mariadb/innobase/mem/mem0pool.c
unknown 9871a6d080 Many files:
Small improvements
row0mysql.c:
  Small improvements + fix the ALTER TABLE problem by introducing a lazy drop table it can use
ha_innobase.cc:
  Some fine-tuning of optimization


sql/ha_innobase.cc:
  Some fine-tuning of optimization
innobase/include/log0recv.h:
  Small improvements
innobase/include/mem0mem.h:
  Small improvements
innobase/include/mem0pool.h:
  Small improvements
innobase/include/row0mysql.h:
  Small improvements
innobase/include/srv0srv.h:
  Small improvements
innobase/include/trx0trx.h:
  Small improvements
innobase/buf/buf0lru.c:
  Small improvements
innobase/fil/fil0fil.c:
  Small improvements
innobase/log/log0recv.c:
  Small improvements
innobase/mem/mem0mem.c:
  Small improvements
innobase/mem/mem0pool.c:
  Small improvements
innobase/row/row0mysql.c:
  Small improvements + fix the ALTER TABLE problem by introducing a lazy drop table it can use
innobase/srv/srv0srv.c:
  Small improvements
innobase/srv/srv0start.c:
  Small improvements
innobase/trx/trx0purge.c:
  Small improvements
innobase/trx/trx0trx.c:
  Small improvements
2002-02-04 23:55:41 +02:00

591 lines
14 KiB
C

/************************************************************************
The lowest-level memory management
(c) 1997 Innobase Oy
Created 5/12/1997 Heikki Tuuri
*************************************************************************/
#include "mem0pool.h"
#ifdef UNIV_NONINL
#include "mem0pool.ic"
#endif
#include "sync0sync.h"
#include "ut0mem.h"
#include "ut0lst.h"
#include "ut0byte.h"
/* We would like to use also the buffer frames to allocate memory. This
would be desirable, because then the memory consumption of the database
would be fixed, and we might even lock the buffer pool to the main memory.
The problem here is that the buffer management routines can themselves call
memory allocation, while the buffer pool mutex is reserved.
The main components of the memory consumption are:
1. buffer pool,
2. parsed and optimized SQL statements,
3. data dictionary cache,
4. log buffer,
5. locks for each transaction,
6. hash table for the adaptive index,
7. state and buffers for each SQL query currently being executed,
8. session for each user, and
9. stack for each OS thread.
Items 1-3 are managed by an LRU algorithm. Items 5 and 6 can potentially
consume very much memory. Items 7 and 8 should consume quite little memory,
and the OS should take care of item 9, which too should consume little memory.
A solution to the memory management:
1. the buffer pool size is set separately;
2. log buffer size is set separately;
3. the common pool size for all the other entries, except 8, is set separately.
Problems: we may waste memory if the common pool is set too big. Another
problem is the locks, which may take very much space in big transactions.
Then the shared pool size should be set very big. We can allow locks to take
space from the buffer pool, but the SQL optimizer is then unaware of the
usable size of the buffer pool. We could also combine the objects in the
common pool and the buffers in the buffer pool into a single LRU list and
manage it uniformly, but this approach does not take into account the parsing
and other costs unique to SQL statements.
So, let the SQL statements and the data dictionary entries form one single
LRU list, let us call it the dictionary LRU list. The locks for a transaction
can be seen as a part of the state of the transaction. Hence, they should be
stored in the common pool. We still have the problem of a very big update
transaction, for example, which will set very many x-locks on rows, and the
locks will consume a lot of memory, say, half of the buffer pool size.
Another problem is what to do if we are not able to malloc a requested
block of memory from the common pool. Then we can truncate the LRU list of
the dictionary cache. If it does not help, a system error results.
