mariadb/storage/innobase/include/ib0mutex.h
Jan Lindström 2e814d4702 Merge InnoDB 5.7 from mysql-5.7.9.
Contains also

MDEV-10547: Test multi_update_innodb fails with InnoDB 5.7

	The failure happened because 5.7 has changed the signature of
	the bool handler::primary_key_is_clustered() const
	virtual function ("const" was added). InnoDB was using the old
	signature which caused the function not to be used.

MDEV-10550: Parallel replication lock waits/deadlock handling does not work with InnoDB 5.7

	Fixed mutexing problem on lock_trx_handle_wait. Note that
	rpl_parallel and rpl_optimistic_parallel tests still
	fail.

MDEV-10156 : Group commit tests fail on 10.2 InnoDB (branch bb-10.2-jan)
  Reason: incorrect merge

MDEV-10550: Parallel replication can't sync with master in InnoDB 5.7 (branch bb-10.2-jan)
  Reason: incorrect merge
2016-09-02 13:22:28 +03:00

1166 lines
25 KiB
C++

/*****************************************************************************
Copyright (c) 2013, 2015, Oracle and/or its affiliates. All Rights Reserved.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/******************************************************************//**
@file include/ib0mutex.h
Policy based mutexes.
Created 2013-03-26 Sunny Bains.
***********************************************************************/
#ifndef UNIV_INNOCHECKSUM
#ifndef ib0mutex_h
#define ib0mutex_h
#include "ut0ut.h"
#include "ut0rnd.h"
#include "os0event.h"
/** OS mutex for tracking lock/unlock for debugging */
template <template <typename> class Policy = NoPolicy>
struct OSTrackMutex {
typedef Policy<OSTrackMutex> MutexPolicy;
explicit OSTrackMutex(bool destroy_mutex_at_exit = true)
UNIV_NOTHROW
{
ut_d(m_freed = true);
ut_d(m_locked = false);
ut_d(m_destroy_at_exit = destroy_mutex_at_exit);
}
~OSTrackMutex() UNIV_NOTHROW
{
ut_ad(!m_destroy_at_exit || !m_locked);
}
/** Initialise the mutex.
@param[in] id Mutex ID
@param[in] filename File where mutex was created
@param[in] line Line in filename */
void init(
latch_id_t id,
const char* filename,
uint32_t line)
UNIV_NOTHROW
{
ut_ad(m_freed);
ut_ad(!m_locked);
m_mutex.init();
ut_d(m_freed = false);
m_policy.init(*this, id, filename, line);
}
/** Destroy the mutex */
void destroy() UNIV_NOTHROW
{
ut_ad(!m_locked);
ut_ad(innodb_calling_exit || !m_freed);
m_mutex.destroy();
ut_d(m_freed = true);
m_policy.destroy();
}
/** Release the mutex. */
void exit() UNIV_NOTHROW
{
ut_ad(m_locked);
ut_d(m_locked = false);
ut_ad(innodb_calling_exit || !m_freed);
m_mutex.exit();
}
/** Acquire the mutex.
