mariadb/mysys/thr_lock.c
jani@ua141d10.elisa.omakaista.fi 3c3b0391f8 Merge ua141d10.elisa.omakaista.fi:/home/my/bk/mysql-4.1-main
into  ua141d10.elisa.omakaista.fi:/home/my/bk/mysql-5.0-marvel
2007-03-28 20:46:42 +03:00

1716 lines
51 KiB
C

/* Copyright (C) 2000 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
Read and write locks for Posix threads. All tread must acquire
all locks it needs through thr_multi_lock() to avoid dead-locks.
A lock consists of a master lock (THR_LOCK), and lock instances
(THR_LOCK_DATA).
Any thread can have any number of lock instances (read and write:s) on
any lock. All lock instances must be freed.
Locks are prioritized according to:
The current lock types are:
TL_READ # Low priority read
TL_READ_WITH_SHARED_LOCKS
TL_READ_HIGH_PRIORITY # High priority read
TL_READ_NO_INSERT # Read without concurrent inserts
TL_WRITE_ALLOW_WRITE # Write lock that allows other writers
TL_WRITE_ALLOW_READ # Write lock, but allow reading
TL_WRITE_CONCURRENT_INSERT
# Insert that can be mixed when selects
TL_WRITE_DELAYED # Used by delayed insert
# Allows lower locks to take over
TL_WRITE_LOW_PRIORITY # Low priority write
TL_WRITE # High priority write
TL_WRITE_ONLY # High priority write
# Abort all new lock request with an error
Locks are prioritized according to:
WRITE_ALLOW_WRITE, WRITE_ALLOW_READ, WRITE_CONCURRENT_INSERT, WRITE_DELAYED,
WRITE_LOW_PRIORITY, READ, WRITE, READ_HIGH_PRIORITY and WRITE_ONLY
Locks in the same privilege level are scheduled in first-in-first-out order.
To allow concurrent read/writes locks, with 'WRITE_CONCURRENT_INSERT' one
should put a pointer to the following functions in the lock structure:
(If the pointer is zero (default), the function is not called)
check_status:
Before giving a lock of type TL_WRITE_CONCURRENT_INSERT,
we check if this function exists and returns 0.
If not, then the lock is upgraded to TL_WRITE_LOCK
In MyISAM this is a simple check if the insert can be done
at the end of the datafile.
update_status:
Before a write lock is released, this function is called.
In MyISAM this functions updates the count and length of the datafile
get_status:
When one gets a lock this functions is called.
In MyISAM this stores the number of rows and size of the datafile
for concurrent reads.
The lock algorithm allows one to have one TL_WRITE_ALLOW_READ,
TL_WRITE_CONCURRENT_INSERT or one TL_WRITE_DELAYED lock at the same time as
multiple read locks.
*/
#if !defined(MAIN) && !defined(DBUG_OFF) && !defined(EXTRA_DEBUG)
#define FORCE_DBUG_OFF
#endif
#include "mysys_priv.h"
#ifdef THREAD
#include "thr_lock.h"
#include <m_string.h>
#include <errno.h>
my_bool thr_lock_inited=0;
ulong locks_immediate = 0L, locks_waited = 0L;
ulong table_lock_wait_timeout;
enum thr_lock_type thr_upgraded_concurrent_insert_lock = TL_WRITE;
/* The following constants are only for debug output */
#define MAX_THREADS 100
#define MAX_LOCKS 100
LIST *thr_lock_thread_list; /* List of threads in use */
ulong max_write_lock_count= ~(ulong) 0L;
static inline pthread_cond_t *get_cond(void)
{
return &my_thread_var->suspend;
}
/*
** For the future (now the thread specific cond is alloced by my_pthread.c)
*/
my_bool init_thr_lock()
{
thr_lock_inited=1;
return 0;
}
static inline my_bool
thr_lock_owner_equal(THR_LOCK_OWNER *rhs, THR_LOCK_OWNER *lhs)
{
return rhs == lhs;
}
#ifdef EXTRA_DEBUG
#define MAX_FOUND_ERRORS 10 /* Report 10 first errors */
static uint found_errors=0;
static int check_lock(struct st_lock_list *list, const char* lock_type,
const char *where, my_bool same_owner, bool no_cond)
{
THR_LOCK_DATA *data,**prev;
uint count=0;
THR_LOCK_OWNER *first_owner;
LINT_INIT(first_owner);
prev= &list->data;
if (list->data)
{
enum thr_lock_type last_lock_type=list->data->type;
if (same_owner && list->data)
first_owner= list->data->owner;
for (data=list->data; data && count++ < MAX_LOCKS ; data=data->next)
{
if (data->type != last_lock_type)
last_lock_type=TL_IGNORE;
if (data->prev != prev)
{
fprintf(stderr,
"Warning: prev link %d didn't point at previous lock at %s: %s\n",
count, lock_type, where);
return 1;
}
if (same_owner &&
!thr_lock_owner_equal(data->owner, first_owner) &&
last_lock_type != TL_WRITE_ALLOW_WRITE)
{
fprintf(stderr,
"Warning: Found locks from different threads in %s: %s\n",
lock_type,where);
return 1;
}
if (no_cond && data->cond)
{
fprintf(stderr,
"Warning: Found active lock with not reset cond %s: %s\n",
lock_type,where);
return 1;
}
prev= &data->next;
}
if (data)
{
fprintf(stderr,"Warning: found too many locks at %s: %s\n",
lock_type,where);
return 1;
}
}
if (prev != list->last)
{
fprintf(stderr,"Warning: last didn't point at last lock at %s: %s\n",
lock_type, where);
return 1;
}
return 0;
}
static void check_locks(THR_LOCK *lock, const char *where,
my_bool allow_no_locks)
{
uint old_found_errors=found_errors;
DBUG_ENTER("check_locks");
if (found_errors < MAX_FOUND_ERRORS)
{
if (check_lock(&lock->write,"write",where,1,1) |
check_lock(&lock->write_wait,"write_wait",where,0,0) |
check_lock(&lock->read,"read",where,0,1) |
check_lock(&lock->read_wait,"read_wait",where,0,0))
found_errors++;
if (found_errors < MAX_FOUND_ERRORS)
{
uint count=0;
THR_LOCK_DATA *data;
for (data=lock->read.data ; data ; data=data->next)
{
if ((int) data->type == (int) TL_READ_NO_INSERT)
count++;
/* Protect against infinite loop. */
DBUG_ASSERT(count <= lock->read_no_write_count);
}
if (count != lock->read_no_write_count)
{
found_errors++;
fprintf(stderr,