Because 5 and 6 may potentially consume very much memory, we let them grow
into the buffer pool. We may let the locks of a transaction take frames
from the buffer pool, when the corresponding memory heap block has grown to
the size of a buffer frame. Similarly for the hash node cells of the locks,
and for the adaptive index. Thus, for each individual transaction, its locks
can occupy at most about the size of the buffer frame of memory in the common
pool, and after that its locks will grow into the buffer pool. */
/* Mask used to extract the free bit from area->size */
#define MEM_AREA_FREE 1
/* The smallest memory area total size */
#define MEM_AREA_MIN_SIZE (2 * MEM_AREA_EXTRA_SIZE)
/* Data structure for a memory pool. The space is allocated using the buddy
algorithm, where free list i contains areas of size 2 to power i. */
struct mem_pool_struct{
byte* buf; /* memory pool */
ulint size; /* memory common pool size */
ulint reserved; /* amount of currently allocated
memory */
mutex_t mutex; /* mutex protecting this struct */
UT_LIST_BASE_NODE_T(mem_area_t)
free_list[64]; /* lists of free memory areas: an
area is put to the list whose number
is the 2-logarithm of the area size */
};
/* The common memory pool */
mem_pool_t* mem_comm_pool = NULL;
ulint mem_out_of_mem_err_msg_count = 0;
/************************************************************************
Reserves the mem pool mutex. */
void
mem_pool_mutex_enter(void)
/*======================*/
{
mutex_enter(&(mem_comm_pool->mutex));
}
/************************************************************************
Releases the mem pool mutex. */
void
mem_pool_mutex_exit(void)
/*=====================*/
{
mutex_exit(&(mem_comm_pool->mutex));
}
/************************************************************************
Returns memory area size. */
UNIV_INLINE
ulint
mem_area_get_size(
/*==============*/
/* out: size */
mem_area_t* area) /* in: area */
{
return(area->size_and_free & ~MEM_AREA_FREE);
}
/************************************************************************
Sets memory area size. */
UNIV_INLINE
void
mem_area_set_size(
/*==============*/
mem_area_t* area, /* in: area */
ulint size) /* in: size */
{
area->size_and_free = (area->size_and_free & MEM_AREA_FREE)
| size;
}
/************************************************************************
Returns memory area free bit. */
UNIV_INLINE
ibool
mem_area_get_free(
/*==============*/
/* out: TRUE if free */
mem_area_t* area) /* in: area */
{
ut_ad(TRUE == MEM_AREA_FREE);
return(area->size_and_free & MEM_AREA_FREE);
}
/************************************************************************
Sets memory area free bit. */
UNIV_INLINE
void
mem_area_set_free(
/*==============*/
mem_area_t* area, /* in: area */
ibool free) /* in: free bit value */
{
ut_ad(TRUE == MEM_AREA_FREE);
area->size_and_free = (area->size_and_free & ~MEM_AREA_FREE)
| free;
}
/************************************************************************
Creates a memory pool. */
mem_pool_t*
mem_pool_create(
/*============*/
/* out: memory pool */
ulint size) /* in: pool size in bytes */
{
mem_pool_t* pool;
mem_area_t* area;
ulint i;
ulint used;
ut_a(size > 10000);
pool = ut_malloc(sizeof(mem_pool_t));
/* We do not set the memory to zero (FALSE) in the pool,
but only when allocated at a higher level in mem0mem.c.
This is to avoid masking useful Purify warnings. */
pool->buf = ut_malloc_low(size, FALSE);
pool->size = size;
mutex_create(&(pool->mutex));
mutex_set_level(&(pool->mutex), SYNC_MEM_POOL);
/* Initialize the free lists */
for (i = 0; i < 64; i++) {
UT_LIST_INIT(pool->free_list[i]);
}
used = 0;
while (size - used >= MEM_AREA_MIN_SIZE) {
i = ut_2_log(size - used);
if (ut_2_exp(i) > size - used) {
/* ut_2_log rounds upward */
i--;
}