@param[in] max_spins max number of spins
@param[in] max_delay max delay per spin
@param[in] filename from where called
@param[in] line within filename */
void enter(
uint32_t max_spins,
uint32_t max_delay,
const char* filename,
uint32_t line)
UNIV_NOTHROW
{
ut_ad(innodb_calling_exit || !m_freed);
m_mutex.enter();
ut_ad(!m_locked);
ut_d(m_locked = true);
}
/** @return true if locking succeeded */
bool try_lock() UNIV_NOTHROW
{
ut_ad(innodb_calling_exit || !m_freed);
bool locked = m_mutex.try_lock();
if (locked) {
ut_ad(!m_locked);
ut_d(m_locked = locked);
}
return(locked);
}
#ifdef UNIV_DEBUG
/** @return true if the thread owns the mutex. */
bool is_owned() const
UNIV_NOTHROW
{
return(m_locked && m_policy.is_owned());
}
#endif /* UNIV_DEBUG */
/** @return non-const version of the policy */
MutexPolicy& policy()
UNIV_NOTHROW
{
return(m_policy);
}
/** @return the const version of the policy */
const MutexPolicy& policy() const
UNIV_NOTHROW
{
return(m_policy);
}
private:
#ifdef UNIV_DEBUG
/** true if the mutex has not be initialized */
bool m_freed;
/** true if the mutex has been locked. */
bool m_locked;
/** Do/Dont destroy mutex at exit */
bool m_destroy_at_exit;
#endif /* UNIV_DEBUG */
/** OS Mutex instance */
OSMutex m_mutex;
/** Policy data */
MutexPolicy m_policy;
};
#ifdef HAVE_IB_LINUX_FUTEX
#include <linux/futex.h>
#include <sys/syscall.h>
/** Mutex implementation that used the Linux futex. */
template <template <typename> class Policy = NoPolicy>
struct TTASFutexMutex {
typedef Policy<TTASFutexMutex> MutexPolicy;
TTASFutexMutex() UNIV_NOTHROW
:
m_lock_word(MUTEX_STATE_UNLOCKED)
{
/* Check that lock_word is aligned. */
ut_ad(!((ulint) &m_lock_word % sizeof(ulint)));
}
~TTASFutexMutex()
{
ut_a(m_lock_word == MUTEX_STATE_UNLOCKED);
}
/** Called when the mutex is "created". Note: Not from the constructor
but when the mutex is initialised.
@param[in] id Mutex ID
@param[in] filename File where mutex was created
@param[in] line Line in filename */
void init(
latch_id_t id,
const char* filename,
uint32_t line)
UNIV_NOTHROW
{
ut_a(m_lock_word == MUTEX_STATE_UNLOCKED);
m_policy.init(*this, id, filename, line);
}
/** Destroy the mutex. */
void destroy() UNIV_NOTHROW
{
/* The destructor can be called at shutdown. */
ut_a(m_lock_word == MUTEX_STATE_UNLOCKED);
m_policy.destroy();
}
/** Acquire the mutex.
@param[in] max_spins max number of spins
@param[in] max_delay max delay per spin
@param[in] filename from where called
@param[in] line within filename */
void enter(
uint32_t max_spins,
uint32_t max_delay,
const char* filename,
uint32_t line) UNIV_NOTHROW
{
uint32_t n_spins;
lock_word_t lock = ttas(max_spins, max_delay, n_spins);
/* If there were no waiters when this thread tried
to acquire the mutex then set the waiters flag now.
Additionally, when this thread set the waiters flag it is
possible that the mutex had already been released
by then. In this case the thread can assume it
was granted the mutex. */
uint32_t n_waits;
if (lock != MUTEX_STATE_UNLOCKED) {
if (lock != MUTEX_STATE_LOCKED || !set_waiters()) {
n_waits = wait();
} else {
n_waits = 0;
}
} else {
n_waits = 0;
}
m_policy.add(n_spins, n_waits);
}
/** Release the mutex. */
void exit() UNIV_NOTHROW
{
/* If there are threads waiting then we have to wake
them up. Reset the lock state to unlocked so that waiting
threads can test for success. */
os_rmb;
if (state() == MUTEX_STATE_WAITERS) {
m_lock_word = MUTEX_STATE_UNLOCKED;
} else if (unlock() == MUTEX_STATE_LOCKED) {
/* No threads waiting, no need to signal a wakeup. */
return;
}
signal();
}
/** Try and lock the mutex.
@return the old state of the mutex */
lock_word_t trylock() UNIV_NOTHROW
{
return(CAS(&m_lock_word,
MUTEX_STATE_UNLOCKED, MUTEX_STATE_LOCKED));
}
/** Try and lock the mutex.
@return true if successful */
bool try_lock() UNIV_NOTHROW
{
return(trylock() == MUTEX_STATE_UNLOCKED);
}
/** @return true if mutex is unlocked */
bool is_locked() const UNIV_NOTHROW
{
return(state() != MUTEX_STATE_UNLOCKED);
}
#ifdef UNIV_DEBUG
/** @return true if the thread owns the mutex. */
bool is_owned() const UNIV_NOTHROW
{
return(is_locked() && m_policy.is_owned());
}
#endif /* UNIV_DEBUG */
/** @return non-const version of the policy */
MutexPolicy& policy() UNIV_NOTHROW
{
return(m_policy);
}
/** @return const version of the policy */
const MutexPolicy& policy() const UNIV_NOTHROW
{
return(m_policy);
}
private:
/** @return the lock state. */
lock_word_t state() const UNIV_NOTHROW
{
return(m_lock_word);
}
/** Release the mutex.
