mariadb/storage/tokudb/PerconaFT/tools/tokuftdump.cc
Sergei Golubchik e312e2e636 5.6.32-78.1
2016-09-27 17:59:58 +02:00

1245 lines
43 KiB
C++

/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*======
This file is part of PerconaFT.
Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved.
PerconaFT is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2,
as published by the Free Software Foundation.
PerconaFT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PerconaFT. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------
PerconaFT is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License, version 3,
as published by the Free Software Foundation.
PerconaFT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with PerconaFT. If not, see <http://www.gnu.org/licenses/>.
======= */
#ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved."
// Dump a fractal tree file
#include <ctype.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include <limits.h>
#include <string>
#include <iostream>
#include <fstream>
#include <map>
#include <string>
#include <string.h>
#include "ft/serialize/block_table.h"
#include "ft/cachetable/cachetable.h"
#include "ft/ft.h"
#include "ft/ft-internal.h"
#include "ft/serialize/ft-serialize.h"
#include "ft/serialize/ft_node-serialize.h"
#include "ft/node.h"
using namespace std;
static int do_dump_data = 1;
static int do_interactive = 0;
static int do_json = 0;
static int do_header = 0;
static int do_fragmentation = 0;
static int do_garbage = 0;
static int do_translation_table = 0;
static int do_summary = 0;
static int do_rootnode = 0;
static int do_node = 0;
static BLOCKNUM do_node_num;
static int do_tsv = 0;
static const char *arg0;
static const char *fname;
//it holdes the messges count for each FT's node
typedef struct nodeMessage{
int id;
int clean;//0=clean >=1 dirty
int *count;//holds the messages
nodeMessage *nextNode;
}NMC;
enum { maxline = 128};
static int printNodeMessagesToSTDout(NMC* ptr);
static int printLevelSTDout(int *);
static void treeToSTDout(NMC *msgs[], int height);
static void format_time(const uint64_t time_int, char *buf) {
time_t timer = (time_t) time_int;
ctime_r(&timer, buf);
assert(buf[24] == '\n');
buf[24] = 0;
}
static void print_item(const void *val, uint32_t len) {
printf("\"");
uint32_t i;
for (i=0; i<len; i++) {
unsigned char ch = ((unsigned char*)val)[i];
if (isprint(ch) && ch!='\\' && ch!='"') {
printf("%c", ch);
} else {
printf("\\%03o", ch);
}
}
printf("\"");
}
static void simple_hex_dump(unsigned char *vp, uint64_t size) {
for (uint64_t i = 0; i < size; i++) {
unsigned char c = vp[i];
printf("%2.2X", c);
}
}
static void hex_dump(unsigned char *vp, uint64_t offset, uint64_t size) {
uint64_t n = size / 32;
for (uint64_t i = 0; i < n; i++) {
printf("%" PRIu64 ": ", offset);
for (uint64_t j = 0; j < 32; j++) {
unsigned char c = vp[j];
printf("%2.2X", c);
if (((j+1) % 4) == 0)
printf(" ");
}
for (uint64_t j = 0; j < 32; j++) {
unsigned char c = vp[j];
printf("%c", isprint(c) ? c : ' ');
}
printf("\n");
vp += 32;
offset += 32;
}
size = size % 32;
for (uint64_t i=0; i<size; i++) {
if ((i % 32) == 0)
printf("%" PRIu64 ": ", offset+i);
printf("%2.2X", vp[i]);
if (((i+1) % 4) == 0)
printf(" ");
if (((i+1) % 32) == 0)
printf("\n");
}
printf("\n");
}
static void dump_descriptor(DESCRIPTOR d) {
printf(" descriptor size %u ", d->dbt.size);
simple_hex_dump((unsigned char*) d->dbt.data, d->dbt.size);
printf("\n");
}
static void open_header(int fd, FT *header, CACHEFILE cf) {
FT ft = NULL;
int r;
r = toku_deserialize_ft_from (fd, MAX_LSN, &ft);
if (r != 0) {
fprintf(stderr, "%s: can not deserialize from %s error %d\n", arg0, fname, r);
exit(1);
}
assert_zero(r);
ft->cf = cf;
*header = ft;
}
static void dump_header(FT ft) {
char timestr[26];
printf("ft:\n");
printf(" layout_version=%d\n", ft->h->layout_version);
printf(" layout_version_original=%d\n", ft->h->layout_version_original);
printf(" layout_version_read_from_disk=%d\n", ft->layout_version_read_from_disk);
printf(" build_id=%d\n", ft->h->build_id);
printf(" build_id_original=%d\n", ft->h->build_id_original);
format_time(ft->h->time_of_creation, timestr);
printf(" time_of_creation= %" PRIu64 " %s\n", ft->h->time_of_creation, timestr);
format_time(ft->h->time_of_last_modification, timestr);
printf(" time_of_last_modification=%" PRIu64 " %s\n", ft->h->time_of_last_modification, timestr);
printf(" dirty=%d\n", ft->h->dirty);
