mariadb/sql/rpl_injector.cc
Sven Sandberg f3985c649d BUG#39934: Slave stops for engine that only support row-based logging
General overview:
The logic for switching to row format when binlog_format=MIXED had
numerous flaws. The underlying problem was the lack of a consistent
architecture.
General purpose of this changeset:
This changeset introduces an architecture for switching to row format
when binlog_format=MIXED. It enforces the architecture where it has
to. It leaves some bugs to be fixed later. It adds extensive tests to
verify that unsafe statements work as expected and that appropriate
errors are produced by problems with the selection of binlog format.
It was not practical to split this into smaller pieces of work.

Problem 1:
To determine the logging mode, the code has to take several parameters
into account (namely: (1) the value of binlog_format; (2) the
capabilities of the engines; (3) the type of the current statement:
normal, unsafe, or row injection). These parameters may conflict in
several ways, namely:
 - binlog_format=STATEMENT for a row injection
 - binlog_format=STATEMENT for an unsafe statement
 - binlog_format=STATEMENT for an engine only supporting row logging
 - binlog_format=ROW for an engine only supporting statement logging
 - statement is unsafe and engine does not support row logging
 - row injection in a table that does not support statement logging
 - statement modifies one table that does not support row logging and
   one that does not support statement logging
Several of these conflicts were not detected, or were detected with
an inappropriate error message. The problem of BUG#39934 was that no
appropriate error message was written for the case when an engine
only supporting row logging executed a row injection with
binlog_format=ROW. However, all above cases must be handled.
Fix 1:
Introduce new error codes (sql/share/errmsg.txt). Ensure that all
conditions are detected and handled in decide_logging_format()

Problem 2:
The binlog format shall be determined once per statement, in
decide_logging_format(). It shall not be changed before or after that.
Before decide_logging_format() is called, all information necessary to
determine the logging format must be available. This principle ensures
that all unsafe statements are handled in a consistent way.
However, this principle is not followed:
thd->set_current_stmt_binlog_row_based_if_mixed() is called in several
places, including from code executing UPDATE..LIMIT,
INSERT..SELECT..LIMIT, DELETE..LIMIT, INSERT DELAYED, and
SET @@binlog_format. After Problem 1 was fixed, that caused
inconsistencies where these unsafe statements would not print the
appropriate warnings or errors for some of the conflicts.
Fix 2:
Remove calls to THD::set_current_stmt_binlog_row_based_if_mixed() from
code executed after decide_logging_format(). Compensate by calling the
set_current_stmt_unsafe() at parse time. This way, all unsafe statements
are detected by decide_logging_format().

Problem 3:
INSERT DELAYED is not unsafe: it is logged in statement format even if
binlog_format=MIXED, and no warning is printed even if
binlog_format=STATEMENT. This is BUG#45825.
Fix 3:
Made INSERT DELAYED set itself to unsafe at parse time. This allows
decide_logging_format() to detect that a warning should be printed or
the binlog_format changed.

Problem 4:
LIMIT clause were not marked as unsafe when executed inside stored
functions/triggers/views/prepared statements. This is
BUG#45785.
Fix 4:
Make statements containing the LIMIT clause marked as unsafe at
parse time, instead of at execution time. This allows propagating
unsafe-ness to the view.
2009-07-14 21:31:19 +02:00