@return the new state of the mutex */
lock_word_t unlock() UNIV_NOTHROW
{
return(TAS(&m_lock_word, MUTEX_STATE_UNLOCKED));
}
/** Note that there are threads waiting and need to be woken up.
@return true if state was MUTEX_STATE_UNLOCKED (ie. granted) */
bool set_waiters() UNIV_NOTHROW
{
return(TAS(&m_lock_word, MUTEX_STATE_WAITERS)
== MUTEX_STATE_UNLOCKED);
}
/** Set the waiters flag, only if the mutex is locked
@return true if succesful. */
bool try_set_waiters() UNIV_NOTHROW
{
return(CAS(&m_lock_word,
MUTEX_STATE_LOCKED, MUTEX_STATE_WAITERS)
!= MUTEX_STATE_UNLOCKED);
}
/** Wait if the lock is contended.
@return the number of waits */
uint32_t wait() UNIV_NOTHROW
{
uint32_t n_waits = 0;
/* Use FUTEX_WAIT_PRIVATE because our mutexes are
not shared between processes. */
do {
++n_waits;
syscall(SYS_futex, &m_lock_word,
FUTEX_WAIT_PRIVATE, MUTEX_STATE_WAITERS,
0, 0, 0);
// Since we are retrying the operation the return
// value doesn't matter.
} while (!set_waiters());
return(n_waits);
}
/** Wakeup a waiting thread */
void signal() UNIV_NOTHROW
{
syscall(SYS_futex, &m_lock_word, FUTEX_WAKE_PRIVATE,
MUTEX_STATE_LOCKED, 0, 0, 0);
}
/** Poll waiting for mutex to be unlocked.
@param[in] max_spins max spins
@param[in] max_delay max delay per spin
@param[out] n_spins retries before acquire
@return value of lock word before locking. */
lock_word_t ttas(
uint32_t max_spins,
uint32_t max_delay,
uint32_t& n_spins) UNIV_NOTHROW
{
os_rmb;
for (n_spins = 0; n_spins < max_spins; ++n_spins) {
if (!is_locked()) {
lock_word_t lock = trylock();
if (lock == MUTEX_STATE_UNLOCKED) {
/* Lock successful */
return(lock);
}
}
ut_delay(ut_rnd_interval(0, max_delay));
}
return(trylock());
}
private:
/** Policy data */
MutexPolicy m_policy;
/** lock_word is the target of the atomic test-and-set instruction
when atomic operations are enabled. */
lock_word_t m_lock_word MY_ALIGNED(MY_ALIGNOF(ulint));
};
#endif /* HAVE_IB_LINUX_FUTEX */
template <template <typename> class Policy = NoPolicy>
struct TTASMutex {
typedef Policy<TTASMutex> MutexPolicy;
TTASMutex() UNIV_NOTHROW
:
m_lock_word(MUTEX_STATE_UNLOCKED)
{
/* Check that lock_word is aligned. */
ut_ad(!((ulint) &m_lock_word % sizeof(ulint)));
}
~TTASMutex()
{
ut_ad(m_lock_word == MUTEX_STATE_UNLOCKED);
}
/** Called when the mutex is "created". Note: Not from the constructor
but when the mutex is initialised.
@param[in] id Mutex ID
@param[in] filename File where mutex was created
@param[in] line Line in filename */
void init(
latch_id_t id,
const char* filename,
uint32_t line)
UNIV_NOTHROW
{
ut_ad(m_lock_word == MUTEX_STATE_UNLOCKED);
m_policy.init(*this, id, filename, line);
}
/** Destroy the mutex. */
void destroy() UNIV_NOTHROW
{
/* The destructor can be called at shutdown. */
ut_ad(m_lock_word == MUTEX_STATE_UNLOCKED);
m_policy.destroy();
}
/**
Try and acquire the lock using TestAndSet.
@return true if lock succeeded */
bool tas_lock() UNIV_NOTHROW
{
return(TAS(&m_lock_word, MUTEX_STATE_LOCKED)
== MUTEX_STATE_UNLOCKED);
}
/** In theory __sync_lock_release should be used to release the lock.