"Warning at '%s': Locks read_no_write_count was %u when it should have been %u\n", where, lock->read_no_write_count,count);
}
if (!lock->write.data)
{
if (!allow_no_locks && !lock->read.data &&
(lock->write_wait.data || lock->read_wait.data))
{
found_errors++;
fprintf(stderr,
"Warning at '%s': No locks in use but locks are in wait queue\n",
where);
}
if (!lock->write_wait.data)
{
if (!allow_no_locks && lock->read_wait.data)
{
found_errors++;
fprintf(stderr,
"Warning at '%s': No write locks and waiting read locks\n",
where);
}
}
else
{
if (!allow_no_locks &&
(((lock->write_wait.data->type == TL_WRITE_CONCURRENT_INSERT ||
lock->write_wait.data->type == TL_WRITE_ALLOW_WRITE) &&
!lock->read_no_write_count) ||
lock->write_wait.data->type == TL_WRITE_ALLOW_READ ||
(lock->write_wait.data->type == TL_WRITE_DELAYED &&
!lock->read.data)))
{
found_errors++;
fprintf(stderr,
"Warning at '%s': Write lock %d waiting while no exclusive read locks\n",where,(int) lock->write_wait.data->type);
}
}
}
else
{ /* Have write lock */
if (lock->write_wait.data)
{
if (!allow_no_locks &&
lock->write.data->type == TL_WRITE_ALLOW_WRITE &&
lock->write_wait.data->type == TL_WRITE_ALLOW_WRITE)
{
found_errors++;
fprintf(stderr,
"Warning at '%s': Found WRITE_ALLOW_WRITE lock waiting for WRITE_ALLOW_WRITE lock\n",
where);
}
}
if (lock->read.data)
{
if (!thr_lock_owner_equal(lock->write.data->owner,
lock->read.data->owner) &&
((lock->write.data->type > TL_WRITE_DELAYED &&
lock->write.data->type != TL_WRITE_ONLY) ||
((lock->write.data->type == TL_WRITE_CONCURRENT_INSERT ||
lock->write.data->type == TL_WRITE_ALLOW_WRITE) &&
lock->read_no_write_count)))
{
found_errors++;
fprintf(stderr,
"Warning at '%s': Found lock of type %d that is write and read locked\n",
where, lock->write.data->type);
DBUG_PRINT("warning",("At '%s': Found lock of type %d that is write and read locked\n",
where, lock->write.data->type));
}
}
if (lock->read_wait.data)
{
if (!allow_no_locks && lock->write.data->type <= TL_WRITE_DELAYED &&
lock->read_wait.data->type <= TL_READ_HIGH_PRIORITY)
{
found_errors++;
fprintf(stderr,
"Warning at '%s': Found read lock of type %d waiting for write lock of type %d\n",
where,
(int) lock->read_wait.data->type,
(int) lock->write.data->type);
}
}
}
}
if (found_errors != old_found_errors)
{
DBUG_PRINT("error",("Found wrong lock"));
}
}
DBUG_VOID_RETURN;
}
#else /* EXTRA_DEBUG */
#define check_locks(A,B,C)
#endif
/* Initialize a lock */
void thr_lock_init(THR_LOCK *lock)
{
DBUG_ENTER("thr_lock_init");
bzero((char*) lock,sizeof(*lock));
VOID(pthread_mutex_init(&lock->mutex,MY_MUTEX_INIT_FAST));
lock->read.last= &lock->read.data;
lock->read_wait.last= &lock->read_wait.data;
lock->write_wait.last= &lock->write_wait.data;
lock->write.last= &lock->write.data;
pthread_mutex_lock(&THR_LOCK_lock); /* Add to locks in use */
lock->list.data=(void*) lock;
thr_lock_thread_list=list_add(thr_lock_thread_list,&lock->list);
pthread_mutex_unlock(&THR_LOCK_lock);
DBUG_VOID_RETURN;
}
void thr_lock_delete(THR_LOCK *lock)
{
DBUG_ENTER("thr_lock_delete");
VOID(pthread_mutex_destroy(&lock->mutex));
pthread_mutex_lock(&THR_LOCK_lock);
thr_lock_thread_list=list_delete(thr_lock_thread_list,&lock->list);
pthread_mutex_unlock(&THR_LOCK_lock);
DBUG_VOID_RETURN;
}
void thr_lock_info_init(THR_LOCK_INFO *info)
{
struct st_my_thread_var *tmp= my_thread_var;
info->thread= tmp->pthread_self;
info->thread_id= tmp->id;
info->n_cursors= 0;
}
/* Initialize a lock instance */
void thr_lock_data_init(THR_LOCK *lock,THR_LOCK_DATA *data, void *param)
{
data->lock=lock;
data->type=TL_UNLOCK;
data->owner= 0; /* no owner yet */
data->status_param=param;
data->cond=0;
}
static inline my_bool
have_old_read_lock(THR_LOCK_DATA *data, THR_LOCK_OWNER *owner)
{
for ( ; data ; data=data->next)
{
if (thr_lock_owner_equal(data->owner, owner))
return 1; /* Already locked by thread */
}
return 0;
}
static inline my_bool have_specific_lock(THR_LOCK_DATA *data,
enum thr_lock_type type)
{
for ( ; data ; data=data->next)
{
if (data->type == type)
return 1;
}
return 0;
}
static enum enum_thr_lock_result
wait_for_lock(struct st_lock_list *wait, THR_LOCK_DATA *data,
my_bool in_wait_list)
{
struct st_my_thread_var *thread_var= my_thread_var;
pthread_cond_t *cond= &thread_var->suspend;
struct timespec wait_timeout;
enum enum_thr_lock_result result= THR_LOCK_ABORTED;
my_bool can_deadlock= test(data->owner->info->n_cursors);
if (!in_wait_list)
{
(*wait->last)=data; /* Wait for lock */
data->prev= wait->last;
wait->last= &data->next;
}
/* Set up control struct to allow others to abort locks */
thread_var->current_mutex= &data->lock->mutex;
thread_var->current_cond= cond;
data->cond= cond;
if (can_deadlock)
set_timespec(wait_timeout, table_lock_wait_timeout);
while (!thread_var->abort || in_wait_list)
{
int rc= (can_deadlock ?
pthread_cond_timedwait(cond, &data->lock->mutex,
&wait_timeout) :
pthread_cond_wait(cond, &data->lock->mutex));
/*
We must break the wait if one of the following occurs:
- the connection has been aborted (!thread_var->abort), but
this is not a delayed insert thread (in_wait_list). For a delayed
insert thread the proper action at shutdown is, apparently, to
acquire the lock and complete the insert.
- the lock has been granted (data->cond is set to NULL by the granter),
or the waiting has been aborted (additionally data->type is set to
TL_UNLOCK).
- the wait has timed out (rc == ETIMEDOUT)
Order of checks below is important to not report about timeout
if the predicate is true.