printf(" checkpoint_count=%" PRId64 "\n", ft->h->checkpoint_count);
printf(" checkpoint_lsn=%" PRId64 "\n", ft->h->checkpoint_lsn.lsn);
printf(" nodesize=%u\n", ft->h->nodesize);
printf(" fanout=%u\n", ft->h->fanout);
printf(" basementnodesize=%u\n", ft->h->basementnodesize);
printf(" compression_method=%u\n", (unsigned) ft->h->compression_method);
printf(" unnamed_root=%" PRId64 "\n", ft->h->root_blocknum.b);
printf(" flags=%u\n", ft->h->flags);
dump_descriptor(&ft->descriptor);
printf(" estimated numrows=%" PRId64 "\n", ft->in_memory_stats.numrows);
printf(" estimated numbytes=%" PRId64 "\n", ft->in_memory_stats.numbytes);
printf(" logical row count=%" PRId64 "\n", ft->in_memory_logical_rows);
}
static int64_t getRootNode(FT ft) {
return ft->h->root_blocknum.b;
}
static int print_le(const void* key, const uint32_t keylen, const LEAFENTRY &le, const uint32_t idx UU(), void *const ai UU()) {
unsigned int *le_index = (unsigned int *) ai;
printf("%u: ", *le_index); *le_index += 1;
print_klpair(stdout, key, keylen, le);
printf("\n");
return 0;
}
static int getHeight(int fd, BLOCKNUM blocknum, FT ft){
FTNODE n;
FTNODE_DISK_DATA ndd = nullptr;
ftnode_fetch_extra bfe;
bfe.create_for_full_read(ft);
int r = toku_deserialize_ftnode_from (fd, blocknum, 0 /*pass zero for hash, it doesn't matter*/, &n, &ndd, &bfe);
assert_zero(r);
assert(n!=0);
return n->height;
}
static FTNODE getNode(int fd, BLOCKNUM blocknum, FT ft) {
FTNODE n;
FTNODE_DISK_DATA ndd = nullptr;
ftnode_fetch_extra bfe;
bfe.create_for_full_read(ft);
int r = toku_deserialize_ftnode_from (fd, blocknum, 0 /*pass zero for hash, it doesn't matter*/, &n, &ndd, &bfe);
assert_zero(r);;
return n;
}
static int countNodes(NMC *level){
int count=0;
NMC *ptr=level;
while(ptr!=NULL){
count++;
ptr=ptr->nextNode;
}
return count;
}
static int * countMessages(NMC *level){
int *counts=new int[16];
for(int i=0;i<16;i++){
counts[i]=0;
}
NMC *ptr=level;
while(ptr!=NULL){
for(int i=0;i<16;i++){
counts[i]+=ptr->count[i];
}
ptr=ptr->nextNode;
}
return counts;
}
static NMC * getLast(NMC *level){
if (level==NULL) return NULL;
NMC *ptr=level;
while(ptr->nextNode!=NULL){
ptr=ptr->nextNode;
}
return ptr;
}
/*
* Prints the total messages at each to STDout
*/
static int printLevelSTDout(int *count){
int isEmpty=0;
for(int j=0;j<16;j++){
if(count[j]>0){
cout <<count[j]<<" ";
isEmpty++;
switch (j) {
case FT_INSERT: cout <<"INSERT(s) "; break;
case FT_INSERT_NO_OVERWRITE: cout <<"INSERT_NO_OVERWRITE(s) "; break;
case FT_DELETE_ANY: cout <<"DELETE_ANY(s) "; break;
case FT_ABORT_ANY: cout <<"ABORT_ANY(s) "; break;
case FT_COMMIT_ANY: cout <<"COMMIT_ANY(s) "; break;
case FT_COMMIT_BROADCAST_ALL: cout <<"COMMIT_BROADCAST_ALL(s) "; break;
case FT_COMMIT_BROADCAST_TXN: cout <<"COMMIT_BROADCAST_TXN(s) "; break;
case FT_ABORT_BROADCAST_TXN: cout <<"ABORT_BROADCAST_TXN(s) "; break;
case FT_OPTIMIZE: cout <<"OPTIMIZE(s) "; break;
case FT_OPTIMIZE_FOR_UPGRADE: cout <<"OPTIMIZE_FOR_UPGRADE(s) "; break;
case FT_UPDATE: cout <<"UPDATE(s) "; break;
case FT_UPDATE_BROADCAST_ALL: cout <<"UPDATE_BROADCAST_ALL(s) "; break;
}
}
}
return isEmpty;
}
/*
* Prints the total # of messages in a node to STD output
*/
static int printNodeMessagesToSTDout(NMC *ptr){
cout <<"\nNode :"<<ptr->id<<" has :";
for(int j=0;j<16;j++){
if(ptr->count[j]>0){
cout <<ptr->count[j]<<" ";
switch (j) {
case FT_INSERT: cout <<"INSERT(s) "; break;
case FT_INSERT_NO_OVERWRITE: cout <<"INSERT_NO_OVERWRITE(s) "; break;
case FT_DELETE_ANY: cout <<"DELETE_ANY(s) "; break;
case FT_ABORT_ANY: cout <<"ABORT_ANY(s) "; break;
case FT_COMMIT_ANY: cout <<"COMMIT_ANY(s) "; break;
case FT_COMMIT_BROADCAST_ALL: cout <<"COMMIT_BROADCAST_ALL(s) "; break;
case FT_COMMIT_BROADCAST_TXN: cout <<"COMMIT_BROADCAST_TXN(s) "; break;
case FT_ABORT_BROADCAST_TXN: cout <<"ABORT_BROADCAST_TXN(s) "; break;
case FT_OPTIMIZE: cout <<"OPTIMIZE(s) "; break;
case FT_OPTIMIZE_FOR_UPGRADE: cout <<"OPTIMIZE_FOR_UPGRADE(s) "; break;
case FT_UPDATE: cout <<"UPDATE(s) "; break;
case FT_UPDATE_BROADCAST_ALL: cout <<"UPDATE_BROADCAST_ALL(s) "; break;
}
}
}
return 1;
}
static void levelToSTDout(NMC *list, int level){
NMC *ptr=list;
cout <<endl<<"Height : "<<level<<endl;
while(ptr!=NULL){
if(ptr->clean!=0){
printNodeMessagesToSTDout(ptr);
}
else{
cout << "\nNode : "<<ptr->id<<" has no messages";
}
ptr=ptr->nextNode;
}
cout <<endl;
}
/*
* prints the tree total # of nodes and total # of messages at each height in :
* STDout in human readable format
