mariadb/pars/pars0pars.c
marko 095630bfed branches/zip: Relax the string type check of some built-in functions
of the InnoDB SQL parser.

pars_is_string_type(): New function.  Returns TRUE iff mtype equals
DATA_VARCHAR, DATA_CHAR, DATA_FIXBINARY, or DATA_BINARY.

pars_resolve_func_data_type(): Replace checks for DATA_VARCHAR with
pars_is_string_type().  For example, the NAME column of SYS_INDEXES,
SYS_TABLES, and SYS_COLUMNS is of DATA_BINARY type, although it
contains a UTF-8 character string.  This affects the functions
TO_NUMBER, BINARY_TO_NUMBER, LENGTH, INSTR, and SUBSTR.
2007-08-29 09:54:11 +00:00

2202 lines
52 KiB
C

/******************************************************
SQL parser
(c) 1996 Innobase Oy
Created 11/19/1996 Heikki Tuuri
*******************************************************/
/* Historical note: Innobase executed its first SQL string (CREATE TABLE)
on 1/27/1998 */
#include "pars0pars.h"
#ifdef UNIV_NONINL
#include "pars0pars.ic"
#endif
#include "row0sel.h"
#include "row0ins.h"
#include "row0upd.h"
#include "dict0dict.h"
#include "dict0mem.h"
#include "dict0crea.h"
#include "que0que.h"
#include "pars0grm.h"
#include "pars0opt.h"
#include "data0data.h"
#include "data0type.h"
#include "trx0trx.h"
#include "trx0roll.h"
#include "lock0lock.h"
#include "eval0eval.h"
#ifdef UNIV_SQL_DEBUG
/* If the following is set TRUE, the lexer will print the SQL string
as it tokenizes it */
ibool pars_print_lexed = FALSE;
#endif /* UNIV_SQL_DEBUG */
/* Global variable used while parsing a single procedure or query : the code is
NOT re-entrant */
sym_tab_t* pars_sym_tab_global;
/* Global variables used to denote certain reserved words, used in
constructing the parsing tree */
pars_res_word_t pars_to_char_token = {PARS_TO_CHAR_TOKEN};
pars_res_word_t pars_to_number_token = {PARS_TO_NUMBER_TOKEN};
pars_res_word_t pars_to_binary_token = {PARS_TO_BINARY_TOKEN};
pars_res_word_t pars_binary_to_number_token = {PARS_BINARY_TO_NUMBER_TOKEN};
pars_res_word_t pars_substr_token = {PARS_SUBSTR_TOKEN};
pars_res_word_t pars_replstr_token = {PARS_REPLSTR_TOKEN};
pars_res_word_t pars_concat_token = {PARS_CONCAT_TOKEN};
pars_res_word_t pars_instr_token = {PARS_INSTR_TOKEN};
pars_res_word_t pars_length_token = {PARS_LENGTH_TOKEN};
pars_res_word_t pars_sysdate_token = {PARS_SYSDATE_TOKEN};
pars_res_word_t pars_printf_token = {PARS_PRINTF_TOKEN};
pars_res_word_t pars_assert_token = {PARS_ASSERT_TOKEN};
pars_res_word_t pars_rnd_token = {PARS_RND_TOKEN};
pars_res_word_t pars_rnd_str_token = {PARS_RND_STR_TOKEN};
pars_res_word_t pars_count_token = {PARS_COUNT_TOKEN};
pars_res_word_t pars_sum_token = {PARS_SUM_TOKEN};
pars_res_word_t pars_distinct_token = {PARS_DISTINCT_TOKEN};
pars_res_word_t pars_binary_token = {PARS_BINARY_TOKEN};
pars_res_word_t pars_blob_token = {PARS_BLOB_TOKEN};
pars_res_word_t pars_int_token = {PARS_INT_TOKEN};
pars_res_word_t pars_char_token = {PARS_CHAR_TOKEN};
pars_res_word_t pars_float_token = {PARS_FLOAT_TOKEN};
pars_res_word_t pars_update_token = {PARS_UPDATE_TOKEN};
pars_res_word_t pars_asc_token = {PARS_ASC_TOKEN};
pars_res_word_t pars_desc_token = {PARS_DESC_TOKEN};
pars_res_word_t pars_open_token = {PARS_OPEN_TOKEN};
pars_res_word_t pars_close_token = {PARS_CLOSE_TOKEN};
pars_res_word_t pars_share_token = {PARS_SHARE_TOKEN};
pars_res_word_t pars_unique_token = {PARS_UNIQUE_TOKEN};
pars_res_word_t pars_clustered_token = {PARS_CLUSTERED_TOKEN};
/* Global variable used to denote the '*' in SELECT * FROM.. */
#define PARS_STAR_DENOTER 12345678
ulint pars_star_denoter = PARS_STAR_DENOTER;
/*************************************************************************
Determines the class of a function code. */
static
ulint
pars_func_get_class(
/*================*/
/* out: function class: PARS_FUNC_ARITH, ... */
int func) /* in: function code: '=', PARS_GE_TOKEN, ... */
{
switch (func) {
case '+': case '-': case '*': case '/':
return(PARS_FUNC_ARITH);
case '=': case '<': case '>':
case PARS_GE_TOKEN: case PARS_LE_TOKEN: case PARS_NE_TOKEN:
return(PARS_FUNC_CMP);
case PARS_AND_TOKEN: case PARS_OR_TOKEN: case PARS_NOT_TOKEN:
return(PARS_FUNC_LOGICAL);
case PARS_COUNT_TOKEN: case PARS_SUM_TOKEN:
return(PARS_FUNC_AGGREGATE);
case PARS_TO_CHAR_TOKEN:
case PARS_TO_NUMBER_TOKEN:
case PARS_TO_BINARY_TOKEN:
case PARS_BINARY_TO_NUMBER_TOKEN:
case PARS_SUBSTR_TOKEN:
case PARS_CONCAT_TOKEN:
case PARS_LENGTH_TOKEN:
case PARS_INSTR_TOKEN:
case PARS_SYSDATE_TOKEN:
case PARS_NOTFOUND_TOKEN:
case PARS_PRINTF_TOKEN:
case PARS_ASSERT_TOKEN:
case PARS_RND_TOKEN:
case PARS_RND_STR_TOKEN:
case PARS_REPLSTR_TOKEN:
return(PARS_FUNC_PREDEFINED);
default:
return(PARS_FUNC_OTHER);
}
}
/*************************************************************************
Parses an operator or predefined function expression. */
static
func_node_t*
pars_func_low(
/*==========*/
/* out, own: function node in a query tree */
int func, /* in: function token code */
que_node_t* arg) /* in: first argument in the argument list */
{
func_node_t* node;
node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(func_node_t));
node->common.type = QUE_NODE_FUNC;
dfield_set_data(&(node->common.val), NULL, 0);
node->common.val_buf_size = 0;
node->func = func;
node->class = pars_func_get_class(func);
node->args = arg;
UT_LIST_ADD_LAST(func_node_list, pars_sym_tab_global->func_node_list,
node);
return(node);
}
/*************************************************************************
Parses a function expression. */
func_node_t*
pars_func(
/*======*/
/* out, own: function node in a query tree */
que_node_t* res_word,/* in: function name reserved word */
que_node_t* arg) /* in: first argument in the argument list */
{
return(pars_func_low(((pars_res_word_t*)res_word)->code, arg));
}
/*************************************************************************
Parses an operator expression. */
func_node_t*
pars_op(
/*====*/
/* out, own: function node in a query tree */
int func, /* in: operator token code */
que_node_t* arg1, /* in: first argument */
que_node_t* arg2) /* in: second argument or NULL for an unary
operator */
{
que_node_list_add_last(NULL, arg1);
if (arg2) {
que_node_list_add_last(arg1, arg2);
}
return(pars_func_low(func, arg1));
}
/*************************************************************************
Parses an ORDER BY clause. Order by a single column only is supported. */
order_node_t*
pars_order_by(
/*==========*/
/* out, own: order-by node in a query tree */
sym_node_t* column, /* in: column name */
pars_res_word_t* asc) /* in: &pars_asc_token or pars_desc_token */
{
order_node_t* node;
node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(order_node_t));