Unfortunately, it does not work properly alone. The workaround is
that more conservative __sync_lock_test_and_set is used instead. */
void tas_unlock() UNIV_NOTHROW
{
#ifdef UNIV_DEBUG
ut_ad(state() == MUTEX_STATE_LOCKED);
lock_word_t lock =
#endif /* UNIV_DEBUG */
TAS(&m_lock_word, MUTEX_STATE_UNLOCKED);
ut_ad(lock == MUTEX_STATE_LOCKED);
}
/** Try and lock the mutex.
@return true on success */
bool try_lock() UNIV_NOTHROW
{
return(tas_lock());
}
/** Release the mutex. */
void exit() UNIV_NOTHROW
{
tas_unlock();
}
/** Acquire the mutex.
@param max_spins max number of spins
@param max_delay max delay per spin
@param filename from where called
@param line within filename */
void enter(
uint32_t max_spins,
uint32_t max_delay,
const char* filename,
uint32_t line) UNIV_NOTHROW
{
if (!try_lock()) {
uint32_t n_spins = ttas(max_spins, max_delay);
/* No OS waits for spin mutexes */
m_policy.add(n_spins, 0);
}
}
/** @return the lock state. */
lock_word_t state() const UNIV_NOTHROW
{
return(m_lock_word);
}
/** @return true if locked by some thread */
bool is_locked() const UNIV_NOTHROW
{
return(m_lock_word != MUTEX_STATE_UNLOCKED);
}
#ifdef UNIV_DEBUG
/** @return true if the calling thread owns the mutex. */
bool is_owned() const UNIV_NOTHROW
{
return(is_locked() && m_policy.is_owned());
}
#endif /* UNIV_DEBUG */
/** @return non-const version of the policy */
MutexPolicy& policy() UNIV_NOTHROW
{
return(m_policy);
}
/** @return const version of the policy */
const MutexPolicy& policy() const UNIV_NOTHROW
{
return(m_policy);
}
private:
/** Spin and try to acquire the lock.
@param[in] max_spins max spins
@param[in] max_delay max delay per spin
@return number spins before acquire */
uint32_t ttas(
uint32_t max_spins,
uint32_t max_delay)
UNIV_NOTHROW
{
uint32_t i = 0;
const uint32_t step = max_spins;
os_rmb;
do {
while (is_locked()) {
ut_delay(ut_rnd_interval(0, max_delay));
++i;
if (i >= max_spins) {
max_spins += step;
os_thread_yield();
break;
}
}
} while (!try_lock());
return(i);
}
private:
// Disable copying
TTASMutex(const TTASMutex&);
TTASMutex& operator=(const TTASMutex&);
/** Policy data */
MutexPolicy m_policy;
/** lock_word is the target of the atomic test-and-set instruction
when atomic operations are enabled. */
lock_word_t m_lock_word;
};
template <template <typename> class Policy = NoPolicy>
struct TTASEventMutex {
typedef Policy<TTASEventMutex> MutexPolicy;
TTASEventMutex()
UNIV_NOTHROW
:
m_lock_word(MUTEX_STATE_UNLOCKED),
m_waiters(),
m_event()
{
/* Check that lock_word is aligned. */
ut_ad(!((ulint) &m_lock_word % sizeof(ulint)));
}
~TTASEventMutex()
UNIV_NOTHROW
{
ut_ad(m_lock_word == MUTEX_STATE_UNLOCKED);
}
/** Called when the mutex is "created". Note: Not from the constructor
but when the mutex is initialised.
@param[in] id Mutex ID
@param[in] filename File where mutex was created
@param[in] line Line in filename */
void init(
latch_id_t id,
const char* filename,
uint32_t line)
UNIV_NOTHROW
{
ut_a(m_event == 0);
ut_a(m_lock_word == MUTEX_STATE_UNLOCKED);
m_event = os_event_create(sync_latch_get_name(id));
m_policy.init(*this, id, filename, line);
}
/** This is the real desctructor. This mutex can be created in BSS and
its desctructor will be called on exit(). We can't call
os_event_destroy() at that stage. */
void destroy()
UNIV_NOTHROW
{
ut_ad(m_lock_word == MUTEX_STATE_UNLOCKED);
/* We have to free the event before InnoDB shuts down. */
os_event_destroy(m_event);
m_event = 0;
m_policy.destroy();
}
/** Try and lock the mutex. Note: POSIX returns 0 on success.