*/
static void treeToSTDout(NMC *msgs[], int height){
for(int i=height; i>=0 ; i--){
cout <<"At height "<<i;
int *counts=countMessages(msgs[i]);
cout <<"\n Node Count: "<< countNodes(msgs[i])<<endl;
cout <<" Messages: ";
if(printLevelSTDout(counts)==0) cout <<"0\n";
else cout <<endl;
}
}
//traverse through the FT and report back the count of messages in every node
static void countMessagesInFT(int fd, BLOCKNUM blocknum, FT ft,NMC *msgs[]){
FTNODE n=getNode(fd,blocknum,ft);
NMC *last=NULL;
if(msgs[n->height]==NULL){
last = msgs[n->height]=new NMC;
}else {
last=getLast(msgs[n->height]);
last->nextNode=new NMC;
last=last->nextNode;
}
last->id=blocknum.b;
last->count=new int[16];
for(int i=0;i<16;i++){
last->count[i]=0;
}
last->clean=0;
last->nextNode=NULL;
if (n->height==0){
toku_ftnode_free(&n);
return;
}
for(int i=0;i<n->n_children;i++){
NONLEAF_CHILDINFO bnc = BNC(n, i);
if (n->height==1 && n->bp[i].ptr.tag==BCT_NULL){
cout <<n->bp[i].ptr.tag;
}
auto dump_fn=[&](const ft_msg &msg, bool UU(is_fresh)) {
enum ft_msg_type type = (enum ft_msg_type) msg.type();
last->count[type]++;
last->clean=1;
return 0;
};
bnc->msg_buffer.iterate(dump_fn);
blocknum=make_blocknum(BP_BLOCKNUM(n, i).b);
countMessagesInFT(fd,blocknum,ft, msgs);
}
toku_ftnode_free(&n);
}
static void dump_node(int fd, BLOCKNUM blocknum, FT ft) {
FTNODE n;
FTNODE_DISK_DATA ndd = nullptr;
ftnode_fetch_extra bfe;
bfe.create_for_full_read(ft);
int r = toku_deserialize_ftnode_from (fd, blocknum, 0 /*pass zero for hash, it doesn't matter*/, &n, &ndd, &bfe);
assert_zero(r);
assert(n!=0);
printf("ftnode\n");
DISKOFF disksize, diskoffset;
ft->blocktable.translate_blocknum_to_offset_size(blocknum, &diskoffset, &disksize);
printf(" diskoffset =%" PRId64 "\n", diskoffset);
printf(" disksize =%" PRId64 "\n", disksize);
printf(" serialize_size =%u\n", toku_serialize_ftnode_size(n));
printf(" flags =%u\n", n->flags);
printf(" blocknum=%" PRId64 "\n", n->blocknum.b);
//printf(" log_lsn =%lld\n", n->log_lsn.lsn); // The log_lsn is a memory-only value.
printf(" height =%d\n", n->height);
printf(" layout_version=%d\n", n->layout_version);
printf(" layout_version_original=%d\n", n->layout_version_original);
printf(" layout_version_read_from_disk=%d\n", n->layout_version_read_from_disk);
printf(" build_id=%d\n", n->build_id);
printf(" max_msn_applied_to_node_on_disk=%" PRId64 " (0x%" PRIx64 ")\n", n->max_msn_applied_to_node_on_disk.msn, n->max_msn_applied_to_node_on_disk.msn);
printf(" io time %lf decompress time %lf deserialize time %lf\n",
tokutime_to_seconds(bfe.io_time),
tokutime_to_seconds(bfe.decompress_time),
tokutime_to_seconds(bfe.deserialize_time));
printf(" n_children=%d\n", n->n_children);
printf(" pivotkeys.total_size()=%u\n", (unsigned) n->pivotkeys.total_size());
if (n->height > 0) {
printf(" pivots:\n");
} else {
printf("LEAF keys:\n");
}
for (int i=0; i<n->n_children-1; i++) {
const DBT piv = n->pivotkeys.get_pivot(i);
printf(" pivot %2d:", i);
if (n->flags)
printf(" flags=%x ", n->flags);
print_item(piv.data, piv.size);
printf("\n");
}
if (n->height > 0) {
printf(" children:\n");
} else {
printf("LEAF data:\n");
}
for (int i=0; i<n->n_children; i++) {
printf(" child %d: ", i);
if (n->height > 0) {
printf("%" PRId64 "\n", BP_BLOCKNUM(n, i).b);
NONLEAF_CHILDINFO bnc = BNC(n, i);
unsigned int n_bytes = toku_bnc_nbytesinbuf(bnc);
int n_entries = toku_bnc_n_entries(bnc);
if (n_bytes > 0 || n_entries > 0) {
printf(" buffer contains %u bytes (%d items)\n", n_bytes, n_entries);
}
if (do_dump_data) {
struct dump_data_fn {
int operator()(const ft_msg &msg, bool UU(is_fresh)) {
enum ft_msg_type type = (enum ft_msg_type) msg.type();
MSN msn = msg.msn();
XIDS xids = msg.xids();
const void *key = msg.kdbt()->data;
const void *data = msg.vdbt()->data;
uint32_t keylen = msg.kdbt()->size;
uint32_t datalen = msg.vdbt()->size;
printf(" msn=%" PRIu64 " (0x%" PRIx64 ") ", msn.msn, msn.msn);
printf(" TYPE=");
switch (type) {
case FT_NONE: printf("NONE"); goto ok;
case FT_INSERT: printf("INSERT"); goto ok;
case FT_INSERT_NO_OVERWRITE: printf("INSERT_NO_OVERWRITE"); goto ok;
case FT_DELETE_ANY: printf("DELETE_ANY"); goto ok;
case FT_ABORT_ANY: printf("ABORT_ANY"); goto ok;
case FT_COMMIT_ANY: printf("COMMIT_ANY"); goto ok;
case FT_COMMIT_BROADCAST_ALL: printf("COMMIT_BROADCAST_ALL"); goto ok;
case FT_COMMIT_BROADCAST_TXN: printf("COMMIT_BROADCAST_TXN"); goto ok;
case FT_ABORT_BROADCAST_TXN: printf("ABORT_BROADCAST_TXN"); goto ok;