node->common.type = QUE_NODE_ORDER;
node->column = column;
if (asc == &pars_asc_token) {
node->asc = TRUE;
} else {
ut_a(asc == &pars_desc_token);
node->asc = FALSE;
}
return(node);
}
/*************************************************************************
Determine if a data type is a built-in string data type of the InnoDB
SQL parser. */
static
ibool
pars_is_string_type(
/*================*/
/* out: TRUE if string data type */
ulint mtype) /* in: main data type */
{
switch (mtype) {
case DATA_VARCHAR: case DATA_CHAR:
case DATA_FIXBINARY: case DATA_BINARY:
return(TRUE);
}
return(FALSE);
}
/*************************************************************************
Resolves the data type of a function in an expression. The argument data
types must already be resolved. */
static
void
pars_resolve_func_data_type(
/*========================*/
func_node_t* node) /* in: function node */
{
que_node_t* arg;
ut_a(que_node_get_type(node) == QUE_NODE_FUNC);
arg = node->args;
switch (node->func) {
case PARS_SUM_TOKEN:
case '+': case '-': case '*': case '/':
/* Inherit the data type from the first argument (which must
not be the SQL null literal whose type is DATA_ERROR) */
dtype_copy(que_node_get_data_type(node),
que_node_get_data_type(arg));
ut_a(dtype_get_mtype(que_node_get_data_type(node))
== DATA_INT);
break;
case PARS_COUNT_TOKEN:
ut_a(arg);
dtype_set(que_node_get_data_type(node), DATA_INT, 0, 4);
break;
case PARS_TO_CHAR_TOKEN:
case PARS_RND_STR_TOKEN:
ut_a(dtype_get_mtype(que_node_get_data_type(arg)) == DATA_INT);
dtype_set(que_node_get_data_type(node), DATA_VARCHAR,
DATA_ENGLISH, 0);
break;
case PARS_TO_BINARY_TOKEN:
if (dtype_get_mtype(que_node_get_data_type(arg)) == DATA_INT) {
dtype_set(que_node_get_data_type(node), DATA_VARCHAR,
DATA_ENGLISH, 0);
} else {
dtype_set(que_node_get_data_type(node), DATA_BINARY,
0, 0);
}
break;
case PARS_TO_NUMBER_TOKEN:
case PARS_BINARY_TO_NUMBER_TOKEN:
case PARS_LENGTH_TOKEN:
case PARS_INSTR_TOKEN:
ut_a(pars_is_string_type(que_node_get_data_type(arg)->mtype));
dtype_set(que_node_get_data_type(node), DATA_INT, 0, 4);
break;
case PARS_SYSDATE_TOKEN:
ut_a(arg == NULL);
dtype_set(que_node_get_data_type(node), DATA_INT, 0, 4);
break;
case PARS_SUBSTR_TOKEN:
case PARS_CONCAT_TOKEN:
ut_a(pars_is_string_type(que_node_get_data_type(arg)->mtype));
dtype_set(que_node_get_data_type(node), DATA_VARCHAR,
DATA_ENGLISH, 0);
break;
case '>': case '<': case '=':
case PARS_GE_TOKEN:
case PARS_LE_TOKEN:
case PARS_NE_TOKEN:
case PARS_AND_TOKEN:
case PARS_OR_TOKEN:
case PARS_NOT_TOKEN:
case PARS_NOTFOUND_TOKEN:
/* We currently have no iboolean type: use integer type */
dtype_set(que_node_get_data_type(node), DATA_INT, 0, 4);
break;
case PARS_RND_TOKEN:
ut_a(dtype_get_mtype(que_node_get_data_type(arg)) == DATA_INT);
dtype_set(que_node_get_data_type(node), DATA_INT, 0, 4);
break;
default:
ut_error;
}
}
/*************************************************************************
Resolves the meaning of variables in an expression and the data types of
functions. It is an error if some identifier cannot be resolved here. */
static
void
pars_resolve_exp_variables_and_types(
/*=================================*/
sel_node_t* select_node, /* in: select node or NULL; if
this is not NULL then the variable
sym nodes are added to the
copy_variables list of select_node */
que_node_t* exp_node) /* in: expression */
{
func_node_t* func_node;
que_node_t* arg;
sym_node_t* sym_node;
sym_node_t* node;
ut_a(exp_node);
if (que_node_get_type(exp_node) == QUE_NODE_FUNC) {
func_node = exp_node;
arg = func_node->args;
while (arg) {
pars_resolve_exp_variables_and_types(select_node, arg);
arg = que_node_get_next(arg);
}
pars_resolve_func_data_type(func_node);
return;
}
ut_a(que_node_get_type(exp_node) == QUE_NODE_SYMBOL);
sym_node = exp_node;
if (sym_node->resolved) {
return;
}
/* Not resolved yet: look in the symbol table for a variable
or a cursor or a function with the same name */
node = UT_LIST_GET_FIRST(pars_sym_tab_global->sym_list);
while (node) {
if (node->resolved
&& ((node->token_type == SYM_VAR)
|| (node->token_type == SYM_CURSOR)
|| (node->token_type == SYM_FUNCTION))
&& node->name
&& (sym_node->name_len == node->name_len)
&& (ut_memcmp(sym_node->name, node->name,
node->name_len) == 0)) {
/* Found a variable or a cursor declared with
the same name */
break;
}
node = UT_LIST_GET_NEXT(sym_list, node);
}
if (!node) {
fprintf(stderr, "PARSER ERROR: Unresolved identifier %s\n",
sym_node->name);
}
ut_a(node);
sym_node->resolved = TRUE;
sym_node->token_type = SYM_IMPLICIT_VAR;
sym_node->alias = node;
sym_node->indirection = node;
if (select_node) {
UT_LIST_ADD_LAST(col_var_list, select_node->copy_variables,
sym_node);
}
dfield_set_type(que_node_get_val(sym_node),
que_node_get_data_type(node));
}
/*************************************************************************
Resolves the meaning of variables in an expression list. It is an error if
some identifier cannot be resolved here. Resolves also the data types of
functions. */
static
void
pars_resolve_exp_list_variables_and_types(
/*======================================*/
sel_node_t* select_node, /* in: select node or NULL */
que_node_t* exp_node) /* in: expression list first node, or
NULL */
{
while (exp_node) {
pars_resolve_exp_variables_and_types(select_node, exp_node);
exp_node = que_node_get_next(exp_node);
}
}
/*************************************************************************
Resolves the columns in an expression. */
static
void
pars_resolve_exp_columns(
/*=====================*/
sym_node_t* table_node, /* in: first node in a table list */
que_node_t* exp_node) /* in: expression */
{
func_node_t* func_node;
que_node_t* arg;
sym_node_t* sym_node;
dict_table_t* table;
sym_node_t* t_node;
ulint n_cols;
ulint i;
ut_a(exp_node);
if (que_node_get_type(exp_node) == QUE_NODE_FUNC) {
func_node = exp_node;
arg = func_node->args;
while (arg) {
pars_resolve_exp_columns(table_node, arg);
arg = que_node_get_next(arg);
}
return;
}
ut_a(que_node_get_type(exp_node) == QUE_NODE_SYMBOL);
sym_node = exp_node;
if (sym_node->resolved) {
return;
}
/* Not resolved yet: look in the table list for a column with the
same name */
t_node = table_node;
while (t_node) {
table = t_node->table;
n_cols = dict_table_get_n_cols(table);
for (i = 0; i < n_cols; i++) {
const dict_col_t* col
= dict_table_get_nth_col(table, i);
const char* col_name
= dict_table_get_col_name(table, i);
if ((sym_node->name_len == ut_strlen(col_name))
&& (0 == ut_memcmp(sym_node->name, col_name,
sym_node->name_len))) {
/* Found */
sym_node->resolved = TRUE;
sym_node->token_type = SYM_COLUMN;
sym_node->table = table;
sym_node->col_no = i;