@return true on success */
bool try_lock()
UNIV_NOTHROW
{
return(tas_lock());
}
/** Release the mutex. */
void exit()
UNIV_NOTHROW
{
/* A problem: we assume that mutex_reset_lock word
is a memory barrier, that is when we read the waiters
field next, the read must be serialized in memory
after the reset. A speculative processor might
perform the read first, which could leave a waiting
thread hanging indefinitely.
Our current solution call every second
sync_arr_wake_threads_if_sema_free()
to wake up possible hanging threads if they are missed
in mutex_signal_object. */
tas_unlock();
if (m_waiters != 0) {
signal();
}
}
/** Acquire the mutex.
@param[in] max_spins max number of spins
@param[in] max_delay max delay per spin
@param[in] filename from where called
@param[in] line within filename */
void enter(
uint32_t max_spins,
uint32_t max_delay,
const char* filename,
uint32_t line)
UNIV_NOTHROW
{
if (!try_lock()) {
spin_and_try_lock(max_spins, max_delay, filename, line);
}
}
/** @return the lock state. */
lock_word_t state() const
UNIV_NOTHROW
{
return(m_lock_word);
}
/** The event that the mutex will wait in sync0arr.cc
@return even instance */
os_event_t event()
UNIV_NOTHROW
{
return(m_event);
}
/** @return true if locked by some thread */
bool is_locked() const
UNIV_NOTHROW
{
return(m_lock_word != MUTEX_STATE_UNLOCKED);
}
#ifdef UNIV_DEBUG
/** @return true if the calling thread owns the mutex. */
bool is_owned() const
UNIV_NOTHROW
{
return(is_locked() && m_policy.is_owned());
}
#endif /* UNIV_DEBUG */
/** @return non-const version of the policy */
MutexPolicy& policy()
UNIV_NOTHROW
{
return(m_policy);
}
/** @return const version of the policy */
const MutexPolicy& policy() const
UNIV_NOTHROW
{
return(m_policy);
}
private:
/** Wait in the sync array.
@param[in] filename from where it was called
@param[in] line line number in file
@param[in] spin retry this many times again
@return true if the mutex acquisition was successful. */
bool wait(
const char* filename,
uint32_t line,
uint32_t spin)
UNIV_NOTHROW;
/** Spin and wait for the mutex to become free.
@param[in] max_spins max spins
@param[in] max_delay max delay per spin
@param[in,out] n_spins spin start index
@return true if unlocked */
bool is_free(
uint32_t max_spins,
uint32_t max_delay,
uint32_t& n_spins) const
UNIV_NOTHROW
{
ut_ad(n_spins <= max_spins);
/* Spin waiting for the lock word to become zero. Note
that we do not have to assume that the read access to
the lock word is atomic, as the actual locking is always
committed with atomic test-and-set. In reality, however,
all processors probably have an atomic read of a memory word. */
do {
if (!is_locked()) {
return(true);
}
ut_delay(ut_rnd_interval(0, max_delay));
++n_spins;
} while (n_spins < max_spins);
return(false);
}
/** Spin while trying to acquire the mutex
@param[in] max_spins max number of spins
@param[in] max_delay max delay per spin
@param[in] filename from where called
@param[in] line within filename */
void spin_and_try_lock(
uint32_t max_spins,
uint32_t max_delay,
const char* filename,
uint32_t line)
UNIV_NOTHROW
{
uint32_t n_spins = 0;
uint32_t n_waits = 0;
const uint32_t step = max_spins;
os_rmb;
for (;;) {
/* If the lock was free then try and acquire it. */
if (is_free(max_spins, max_delay, n_spins)) {
if (try_lock()) {
break;
} else {
continue;
}
} else {
max_spins = n_spins + step;
}
++n_waits;
os_thread_yield();
/* The 4 below is a heuristic that has existed for a
very long time now. It is unclear if changing this
value will make a difference.