case FT_OPTIMIZE: printf("OPTIMIZE"); goto ok;
case FT_OPTIMIZE_FOR_UPGRADE: printf("OPTIMIZE_FOR_UPGRADE"); goto ok;
case FT_UPDATE: printf("UPDATE"); goto ok;
case FT_UPDATE_BROADCAST_ALL: printf("UPDATE_BROADCAST_ALL"); goto ok;
}
printf("HUH?");
ok:
printf(" xid=");
toku_xids_fprintf(stdout, xids);
printf(" ");
print_item(key, keylen);
if (datalen>0) {
printf(" ");
print_item(data, datalen);
}
printf("\n");
return 0;
}
} dump_fn;
bnc->msg_buffer.iterate(dump_fn);
}
} else {
printf(" n_bytes_in_buffer= %" PRIu64 "", BLB_DATA(n, i)->get_disk_size());
printf(" items_in_buffer=%u\n", BLB_DATA(n, i)->num_klpairs());
if (do_dump_data) {
unsigned int le_index = 0;
BLB_DATA(n, i)->iterate<void, print_le>(&le_index);
}
}
}
toku_ftnode_free(&n);
toku_free(ndd);
}
static void dump_block_translation(FT ft, uint64_t offset) {
ft->blocktable.blocknum_dump_translation(make_blocknum(offset));
}
static void dump_fragmentation(int UU(f), FT ft, int tsv) {
int64_t used_space;
int64_t total_space;
ft->blocktable.internal_fragmentation(&total_space, &used_space);
int64_t fragsizes = total_space - used_space;
if (tsv) {
printf("%" PRId64 "\t%" PRId64 "\t%" PRId64 "\t%.1f\n", used_space, total_space, fragsizes,
100. * ((double)fragsizes / (double)(total_space)));
} else {
printf("used_size\t%" PRId64 "\n", used_space);
printf("total_size\t%" PRId64 "\n", total_space);
printf("fragsizes\t%" PRId64 "\n", fragsizes);
printf("fragmentation\t%.1f\n", 100. * ((double)fragsizes / (double)(total_space)));
}
}
typedef struct {
int fd;
FT ft;
uint64_t blocksizes;
uint64_t leafsizes;
uint64_t leafblocks;
} frag_help_extra;
static int nodesizes_helper(BLOCKNUM b, int64_t size, int64_t UU(address), void *extra) {
frag_help_extra *CAST_FROM_VOIDP(info, extra);
FTNODE n;
FTNODE_DISK_DATA ndd = NULL;
ftnode_fetch_extra bfe;
bfe.create_for_full_read(info->ft);
int r = toku_deserialize_ftnode_from(info->fd, b, 0 /*pass zero for hash, it doesn't matter*/, &n, &ndd, &bfe);
if (r==0) {
info->blocksizes += size;
if (n->height == 0) {
info->leafsizes += size;
info->leafblocks++;
}
toku_ftnode_free(&n);
toku_free(ndd);
}
return 0;
}
static void dump_nodesizes(int fd, FT ft) {
frag_help_extra info;
memset(&info, 0, sizeof(info));
info.fd = fd;
info.ft = ft;
ft->blocktable.iterate(block_table::TRANSLATION_CHECKPOINTED,
nodesizes_helper, &info, true, true);
printf("leafblocks\t%" PRIu64 "\n", info.leafblocks);
printf("blocksizes\t%" PRIu64 "\n", info.blocksizes);
printf("leafsizes\t%" PRIu64 "\n", info.leafsizes);
}
/* ===== struct and function to get a summary of atree ===== */
typedef struct {
int fd;
FT ft;
uint64_t blocksizes;
uint64_t leafsizes;
uint64_t serialsize; // sizes of serialized data (assume uncomressed)
uint64_t leafblocks; // count of leaf nodes
uint64_t nonleafnode_cnt; // count of non-leaf nodes
uint64_t maxheight; // height of the tree
uint64_t msg_cnt; // message count in non-leafs
uint64_t msg_size; // size (in bytes of all messages in non-leafs
uint64_t pairs_cnt; // count of pairs in leaf nodes
std::map<int, int> height_cnt; // count of nodes per height
std::map<int, int> hmsg_cnt; // count of message per height
std::map<int, uint64_t> hmsg_size; // size of message per height
std::map<int, uint64_t> hdisk_size; // disk size per height
std::map<int, uint64_t> hserial_size; // serial size per height
} summary_help_extra;
static int summary_helper(BLOCKNUM b, int64_t size, int64_t UU(address), void *extra) {
summary_help_extra *CAST_FROM_VOIDP(info, extra);
FTNODE n;
FTNODE_DISK_DATA ndd = NULL;
ftnode_fetch_extra bfe;
bfe.create_for_full_read(info->ft);
int r = toku_deserialize_ftnode_from(info->fd, b, 0 /*pass zero for hash, it doesn't matter*/, &n, &ndd, &bfe);
if (r==0) {
info->blocksizes += size;
(info->height_cnt)[n->height]++;
if (n->height == 0) {
info->leafsizes += size;
info->leafblocks++;
} else {
info->nonleafnode_cnt++;
}
info->hdisk_size[n->height] += size;
auto serialsize = toku_serialize_ftnode_size(n);
info->serialsize += serialsize;
info->hserial_size[n->height] += serialsize;
if ((uint64_t)n->height > info->maxheight) {
info->maxheight = n->height;
}
for (int i=0; i<n->n_children; i++) {
//printf(" child %d: ", i);
if (n->height > 0) {
NONLEAF_CHILDINFO bnc = BNC(n, i);
unsigned int n_bytes = toku_bnc_nbytesinbuf(bnc);
int n_entries = toku_bnc_n_entries(bnc);
//if (n_bytes > 0 || n_entries > 0) {
// printf(" buffer contains %u bytes (%d items)\n", n_bytes, n_entries);