sym_node->prefetch_buf = NULL;
dict_col_copy_type(
col,
dfield_get_type(&sym_node
->common.val));
return;
}
}
t_node = que_node_get_next(t_node);
}
}
/*************************************************************************
Resolves the meaning of columns in an expression list. */
static
void
pars_resolve_exp_list_columns(
/*==========================*/
sym_node_t* table_node, /* in: first node in a table list */
que_node_t* exp_node) /* in: expression list first node, or
NULL */
{
while (exp_node) {
pars_resolve_exp_columns(table_node, exp_node);
exp_node = que_node_get_next(exp_node);
}
}
/*************************************************************************
Retrieves the table definition for a table name id. */
static
void
pars_retrieve_table_def(
/*====================*/
sym_node_t* sym_node) /* in: table node */
{
const char* table_name;
ut_a(sym_node);
ut_a(que_node_get_type(sym_node) == QUE_NODE_SYMBOL);
sym_node->resolved = TRUE;
sym_node->token_type = SYM_TABLE;
table_name = (const char*) sym_node->name;
sym_node->table = dict_table_get_low(table_name);
ut_a(sym_node->table);
}
/*************************************************************************
Retrieves the table definitions for a list of table name ids. */
static
ulint
pars_retrieve_table_list_defs(
/*==========================*/
/* out: number of tables */
sym_node_t* sym_node) /* in: first table node in list */
{
ulint count = 0;
if (sym_node == NULL) {
return(count);
}
while (sym_node) {
pars_retrieve_table_def(sym_node);
count++;
sym_node = que_node_get_next(sym_node);
}
return(count);
}
/*************************************************************************
Adds all columns to the select list if the query is SELECT * FROM ... */
static
void
pars_select_all_columns(
/*====================*/
sel_node_t* select_node) /* in: select node already containing
the table list */
{
sym_node_t* col_node;
sym_node_t* table_node;
dict_table_t* table;
ulint i;
select_node->select_list = NULL;
table_node = select_node->table_list;
while (table_node) {
table = table_node->table;
for (i = 0; i < dict_table_get_n_user_cols(table); i++) {
const char* col_name = dict_table_get_col_name(
table, i);
col_node = sym_tab_add_id(pars_sym_tab_global,
(byte*)col_name,
ut_strlen(col_name));
select_node->select_list = que_node_list_add_last(
select_node->select_list, col_node);
}
table_node = que_node_get_next(table_node);
}
}
/*************************************************************************
Parses a select list; creates a query graph node for the whole SELECT
statement. */
sel_node_t*
pars_select_list(
/*=============*/
/* out, own: select node in a query
tree */
que_node_t* select_list, /* in: select list */
sym_node_t* into_list) /* in: variables list or NULL */
{
sel_node_t* node;
node = sel_node_create(pars_sym_tab_global->heap);
node->select_list = select_list;
node->into_list = into_list;
pars_resolve_exp_list_variables_and_types(NULL, into_list);
return(node);
}
/*************************************************************************
Checks if the query is an aggregate query, in which case the selct list must
contain only aggregate function items. */
static
void
pars_check_aggregate(
/*=================*/
sel_node_t* select_node) /* in: select node already containing
the select list */
{
que_node_t* exp_node;
func_node_t* func_node;
ulint n_nodes = 0;
ulint n_aggregate_nodes = 0;
exp_node = select_node->select_list;
while (exp_node) {
n_nodes++;
if (que_node_get_type(exp_node) == QUE_NODE_FUNC) {
func_node = exp_node;
if (func_node->class == PARS_FUNC_AGGREGATE) {
n_aggregate_nodes++;
}
}
exp_node = que_node_get_next(exp_node);
}
if (n_aggregate_nodes > 0) {
ut_a(n_nodes == n_aggregate_nodes);
select_node->is_aggregate = TRUE;
} else {
select_node->is_aggregate = FALSE;
}
}
/*************************************************************************
Parses a select statement. */
sel_node_t*
pars_select_statement(
/*==================*/
/* out, own: select node in a query
tree */
sel_node_t* select_node, /* in: select node already containing
the select list */
sym_node_t* table_list, /* in: table list */
que_node_t* search_cond, /* in: search condition or NULL */
pars_res_word_t* for_update, /* in: NULL or &pars_update_token */
pars_res_word_t* lock_shared, /* in: NULL or &pars_share_token */
order_node_t* order_by) /* in: NULL or an order-by node */
{
select_node->state = SEL_NODE_OPEN;
select_node->table_list = table_list;
select_node->n_tables = pars_retrieve_table_list_defs(table_list);
if (select_node->select_list == &pars_star_denoter) {
/* SELECT * FROM ... */
pars_select_all_columns(select_node);
}
if (select_node->into_list) {
ut_a(que_node_list_get_len(select_node->into_list)
== que_node_list_get_len(select_node->select_list));
}
UT_LIST_INIT(select_node->copy_variables);
pars_resolve_exp_list_columns(table_list, select_node->select_list);
pars_resolve_exp_list_variables_and_types(select_node,
select_node->select_list);
pars_check_aggregate(select_node);
select_node->search_cond = search_cond;
if (search_cond) {
pars_resolve_exp_columns(table_list, search_cond);
pars_resolve_exp_variables_and_types(select_node, search_cond);
}
if (for_update) {
ut_a(!lock_shared);
select_node->set_x_locks = TRUE;
select_node->row_lock_mode = LOCK_X;
select_node->consistent_read = FALSE;
select_node->read_view = NULL;
} else if (lock_shared){
select_node->set_x_locks = FALSE;
select_node->row_lock_mode = LOCK_S;
select_node->consistent_read = FALSE;
select_node->read_view = NULL;
} else {
select_node->set_x_locks = FALSE;
select_node->row_lock_mode = LOCK_S;
select_node->consistent_read = TRUE;
}
select_node->order_by = order_by;
if (order_by) {
pars_resolve_exp_columns(table_list, order_by->column);
}
/* The final value of the following fields depend on the environment
where the select statement appears: */
select_node->can_get_updated = FALSE;
select_node->explicit_cursor = NULL;
opt_search_plan(select_node);
return(select_node);
}
/*************************************************************************
Parses a cursor declaration. */
que_node_t*
pars_cursor_declaration(
/*====================*/
/* out: sym_node */
sym_node_t* sym_node, /* in: cursor id node in the symbol
table */
sel_node_t* select_node) /* in: select node */
{
sym_node->resolved = TRUE;
sym_node->token_type = SYM_CURSOR;
sym_node->cursor_def = select_node;
select_node->state = SEL_NODE_CLOSED;
select_node->explicit_cursor = sym_node;
return(sym_node);
}
/*************************************************************************
Parses a function declaration. */
que_node_t*
pars_function_declaration(