*/
if (data->cond == 0)
break;
if (rc == ETIMEDOUT || rc == ETIME)
{
result= THR_LOCK_WAIT_TIMEOUT;
break;
}
}
if (data->cond || data->type == TL_UNLOCK)
{
if (data->cond) /* aborted or timed out */
{
if (((*data->prev)=data->next)) /* remove from wait-list */
data->next->prev= data->prev;
else
wait->last=data->prev;
data->type= TL_UNLOCK; /* No lock */
}
check_locks(data->lock,"failed wait_for_lock",0);
}
else
{
result= THR_LOCK_SUCCESS;
statistic_increment(locks_waited, &THR_LOCK_lock);
if (data->lock->get_status)
(*data->lock->get_status)(data->status_param, 0);
check_locks(data->lock,"got wait_for_lock",0);
}
pthread_mutex_unlock(&data->lock->mutex);
/* The following must be done after unlock of lock->mutex */
pthread_mutex_lock(&thread_var->mutex);
thread_var->current_mutex= 0;
thread_var->current_cond= 0;
pthread_mutex_unlock(&thread_var->mutex);
return result;
}
enum enum_thr_lock_result
thr_lock(THR_LOCK_DATA *data, THR_LOCK_OWNER *owner,
enum thr_lock_type lock_type)
{
THR_LOCK *lock=data->lock;
enum enum_thr_lock_result result= THR_LOCK_SUCCESS;
struct st_lock_list *wait_queue;
THR_LOCK_DATA *lock_owner;
DBUG_ENTER("thr_lock");
data->next=0;
data->cond=0; /* safety */
data->type=lock_type;
data->owner= owner; /* Must be reset ! */
VOID(pthread_mutex_lock(&lock->mutex));
DBUG_PRINT("lock",("data: 0x%lx thread: 0x%lx lock: 0x%lx type: %d",
(long) data, data->owner->info->thread_id,
(long) lock, (int) lock_type));
check_locks(lock,(uint) lock_type <= (uint) TL_READ_NO_INSERT ?
"enter read_lock" : "enter write_lock",0);
if ((int) lock_type <= (int) TL_READ_NO_INSERT)
{
/* Request for READ lock */
if (lock->write.data)
{
/* We can allow a read lock even if there is already a write lock
on the table in one the following cases:
- This thread alread have a write lock on the table
- The write lock is TL_WRITE_ALLOW_READ or TL_WRITE_DELAYED
and the read lock is TL_READ_HIGH_PRIORITY or TL_READ
- The write lock is TL_WRITE_CONCURRENT_INSERT or TL_WRITE_ALLOW_WRITE
and the read lock is not TL_READ_NO_INSERT
*/
DBUG_PRINT("lock",("write locked by thread: 0x%lx",
lock->write.data->owner->info->thread_id));
if (thr_lock_owner_equal(data->owner, lock->write.data->owner) ||
(lock->write.data->type <= TL_WRITE_DELAYED &&
(((int) lock_type <= (int) TL_READ_HIGH_PRIORITY) ||
(lock->write.data->type != TL_WRITE_CONCURRENT_INSERT &&
lock->write.data->type != TL_WRITE_ALLOW_READ))))
{ /* Already got a write lock */
(*lock->read.last)=data; /* Add to running FIFO */
data->prev=lock->read.last;
lock->read.last= &data->next;
if (lock_type == TL_READ_NO_INSERT)
lock->read_no_write_count++;
check_locks(lock,"read lock with old write lock",0);
if (lock->get_status)
(*lock->get_status)(data->status_param, 0);
statistic_increment(locks_immediate,&THR_LOCK_lock);
goto end;
}
if (lock->write.data->type == TL_WRITE_ONLY)
{
/* We are not allowed to get a READ lock in this case */
data->type=TL_UNLOCK;
result= THR_LOCK_ABORTED; /* Can't wait for this one */
goto end;
}
}
else if (!lock->write_wait.data ||
lock->write_wait.data->type <= TL_WRITE_LOW_PRIORITY ||
lock_type == TL_READ_HIGH_PRIORITY ||
have_old_read_lock(lock->read.data, data->owner))
{ /* No important write-locks */
(*lock->read.last)=data; /* Add to running FIFO */
data->prev=lock->read.last;
lock->read.last= &data->next;
if (lock->get_status)
(*lock->get_status)(data->status_param, 0);
if (lock_type == TL_READ_NO_INSERT)
lock->read_no_write_count++;
check_locks(lock,"read lock with no write locks",0);
statistic_increment(locks_immediate,&THR_LOCK_lock);
goto end;
}
/*
We're here if there is an active write lock or no write
lock but a high priority write waiting in the write_wait queue.
In the latter case we should yield the lock to the writer.
*/
wait_queue= &lock->read_wait;
}
else /* Request for WRITE lock */
{
if (lock_type == TL_WRITE_DELAYED)
{
if (lock->write.data && lock->write.data->type == TL_WRITE_ONLY)
{
data->type=TL_UNLOCK;
result= THR_LOCK_ABORTED; /* Can't wait for this one */
goto end;
}
/*
if there is a TL_WRITE_ALLOW_READ lock, we have to wait for a lock
(TL_WRITE_ALLOW_READ is used for ALTER TABLE in MySQL)
*/
if ((!lock->write.data ||
lock->write.data->type != TL_WRITE_ALLOW_READ) &&
!have_specific_lock(lock->write_wait.data,TL_WRITE_ALLOW_READ) &&
(lock->write.data || lock->read.data))
{
/* Add delayed write lock to write_wait queue, and return at once */
(*lock->write_wait.last)=data;
data->prev=lock->write_wait.last;
lock->write_wait.last= &data->next;
data->cond=get_cond();
/*
We don't have to do get_status here as we will do it when we change
the delayed lock to a real write lock
*/
statistic_increment(locks_immediate,&THR_LOCK_lock);
goto end;
}
}
else if (lock_type == TL_WRITE_CONCURRENT_INSERT && ! lock->check_status)
data->type=lock_type= thr_upgraded_concurrent_insert_lock;
if (lock->write.data) /* If there is a write lock */
{
if (lock->write.data->type == TL_WRITE_ONLY)
{
/* We are not allowed to get a lock in this case */
data->type=TL_UNLOCK;
result= THR_LOCK_ABORTED; /* Can't wait for this one */
goto end;
}
/*
The following test will not work if the old lock was a
TL_WRITE_ALLOW_WRITE, TL_WRITE_ALLOW_READ or TL_WRITE_DELAYED in
the same thread, but this will never happen within MySQL.
*/
if (thr_lock_owner_equal(data->owner, lock->write.data->owner) ||
(lock_type == TL_WRITE_ALLOW_WRITE &&
!lock->write_wait.data &&
lock->write.data->type == TL_WRITE_ALLOW_WRITE))
{
/*
We have already got a write lock or all locks are
TL_WRITE_ALLOW_WRITE
*/
DBUG_PRINT("info", ("write_wait.data: 0x%lx old_type: %d",
(ulong) lock->write_wait.data,
lock->write.data->type));
(*lock->write.last)=data; /* Add to running fifo */
data->prev=lock->write.last;
lock->write.last= &data->next;
check_locks(lock,"second write lock",0);
if (data->lock->get_status)
(*data->lock->get_status)(data->status_param, 0);
statistic_increment(locks_immediate,&THR_LOCK_lock);
goto end;
}
/* purecov: begin inspected */
DBUG_PRINT("lock",("write locked by thread: 0x%lx",
lock->write.data->owner->info->thread_id));
/* purecov: end */
}
else
{
DBUG_PRINT("info", ("write_wait.data: 0x%lx",
(ulong) lock->write_wait.data));
if (!lock->write_wait.data)
{ /* no scheduled write locks */
my_bool concurrent_insert= 0;
if (lock_type == TL_WRITE_CONCURRENT_INSERT)
{
concurrent_insert= 1;
if ((*lock->check_status)(data->status_param))
{
concurrent_insert= 0;
data->type=lock_type= thr_upgraded_concurrent_insert_lock;
}
}
if (!lock->read.data ||
(lock_type <= TL_WRITE_DELAYED &&
((lock_type != TL_WRITE_CONCURRENT_INSERT &&
lock_type != TL_WRITE_ALLOW_WRITE) ||
!lock->read_no_write_count)))
{
(*lock->write.last)=data; /* Add as current write lock */
data->prev=lock->write.last;
lock->write.last= &data->next;
if (data->lock->get_status)
(*data->lock->get_status)(data->status_param, concurrent_insert);
check_locks(lock,"only write lock",0);
statistic_increment(locks_immediate,&THR_LOCK_lock);
goto end;
}
}
DBUG_PRINT("lock",("write locked by thread: 0x%lx type: %d",
lock->read.data->owner->info->thread_id, data->type));
}
wait_queue= &lock->write_wait;
}
/*
Try to detect a trivial deadlock when using cursors: attempt to
lock a table that is already locked by an open cursor within the
same connection. lock_owner can be zero if we succumbed to a high
priority writer in the write_wait queue.