//}
info->msg_cnt += n_entries;
info->msg_size += n_bytes;
info->hmsg_cnt[n->height] += n_entries;
info->hmsg_size[n->height] += n_bytes;
} else {
info->pairs_cnt += BLB_DATA(n, i)->num_klpairs();
}
}
if (n->height ==0) {
info->hmsg_cnt[0] += n->n_children; // this way we count partitions per leaf node
}
toku_ftnode_free(&n);
toku_free(ndd);
}
return 0;
}
static std::string humanNumber(uint64_t value) {
std::string numWithCommas = to_string(value);
int insertPosition = numWithCommas.length() - 3;
while (insertPosition > 0) {
numWithCommas.insert(insertPosition, ",");
insertPosition-=3;
}
return numWithCommas;
}
static void dump_summary(int fd, FT ft) {
summary_help_extra info;
//memset(&info, 0, sizeof(info));
info.fd = fd;
info.ft = ft;
info.blocksizes = 0;
info.leafsizes = 0;
info.serialsize = 0;
info.leafblocks = 0;
info.nonleafnode_cnt = 0;
info.maxheight = 0;
info.msg_cnt = 0;
info.msg_size = 0;
info.pairs_cnt = 0;
ft->blocktable.iterate(block_table::TRANSLATION_CHECKPOINTED,
summary_helper, &info, true, true);
printf("leaf nodes:\t%" PRIu64 "\n", info.leafblocks);
printf("non-leaf nodes:\t%" PRIu64 "\n", info.nonleafnode_cnt);
printf("Leaf size:\t%s\n", humanNumber(info.leafsizes).c_str());
printf("Total size:\t%s\n", humanNumber(info.blocksizes).c_str());
printf("Total uncompressed size:\t%s\n", humanNumber(info.serialsize).c_str());
printf("Messages count:\t%" PRIu64 "\n", info.msg_cnt);
printf("Messages size:\t%s\n", humanNumber(info.msg_size).c_str());
printf("Records count:\t%" PRIu64 "\n", info.pairs_cnt);
printf("Tree height:\t%" PRIu64 "\n", info.maxheight);
for(auto elem : info.height_cnt) {
std::string hdr;
double children_per_node;
if (elem.first == 0) {
hdr = "basement nodes";
children_per_node = (double)info.hmsg_cnt[0]/elem.second;
} else {
hdr = "msg cnt";
children_per_node = (double)info.height_cnt[elem.first-1]/elem.second;
}
printf("height: %d, nodes count: %d; avg children/node: %f\n\t %s: %d; msg size: %s; disksize: %s; uncompressed size: %s; ratio: %f\n",
elem.first, elem.second, children_per_node,
hdr.c_str(),
info.hmsg_cnt[elem.first],
humanNumber(info.hmsg_size[elem.first]).c_str(),
humanNumber(info.hdisk_size[elem.first]).c_str(),
humanNumber(info.hserial_size[elem.first]).c_str(),
(double)info.hserial_size[elem.first]/info.hdisk_size[elem.first] );
}
}
/* ===== end of summary ===== */
static void dump_garbage_stats(int fd, FT ft) {
assert(fd == toku_cachefile_get_fd(ft->cf));
uint64_t total_space = 0;
uint64_t used_space = 0;
toku_ft_get_garbage(ft, &total_space, &used_space);
printf("garbage total size :%20" PRIu64 "\n", total_space);
printf("garbage used size :%20" PRIu64 "\n", used_space);
float a=used_space,b=total_space;
float percentage=((1-a/b)*100);
printf("Total garbage : %2.3f%%\n", percentage);
}
typedef struct __dump_node_extra {
int fd;
FT ft;
} dump_node_extra;
static int dump_node_wrapper(BLOCKNUM b, int64_t UU(size), int64_t UU(address), void *extra) {
dump_node_extra *CAST_FROM_VOIDP(info, extra);
dump_node(info->fd, b, info->ft);
return 0;
}
static uint32_t get_unaligned_uint32(unsigned char *p) {
uint32_t n;
memcpy(&n, p, sizeof n);
return n;
}
struct dump_sub_block {
uint32_t compressed_size;
uint32_t uncompressed_size;
uint32_t xsum;
};
static void sub_block_deserialize(struct dump_sub_block *sb, unsigned char *sub_block_header) {
sb->compressed_size = toku_dtoh32(get_unaligned_uint32(sub_block_header+0));
sb->uncompressed_size = toku_dtoh32(get_unaligned_uint32(sub_block_header+4));
sb->xsum = toku_dtoh32(get_unaligned_uint32(sub_block_header+8));
}
static void verify_block(unsigned char *cp, uint64_t file_offset, uint64_t size) {
// verify the header checksum
const size_t node_header = 8 + sizeof (uint32_t) + sizeof (uint32_t) + sizeof (uint32_t);
printf("%.8s layout_version=%u %u build=%d\n", cp, get_unaligned_uint32(cp+8), get_unaligned_uint32(cp+12), get_unaligned_uint32(cp+16));
unsigned char *sub_block_header = &cp[node_header];
uint32_t n_sub_blocks = toku_dtoh32(get_unaligned_uint32(&sub_block_header[0]));
uint32_t header_length = node_header + n_sub_blocks * sizeof (struct dump_sub_block);
header_length += sizeof (uint32_t); // CRC
if (header_length > size) {
printf("header length too big: %u\n", header_length);
return;
}
uint32_t header_xsum = toku_x1764_memory(cp, header_length);
uint32_t expected_xsum = toku_dtoh32(get_unaligned_uint32(&cp[header_length]));