/*======================*/
/* out: sym_node */
sym_node_t* sym_node) /* in: function id node in the symbol
table */
{
sym_node->resolved = TRUE;
sym_node->token_type = SYM_FUNCTION;
/* Check that the function exists. */
ut_a(pars_info_get_user_func(pars_sym_tab_global->info,
sym_node->name));
return(sym_node);
}
/*************************************************************************
Parses a delete or update statement start. */
upd_node_t*
pars_update_statement_start(
/*========================*/
/* out, own: update node in a query
tree */
ibool is_delete, /* in: TRUE if delete */
sym_node_t* table_sym, /* in: table name node */
col_assign_node_t* col_assign_list)/* in: column assignment list, NULL
if delete */
{
upd_node_t* node;
node = upd_node_create(pars_sym_tab_global->heap);
node->is_delete = is_delete;
node->table_sym = table_sym;
node->col_assign_list = col_assign_list;
return(node);
}
/*************************************************************************
Parses a column assignment in an update. */
col_assign_node_t*
pars_column_assignment(
/*===================*/
/* out: column assignment node */
sym_node_t* column, /* in: column to assign */
que_node_t* exp) /* in: value to assign */
{
col_assign_node_t* node;
node = mem_heap_alloc(pars_sym_tab_global->heap,
sizeof(col_assign_node_t));
node->common.type = QUE_NODE_COL_ASSIGNMENT;
node->col = column;
node->val = exp;
return(node);
}
/*************************************************************************
Processes an update node assignment list. */
static
void
pars_process_assign_list(
/*=====================*/
upd_node_t* node) /* in: update node */
{
col_assign_node_t* col_assign_list;
sym_node_t* table_sym;
col_assign_node_t* assign_node;
upd_field_t* upd_field;
dict_index_t* clust_index;
sym_node_t* col_sym;
ulint changes_ord_field;
ulint changes_field_size;
ulint n_assigns;
ulint i;
table_sym = node->table_sym;
col_assign_list = node->col_assign_list;
clust_index = dict_table_get_first_index(node->table);
assign_node = col_assign_list;
n_assigns = 0;
while (assign_node) {
pars_resolve_exp_columns(table_sym, assign_node->col);
pars_resolve_exp_columns(table_sym, assign_node->val);
pars_resolve_exp_variables_and_types(NULL, assign_node->val);
#if 0
ut_a(dtype_get_mtype(
dfield_get_type(que_node_get_val(
assign_node->col)))
== dtype_get_mtype(
dfield_get_type(que_node_get_val(
assign_node->val))));
#endif
/* Add to the update node all the columns found in assignment
values as columns to copy: therefore, TRUE */
opt_find_all_cols(TRUE, clust_index, &(node->columns), NULL,
assign_node->val);
n_assigns++;
assign_node = que_node_get_next(assign_node);
}
node->update = upd_create(n_assigns, pars_sym_tab_global->heap);
assign_node = col_assign_list;
changes_field_size = UPD_NODE_NO_SIZE_CHANGE;
for (i = 0; i < n_assigns; i++) {
upd_field = upd_get_nth_field(node->update, i);
col_sym = assign_node->col;
upd_field_set_field_no(upd_field, dict_index_get_nth_col_pos(
clust_index, col_sym->col_no),
clust_index, NULL);
upd_field->exp = assign_node->val;
if (!dict_col_get_fixed_size(
dict_index_get_nth_col(clust_index,
upd_field->field_no))) {
changes_field_size = 0;
}
assign_node = que_node_get_next(assign_node);
}
/* Find out if the update can modify an ordering field in any index */
changes_ord_field = UPD_NODE_NO_ORD_CHANGE;
if (row_upd_changes_some_index_ord_field_binary(node->table,
node->update)) {
changes_ord_field = 0;
}
node->cmpl_info = changes_ord_field | changes_field_size;
}
/*************************************************************************
Parses an update or delete statement. */
upd_node_t*
pars_update_statement(
/*==================*/
/* out, own: update node in a query
tree */
upd_node_t* node, /* in: update node */
sym_node_t* cursor_sym, /* in: pointer to a cursor entry in
the symbol table or NULL */
que_node_t* search_cond) /* in: search condition or NULL */
{
sym_node_t* table_sym;
sel_node_t* sel_node;
plan_t* plan;
table_sym = node->table_sym;
pars_retrieve_table_def(table_sym);
node->table = table_sym->table;
UT_LIST_INIT(node->columns);
/* Make the single table node into a list of table nodes of length 1 */
que_node_list_add_last(NULL, table_sym);
if (cursor_sym) {
pars_resolve_exp_variables_and_types(NULL, cursor_sym);
sel_node = cursor_sym->alias->cursor_def;
node->searched_update = FALSE;
} else {
sel_node = pars_select_list(NULL, NULL);
pars_select_statement(sel_node, table_sym, search_cond, NULL,
&pars_share_token, NULL);
node->searched_update = TRUE;
sel_node->common.parent = node;
}
node->select = sel_node;
ut_a(!node->is_delete || (node->col_assign_list == NULL));
ut_a(node->is_delete || (node->col_assign_list != NULL));
if (node->is_delete) {
node->cmpl_info = 0;
} else {
pars_process_assign_list(node);
}
if (node->searched_update) {
node->has_clust_rec_x_lock = TRUE;
sel_node->set_x_locks = TRUE;
sel_node->row_lock_mode = LOCK_X;
} else {
node->has_clust_rec_x_lock = sel_node->set_x_locks;
}
ut_a(sel_node->n_tables == 1);
ut_a(sel_node->consistent_read == FALSE);
ut_a(sel_node->order_by == NULL);
ut_a(sel_node->is_aggregate == FALSE);
sel_node->can_get_updated = TRUE;
node->state = UPD_NODE_UPDATE_CLUSTERED;
plan = sel_node_get_nth_plan(sel_node, 0);
plan->no_prefetch = TRUE;
if (!dict_index_is_clust(plan->index)) {
plan->must_get_clust = TRUE;
node->pcur = &(plan->clust_pcur);
} else {
node->pcur = &(plan->pcur);
}
if (!node->is_delete && node->searched_update
&& (node->cmpl_info & UPD_NODE_NO_SIZE_CHANGE)
&& (node->cmpl_info & UPD_NODE_NO_ORD_CHANGE)) {
/* The select node can perform the update in-place */
ut_a(plan->asc);
node->select_will_do_update = TRUE;
sel_node->select_will_do_update = TRUE;
sel_node->latch_mode = BTR_MODIFY_LEAF;
}
return(node);
}
/*************************************************************************
Parses an insert statement. */
ins_node_t*
pars_insert_statement(
/*==================*/
/* out, own: update node in a query
tree */
sym_node_t* table_sym, /* in: table name node */
que_node_t* values_list, /* in: value expression list or NULL */
sel_node_t* select) /* in: select condition or NULL */
{
ins_node_t* node;
dtuple_t* row;
ulint ins_type;
ut_a(values_list || select);
ut_a(!values_list || !select);
if (values_list) {
ins_type = INS_VALUES;
} else {
ins_type = INS_SEARCHED;
}
pars_retrieve_table_def(table_sym);
node = ins_node_create(ins_type, table_sym->table,
pars_sym_tab_global->heap);
row = dtuple_create(pars_sym_tab_global->heap,
dict_table_get_n_cols(node->table));
dict_table_copy_types(row, table_sym->table);
ins_node_set_new_row(node, row);
node->select = select;
if (select) {
select->common.parent = node;