*/
lock_owner= lock->read.data ? lock->read.data : lock->write.data;
if (lock_owner && lock_owner->owner->info == owner->info)
{
result= THR_LOCK_DEADLOCK;
goto end;
}
/* Can't get lock yet; Wait for it */
DBUG_RETURN(wait_for_lock(wait_queue, data, 0));
end:
pthread_mutex_unlock(&lock->mutex);
DBUG_RETURN(result);
}
static inline void free_all_read_locks(THR_LOCK *lock,
bool using_concurrent_insert)
{
THR_LOCK_DATA *data=lock->read_wait.data;
check_locks(lock,"before freeing read locks",1);
/* move all locks from read_wait list to read list */
(*lock->read.last)=data;
data->prev=lock->read.last;
lock->read.last=lock->read_wait.last;
/* Clear read_wait list */
lock->read_wait.last= &lock->read_wait.data;
do
{
pthread_cond_t *cond=data->cond;
if ((int) data->type == (int) TL_READ_NO_INSERT)
{
if (using_concurrent_insert)
{
/*
We can't free this lock;
Link lock away from read chain back into read_wait chain
*/
if (((*data->prev)=data->next))
data->next->prev=data->prev;
else
lock->read.last=data->prev;
*lock->read_wait.last= data;
data->prev= lock->read_wait.last;
lock->read_wait.last= &data->next;
continue;
}
lock->read_no_write_count++;
}
/* purecov: begin inspected */
DBUG_PRINT("lock",("giving read lock to thread: 0x%lx",
data->owner->info->thread_id));
/* purecov: end */
data->cond=0; /* Mark thread free */
VOID(pthread_cond_signal(cond));
} while ((data=data->next));
*lock->read_wait.last=0;
if (!lock->read_wait.data)
lock->write_lock_count=0;
check_locks(lock,"after giving read locks",0);
}
/* Unlock lock and free next thread on same lock */
void thr_unlock(THR_LOCK_DATA *data)
{
THR_LOCK *lock=data->lock;
enum thr_lock_type lock_type=data->type;
DBUG_ENTER("thr_unlock");
DBUG_PRINT("lock",("data: 0x%lx thread: 0x%lx lock: 0x%lx",
(long) data, data->owner->info->thread_id, (long) lock));
pthread_mutex_lock(&lock->mutex);
check_locks(lock,"start of release lock",0);
if (((*data->prev)=data->next)) /* remove from lock-list */
data->next->prev= data->prev;
else if (lock_type <= TL_READ_NO_INSERT)
lock->read.last=data->prev;
else if (lock_type == TL_WRITE_DELAYED && data->cond)
{
/*
This only happens in extreme circumstances when a
write delayed lock that is waiting for a lock
*/
lock->write_wait.last=data->prev; /* Put it on wait queue */
}
else
lock->write.last=data->prev;
if (lock_type >= TL_WRITE_CONCURRENT_INSERT)
{
if (lock->update_status)
(*lock->update_status)(data->status_param);
}
else
{
if (lock->restore_status)
(*lock->restore_status)(data->status_param);
}
if (lock_type == TL_READ_NO_INSERT)
lock->read_no_write_count--;
data->type=TL_UNLOCK; /* Mark unlocked */
check_locks(lock,"after releasing lock",1);
if (!lock->write.data) /* If no active write locks */
{
data=lock->write_wait.data;
if (!lock->read.data) /* If no more locks in use */
{
/* Release write-locks with TL_WRITE or TL_WRITE_ONLY priority first */
if (data &&
(data->type != TL_WRITE_LOW_PRIORITY || !lock->read_wait.data ||
lock->read_wait.data->type < TL_READ_HIGH_PRIORITY))
{
if (lock->write_lock_count++ > max_write_lock_count)
{
/* Too many write locks in a row; Release all waiting read locks */
lock->write_lock_count=0;
if (lock->read_wait.data)
{
DBUG_PRINT("info",("Freeing all read_locks because of max_write_lock_count"));
free_all_read_locks(lock,0);
goto end;
}
}
for (;;)
{
if (((*data->prev)=data->next)) /* remove from wait-list */
data->next->prev= data->prev;
else
lock->write_wait.last=data->prev;
(*lock->write.last)=data; /* Put in execute list */
data->prev=lock->write.last;
data->next=0;
lock->write.last= &data->next;
if (data->type == TL_WRITE_CONCURRENT_INSERT &&
(*lock->check_status)(data->status_param))
data->type=TL_WRITE; /* Upgrade lock */
/* purecov: begin inspected */
DBUG_PRINT("lock",("giving write lock of type %d to thread: 0x%lx",
data->type, data->owner->info->thread_id));
/* purecov: end */
{
pthread_cond_t *cond=data->cond;
data->cond=0; /* Mark thread free */
VOID(pthread_cond_signal(cond)); /* Start waiting thread */
}
if (data->type != TL_WRITE_ALLOW_WRITE ||
!lock->write_wait.data ||
lock->write_wait.data->type != TL_WRITE_ALLOW_WRITE)
break;
data=lock->write_wait.data; /* Free this too */
}
if (data->type >= TL_WRITE_LOW_PRIORITY)
{
check_locks(lock,"giving write lock",0);
pthread_mutex_unlock(&lock->mutex);
DBUG_VOID_RETURN;
}
/* Release possible read locks together with the write lock */
}
if (lock->read_wait.data)
free_all_read_locks(lock,
data &&
(data->type == TL_WRITE_CONCURRENT_INSERT ||
data->type == TL_WRITE_ALLOW_WRITE));
else
{
DBUG_PRINT("lock",("No waiting read locks to free"));
}
}
else if (data &&
(lock_type=data->type) <= TL_WRITE_DELAYED &&
((lock_type != TL_WRITE_CONCURRENT_INSERT &&
lock_type != TL_WRITE_ALLOW_WRITE) ||
!lock->read_no_write_count))
{
/*
For DELAYED, ALLOW_READ, WRITE_ALLOW_WRITE or CONCURRENT_INSERT locks
start WRITE locks together with the READ locks
*/
if (lock_type == TL_WRITE_CONCURRENT_INSERT &&
(*lock->check_status)(data->status_param))
{
data->type=TL_WRITE; /* Upgrade lock */
if (lock->read_wait.data)
free_all_read_locks(lock,0);
goto end;
}
do {
pthread_cond_t *cond=data->cond;
if (((*data->prev)=data->next)) /* remove from wait-list */
data->next->prev= data->prev;
else
lock->write_wait.last=data->prev;
(*lock->write.last)=data; /* Put in execute list */
data->prev=lock->write.last;
lock->write.last= &data->next;
data->next=0; /* Only one write lock */
data->cond=0; /* Mark thread free */
VOID(pthread_cond_signal(cond)); /* Start waiting thread */
} while (lock_type == TL_WRITE_ALLOW_WRITE &&
(data=lock->write_wait.data) &&
data->type == TL_WRITE_ALLOW_WRITE);
if (lock->read_wait.data)
free_all_read_locks(lock,
(lock_type == TL_WRITE_CONCURRENT_INSERT ||
lock_type == TL_WRITE_ALLOW_WRITE));
}
else if (!data && lock->read_wait.data)
free_all_read_locks(lock,0);
}
end:
check_locks(lock,"thr_unlock",0);
pthread_mutex_unlock(&lock->mutex);
DBUG_VOID_RETURN;