234 lines
6.5 KiB
C++

/* Copyright (C) 2006 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include "mysql_priv.h"
#include "rpl_injector.h"
/*
injector::transaction - member definitions
*/
/* inline since it's called below */
inline
injector::transaction::transaction(MYSQL_BIN_LOG *log, THD *thd)
: m_state(START_STATE), m_thd(thd)
{
/*
Default initialization of m_start_pos (which initializes it to garbage).
We need to fill it in using the code below.
*/
LOG_INFO log_info;
log->get_current_log(&log_info);
/* !!! binlog_pos does not follow RAII !!! */
m_start_pos.m_file_name= my_strdup(log_info.log_file_name, MYF(0));
m_start_pos.m_file_pos= log_info.pos;
begin_trans(m_thd);
}
injector::transaction::~transaction()
{
if (!good())
return;
/* Needed since my_free expects a 'char*' (instead of 'void*'). */
char* const the_memory= const_cast<char*>(m_start_pos.m_file_name);
/*
We set the first character to null just to give all the copies of the
start position a (minimal) chance of seening that the memory is lost.
All assuming the my_free does not step over the memory, of course.
*/
*the_memory= '\0';
my_free(the_memory, MYF(0));
}
int injector::transaction::commit()
{
DBUG_ENTER("injector::transaction::commit()");
m_thd->binlog_flush_pending_rows_event(true);
/*
Cluster replication does not preserve statement or
transaction boundaries of the master. Instead, a new
transaction on replication slave is started when a new GCI
(global checkpoint identifier) is issued, and is committed
when the last event of the check point has been received and
processed. This ensures consistency of each cluster in
cluster replication, and there is no requirement for stronger
consistency: MySQL replication is asynchronous with other
engines as well.
A practical consequence of that is that row level replication
stream passed through the injector thread never contains
COMMIT events.
Here we should preserve the server invariant that there is no
outstanding statement transaction when the normal transaction
is committed by committing the statement transaction
explicitly.
*/
ha_autocommit_or_rollback(m_thd, 0);
end_trans(m_thd, COMMIT);
DBUG_RETURN(0);
}
int injector::transaction::use_table(server_id_type sid, table tbl)
{
DBUG_ENTER("injector::transaction::use_table");
int error;
if ((error= check_state(TABLE_STATE)))
DBUG_RETURN(error);
server_id_type save_id= m_thd->server_id;
m_thd->set_server_id(sid);
error= m_thd->binlog_write_table_map(tbl.get_table(),
tbl.is_transactional());
m_thd->set_server_id(save_id);
DBUG_RETURN(error);
}
int injector::transaction::write_row (server_id_type sid, table tbl,
MY_BITMAP const* cols, size_t colcnt,
record_type record)
{
DBUG_ENTER("injector::transaction::write_row(...)");
if (int error= check_state(ROW_STATE))
DBUG_RETURN(error);
server_id_type save_id= m_thd->server_id;
m_thd->set_server_id(sid);
m_thd->binlog_write_row(tbl.get_table(), tbl.is_transactional(),
cols, colcnt, record);
m_thd->set_server_id(save_id);
DBUG_RETURN(0);
}
int injector::transaction::delete_row(server_id_type sid, table tbl,
MY_BITMAP const* cols, size_t colcnt,
record_type record)
{
DBUG_ENTER("injector::transaction::delete_row(...)");
if (int error= check_state(ROW_STATE))
DBUG_RETURN(error);
server_id_type save_id= m_thd->server_id;
m_thd->set_server_id(sid);
m_thd->binlog_delete_row(tbl.get_table(), tbl.is_transactional(),
cols, colcnt, record);
m_thd->set_server_id(save_id);
DBUG_RETURN(0);
}
int injector::transaction::update_row(server_id_type sid, table tbl,
MY_BITMAP const* cols, size_t colcnt,
record_type before, record_type after)
{
DBUG_ENTER("injector::transaction::update_row(...)");
if (int error= check_state(ROW_STATE))
DBUG_RETURN(error);
server_id_type save_id= m_thd->server_id;
m_thd->set_server_id(sid);
m_thd->binlog_update_row(tbl.get_table(), tbl.is_transactional(),
cols, colcnt, before, after);
m_thd->set_server_id(save_id);
DBUG_RETURN(0);
}
injector::transaction::binlog_pos injector::transaction::start_pos() const
{
return m_start_pos;
}
/*
injector - member definitions
*/
/* This constructor is called below */
inline injector::injector()
{
}
static injector *s_injector= 0;
injector *injector::instance()
{
if (s_injector == 0)
s_injector= new injector;
/* "There can be only one [instance]" */
return s_injector;
}
void injector::free_instance()
{
injector *inj = s_injector;
if (inj != 0)
{
s_injector= 0;
delete inj;
}
}
injector::transaction injector::new_trans(THD *thd)
{
DBUG_ENTER("injector::new_trans(THD*)");
/*
Currently, there is no alternative to using 'mysql_bin_log' since that
is hardcoded into the way the handler is using the binary log.
*/
DBUG_RETURN(transaction(&mysql_bin_log, thd));
}
void injector::new_trans(THD *thd, injector::transaction *ptr)
{
DBUG_ENTER("injector::new_trans(THD *, transaction *)");
/*
Currently, there is no alternative to using 'mysql_bin_log' since that
is hardcoded into the way the handler is using the binary log.
*/
transaction trans(&mysql_bin_log, thd);
ptr->swap(trans);
DBUG_VOID_RETURN;
}
int injector::record_incident(THD *thd, Incident incident)
{
Incident_log_event ev(thd, incident);
if (int error= mysql_bin_log.write(&ev))
return error;
mysql_bin_log.rotate_and_purge(RP_FORCE_ROTATE);
return 0;
}
int injector::record_incident(THD *thd, Incident incident, LEX_STRING const message)
{
Incident_log_event ev(thd, incident, message);
if (int error= mysql_bin_log.write(&ev))
return error;
mysql_bin_log.rotate_and_purge(RP_FORCE_ROTATE);
return 0;
}