ut_a(que_node_list_get_len(select->select_list)
== dict_table_get_n_user_cols(table_sym->table));
}
node->values_list = values_list;
if (node->values_list) {
pars_resolve_exp_list_variables_and_types(NULL, values_list);
ut_a(que_node_list_get_len(values_list)
== dict_table_get_n_user_cols(table_sym->table));
}
return(node);
}
/*************************************************************************
Set the type of a dfield. */
static
void
pars_set_dfield_type(
/*=================*/
dfield_t* dfield, /* in: dfield */
pars_res_word_t* type, /* in: pointer to a type
token */
ulint len, /* in: length, or 0 */
ibool is_unsigned, /* in: if TRUE, column is
UNSIGNED. */
ibool is_not_null) /* in: if TRUE, column is
NOT NULL. */
{
ulint flags = 0;
if (is_not_null) {
flags |= DATA_NOT_NULL;
}
if (is_unsigned) {
flags |= DATA_UNSIGNED;
}
if (type == &pars_int_token) {
ut_a(len == 0);
dtype_set(dfield_get_type(dfield), DATA_INT, flags, 4);
} else if (type == &pars_char_token) {
ut_a(len == 0);
dtype_set(dfield_get_type(dfield), DATA_VARCHAR,
DATA_ENGLISH | flags, 0);
} else if (type == &pars_binary_token) {
ut_a(len != 0);
dtype_set(dfield_get_type(dfield), DATA_FIXBINARY,
DATA_BINARY_TYPE | flags, len);
} else if (type == &pars_blob_token) {
ut_a(len == 0);
dtype_set(dfield_get_type(dfield), DATA_BLOB,
DATA_BINARY_TYPE | flags, 0);
} else {
ut_error;
}
}
/*************************************************************************
Parses a variable declaration. */
sym_node_t*
pars_variable_declaration(
/*======================*/
/* out, own: symbol table node of type
SYM_VAR */
sym_node_t* node, /* in: symbol table node allocated for the
id of the variable */
pars_res_word_t* type) /* in: pointer to a type token */
{
node->resolved = TRUE;
node->token_type = SYM_VAR;
node->param_type = PARS_NOT_PARAM;
pars_set_dfield_type(que_node_get_val(node), type, 0, FALSE, FALSE);
return(node);
}
/*************************************************************************
Parses a procedure parameter declaration. */
sym_node_t*
pars_parameter_declaration(
/*=======================*/
/* out, own: symbol table node of type
SYM_VAR */
sym_node_t* node, /* in: symbol table node allocated for the
id of the parameter */
ulint param_type,
/* in: PARS_INPUT or PARS_OUTPUT */
pars_res_word_t* type) /* in: pointer to a type token */
{
ut_a((param_type == PARS_INPUT) || (param_type == PARS_OUTPUT));
pars_variable_declaration(node, type);
node->param_type = param_type;
return(node);
}
/*************************************************************************
Sets the parent field in a query node list. */
static
void
pars_set_parent_in_list(
/*====================*/
que_node_t* node_list, /* in: first node in a list */
que_node_t* parent) /* in: parent value to set in all
nodes of the list */
{
que_common_t* common;
common = node_list;
while (common) {
common->parent = parent;
common = que_node_get_next(common);
}
}
/*************************************************************************
Parses an elsif element. */
elsif_node_t*
pars_elsif_element(
/*===============*/
/* out: elsif node */
que_node_t* cond, /* in: if-condition */
que_node_t* stat_list) /* in: statement list */
{
elsif_node_t* node;
node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(elsif_node_t));
node->common.type = QUE_NODE_ELSIF;
node->cond = cond;
pars_resolve_exp_variables_and_types(NULL, cond);
node->stat_list = stat_list;
return(node);
}
/*************************************************************************
Parses an if-statement. */
if_node_t*
pars_if_statement(
/*==============*/
/* out: if-statement node */
que_node_t* cond, /* in: if-condition */
que_node_t* stat_list, /* in: statement list */
que_node_t* else_part) /* in: else-part statement list
or elsif element list */
{
if_node_t* node;
elsif_node_t* elsif_node;
node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(if_node_t));
node->common.type = QUE_NODE_IF;
node->cond = cond;
pars_resolve_exp_variables_and_types(NULL, cond);
node->stat_list = stat_list;
if (else_part && (que_node_get_type(else_part) == QUE_NODE_ELSIF)) {
/* There is a list of elsif conditions */
node->else_part = NULL;
node->elsif_list = else_part;
elsif_node = else_part;
while (elsif_node) {
pars_set_parent_in_list(elsif_node->stat_list, node);
elsif_node = que_node_get_next(elsif_node);
}
} else {
node->else_part = else_part;
node->elsif_list = NULL;
pars_set_parent_in_list(else_part, node);
}
pars_set_parent_in_list(stat_list, node);
return(node);
}
/*************************************************************************
Parses a while-statement. */
while_node_t*
pars_while_statement(
/*=================*/
/* out: while-statement node */
que_node_t* cond, /* in: while-condition */
que_node_t* stat_list) /* in: statement list */
{
while_node_t* node;
node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(while_node_t));
node->common.type = QUE_NODE_WHILE;
node->cond = cond;
pars_resolve_exp_variables_and_types(NULL, cond);
node->stat_list = stat_list;
pars_set_parent_in_list(stat_list, node);
return(node);
}
/*************************************************************************
Parses a for-loop-statement. */
for_node_t*
pars_for_statement(
/*===============*/
/* out: for-statement node */
sym_node_t* loop_var, /* in: loop variable */
que_node_t* loop_start_limit,/* in: loop start expression */
que_node_t* loop_end_limit, /* in: loop end expression */
que_node_t* stat_list) /* in: statement list */
{
for_node_t* node;
node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(for_node_t));
node->common.type = QUE_NODE_FOR;
pars_resolve_exp_variables_and_types(NULL, loop_var);
pars_resolve_exp_variables_and_types(NULL, loop_start_limit);
pars_resolve_exp_variables_and_types(NULL, loop_end_limit);
node->loop_var = loop_var->indirection;
ut_a(loop_var->indirection);
node->loop_start_limit = loop_start_limit;
node->loop_end_limit = loop_end_limit;
node->stat_list = stat_list;
pars_set_parent_in_list(stat_list, node);
return(node);
}
/*************************************************************************
Parses an exit statement. */
exit_node_t*
pars_exit_statement(void)
/*=====================*/
/* out: exit statement node */
{
exit_node_t* node;
node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(exit_node_t));
node->common.type = QUE_NODE_EXIT;
return(node);
}
/*************************************************************************
Parses a return-statement. */
return_node_t*
pars_return_statement(void)
/*=======================*/
/* out: return-statement node */
{
return_node_t* node;
node = mem_heap_alloc(pars_sym_tab_global->heap,