if (header_xsum != expected_xsum) {
printf("header checksum failed: %u %u\n", header_xsum, expected_xsum);
return;
}
// deserialize the sub block header
struct dump_sub_block sub_block[n_sub_blocks];
sub_block_header += sizeof (uint32_t);
for (uint32_t i = 0 ; i < n_sub_blocks; i++) {
sub_block_deserialize(&sub_block[i], sub_block_header);
sub_block_header += sizeof (struct dump_sub_block);
}
// verify the sub block header
uint32_t offset = header_length + 4;
for (uint32_t i = 0 ; i < n_sub_blocks; i++) {
uint32_t xsum = toku_x1764_memory(cp + offset, sub_block[i].compressed_size);
printf("%u: %u %u %u", i, sub_block[i].compressed_size, sub_block[i].uncompressed_size, sub_block[i].xsum);
if (xsum != sub_block[i].xsum)
printf(" fail %u offset %" PRIu64, xsum, file_offset + offset);
printf("\n");
offset += sub_block[i].compressed_size;
}
if (offset != size)
printf("offset %u expected %" PRIu64 "\n", offset, size);
}
static void dump_block(int fd, BLOCKNUM blocknum, FT ft) {
DISKOFF offset, size;
ft->blocktable.translate_blocknum_to_offset_size(blocknum, &offset, &size);
printf("%" PRId64 " at %" PRId64 " size %" PRId64 "\n", blocknum.b, offset, size);
unsigned char *CAST_FROM_VOIDP(vp, toku_malloc(size));
uint64_t r = pread(fd, vp, size, offset);
if (r == (uint64_t)size) {
verify_block(vp, offset, size);
}
toku_free(vp);
}
static void dump_file(int fd, uint64_t offset, uint64_t size, FILE *outfp) {
unsigned char *XMALLOC_N(size, vp);
uint64_t r = pread(fd, vp, size, offset);
if (r == size) {
if (outfp == stdout) {
hex_dump(vp, offset, size);
} else {
size_t wrote = fwrite(vp, size, 1, outfp);
assert(wrote == 1);
}
}
toku_free(vp);
}
static void set_file(int fd, uint64_t offset, unsigned char newc) {
toku_os_pwrite(fd, &newc, sizeof newc, offset);
}
static int readline(char *line, int maxline) {
int i = 0;
int c;
while ((c = getchar()) != EOF && c != '\n' && i < maxline) {
line[i++] = (char)c;
}
line[i++] = 0;
return c == EOF ? EOF : i;
}
static int split_fields(char *line, char *fields[], int maxfields) {
int i;
for (i=0; i<maxfields; i++)
fields[i] = NULL;
for (i=0; i<maxfields; i++, line=NULL) {
fields[i] = strtok(line, " ");
if (fields[i] == NULL) {
break;
}
}
return i;
}
static uint64_t getuint64(const char *f) {
if (strncmp(f, "0x", 2) == 0 || strncmp(f, "0X", 2) == 0)
return strtoull(f, 0, 16);
else if (strncmp(f, "0", 1) == 0)
return strtoull(f, 0, 8);
else
return strtoull(f, 0, 10);
}
static void interactive_help(void) {
fprintf(stderr, "help\n");
fprintf(stderr, "header\n");
cout <<"mr/MessagesReport [NUMBER] \n Reports messages for the level of the tree you want get more details about\n";
cout <<"rf/readFile ft-file-name \n Switch to a different FT\n";
fprintf(stderr, "node NUMBER \n");
fprintf(stderr, "bx OFFSET | block_translation OFFSET\n");
fprintf(stderr, "dumpdata 0|1\n");
fprintf(stderr, "fragmentation\n");
fprintf(stderr, "nodesizes\n");
fprintf(stderr, "garbage\n");
fprintf(stderr, "file OFFSET SIZE [outfilename]\n");
fprintf(stderr, "quit\n");
}
static void freeNMC(NMC *msgs[], int height){
for(int i=0;i<height;i++){
if(msgs[i]!=NULL){
delete(msgs[i]->count);
while(msgs[i]->nextNode!=NULL){
NMC* ptr=msgs[i]->nextNode;
msgs[i]=msgs[i]->nextNode;
delete ptr;
}
msgs[i]=NULL;
}
}
}
static void writeTree(NMC *msgs[],int height,char *name UU()){
ofstream mytree ("/tmp/tree.txt",fstream::out);
if (mytree.is_open()){
for(int i=height;i>=0;i--){
NMC * ptr=msgs[i];
mytree <<i<<endl;
while(ptr!=NULL){
mytree << ptr->id<<"\t";
if(ptr->clean!=0)mytree << "1"<<"\t";
else mytree << "0"<<"\t";
for(int j=0;j<15;j++)mytree << ptr->count[j]<<" ";
mytree << ptr->count[i]<<endl;
ptr=ptr->nextNode;
}
mytree <<endl;
}
}
else cout << "Unable to open file";
mytree.close();
}
static void writeJson(NMC *msgs[],int height,const char *name){
ofstream mytree (name,fstream::out);
if (mytree.is_open()){
mytree <<"{\n \"FT\":[";
for(int i=height;i>=0;i--){
NMC * ptr=msgs[i];
mytree <<"{\n\"Level\": {\"Height\":\""<<i<<"\",\n \"Nodes\":[";
while(ptr!=NULL){
mytree <<"{\"ID\":\""<< ptr->id<<"\",";
if(ptr->clean!=0){
mytree <<"\"Messages\":[";
for(int j=0;j<16;j++)
{
mytree <<"{";
switch (j) {
case FT_INSERT: mytree <<"\"INSERT\":\""<<ptr->count[j]<<"\""; break;
case FT_INSERT_NO_OVERWRITE: mytree <<"\"INSERT_NOVERWTE\":\""<<ptr->count[j]<<"\""; break;
case FT_DELETE_ANY: mytree <<"\"DELETE\":\""<<ptr->count[j]<<"\""; break;
case FT_ABORT_ANY: mytree <<"\"ABORT\":\""<<ptr->count[j]<<"\""; break;