NOTE: There is a delay that happens before the retry,
finding a free slot in the sync arary and the yield
above. Otherwise we could have simply done the extra
spin above. */
if (wait(filename, line, 4)) {
n_spins += 4;
break;
}
}
/* Waits and yields will be the same number in our
mutex design */
m_policy.add(n_spins, n_waits);
}
/** @return the value of the m_waiters flag */
lock_word_t waiters() UNIV_NOTHROW
{
return(m_waiters);
}
/** Note that there are threads waiting on the mutex */
void set_waiters() UNIV_NOTHROW
{
m_waiters = 1;
os_wmb;
}
/** Note that there are no threads waiting on the mutex */
void clear_waiters() UNIV_NOTHROW
{
m_waiters = 0;
os_wmb;
}
/** Try and acquire the lock using TestAndSet.
@return true if lock succeeded */
bool tas_lock() UNIV_NOTHROW
{
return(TAS(&m_lock_word, MUTEX_STATE_LOCKED)
== MUTEX_STATE_UNLOCKED);
}
/** In theory __sync_lock_release should be used to release the lock.
Unfortunately, it does not work properly alone. The workaround is
that more conservative __sync_lock_test_and_set is used instead. */
void tas_unlock() UNIV_NOTHROW
{
TAS(&m_lock_word, MUTEX_STATE_UNLOCKED);
}
/** Wakeup any waiting thread(s). */
void signal() UNIV_NOTHROW;
private:
/** Disable copying */
TTASEventMutex(const TTASEventMutex&);
TTASEventMutex& operator=(const TTASEventMutex&);
/** lock_word is the target of the atomic test-and-set instruction
when atomic operations are enabled. */
lock_word_t m_lock_word;
/** Set to 0 or 1. 1 if there are (or may be) threads waiting
in the global wait array for this mutex to be released. */
lock_word_t m_waiters;
/** Used by sync0arr.cc for the wait queue */
os_event_t m_event;
/** Policy data */
MutexPolicy m_policy;
};
/** Mutex interface for all policy mutexes. This class handles the interfacing
with the Performance Schema instrumentation. */
template <typename MutexImpl>
struct PolicyMutex
{
typedef MutexImpl MutexType;
typedef typename MutexImpl::MutexPolicy Policy;
PolicyMutex() UNIV_NOTHROW : m_impl()
{
#ifdef UNIV_PFS_MUTEX
m_ptr = 0;
#endif /* UNIV_PFS_MUTEX */
}
~PolicyMutex() { }
/** @return non-const version of the policy */
Policy& policy() UNIV_NOTHROW
{
return(m_impl.policy());
}
/** @return const version of the policy */
const Policy& policy() const UNIV_NOTHROW
{
return(m_impl.policy());
}
/** Release the mutex. */
void exit() UNIV_NOTHROW
{
#ifdef UNIV_PFS_MUTEX
pfs_exit();
#endif /* UNIV_PFS_MUTEX */
policy().release(m_impl);
m_impl.exit();
}
/** Acquire the mutex.
@param n_spins max number of spins
@param n_delay max delay per spin
@param name filename where locked
@param line line number where locked */
void enter(
uint32_t n_spins,
uint32_t n_delay,
const char* name,
uint32_t line) UNIV_NOTHROW
{
#ifdef UNIV_PFS_MUTEX
/* Note: locker is really an alias for state. That's why
it has to be in the same scope during pfs_end(). */
PSI_mutex_locker_state state;
PSI_mutex_locker* locker;
locker = pfs_begin_lock(&state, name, line);
#endif /* UNIV_PFS_MUTEX */
policy().enter(m_impl, name, line);
m_impl.enter(n_spins, n_delay, name, line);
policy().locked(m_impl, name, line);
#ifdef UNIV_PFS_MUTEX
pfs_end(locker, 0);
#endif /* UNIV_PFS_MUTEX */
}
/** Try and lock the mutex, return 0 on SUCCESS and 1 otherwise.