sizeof(return_node_t));
node->common.type = QUE_NODE_RETURN;
return(node);
}
/*************************************************************************
Parses an assignment statement. */
assign_node_t*
pars_assignment_statement(
/*======================*/
/* out: assignment statement node */
sym_node_t* var, /* in: variable to assign */
que_node_t* val) /* in: value to assign */
{
assign_node_t* node;
node = mem_heap_alloc(pars_sym_tab_global->heap,
sizeof(assign_node_t));
node->common.type = QUE_NODE_ASSIGNMENT;
node->var = var;
node->val = val;
pars_resolve_exp_variables_and_types(NULL, var);
pars_resolve_exp_variables_and_types(NULL, val);
ut_a(dtype_get_mtype(dfield_get_type(que_node_get_val(var)))
== dtype_get_mtype(dfield_get_type(que_node_get_val(val))));
return(node);
}
/*************************************************************************
Parses a procedure call. */
func_node_t*
pars_procedure_call(
/*================*/
/* out: function node */
que_node_t* res_word,/* in: procedure name reserved word */
que_node_t* args) /* in: argument list */
{
func_node_t* node;
node = pars_func(res_word, args);
pars_resolve_exp_list_variables_and_types(NULL, args);
return(node);
}
/*************************************************************************
Parses a fetch statement. into_list or user_func (but not both) must be
non-NULL. */
fetch_node_t*
pars_fetch_statement(
/*=================*/
/* out: fetch statement node */
sym_node_t* cursor, /* in: cursor node */
sym_node_t* into_list, /* in: variables to set, or NULL */
sym_node_t* user_func) /* in: user function name, or NULL */
{
sym_node_t* cursor_decl;
fetch_node_t* node;
/* Logical XOR. */
ut_a(!into_list != !user_func);
node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(fetch_node_t));
node->common.type = QUE_NODE_FETCH;
pars_resolve_exp_variables_and_types(NULL, cursor);
if (into_list) {
pars_resolve_exp_list_variables_and_types(NULL, into_list);
node->into_list = into_list;
node->func = NULL;
} else {
pars_resolve_exp_variables_and_types(NULL, user_func);
node->func = pars_info_get_user_func(pars_sym_tab_global->info,
user_func->name);
ut_a(node->func);
node->into_list = NULL;
}
cursor_decl = cursor->alias;
ut_a(cursor_decl->token_type == SYM_CURSOR);
node->cursor_def = cursor_decl->cursor_def;
if (into_list) {
ut_a(que_node_list_get_len(into_list)
== que_node_list_get_len(node->cursor_def->select_list));
}
return(node);
}
/*************************************************************************
Parses an open or close cursor statement. */
open_node_t*
pars_open_statement(
/*================*/
/* out: fetch statement node */
ulint type, /* in: ROW_SEL_OPEN_CURSOR
or ROW_SEL_CLOSE_CURSOR */
sym_node_t* cursor) /* in: cursor node */
{
sym_node_t* cursor_decl;
open_node_t* node;
node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(open_node_t));
node->common.type = QUE_NODE_OPEN;
pars_resolve_exp_variables_and_types(NULL, cursor);
cursor_decl = cursor->alias;
ut_a(cursor_decl->token_type == SYM_CURSOR);
node->op_type = type;
node->cursor_def = cursor_decl->cursor_def;
return(node);
}
/*************************************************************************
Parses a row_printf-statement. */
row_printf_node_t*
pars_row_printf_statement(
/*======================*/
/* out: row_printf-statement node */
sel_node_t* sel_node) /* in: select node */
{
row_printf_node_t* node;
node = mem_heap_alloc(pars_sym_tab_global->heap,
sizeof(row_printf_node_t));
node->common.type = QUE_NODE_ROW_PRINTF;
node->sel_node = sel_node;
sel_node->common.parent = node;
return(node);
}
/*************************************************************************
Parses a commit statement. */
commit_node_t*
pars_commit_statement(void)
/*=======================*/
{
return(commit_node_create(pars_sym_tab_global->heap));
}
/*************************************************************************
Parses a rollback statement. */
roll_node_t*
pars_rollback_statement(void)
/*=========================*/
{
return(roll_node_create(pars_sym_tab_global->heap));
}
/*************************************************************************
Parses a column definition at a table creation. */
sym_node_t*
pars_column_def(
/*============*/
/* out: column sym table
node */
sym_node_t* sym_node, /* in: column node in the
symbol table */
pars_res_word_t* type, /* in: data type */
sym_node_t* len, /* in: length of column, or
NULL */
void* is_unsigned, /* in: if not NULL, column
is of type UNSIGNED. */
void* is_not_null) /* in: if not NULL, column
is of type NOT NULL. */
{
ulint len2;
if (len) {
len2 = eval_node_get_int_val(len);
} else {
len2 = 0;
}
pars_set_dfield_type(que_node_get_val(sym_node), type, len2,
is_unsigned != NULL, is_not_null != NULL);
return(sym_node);
}
/*************************************************************************
Parses a table creation operation. */
tab_node_t*
pars_create_table(
/*==============*/
/* out: table create subgraph */
sym_node_t* table_sym, /* in: table name node in the symbol
table */
sym_node_t* column_defs, /* in: list of column names */
void* not_fit_in_memory __attribute__((unused)))
/* in: a non-NULL pointer means that
this is a table which in simulations
should be simulated as not fitting
in memory; thread is put to sleep
to simulate disk accesses; NOTE that
this flag is not stored to the data
dictionary on disk, and the database
will forget about non-NULL value if
it has to reload the table definition
from disk */
{
dict_table_t* table;
sym_node_t* column;
tab_node_t* node;
const dtype_t* dtype;
ulint n_cols;
n_cols = que_node_list_get_len(column_defs);
/* As the InnoDB SQL parser is for internal use only,
for creating some system tables, this function will only
create tables in the old (not compact) record format. */
table = dict_mem_table_create(table_sym->name, 0, n_cols, 0);
#ifdef UNIV_DEBUG
if (not_fit_in_memory != NULL) {
table->does_not_fit_in_memory = TRUE;
}
#endif /* UNIV_DEBUG */
column = column_defs;
while (column) {
dtype = dfield_get_type(que_node_get_val(column));
dict_mem_table_add_col(table, table->heap,
column->name, dtype->mtype,
dtype->prtype, dtype->len);
column->resolved = TRUE;
column->token_type = SYM_COLUMN;
column = que_node_get_next(column);
}
node = tab_create_graph_create(table, pars_sym_tab_global->heap);
table_sym->resolved = TRUE;
table_sym->token_type = SYM_TABLE;
return(node);
}
/*************************************************************************
Parses an index creation operation. */
ind_node_t*
pars_create_index(
/*==============*/
/* out: index create subgraph */
pars_res_word_t* unique_def, /* in: not NULL if a unique index */