}
/*
** Get all locks in a specific order to avoid dead-locks
** Sort acording to lock position and put write_locks before read_locks if
** lock on same lock.
*/
#define LOCK_CMP(A,B) ((byte*) (A->lock) - (uint) ((A)->type) < (byte*) (B->lock)- (uint) ((B)->type))
static void sort_locks(THR_LOCK_DATA **data,uint count)
{
THR_LOCK_DATA **pos,**end,**prev,*tmp;
/* Sort locks with insertion sort (fast because almost always few locks) */
for (pos=data+1,end=data+count; pos < end ; pos++)
{
tmp= *pos;
if (LOCK_CMP(tmp,pos[-1]))
{
prev=pos;
do {
prev[0]=prev[-1];
} while (--prev != data && LOCK_CMP(tmp,prev[-1]));
prev[0]=tmp;
}
}
}
enum enum_thr_lock_result
thr_multi_lock(THR_LOCK_DATA **data, uint count, THR_LOCK_OWNER *owner)
{
THR_LOCK_DATA **pos,**end;
DBUG_ENTER("thr_multi_lock");
DBUG_PRINT("lock",("data: 0x%lx count: %d", (long) data, count));
if (count > 1)
sort_locks(data,count);
/* lock everything */
for (pos=data,end=data+count; pos < end ; pos++)
{
enum enum_thr_lock_result result= thr_lock(*pos, owner, (*pos)->type);
if (result != THR_LOCK_SUCCESS)
{ /* Aborted */
thr_multi_unlock(data,(uint) (pos-data));
DBUG_RETURN(result);
}
#ifdef MAIN
printf("Thread: %s Got lock: 0x%lx type: %d\n",my_thread_name(),
(long) pos[0]->lock, pos[0]->type); fflush(stdout);
#endif
}
/*
Ensure that all get_locks() have the same status
If we lock the same table multiple times, we must use the same
status_param!
*/
#if !defined(DONT_USE_RW_LOCKS)
if (count > 1)
{
THR_LOCK_DATA *last_lock= end[-1];
pos=end-1;
do
{
pos--;
if (last_lock->lock == (*pos)->lock &&
last_lock->lock->copy_status)
{
if (last_lock->type <= TL_READ_NO_INSERT)
{
THR_LOCK_DATA **read_lock;
/*
If we are locking the same table with read locks we must ensure
that all tables share the status of the last write lock or
the same read lock.
*/
for (;
(*pos)->type <= TL_READ_NO_INSERT &&
pos != data &&
pos[-1]->lock == (*pos)->lock ;
pos--) ;
read_lock = pos+1;
do
{
(last_lock->lock->copy_status)((*read_lock)->status_param,
(*pos)->status_param);
} while (*(read_lock++) != last_lock);
last_lock= (*pos); /* Point at last write lock */
}
else
(*last_lock->lock->copy_status)((*pos)->status_param,
last_lock->status_param);
}
else
last_lock=(*pos);
} while (pos != data);
}
#endif
DBUG_RETURN(THR_LOCK_SUCCESS);
}
/* free all locks */
void thr_multi_unlock(THR_LOCK_DATA **data,uint count)
{
THR_LOCK_DATA **pos,**end;
DBUG_ENTER("thr_multi_unlock");
DBUG_PRINT("lock",("data: 0x%lx count: %d", (long) data, count));
for (pos=data,end=data+count; pos < end ; pos++)
{
#ifdef MAIN
printf("Thread: %s Rel lock: 0x%lx type: %d\n",
my_thread_name(), (long) pos[0]->lock, pos[0]->type);
fflush(stdout);
#endif
if ((*pos)->type != TL_UNLOCK)
thr_unlock(*pos);
else
{
DBUG_PRINT("lock",("Free lock: data: 0x%lx thread: 0x%lx lock: 0x%lx",
(long) *pos, (*pos)->owner->info->thread_id,
(long) (*pos)->lock));
}
}
DBUG_VOID_RETURN;
}
/*
Abort all threads waiting for a lock. The lock will be upgraded to
TL_WRITE_ONLY to abort any new accesses to the lock
*/
void thr_abort_locks(THR_LOCK *lock, bool upgrade_lock)
{
THR_LOCK_DATA *data;
DBUG_ENTER("thr_abort_locks");
pthread_mutex_lock(&lock->mutex);
for (data=lock->read_wait.data; data ; data=data->next)
{
data->type=TL_UNLOCK; /* Mark killed */
/* It's safe to signal the cond first: we're still holding the mutex. */
pthread_cond_signal(data->cond);
data->cond=0; /* Removed from list */
}
for (data=lock->write_wait.data; data ; data=data->next)
{
data->type=TL_UNLOCK;
pthread_cond_signal(data->cond);
data->cond=0;
}
lock->read_wait.last= &lock->read_wait.data;
lock->write_wait.last= &lock->write_wait.data;
lock->read_wait.data=lock->write_wait.data=0;
if (upgrade_lock && lock->write.data)
lock->write.data->type=TL_WRITE_ONLY;
pthread_mutex_unlock(&lock->mutex);
DBUG_VOID_RETURN;
}
/*
Abort all locks for specific table/thread combination
This is used to abort all locks for a specific thread
*/
my_bool thr_abort_locks_for_thread(THR_LOCK *lock, my_thread_id thread_id)
{
THR_LOCK_DATA *data;
my_bool found= FALSE;
DBUG_ENTER("thr_abort_locks_for_thread");
pthread_mutex_lock(&lock->mutex);
for (data= lock->read_wait.data; data ; data= data->next)
{
if (data->owner->info->thread_id == thread_id) /* purecov: tested */
{
DBUG_PRINT("info",("Aborting read-wait lock"));
data->type= TL_UNLOCK; /* Mark killed */
/* It's safe to signal the cond first: we're still holding the mutex. */
found= TRUE;
pthread_cond_signal(data->cond);
data->cond= 0; /* Removed from list */
if (((*data->prev)= data->next))
data->next->prev= data->prev;
else
lock->read_wait.last= data->prev;
}
}
for (data= lock->write_wait.data; data ; data= data->next)
{
if (data->owner->info->thread_id == thread_id) /* purecov: tested */
{
DBUG_PRINT("info",("Aborting write-wait lock"));
data->type= TL_UNLOCK;
found= TRUE;
pthread_cond_signal(data->cond);
data->cond= 0;
if (((*data->prev)= data->next))
data->next->prev= data->prev;
else
lock->write_wait.last= data->prev;
}
}
pthread_mutex_unlock(&lock->mutex);
DBUG_RETURN(found);
}
/*
Downgrade a WRITE_* to a lower WRITE level
SYNOPSIS
thr_downgrade_write_lock()
in_data Lock data of thread downgrading its lock
new_lock_type New write lock type
RETURN VALUE
NONE
DESCRIPTION
This can be used to downgrade a lock already owned. When the downgrade
occurs also other waiters, both readers and writers can be allowed to
start.