area = (mem_area_t*)(pool->buf + used);
mem_area_set_size(area, ut_2_exp(i));
mem_area_set_free(area, TRUE);
UT_LIST_ADD_FIRST(free_list, pool->free_list[i], area);
used = used + ut_2_exp(i);
}
ut_ad(size >= used);
pool->reserved = 0;
return(pool);
}
/************************************************************************
Fills the specified free list. */
static
ibool
mem_pool_fill_free_list(
/*====================*/
/* out: TRUE if we were able to insert a
block to the free list */
ulint i, /* in: free list index */
mem_pool_t* pool) /* in: memory pool */
{
mem_area_t* area;
mem_area_t* area2;
ibool ret;
ut_ad(mutex_own(&(pool->mutex)));
if (i >= 63) {
/* We come here when we have run out of space in the
memory pool: */
if (mem_out_of_mem_err_msg_count % 1000000000 == 0) {
/* We do not print the message every time: */
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: Out of memory in additional memory pool.\n"
"InnoDB: InnoDB will start allocating memory from the OS.\n"
"InnoDB: You may get better performance if you configure a bigger\n"
"InnoDB: value in the MySQL my.cnf file for\n"
"InnoDB: innodb_additional_mem_pool_size.\n");
}
mem_out_of_mem_err_msg_count++;
return(FALSE);
}
area = UT_LIST_GET_FIRST(pool->free_list[i + 1]);
if (area == NULL) {
ret = mem_pool_fill_free_list(i + 1, pool);
if (ret == FALSE) {
return(FALSE);
}
area = UT_LIST_GET_FIRST(pool->free_list[i + 1]);
}
UT_LIST_REMOVE(free_list, pool->free_list[i + 1], area);
area2 = (mem_area_t*)(((byte*)area) + ut_2_exp(i));
mem_area_set_size(area2, ut_2_exp(i));
mem_area_set_free(area2, TRUE);
UT_LIST_ADD_FIRST(free_list, pool->free_list[i], area2);
mem_area_set_size(area, ut_2_exp(i));
UT_LIST_ADD_FIRST(free_list, pool->free_list[i], area);
return(TRUE);
}
/************************************************************************
Allocates memory from a pool. NOTE: This low-level function should only be
used in mem0mem.*! */
void*
mem_area_alloc(
/*===========*/
/* out, own: allocated memory buffer */
ulint size, /* in: allocated size in bytes; for optimum
space usage, the size should be a power of 2
minus MEM_AREA_EXTRA_SIZE */
mem_pool_t* pool) /* in: memory pool */
{
mem_area_t* area;
ulint n;
ibool ret;
n = ut_2_log(ut_max(size + MEM_AREA_EXTRA_SIZE, MEM_AREA_MIN_SIZE));
mutex_enter(&(pool->mutex));
area = UT_LIST_GET_FIRST(pool->free_list[n]);
if (area == NULL) {
ret = mem_pool_fill_free_list(n, pool);
if (ret == FALSE) {
/* Out of memory in memory pool: we try to allocate
from the operating system with the regular malloc: */
mutex_exit(&(pool->mutex));
return(ut_malloc(size));
}
area = UT_LIST_GET_FIRST(pool->free_list[n]);
}
ut_a(mem_area_get_free(area));
ut_ad(mem_area_get_size(area) == ut_2_exp(n));
mem_area_set_free(area, FALSE);
UT_LIST_REMOVE(free_list, pool->free_list[n], area);
pool->reserved += mem_area_get_size(area);
mutex_exit(&(pool->mutex));
ut_ad(mem_pool_validate(pool));
return((void*)(MEM_AREA_EXTRA_SIZE + ((byte*)area)));
}
/************************************************************************
Gets the buddy of an area, if it exists in pool. */
UNIV_INLINE
mem_area_t*
mem_area_get_buddy(
/*===============*/
/* out: the buddy, NULL if no buddy in pool */
mem_area_t* area, /* in: memory area */
ulint size, /* in: memory area size */
mem_pool_t* pool) /* in: memory pool */
{
mem_area_t* buddy;
ut_ad(size != 0);
if (((((byte*)area) - pool->buf) % (2 * size)) == 0) {
/* The buddy is in a higher address */
buddy = (mem_area_t*)(((byte*)area) + size);
if ((((byte*)buddy) - pool->buf) + size > pool->size) {
/* The buddy is not wholly contained in the pool:
there is no buddy */
buddy = NULL;
}
} else {
/* The buddy is in a lower address; NOTE that area cannot
be at the pool lower end, because then we would end up to