pars_res_word_t* clustered_def, /* in: not NULL if a clustered index */
sym_node_t* index_sym, /* in: index name node in the symbol
table */
sym_node_t* table_sym, /* in: table name node in the symbol
table */
sym_node_t* column_list) /* in: list of column names */
{
dict_index_t* index;
sym_node_t* column;
ind_node_t* node;
ulint n_fields;
ulint ind_type;
n_fields = que_node_list_get_len(column_list);
ind_type = 0;
if (unique_def) {
ind_type = ind_type | DICT_UNIQUE;
}
if (clustered_def) {
ind_type = ind_type | DICT_CLUSTERED;
}
index = dict_mem_index_create(table_sym->name, index_sym->name, 0,
ind_type, n_fields);
column = column_list;
while (column) {
dict_mem_index_add_field(index, column->name, 0);
column->resolved = TRUE;
column->token_type = SYM_COLUMN;
column = que_node_get_next(column);
}
node = ind_create_graph_create(index, pars_sym_tab_global->heap);
table_sym->resolved = TRUE;
table_sym->token_type = SYM_TABLE;
index_sym->resolved = TRUE;
index_sym->token_type = SYM_TABLE;
return(node);
}
/*************************************************************************
Parses a procedure definition. */
que_fork_t*
pars_procedure_definition(
/*======================*/
/* out: query fork node */
sym_node_t* sym_node, /* in: procedure id node in the symbol
table */
sym_node_t* param_list, /* in: parameter declaration list */
que_node_t* stat_list) /* in: statement list */
{
proc_node_t* node;
que_fork_t* fork;
que_thr_t* thr;
mem_heap_t* heap;
heap = pars_sym_tab_global->heap;
fork = que_fork_create(NULL, NULL, QUE_FORK_PROCEDURE, heap);
fork->trx = NULL;
thr = que_thr_create(fork, heap);
node = mem_heap_alloc(heap, sizeof(proc_node_t));
node->common.type = QUE_NODE_PROC;
node->common.parent = thr;
sym_node->token_type = SYM_PROCEDURE_NAME;
sym_node->resolved = TRUE;
node->proc_id = sym_node;
node->param_list = param_list;
node->stat_list = stat_list;
pars_set_parent_in_list(stat_list, node);
node->sym_tab = pars_sym_tab_global;
thr->child = node;
pars_sym_tab_global->query_graph = fork;
return(fork);
}
/*****************************************************************
Parses a stored procedure call, when this is not within another stored
procedure, that is, the client issues a procedure call directly.
In MySQL/InnoDB, stored InnoDB procedures are invoked via the
parsed procedure tree, not via InnoDB SQL, so this function is not used. */
que_fork_t*
pars_stored_procedure_call(
/*=======================*/
/* out: query graph */
sym_node_t* sym_node __attribute__((unused)))
/* in: stored procedure name */
{
ut_error;
return(NULL);
}
/*****************************************************************
Retrieves characters to the lexical analyzer. */
void
pars_get_lex_chars(
/*===============*/
char* buf, /* in/out: buffer where to copy */
int* result, /* out: number of characters copied or EOF */
int max_size) /* in: maximum number of characters which fit
in the buffer */
{
int len;
len = pars_sym_tab_global->string_len
- pars_sym_tab_global->next_char_pos;
if (len == 0) {
#ifdef YYDEBUG
/* fputs("SQL string ends\n", stderr); */
#endif
*result = 0;
return;
}
if (len > max_size) {
len = max_size;
}
#ifdef UNIV_SQL_DEBUG
if (pars_print_lexed) {
if (len >= 5) {
len = 5;
}
fwrite(pars_sym_tab_global->sql_string
+ pars_sym_tab_global->next_char_pos,
1, len, stderr);
}
#endif /* UNIV_SQL_DEBUG */
ut_memcpy(buf, pars_sym_tab_global->sql_string
+ pars_sym_tab_global->next_char_pos, len);
*result = len;
pars_sym_tab_global->next_char_pos += len;
}
/*****************************************************************
Called by yyparse on error. */
void
yyerror(
/*====*/
const char* s __attribute__((unused)))
/* in: error message string */
{
ut_ad(s);
fputs("PARSER ERROR: Syntax error in SQL string\n", stderr);
ut_error;
}
/*****************************************************************
Parses an SQL string returning the query graph. */
que_t*
pars_sql(
/*=====*/
/* out, own: the query graph */
pars_info_t* info, /* in: extra information, or NULL */
const char* str) /* in: SQL string */
{
sym_node_t* sym_node;
mem_heap_t* heap;
que_t* graph;
ut_ad(str);
heap = mem_heap_create(256);
/* Currently, the parser is not reentrant: */
ut_ad(mutex_own(&(dict_sys->mutex)));
pars_sym_tab_global = sym_tab_create(heap);
pars_sym_tab_global->string_len = strlen(str);
pars_sym_tab_global->sql_string = mem_heap_dup(
heap, str, pars_sym_tab_global->string_len + 1);
pars_sym_tab_global->next_char_pos = 0;
pars_sym_tab_global->info = info;
yyparse();
sym_node = UT_LIST_GET_FIRST(pars_sym_tab_global->sym_list);
while (sym_node) {
ut_a(sym_node->resolved);
sym_node = UT_LIST_GET_NEXT(sym_list, sym_node);
}
graph = pars_sym_tab_global->query_graph;
graph->sym_tab = pars_sym_tab_global;
graph->info = info;
/* fprintf(stderr, "SQL graph size %lu\n", mem_heap_get_size(heap)); */
return(graph);
}
/**********************************************************************
Completes a query graph by adding query thread and fork nodes
above it and prepares the graph for running. The fork created is of
type QUE_FORK_MYSQL_INTERFACE. */
que_thr_t*
pars_complete_graph_for_exec(
/*=========================*/
/* out: query thread node to run */
que_node_t* node, /* in: root node for an incomplete
query graph */
trx_t* trx, /* in: transaction handle */
mem_heap_t* heap) /* in: memory heap from which allocated */
{
que_fork_t* fork;
que_thr_t* thr;
fork = que_fork_create(NULL, NULL, QUE_FORK_MYSQL_INTERFACE, heap);
fork->trx = trx;
thr = que_thr_create(fork, heap);
thr->child = node;
que_node_set_parent(node, thr);
trx->graph = NULL;
return(thr);
}
/********************************************************************
Create parser info struct.*/
pars_info_t*
pars_info_create(void)
/*==================*/
/* out, own: info struct */
{
pars_info_t* info;
mem_heap_t* heap;
heap = mem_heap_create(512);
info = mem_heap_alloc(heap, sizeof(*info));
info->heap = heap;
info->funcs = NULL;
info->bound_lits = NULL;
info->bound_ids = NULL;
info->graph_owns_us = TRUE;
return(info);
}
/********************************************************************
Free info struct and everything it contains.*/
void
pars_info_free(
/*===========*/
pars_info_t* info) /* in: info struct */
{
mem_heap_free(info->heap);
}
/********************************************************************
Add bound literal. */
void
pars_info_add_literal(
/*==================*/
pars_info_t* info, /* in: info struct */
const char* name, /* in: name */
const void* address, /* in: address */
ulint length, /* in: length of data */
ulint type, /* in: type, e.g. DATA_FIXBINARY */
ulint prtype) /* in: precise type, e.g.
