap_free(heap);
}
/**********************************************************************
Looks if the insert buffer is empty. */
UNIV_INTERN
ibool
ibuf_is_empty(void)
/*===============*/
/* out: TRUE if empty */
{
ibool is_empty;
const page_t* root;
mtr_t mtr;
ibuf_enter();
mutex_enter(&ibuf_mutex);
mtr_start(&mtr);
root = ibuf_tree_root_get(&mtr);
if (page_get_n_recs(root) == 0) {
is_empty = TRUE;
if (ibuf->empty == FALSE) {
fprintf(stderr,
"InnoDB: Warning: insert buffer tree is empty"
" but the data struct does not\n"
"InnoDB: know it. This condition is legal"
" if the master thread has not yet\n"
"InnoDB: run to completion.\n");
}
} else {
ut_a(ibuf->empty == FALSE);
is_empty = FALSE;
}
mtr_commit(&mtr);
mutex_exit(&ibuf_mutex);
ibuf_exit();
return(is_empty);
}
/**********************************************************************
Prints info of ibuf. */
UNIV_INTERN
void
ibuf_print(
/*=======*/
FILE* file) /* in: file where to print */
{
#ifdef UNIV_IBUF_COUNT_DEBUG
ulint i;
ulint j;
#endif
mutex_enter(&ibuf_mutex);
fprintf(file,
"Ibuf: size %lu, free list len %lu,"
" seg size %lu, %lu merges\n",
(ulong) ibuf->size,
(ulong) ibuf->free_list_len,
(ulong) ibuf->seg_size,
(ulong) ibuf->n_merges);
fputs("merged operations:\n ", file);
ibuf_print_ops(ibuf->n_merged_ops, file);
fputs("discarded operations:\n ", file);
ibuf_print_ops(ibuf->n_discarded_ops, file);
#ifdef UNIV_IBUF_COUNT_DEBUG
for (i = 0; i < IBUF_COUNT_N_SPACES; i++) {
for (j = 0; j < IBUF_COUNT_N_PAGES; j++) {
ulint count = ibuf_count_get(i, j);
if (count > 0) {
fprintf(stderr,
"Ibuf count for space/page %lu/%lu"
" is %lu\n",
(ulong) i, (ulong) j, (ulong) count);
}
}
}
#endif /* UNIV_IBUF_COUNT_DEBUG */
mutex_exit(&ibuf_mutex);
}