the upper branch in this if-clause: the remainder would be
0 */
buddy = (mem_area_t*)(((byte*)area) - size);
}
return(buddy);
}
/************************************************************************
Frees memory to a pool. */
void
mem_area_free(
/*==========*/
void* ptr, /* in, own: pointer to allocated memory
buffer */
mem_pool_t* pool) /* in: memory pool */
{
mem_area_t* area;
mem_area_t* buddy;
void* new_ptr;
ulint size;
ulint n;
if (mem_out_of_mem_err_msg_count > 0) {
/* It may be that the area was really allocated from the
OS with regular malloc: check if ptr points within
our memory pool */
if ((byte*)ptr < pool->buf
|| (byte*)ptr >= pool->buf + pool->size) {
ut_free(ptr);
return;
}
}
area = (mem_area_t*) (((byte*)ptr) - MEM_AREA_EXTRA_SIZE);
size = mem_area_get_size(area);
ut_ad(size != 0);
ut_a(!mem_area_get_free(area));
#ifdef UNIV_LIGHT_MEM_DEBUG
if (((byte*)area) + size < pool->buf + pool->size) {
ulint next_size;
next_size = mem_area_get_size(
(mem_area_t*)(((byte*)area) + size));
ut_a(ut_2_power_up(next_size) == next_size);
}
#endif
buddy = mem_area_get_buddy(area, size, pool);
n = ut_2_log(size);
mutex_enter(&(pool->mutex));
if (buddy && mem_area_get_free(buddy)
&& (size == mem_area_get_size(buddy))) {
/* The buddy is in a free list */
if ((byte*)buddy < (byte*)area) {
new_ptr = ((byte*)buddy) + MEM_AREA_EXTRA_SIZE;
mem_area_set_size(buddy, 2 * size);
mem_area_set_free(buddy, FALSE);
} else {
new_ptr = ptr;
mem_area_set_size(area, 2 * size);
}
/* Remove the buddy from its free list and merge it to area */
UT_LIST_REMOVE(free_list, pool->free_list[n], buddy);
pool->reserved += ut_2_exp(n);
mutex_exit(&(pool->mutex));
mem_area_free(new_ptr, pool);
return;
} else {
UT_LIST_ADD_FIRST(free_list, pool->free_list[n], area);
mem_area_set_free(area, TRUE);
ut_ad(pool->reserved >= size);
pool->reserved -= size;
}
mutex_exit(&(pool->mutex));
ut_ad(mem_pool_validate(pool));
}
/************************************************************************
Validates a memory pool. */
ibool
mem_pool_validate(
/*==============*/
/* out: TRUE if ok */
mem_pool_t* pool) /* in: memory pool */
{
mem_area_t* area;
mem_area_t* buddy;
ulint free;
ulint i;
mutex_enter(&(pool->mutex));
free = 0;
for (i = 0; i < 64; i++) {
UT_LIST_VALIDATE(free_list, mem_area_t, pool->free_list[i]);
area = UT_LIST_GET_FIRST(pool->free_list[i]);
while (area != NULL) {
ut_a(mem_area_get_free(area));
ut_a(mem_area_get_size(area) == ut_2_exp(i));
buddy = mem_area_get_buddy(area, ut_2_exp(i), pool);
ut_a(!buddy || !mem_area_get_free(buddy)
|| (ut_2_exp(i) != mem_area_get_size(buddy)));
area = UT_LIST_GET_NEXT(free_list, area);
free += ut_2_exp(i);
}
}
ut_a(free + pool->reserved == pool->size
- (pool->size % MEM_AREA_MIN_SIZE));
mutex_exit(&(pool->mutex));
return(TRUE);
}
/************************************************************************
Prints info of a memory pool. */
void
mem_pool_print_info(
/*================*/
FILE* outfile,/* in: output file to write to */
mem_pool_t* pool) /* in: memory pool */
{
ulint i;
mem_pool_validate(pool);
fprintf(outfile, "INFO OF A MEMORY POOL\n");
mutex_enter(&(pool->mutex));
for (i = 0; i < 64; i++) {
if (UT_LIST_GET_LEN(pool->free_list[i]) > 0) {
fprintf(outfile,
"Free list length %lu for blocks of size %lu\n",
UT_LIST_GET_LEN(pool->free_list[i]),
ut_2_exp(i));
}
}
fprintf(outfile, "Pool size %lu, reserved %lu.\n", pool->size,
pool->reserved);
mutex_exit(&(pool->mutex));
}
/************************************************************************
Returns the amount of reserved memory. */
ulint
mem_pool_get_reserved(
/*==================*/
/* out: reserved memory in bytes */
mem_pool_t* pool) /* in: memory pool */
{
ulint reserved;
mutex_enter(&(pool->mutex));
reserved = pool->reserved;
mutex_exit(&(pool->mutex));
return(reserved);
}