The previous lock is often TL_WRITE_ONLY but can also be
TL_WRITE and TL_WRITE_ALLOW_READ. The normal downgrade variants are
TL_WRITE_ONLY => TL_WRITE_ALLOW_READ After a short exclusive lock
TL_WRITE_ALLOW_READ => TL_WRITE_ALLOW_WRITE After discovering that the
operation didn't need such a high lock.
TL_WRITE_ONLY => TL_WRITE after a short exclusive lock while holding a
write table lock
TL_WRITE_ONLY => TL_WRITE_ALLOW_WRITE After a short exclusive lock after
already earlier having dongraded lock to TL_WRITE_ALLOW_WRITE
The implementation is conservative and rather don't start rather than
go on unknown paths to start, the common cases are handled.
NOTE:
In its current implementation it is only allowed to downgrade from
TL_WRITE_ONLY. In this case there are no waiters. Thus no wake up
logic is required.
*/
void thr_downgrade_write_lock(THR_LOCK_DATA *in_data,
enum thr_lock_type new_lock_type)
{
THR_LOCK *lock=in_data->lock;
#ifndef DBUG_OFF
enum thr_lock_type old_lock_type= in_data->type;
#endif
#ifdef TO_BE_REMOVED
THR_LOCK_DATA *data, *next;
bool start_writers= FALSE;
bool start_readers= FALSE;
#endif
DBUG_ENTER("thr_downgrade_write_only_lock");
pthread_mutex_lock(&lock->mutex);
DBUG_ASSERT(old_lock_type == TL_WRITE_ONLY);
DBUG_ASSERT(old_lock_type > new_lock_type);
in_data->type= new_lock_type;
check_locks(lock,"after downgrading lock",0);
#if TO_BE_REMOVED
switch (old_lock_type)
{
case TL_WRITE_ONLY:
case TL_WRITE:
case TL_WRITE_LOW_PRIORITY:
/*
Previous lock was exclusive we are now ready to start up most waiting
threads.
*/
switch (new_lock_type)
{
case TL_WRITE_ALLOW_READ:
/* Still cannot start WRITE operations. Can only start readers. */
start_readers= TRUE;
break;
case TL_WRITE:
case TL_WRITE_LOW_PRIORITY:
/*
Still cannot start anything, but new requests are no longer
aborted.
*/
break;
case TL_WRITE_ALLOW_WRITE:
/*
We can start both writers and readers.
*/
start_writers= TRUE;
start_readers= TRUE;
break;
case TL_WRITE_CONCURRENT_INSERT:
case TL_WRITE_DELAYED:
/*
This routine is not designed for those. Lock will be downgraded
but no start of waiters will occur. This is not the optimal but
should be a correct behaviour.
*/
break;
default:
DBUG_ASSERT(0);
}
break;
case TL_WRITE_DELAYED:
case TL_WRITE_CONCURRENT_INSERT:
/*
This routine is not designed for those. Lock will be downgraded
but no start of waiters will occur. This is not the optimal but
should be a correct behaviour.
*/
break;
case TL_WRITE_ALLOW_READ:
DBUG_ASSERT(new_lock_type == TL_WRITE_ALLOW_WRITE);
/*
Previously writers were not allowed to start, now it is ok to
start them again. Readers are already allowed so no reason to
handle them.
*/
start_writers= TRUE;
break;
default:
DBUG_ASSERT(0);
break;
}
if (start_writers)
{
/*
At this time the only active writer can be ourselves. Thus we need
not worry about that there are other concurrent write operations
active on the table. Thus we only need to worry about starting
waiting operations.
We also only come here with TL_WRITE_ALLOW_WRITE as the new
lock type, thus we can start other writers also of the same type.
If we find a lock at exclusive level >= TL_WRITE_LOW_PRIORITY we
don't start any more operations that would be mean those operations
will have to wait for things started afterwards.
*/
DBUG_ASSERT(new_lock_type == TL_WRITE_ALLOW_WRITE);
for (data=lock->write_wait.data; data ; data= next)
{
/*
All WRITE requests compatible with new lock type are also
started
*/
next= data->next;
if (start_writers && data->type == new_lock_type)
{
pthread_cond_t *cond= data->cond;
/*
It is ok to start this waiter.
Move from being first in wait queue to be last in write queue.
*/
if (((*data->prev)= data->next))
data->next->prev= data->prev;
else
lock->write_wait.last= data->prev;
data->prev= lock->write.last;
lock->write.last= &data->next;
data->next= 0;
check_locks(lock, "Started write lock after downgrade",0);
data->cond= 0;
pthread_cond_signal(cond);
}
else
{
/*
We found an incompatible lock, we won't start any more write
requests to avoid letting writers pass other writers in the
queue.
*/
start_writers= FALSE;
if (data->type >= TL_WRITE_LOW_PRIORITY)
{
/*
We have an exclusive writer in the queue so we won't start
readers either.
*/
start_readers= FALSE;
}
}
}
}
if (start_readers)
{
DBUG_ASSERT(new_lock_type == TL_WRITE_ALLOW_WRITE ||
new_lock_type == TL_WRITE_ALLOW_READ);
/*
When we come here we know that the write locks are
TL_WRITE_ALLOW_WRITE or TL_WRITE_ALLOW_READ. This means that reads
are ok
*/
for (data=lock->read_wait.data; data ; data=next)
{
next= data->next;
/*
All reads are ok to start now except TL_READ_NO_INSERT when
write lock is TL_WRITE_ALLOW_READ.