DATA_UNSIGNED */
{
pars_bound_lit_t* pbl;
ut_ad(!pars_info_get_bound_lit(info, name));
pbl = mem_heap_alloc(info->heap, sizeof(*pbl));
pbl->name = name;
pbl->address = address;
pbl->length = length;
pbl->type = type;
pbl->prtype = prtype;
if (!info->bound_lits) {
info->bound_lits = ib_vector_create(info->heap, 8);
}
ib_vector_push(info->bound_lits, pbl);
}
/********************************************************************
Equivalent to pars_info_add_literal(info, name, str, strlen(str),
DATA_VARCHAR, DATA_ENGLISH). */
void
pars_info_add_str_literal(
/*======================*/
pars_info_t* info, /* in: info struct */
const char* name, /* in: name */
const char* str) /* in: string */
{
pars_info_add_literal(info, name, str, strlen(str),
DATA_VARCHAR, DATA_ENGLISH);
}
/********************************************************************
Equivalent to:
char buf[4];
mach_write_to_4(buf, val);
pars_info_add_literal(info, name, buf, 4, DATA_INT, 0);
except that the buffer is dynamically allocated from the info struct's
heap. */
void
pars_info_add_int4_literal(
/*=======================*/
pars_info_t* info, /* in: info struct */
const char* name, /* in: name */
lint val) /* in: value */
{
byte* buf = mem_heap_alloc(info->heap, 4);
mach_write_to_4(buf, val);
pars_info_add_literal(info, name, buf, 4, DATA_INT, 0);
}
/********************************************************************
Equivalent to:
char buf[8];
mach_write_to_8(buf, val);
pars_info_add_literal(info, name, buf, 8, DATA_FIXBINARY, 0);
except that the buffer is dynamically allocated from the info struct's
heap. */
void
pars_info_add_dulint_literal(
/*=========================*/
pars_info_t* info, /* in: info struct */
const char* name, /* in: name */
dulint val) /* in: value */
{
byte* buf = mem_heap_alloc(info->heap, 8);
mach_write_to_8(buf, val);
pars_info_add_literal(info, name, buf, 8, DATA_FIXBINARY, 0);
}
/********************************************************************
Add user function. */
void
pars_info_add_function(
/*===================*/
pars_info_t* info, /* in: info struct */
const char* name, /* in: function name */
pars_user_func_cb_t func, /* in: function address */
void* arg) /* in: user-supplied argument */
{
pars_user_func_t* puf;
ut_ad(!pars_info_get_user_func(info, name));
puf = mem_heap_alloc(info->heap, sizeof(*puf));
puf->name = name;
puf->func = func;
puf->arg = arg;
if (!info->funcs) {
info->funcs = ib_vector_create(info->heap, 8);
}
ib_vector_push(info->funcs, puf);
}
/********************************************************************
Add bound id. */
void
pars_info_add_id(
/*=============*/
pars_info_t* info, /* in: info struct */
const char* name, /* in: name */
const char* id) /* in: id */
{
pars_bound_id_t* bid;
ut_ad(!pars_info_get_bound_id(info, name));
bid = mem_heap_alloc(info->heap, sizeof(*bid));
bid->name = name;
bid->id = id;
if (!info->bound_ids) {
info->bound_ids = ib_vector_create(info->heap, 8);
}
ib_vector_push(info->bound_ids, bid);
}
/********************************************************************
Get user function with the given name.*/
pars_user_func_t*
pars_info_get_user_func(
/*====================*/
/* out: user func, or NULL if not
found */
pars_info_t* info, /* in: info struct */
const char* name) /* in: function name to find*/
{
ulint i;
ib_vector_t* vec;
if (!info || !info->funcs) {
return(NULL);
}
vec = info->funcs;
for (i = 0; i < ib_vector_size(vec); i++) {
pars_user_func_t* puf = ib_vector_get(vec, i);
if (strcmp(puf->name, name) == 0) {
return(puf);
}
}
return(NULL);
}
/********************************************************************
Get bound literal with the given name.*/
pars_bound_lit_t*
pars_info_get_bound_lit(
/*====================*/
/* out: bound literal, or NULL if
not found */
pars_info_t* info, /* in: info struct */
const char* name) /* in: bound literal name to find */
{
ulint i;
ib_vector_t* vec;
if (!info || !info->bound_lits) {
return(NULL);
}
vec = info->bound_lits;
for (i = 0; i < ib_vector_size(vec); i++) {
pars_bound_lit_t* pbl = ib_vector_get(vec, i);
if (strcmp(pbl->name, name) == 0) {
return(pbl);
}
}
return(NULL);
}
/********************************************************************
Get bound id with the given name.*/
pars_bound_id_t*
pars_info_get_bound_id(
/*===================*/
/* out: bound id, or NULL if not
found */
pars_info_t* info, /* in: info struct */
const char* name) /* in: bound id name to find */
{
ulint i;
ib_vector_t* vec;
if (!info || !info->bound_ids) {
return(NULL);
}
vec = info->bound_ids;
for (i = 0; i < ib_vector_size(vec); i++) {
pars_bound_id_t* bid = ib_vector_get(vec, i);
if (strcmp(bid->name, name) == 0) {
return(bid);
}
}
return(NULL);
}