@param name filename where locked
@param line line number where locked */
int trylock(const char* name, uint32_t line) UNIV_NOTHROW
{
#ifdef UNIV_PFS_MUTEX
/* Note: locker is really an alias for state. That's why
it has to be in the same scope during pfs_end(). */
PSI_mutex_locker_state state;
PSI_mutex_locker* locker;
locker = pfs_begin_trylock(&state, name, line);
#endif /* UNIV_PFS_MUTEX */
/* There is a subtlety here, we check the mutex ordering
after locking here. This is only done to avoid add and
then remove if the trylock was unsuccesful. */
int ret = m_impl.try_lock() ? 0 : 1;
if (ret == 0) {
policy().enter(m_impl, name, line);
policy().locked(m_impl, name, line);
}
#ifdef UNIV_PFS_MUTEX
pfs_end(locker, 0);
#endif /* UNIV_PFS_MUTEX */
return(ret);
}
#ifdef UNIV_DEBUG
/** @return true if the thread owns the mutex. */
bool is_owned() const UNIV_NOTHROW
{
return(m_impl.is_owned());
}
#endif /* UNIV_DEBUG */
/**
Initialise the mutex.
@param[in] id Mutex ID
@param[in] filename file where created
@param[in] line line number in file where created */
void init(
latch_id_t id,
const char* filename,
uint32_t line)
UNIV_NOTHROW
{
#ifdef UNIV_PFS_MUTEX
pfs_add(sync_latch_get_pfs_key(id));
#endif /* UNIV_PFS_MUTEX */
m_impl.init(id, filename, line);
}
/** Free resources (if any) */
void destroy() UNIV_NOTHROW
{
#ifdef UNIV_PFS_MUTEX
pfs_del();
#endif /* UNIV_PFS_MUTEX */
m_impl.destroy();
}
/** Required for os_event_t */
operator sys_mutex_t*() UNIV_NOTHROW
{
return(m_impl.operator sys_mutex_t*());
}
#ifdef UNIV_PFS_MUTEX
/** Performance schema monitoring - register mutex with PFS.
Note: This is public only because we want to get around an issue
with registering a subset of buffer pool pages with PFS when
PFS_GROUP_BUFFER_SYNC is defined. Therefore this has to then
be called by external code (see buf0buf.cc).
@param key - Performance Schema key. */
void pfs_add(mysql_pfs_key_t key) UNIV_NOTHROW
{
ut_ad(m_ptr == 0);
m_ptr = PSI_MUTEX_CALL(init_mutex)(key, this);
}
private:
/** Performance schema monitoring.
@param state - PFS locker state
@param name - file name where locked
@param line - line number in file where locked */
PSI_mutex_locker* pfs_begin_lock(
PSI_mutex_locker_state* state,
const char* name,
uint32_t line) UNIV_NOTHROW
{
if (m_ptr != 0) {
return(PSI_MUTEX_CALL(start_mutex_wait)(
state, m_ptr,
PSI_MUTEX_LOCK, name, (uint) line));
}
return(0);
}
/** Performance schema monitoring.
@param state - PFS locker state
@param name - file name where locked
@param line - line number in file where locked */
PSI_mutex_locker* pfs_begin_trylock(
PSI_mutex_locker_state* state,
const char* name,
uint32_t line) UNIV_NOTHROW
{
if (m_ptr != 0) {
return(PSI_MUTEX_CALL(start_mutex_wait)(
state, m_ptr,
PSI_MUTEX_TRYLOCK, name, (uint) line));
}
return(0);
}
/** Performance schema monitoring
@param locker - PFS identifier
@param ret - 0 for success and 1 for failure */
void pfs_end(PSI_mutex_locker* locker, int ret) UNIV_NOTHROW
{
if (locker != 0) {
PSI_MUTEX_CALL(end_mutex_wait)(locker, ret);
}
}
/** Performance schema monitoring - register mutex release */
void pfs_exit()
{
if (m_ptr != 0) {
PSI_MUTEX_CALL(unlock_mutex)(m_ptr);
}
}
/** Performance schema monitoring - deregister */
void pfs_del()
{
if (m_ptr != 0) {
PSI_MUTEX_CALL(destroy_mutex)(m_ptr);
m_ptr = 0;
}
}
#endif /* UNIV_PFS_MUTEX */
private:
/** The mutex implementation */
MutexImpl m_impl;
#ifdef UNIV_PFS_MUTEX
/** The performance schema instrumentation hook. */
PSI_mutex* m_ptr;
#endif /* UNIV_PFS_MUTEX */
};
#endif /* ib0mutex_h */
#endif /* !UNIV_INNOCHECKSUM */