*/
if (new_lock_type != TL_WRITE_ALLOW_READ ||
data->type != TL_READ_NO_INSERT)
{
pthread_cond_t *cond= data->cond;
if (((*data->prev)= data->next))
data->next->prev= data->prev;
else
lock->read_wait.last= data->prev;
data->prev= lock->read.last;
lock->read.last= &data->next;
data->next= 0;
if (data->type == TL_READ_NO_INSERT)
lock->read_no_write_count++;
check_locks(lock, "Started read lock after downgrade",0);
data->cond= 0;
pthread_cond_signal(cond);
}
}
}
check_locks(lock,"after starting waiters after downgrading lock",0);
#endif
pthread_mutex_unlock(&lock->mutex);
DBUG_VOID_RETURN;
}
/* Upgrade a WRITE_DELAY lock to a WRITE_LOCK */
my_bool thr_upgrade_write_delay_lock(THR_LOCK_DATA *data)
{
THR_LOCK *lock=data->lock;
DBUG_ENTER("thr_upgrade_write_delay_lock");
pthread_mutex_lock(&lock->mutex);
if (data->type == TL_UNLOCK || data->type >= TL_WRITE_LOW_PRIORITY)
{
pthread_mutex_unlock(&lock->mutex);
DBUG_RETURN(data->type == TL_UNLOCK); /* Test if Aborted */
}
check_locks(lock,"before upgrading lock",0);
/* TODO: Upgrade to TL_WRITE_CONCURRENT_INSERT in some cases */
data->type=TL_WRITE; /* Upgrade lock */
/* Check if someone has given us the lock */
if (!data->cond)
{
if (!lock->read.data) /* No read locks */
{ /* We have the lock */
if (data->lock->get_status)
(*data->lock->get_status)(data->status_param, 0);
pthread_mutex_unlock(&lock->mutex);
DBUG_RETURN(0);
}
if (((*data->prev)=data->next)) /* remove from lock-list */
data->next->prev= data->prev;
else
lock->write.last=data->prev;
if ((data->next=lock->write_wait.data)) /* Put first in lock_list */
data->next->prev= &data->next;
else
lock->write_wait.last= &data->next;
data->prev= &lock->write_wait.data;
lock->write_wait.data=data;
check_locks(lock,"upgrading lock",0);
}
else
{
check_locks(lock,"waiting for lock",0);
}
DBUG_RETURN(wait_for_lock(&lock->write_wait,data,1));
}
/* downgrade a WRITE lock to a WRITE_DELAY lock if there is pending locks */
my_bool thr_reschedule_write_lock(THR_LOCK_DATA *data)
{
THR_LOCK *lock=data->lock;
DBUG_ENTER("thr_reschedule_write_lock");
pthread_mutex_lock(&lock->mutex);
if (!lock->read_wait.data) /* No waiting read locks */
{
pthread_mutex_unlock(&lock->mutex);
DBUG_RETURN(0);
}
data->type=TL_WRITE_DELAYED;
if (lock->update_status)
(*lock->update_status)(data->status_param);
if (((*data->prev)=data->next)) /* remove from lock-list */
data->next->prev= data->prev;
else
lock->write.last=data->prev;
if ((data->next=lock->write_wait.data)) /* Put first in lock_list */
data->next->prev= &data->next;
else
lock->write_wait.last= &data->next;
data->prev= &lock->write_wait.data;
data->cond=get_cond(); /* This was zero */
lock->write_wait.data=data;
free_all_read_locks(lock,0);
pthread_mutex_unlock(&lock->mutex);
DBUG_RETURN(thr_upgrade_write_delay_lock(data));
}
#include <my_sys.h>
static void thr_print_lock(const char* name,struct st_lock_list *list)
{
THR_LOCK_DATA *data,**prev;
uint count=0;
if (list->data)
{
printf("%-10s: ",name);
prev= &list->data;
for (data=list->data; data && count++ < MAX_LOCKS ; data=data->next)
{
printf("0x%lx (%lu:%d); ", (ulong) data, data->owner->info->thread_id,
(int) data->type);
if (data->prev != prev)
printf("\nWarning: prev didn't point at previous lock\n");
prev= &data->next;
}
puts("");
if (prev != list->last)
printf("Warning: last didn't point at last lock\n");
}
}
void thr_print_locks(void)
{
LIST *list;
uint count=0;
pthread_mutex_lock(&THR_LOCK_lock);
puts("Current locks:");
for (list= thr_lock_thread_list; list && count++ < MAX_THREADS;
list= list_rest(list))
{
THR_LOCK *lock=(THR_LOCK*) list->data;
VOID(pthread_mutex_lock(&lock->mutex));
printf("lock: 0x%lx:",(ulong) lock);
if ((lock->write_wait.data || lock->read_wait.data) &&
(! lock->read.data && ! lock->write.data))
printf(" WARNING: ");
if (lock->write.data)
printf(" write");
if (lock->write_wait.data)
printf(" write_wait");
if (lock->read.data)
printf(" read");
if (lock->read_wait.data)
printf(" read_wait");
puts("");
thr_print_lock("write",&lock->write);
thr_print_lock("write_wait",&lock->write_wait);
thr_print_lock("read",&lock->read);
thr_print_lock("read_wait",&lock->read_wait);
VOID(pthread_mutex_unlock(&lock->mutex));
puts("");
}
fflush(stdout);
pthread_mutex_unlock(&THR_LOCK_lock);
}
#endif /* THREAD */
/*****************************************************************************
** Test of thread locks
****************************************************************************/
#ifdef MAIN
#ifdef THREAD
struct st_test {
uint lock_nr;
enum thr_lock_type lock_type;
};
THR_LOCK locks[5]; /* 4 locks */
struct st_test test_0[] = {{0,TL_READ}}; /* One lock */
struct st_test test_1[] = {{0,TL_READ},{0,TL_WRITE}}; /* Read and write lock of lock 0 */
struct st_test test_2[] = {{1,TL_WRITE},{0,TL_READ},{2,TL_READ}};
struct st_test test_3[] = {{2,TL_WRITE},{1,TL_READ},{0,TL_READ}}; /* Deadlock with test_2 ? */
struct st_test test_4[] = {{0,TL_WRITE},{0,TL_READ},{0,TL_WRITE},{0,TL_READ}};
struct st_test test_5[] = {{0,TL_READ},{1,TL_READ},{2,TL_READ},{3,TL_READ}}; /* Many reads */
struct st_test test_6[] = {{0,TL_WRITE},{1,TL_WRITE},{2,TL_WRITE},{3,TL_WRITE}}; /* Many writes */
struct st_test test_7[] = {{3,TL_READ}};
struct st_test test_8[] = {{1,TL_READ_NO_INSERT},{2,TL_READ_NO_INSERT},{3,TL_READ_NO_INSERT}}; /* Should be quick */
struct st_test test_9[] = {{4,TL_READ_HIGH_PRIORITY}};
struct st_test test_10[] ={{4,TL_WRITE}};
struct st_test test_11[] = {{0,TL_WRITE_LOW_PRIORITY},{1,TL_WRITE_LOW_PRIORITY},{2,TL_WRITE_LOW_PRIORITY},{3,TL_WRITE_LOW_PRIORITY}}; /* Many writes */
struct st_test test_12[] = {{0,TL_WRITE_ALLOW_READ},{1,TL_WRITE_ALLOW_READ},{2,TL_WRITE_ALLOW_READ},{3,TL_WRITE_ALLOW_READ}}; /* Many writes */
struct st_test test_13[] = {{0,TL_WRITE_CONCURRENT_INSERT},{1,TL_WRITE_CONCURRENT_INSERT},{2,TL_WRITE_CONCURRENT_INSERT},{3,TL_WRITE_CONCURRENT_INSERT}};