case FT_COMMIT_ANY: mytree <<"\"COMMITY\":\""<<ptr->count[j]<<"\""; break;
case FT_COMMIT_BROADCAST_ALL: mytree <<"\"COMMIT_BROADCAST_ALL\":\""<<ptr->count[j]<<"\"" ; break;
case FT_COMMIT_BROADCAST_TXN: mytree <<"\"COMMIT_BROADCAST_TXN\":\""<<ptr->count[j]<<"\""; break;
case FT_ABORT_BROADCAST_TXN: mytree <<"\"ABORT_BROADCAST_TXN\":\""<<ptr->count[j]<<"\"";break;
case FT_OPTIMIZE: mytree <<"\"OPTIMIZE\":\""<<ptr->count[j]<<"\""; break;
case FT_OPTIMIZE_FOR_UPGRADE: mytree <<"\"OPTIMIZE_FOR_UPGRADE\":\""<<ptr->count[j]<<"\"";break;
case FT_UPDATE: mytree <<"\"UPDATE\":\""<<ptr->count[j]<<"\""; break;
case FT_UPDATE_BROADCAST_ALL: mytree <<"\"UPDATE_BROADCAST_ALL\":\""<<ptr->count[j]<<"\""; break;
}
mytree <<"}";
if(j<15)mytree<<",";
}
mytree <<"]}";
}
else {
mytree <<"\"Messages\":\""<< "0"<<"\"}";
}
if(ptr->nextNode!=NULL)mytree <<",\n";
else mytree <<"]}\n";
ptr=ptr->nextNode;
}
mytree <<"\n}\n";
if(i!=0)mytree <<",\n";
}
mytree <<"\n]}\n";
}
else cout << "Unable to open file";
mytree.close();
}
static void writeTree(NMC *msgs[],int height){
ofstream mytree ("/tmp/tree1.txt",fstream::out);
if (mytree.is_open()){
for(int i=height;i>=0;i--){
NMC * ptr=msgs[i];
mytree <<i<<endl;
while(ptr!=NULL){
mytree << ptr->id<<",";
if(ptr->clean!=0)mytree << "1"<<",";
else mytree << "0"<<",";
for(int j=0;j<15;j++)mytree << ptr->count[j]<<",";
mytree << ptr->count[i]<<endl;
ptr=ptr->nextNode;
}
mytree <<".\"";
}
}
else cout << "Unable to open file";
mytree.close();
}
static void FT_to_JSON(int fd, FT ft, CACHEFILE cf, const char * JsonFile){
toku_ft_free(ft);
open_header(fd, &ft, cf);
int root=getRootNode(ft);
BLOCKNUM off = make_blocknum(root);
int height=getHeight(fd,off, ft);
NMC *msgs[height];
for(int i=0;i<=height;i++){
msgs[i]=NULL;
}
open_header(fd, &ft, cf);
root=getRootNode(ft);
off = make_blocknum(root);
countMessagesInFT(fd,off, ft,msgs);
cout <<"to STD output: \n";
treeToSTDout(msgs,height);
writeTree(msgs,height);
cout<<"FT's json file was generated here:";
if(JsonFile!=NULL) {
cout <<JsonFile;
writeJson(msgs,height,JsonFile);
}
else {
cout <<"./FT.json";
writeJson(msgs,height,"./FT.json");
}
cout<<endl;
freeNMC(msgs,height);
exit(0);
}
static void run_iteractive_loop(int fd, FT ft, CACHEFILE cf) {
toku_ft_free(ft);
open_header(fd, &ft, cf);
int root=getRootNode(ft);
BLOCKNUM off = make_blocknum(root);
int height=getHeight(fd,off, ft);
NMC *msgs[height];
for(int i=0;i<=height;i++){
msgs[i]=NULL;
}
while (1) {
printf("ftdump>");
fflush(stdout);
char line[maxline+1];
int r = readline(line, maxline);
if (r == EOF)
break;
const int maxfields = 4;
char *fields[maxfields];
int nfields = split_fields(line, fields, maxfields);
if (nfields == 0)
continue;
if (strcmp(fields[0], "help") == 0) {
interactive_help();
} else if (strcmp(fields[0], "header") == 0) {
toku_ft_free(ft);
open_header(fd, &ft, cf);
dump_header(ft);
} else if (strcmp(fields[0], "rn") == 0||strcmp(fields[0], "rootNode")==0||strcmp(fields[0], "rootnode") == 0) {
printf("Root node :%d\n",root);
} else if (strcmp(fields[0], "block") == 0 && nfields == 2) {
BLOCKNUM blocknum = make_blocknum(getuint64(fields[1]));
dump_block(fd, blocknum, ft);
}else if ((strcmp(fields[0], "readFile") == 0 ||strcmp(fields[0], "readfile") == 0 ||strcmp(fields[0], "rf") == 0 )&& nfields == 2) {
fname=fields[1];
fd = open(fname, O_RDWR + O_BINARY);
toku_ft_free(ft);
open_header(fd, &ft, cf);
root=getRootNode(ft);
off = make_blocknum(root);
height=getHeight(fd,off, ft);
if (fd < 0) {
fprintf(stderr, "%s: can not open the FT dump %s errno %d\n", arg0, fname, errno);
continue;
}
} else if (strcmp(fields[0], "node") == 0 && nfields == 2) {
off = make_blocknum(getuint64(fields[1]));
dump_node(fd, off, ft);
}else if ((strcmp(fields[0], "mr") == 0||(strcmp(fields[0], "nc")) == 0 ||strcmp(fields[0], "messagesReport") == 0 )) {
freeNMC(msgs,height);
toku_ft_free(ft);
open_header(fd, &ft, cf);
root=getRootNode(ft);
off = make_blocknum(root);
countMessagesInFT(fd,off, ft,msgs);
int level=-1;
if(nfields == 2)level=getuint64(fields[1]);
if(level>=0){
levelToSTDout(msgs[level], level);
}
else{
cout <<"to STD output: \n";
treeToSTDout(msgs,height);
}
writeTree(msgs,height);
writeTree(msgs,height, NULL);
}else if (strcmp(fields[0], "dumpdata") == 0 && nfields == 2) {
do_dump_data = strtol(fields[1], NULL, 10);
}
else if (strcmp(fields[0], "block_translation") == 0 || strcmp(fields[0], "bx") == 0) {
