mariadb/sql/filesort_utils.cc
Sergei Golubchik d6add9a03d initial support for vector indexes
MDEV-33407 Parser support for vector indexes

The syntax is

  create table t1 (... vector index (v) ...);

limitation:
* v is a binary string and NOT NULL
* only one vector index per table
* temporary tables are not supported

MDEV-33404 Engine-independent indexes: subtable method

added support for so-called "high level indexes", they are not visible
to the storage engine, implemented on the sql level. For every such
an index in a table, say, t1, the server implicitly creates a second
table named, like, t1#i#05 (where "05" is the index number in t1).
This table has a fixed structure, no frm, not accessible directly,
doesn't go into the table cache, needs no MDLs.

MDEV-33406 basic optimizer support for k-NN searches

for a query like SELECT ... ORDER BY func() optimizer will use
item_func->part_of_sortkey() to decide what keys can be used
to resolve ORDER BY.
2024-11-05 14:00:48 -08:00

474 lines
15 KiB
C++

/* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
Copyright (c) 2012, 2020, MariaDB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
#include "mariadb.h"
#include "filesort_utils.h"
#include "sql_const.h"
#include "sql_sort.h"
#include "table.h"
#include "optimizer_defaults.h"
PSI_memory_key key_memory_Filesort_buffer_sort_keys;
const LEX_CSTRING filesort_names[]=
{
{ STRING_WITH_LEN("priority_queue with addon fields")},
{ STRING_WITH_LEN("priority_queue with row lookup")},
{ STRING_WITH_LEN("merge_sort with addon fields")},
{ STRING_WITH_LEN("merge_sort with row lookup)")},
{ STRING_WITH_LEN("Error while computing filesort cost")}
};
/*
Different ways to do sorting:
Merge Sort -> Without addon Fields, with fixed length
Merge Sort -> Without addon Fields, with dynamic length
Merge Sort -> With addon Fields, with fixed length
Merge Sort -> With addon Fields, with dynamic length
Priority queue -> Without addon fields
Priority queue -> With addon fields
With PQ (Priority queue) we could have a simple key (memcmp) or a
complex key (double & varchar for example). This cost difference
is currently not considered.
*/
/**
Compute the cost of running qsort over a set of rows.
@param num_rows How many rows will be sorted.
@param with_addon_fields Set to true if the sorted rows include the whole
row (with addon fields) or just the keys themselves.
@retval
Cost of the operation.
*/
double get_qsort_sort_cost(ha_rows num_rows, bool with_addon_fields)
{
const double row_copy_cost= with_addon_fields ? DEFAULT_ROW_COPY_COST :
DEFAULT_KEY_COPY_COST;
const double key_cmp_cost= DEFAULT_KEY_COMPARE_COST;
const double qsort_constant_factor= QSORT_SORT_SLOWNESS_CORRECTION_FACTOR *
(row_copy_cost + key_cmp_cost);
return qsort_constant_factor * num_rows * log2(1.0 + num_rows);
}
/**
Compute the cost of sorting num_rows and only retrieving queue_size rows.
@param num_rows How many rows will be sorted.
@param queue_size How many rows will be returned by the priority
queue.
@param with_addon_fields Set to true if the sorted rows include the whole
row (with addon fields) or just the keys themselves.
@retval
Cost of the operation.
*/
double get_pq_sort_cost(size_t num_rows, size_t queue_size,
bool with_addon_fields)
{
const double row_copy_cost= with_addon_fields ? DEFAULT_ROW_COPY_COST :
DEFAULT_KEY_COPY_COST;
const double key_cmp_cost= DEFAULT_KEY_COMPARE_COST;
/* 2 -> 1 insert, 1 pop from the queue*/
const double pq_sort_constant_factor= PQ_SORT_SLOWNESS_CORRECTION_FACTOR *
2.0 * (row_copy_cost + key_cmp_cost);
return pq_sort_constant_factor * num_rows * log2(1.0 + queue_size);
}
/**
Compute the cost of merging "num_buffers" sorted buffers using a priority
queue.
See comments for get_merge_buffers_cost().
*/
static
double get_merge_cost(ha_rows num_elements, ha_rows num_buffers,
size_t elem_size, double compare_cost,
double disk_read_cost)
{
/* 2 -> 1 read + 1 write */
const double io_cost= (2.0 * (num_elements * elem_size +
DISK_CHUNK_SIZE - 1) /