struct st_test test_14[] = {{0,TL_WRITE_CONCURRENT_INSERT},{1,TL_READ}};
struct st_test test_15[] = {{0,TL_WRITE_ALLOW_WRITE},{1,TL_READ}};
struct st_test test_16[] = {{0,TL_WRITE_ALLOW_WRITE},{1,TL_WRITE_ALLOW_WRITE}};
struct st_test *tests[] = {test_0,test_1,test_2,test_3,test_4,test_5,test_6,
test_7,test_8,test_9,test_10,test_11,test_12,
test_13,test_14,test_15,test_16};
int lock_counts[]= {sizeof(test_0)/sizeof(struct st_test),
sizeof(test_1)/sizeof(struct st_test),
sizeof(test_2)/sizeof(struct st_test),
sizeof(test_3)/sizeof(struct st_test),
sizeof(test_4)/sizeof(struct st_test),
sizeof(test_5)/sizeof(struct st_test),
sizeof(test_6)/sizeof(struct st_test),
sizeof(test_7)/sizeof(struct st_test),
sizeof(test_8)/sizeof(struct st_test),
sizeof(test_9)/sizeof(struct st_test),
sizeof(test_10)/sizeof(struct st_test),
sizeof(test_11)/sizeof(struct st_test),
sizeof(test_12)/sizeof(struct st_test),
sizeof(test_13)/sizeof(struct st_test),
sizeof(test_14)/sizeof(struct st_test),
sizeof(test_15)/sizeof(struct st_test),
sizeof(test_16)/sizeof(struct st_test)
};
static pthread_cond_t COND_thread_count;
static pthread_mutex_t LOCK_thread_count;
static uint thread_count;
static ulong sum=0;
#define MAX_LOCK_COUNT 8
/* The following functions is for WRITE_CONCURRENT_INSERT */
static void test_get_status(void* param __attribute__((unused)),
int concurrent_insert __attribute__((unused)))
{
}
static void test_update_status(void* param __attribute__((unused)))
{
}
static void test_copy_status(void* to __attribute__((unused)) ,
void *from __attribute__((unused)))
{
}
static my_bool test_check_status(void* param __attribute__((unused)))
{
return 0;
}
static void *test_thread(void *arg)
{
int i,j,param=*((int*) arg);
THR_LOCK_DATA data[MAX_LOCK_COUNT];
THR_LOCK_OWNER owner;
THR_LOCK_INFO lock_info;
THR_LOCK_DATA *multi_locks[MAX_LOCK_COUNT];
my_thread_init();
printf("Thread %s (%d) started\n",my_thread_name(),param); fflush(stdout);
thr_lock_info_init(&lock_info);
thr_lock_owner_init(&owner, &lock_info);
for (i=0; i < lock_counts[param] ; i++)
thr_lock_data_init(locks+tests[param][i].lock_nr,data+i,NULL);
for (j=1 ; j < 10 ; j++) /* try locking 10 times */
{
for (i=0; i < lock_counts[param] ; i++)
{ /* Init multi locks */
multi_locks[i]= &data[i];
data[i].type= tests[param][i].lock_type;
}
thr_multi_lock(multi_locks, lock_counts[param], &owner);
pthread_mutex_lock(&LOCK_thread_count);
{
int tmp=rand() & 7; /* Do something from 0-2 sec */
if (tmp == 0)
sleep(1);
else if (tmp == 1)
sleep(2);
else
{
ulong k;
for (k=0 ; k < (ulong) (tmp-2)*100000L ; k++)
sum+=k;
}
}
pthread_mutex_unlock(&LOCK_thread_count);
thr_multi_unlock(multi_locks,lock_counts[param]);
}
printf("Thread %s (%d) ended\n",my_thread_name(),param); fflush(stdout);
thr_print_locks();
pthread_mutex_lock(&LOCK_thread_count);
thread_count--;
VOID(pthread_cond_signal(&COND_thread_count)); /* Tell main we are ready */
pthread_mutex_unlock(&LOCK_thread_count);
free((gptr) arg);
return 0;
}
int main(int argc __attribute__((unused)),char **argv __attribute__((unused)))
{
pthread_t tid;
pthread_attr_t thr_attr;
int i,*param,error;
MY_INIT(argv[0]);
if (argc > 1 && argv[1][0] == '-' && argv[1][1] == '#')
DBUG_PUSH(argv[1]+2);
printf("Main thread: %s\n",my_thread_name());
if ((error=pthread_cond_init(&COND_thread_count,NULL)))
{
fprintf(stderr,"Got error: %d from pthread_cond_init (errno: %d)",
error,errno);
exit(1);
}
if ((error=pthread_mutex_init(&LOCK_thread_count,MY_MUTEX_INIT_FAST)))
{
fprintf(stderr,"Got error: %d from pthread_cond_init (errno: %d)",
error,errno);
exit(1);
}
for (i=0 ; i < (int) array_elements(locks) ; i++)
{
thr_lock_init(locks+i);
locks[i].check_status= test_check_status;
locks[i].update_status=test_update_status;
locks[i].copy_status= test_copy_status;
locks[i].get_status= test_get_status;
}
if ((error=pthread_attr_init(&thr_attr)))
{
fprintf(stderr,"Got error: %d from pthread_attr_init (errno: %d)",
error,errno);
exit(1);
}
if ((error=pthread_attr_setdetachstate(&thr_attr,PTHREAD_CREATE_DETACHED)))
{
fprintf(stderr,
"Got error: %d from pthread_attr_setdetachstate (errno: %d)",
error,errno);
exit(1);
}
#ifndef pthread_attr_setstacksize /* void return value */
if ((error=pthread_attr_setstacksize(&thr_attr,65536L)))
{
fprintf(stderr,"Got error: %d from pthread_attr_setstacksize (errno: %d)",
error,errno);
exit(1);
}
#endif
#ifdef HAVE_THR_SETCONCURRENCY
VOID(thr_setconcurrency(2));
#endif
for (i=0 ; i < (int) array_elements(lock_counts) ; i++)
{
param=(int*) malloc(sizeof(int));
*param=i;
if ((error=pthread_mutex_lock(&LOCK_thread_count)))
{
fprintf(stderr,"Got error: %d from pthread_mutex_lock (errno: %d)",
error,errno);
exit(1);
}
if ((error=pthread_create(&tid,&thr_attr,test_thread,(void*) param)))
{
fprintf(stderr,"Got error: %d from pthread_create (errno: %d)\n",
error,errno);
pthread_mutex_unlock(&LOCK_thread_count);
exit(1);
}
thread_count++;
pthread_mutex_unlock(&LOCK_thread_count);
}
pthread_attr_destroy(&thr_attr);
if ((error=pthread_mutex_lock(&LOCK_thread_count)))
fprintf(stderr,"Got error: %d from pthread_mutex_lock\n",error);
while (thread_count)
{
if ((error=pthread_cond_wait(&COND_thread_count,&LOCK_thread_count)))
fprintf(stderr,"Got error: %d from pthread_cond_wait\n",error);
}
if ((error=pthread_mutex_unlock(&LOCK_thread_count)))
fprintf(stderr,"Got error: %d from pthread_mutex_unlock\n",error);
for (i=0 ; i < (int) array_elements(locks) ; i++)
thr_lock_delete(locks+i);
#ifdef EXTRA_DEBUG
if (found_errors)
printf("Got %d warnings\n",found_errors);
else
#endif
printf("Test succeeded\n");
return 0;
}
#else /* THREAD */
int main(int argc __attribute__((unused)),char **argv __attribute__((unused)))
{
printf("thr_lock disabled because we are not using threads\n");
exit(1);
}
#endif /* THREAD */
#endif /* MAIN */