uint64_t offset = 0;
if (nfields == 2)
offset = getuint64(fields[1]);
dump_block_translation(ft, offset);
} else if (strcmp(fields[0], "fragmentation") == 0) {
dump_fragmentation(fd, ft, do_tsv);
} else if (strcmp(fields[0], "nodesizes") == 0) {
dump_nodesizes(fd, ft);
} else if (strcmp(fields[0], "garbage") == 0||strcmp(fields[0], "g") == 0) {
dump_garbage_stats(fd, ft);
} else if (strcmp(fields[0], "file") == 0 && nfields >= 3) {
uint64_t offset = getuint64(fields[1]);
uint64_t size = getuint64(fields[2]);
FILE *outfp = stdout;
if (nfields >= 4)
outfp = fopen(fields[3], "w");
dump_file(fd, offset, size, outfp);
} else if (strcmp(fields[0], "setfile") == 0 && nfields == 3) {
uint64_t offset = getuint64(fields[1]);
unsigned char newc = getuint64(fields[2]);
set_file(fd, offset, newc);
} else if (strcmp(fields[0], "quit") == 0 || strcmp(fields[0], "q") == 0) {
toku_ft_free(ft);
exit(0);
}
}
freeNMC(msgs,height);
}
static int usage(void) {
fprintf(stderr, "Usage: %s ", arg0);
fprintf(stderr, "--interactive ");
fprintf(stderr, "--support /path/to/fractal-tree/file \n\t an interactive way to see what messages and/or switch between FTs");
fprintf(stderr, "--json /path/to/fractal-tree/file [output json file]\n\t if left empty an FT.json will be created automatically");
fprintf(stderr, "--nodata ");
fprintf(stderr, "--dumpdata 0|1 ");
fprintf(stderr, "--header ");
fprintf(stderr, "--rootnode ");
fprintf(stderr, "--node N ");
fprintf(stderr, "--fragmentation ");
fprintf(stderr, "--garbage ");
fprintf(stderr, "--tsv ");
fprintf(stderr, "--translation-table ");
fprintf(stderr, "--tsv ");
fprintf(stderr, "--summary ");
fprintf(stderr, "filename \n");
return 1;
}
int main (int argc, const char *const argv[]) {
arg0 = argv[0];
argc--; argv++;
while (argc>0) {
if (strcmp(argv[0], "--interactive") == 0 || strcmp(argv[0], "--i") == 0) {
do_interactive = 1;
}
else if ((strcmp(argv[0], "--json") == 0 || strcmp(argv[0], "--s")== 0)&& argc >= 2) {
do_json = 1;
fname=argv[1];
argc--; argv++;
break;
} else if (strcmp(argv[0], "--nodata") == 0) {
do_dump_data = 0;
} else if (strcmp(argv[0], "--dumpdata") == 0 && argc > 1) {
do_dump_data = atoi(argv[0]);
} else if (strcmp(argv[0], "--header") == 0) {
do_header = 1;
} else if (strcmp(argv[0], "--rootnode") == 0) {
do_rootnode = 1;
} else if (strcmp(argv[0], "--node") == 0 && argc > 1) {
argc--; argv++;
do_node = 1;
do_node_num = make_blocknum(getuint64(argv[0]));
} else if (strcmp(argv[0], "--fragmentation") == 0) {
do_fragmentation = 1;
} else if (strcmp(argv[0], "--garbage") == 0) {
do_garbage = 1;
} else if (strcmp(argv[0], "--tsv") == 0) {
do_tsv = 1;
} else if (strcmp(argv[0], "--translation-table") == 0) {
do_translation_table = 1;
} else if (strcmp(argv[0], "--summary") == 0) {
do_summary = 1;
} else if (strcmp(argv[0], "--help") == 0 || strcmp(argv[0], "-?") == 0 || strcmp(argv[0], "-h") == 0) {
return usage();
} else {
break;
}
argc--; argv++;
}
if (argc != 1 && do_json==0)
return usage();
int r = toku_ft_layer_init();
assert_zero(r);
if(fname==NULL)fname = argv[0];
int fd = open(fname, O_RDWR + O_BINARY);
if (fd < 0) {
fprintf(stderr, "%s: can not open %s errno %d\n", arg0, fname, errno);
return 1;
}
// create a cachefile for the header
CACHETABLE ct = NULL;
toku_cachetable_create(&ct, 1<<25, (LSN){0}, 0);
CACHEFILE cf = NULL;
r = toku_cachetable_openfd (&cf, ct, fd, fname);
assert_zero(r);
FT ft = NULL;
open_header(fd, &ft, cf);
if (do_json ) {
const char *arg=argv[1];
FT_to_JSON(fd, ft, cf,arg);
}
if (do_interactive) {
run_iteractive_loop(fd, ft, cf);
}
else {
if (do_header) {
dump_header(ft);
}
if (do_rootnode) {
dump_node(fd, ft->h->root_blocknum, ft);
}
if (do_node) {
dump_node(fd, do_node_num, ft);
}
if (do_fragmentation) {
dump_fragmentation(fd, ft, do_tsv);
}
if (do_translation_table) {
ft->blocktable.dump_translation_table_pretty(stdout);
}
if (do_summary) {
dump_summary(fd, ft);
}
if (do_garbage) {
dump_garbage_stats(fd, ft);
}
if (!do_header && !do_rootnode && !do_fragmentation && !do_translation_table && !do_garbage && !do_summary) {
printf("Block translation:");
ft->blocktable.dump_translation_table(stdout);
dump_header(ft);
struct __dump_node_extra info;
info.fd = fd;
info.ft = ft;
ft->blocktable.iterate(block_table::TRANSLATION_CHECKPOINTED,
dump_node_wrapper, &info, true, true);
}
}
toku_cachefile_close(&cf, false, ZERO_LSN);
toku_cachetable_close(&ct);
toku_ft_free(ft);
toku_ft_layer_destroy();
return 0;
}