DISK_CHUNK_SIZE) * disk_read_cost;
/* 2 -> 1 insert, 1 pop for the priority queue used to merge the buffers. */
const double cpu_cost= (2.0 * num_elements * log2(1.0 + num_buffers) *
compare_cost) * PQ_SORT_SLOWNESS_CORRECTION_FACTOR;
return io_cost + cpu_cost;
}
/**
This is a simplified, and faster version of @see get_merge_many_buffs_cost().
We calculate the cost of merging buffers, by simulating the actions
of @see merge_many_buff. For explanations of formulas below,
see comments for get_merge_buffers_cost().
TODO: Use this function for Unique::get_use_cost().
*/
double get_merge_many_buffs_cost_fast(ha_rows num_rows,
ha_rows num_keys_per_buffer,
size_t elem_size,
double key_compare_cost,
double disk_read_cost,
bool with_addon_fields)
{
DBUG_ASSERT(num_keys_per_buffer != 0);
ha_rows num_buffers= num_rows / num_keys_per_buffer;
ha_rows last_n_elems= num_rows % num_keys_per_buffer;
double total_cost;
double full_buffer_sort_cost;
/* Calculate cost for sorting all merge buffers + the last one. */
full_buffer_sort_cost= get_qsort_sort_cost(num_keys_per_buffer,
with_addon_fields);
total_cost= (num_buffers * full_buffer_sort_cost +
get_qsort_sort_cost(last_n_elems, with_addon_fields));
if (num_buffers >= MERGEBUFF2)
total_cost+= TMPFILE_CREATE_COST * 2; // We are creating 2 files.
/* Simulate behavior of merge_many_buff(). */
while (num_buffers >= MERGEBUFF2)
{
/* Calculate # of calls to merge_buffers(). */
const ha_rows loop_limit= num_buffers - MERGEBUFF * 3 / 2;
const ha_rows num_merge_calls= 1 + loop_limit / MERGEBUFF;
const ha_rows num_remaining_buffs=
num_buffers - num_merge_calls * MERGEBUFF;
/* Cost of merge sort 'num_merge_calls'. */
total_cost+=
num_merge_calls *
get_merge_cost(num_keys_per_buffer * MERGEBUFF, MERGEBUFF, elem_size,
key_compare_cost, disk_read_cost);
// # of records in remaining buffers.
last_n_elems+= num_remaining_buffs * num_keys_per_buffer;
// Cost of merge sort of remaining buffers.
total_cost+=
get_merge_cost(last_n_elems, 1 + num_remaining_buffs, elem_size,
key_compare_cost, disk_read_cost);
num_buffers= num_merge_calls;
num_keys_per_buffer*= MERGEBUFF;
}
// Simulate final merge_buff call.
last_n_elems+= num_keys_per_buffer * num_buffers;
total_cost+= get_merge_cost(last_n_elems, 1 + num_buffers, elem_size,
key_compare_cost, disk_read_cost);
return total_cost;
}
void Sort_costs::compute_fastest_sort()
{
lowest_cost= DBL_MAX;
uint min_idx= NO_SORT_POSSIBLE_OUT_OF_MEM;
for (uint i= 0; i < FINAL_SORT_TYPE; i++)
{
if (lowest_cost > costs[i])
{
min_idx= i;
lowest_cost= costs[i];
}
}
fastest_sort= static_cast<enum sort_type>(min_idx);
}
/*
Calculate cost of using priority queue for filesort.
There are two options: using addon fields or not
*/
void Sort_costs::compute_pq_sort_costs(Sort_param *param, ha_rows num_rows,
size_t memory_available,
bool with_addon_fields)
{
/*
Implementation detail of PQ. To be able to keep a PQ of size N we need
N+1 elements allocated so we can use the last element as "swap" space
for the "insert" operation.
TODO(cvicentiu): This should be left as an implementation detail inside
the PQ, not have the optimizer take it into account.
*/
size_t queue_size= param->limit_rows + 1;
size_t row_length, num_available_keys;
costs[PQ_SORT_ALL_FIELDS]= DBL_MAX;
costs[PQ_SORT_ORDER_BY_FIELDS]= DBL_MAX;
/*
We can't use priority queue if there's no limit or the limit is
too big.
*/
if (param->limit_rows == HA_POS_ERROR ||
param->limit_rows >= UINT_MAX - 2)
return;
/* Calculate cost without addon keys (probably using less memory) */
row_length= param->sort_length + param->ref_length + sizeof(char*);
num_available_keys= memory_available / row_length;
if (queue_size < num_available_keys)
{
handler *file= param->sort_form->file;
costs[PQ_SORT_ORDER_BY_FIELDS]=
get_pq_sort_cost(num_rows, queue_size, false) +
file->cost(file->ha_rnd_pos_call_time(MY_MIN(queue_size - 1, num_rows)));
}
/* Calculate cost with addon fields */
if (with_addon_fields)
{
row_length= param->rec_length + sizeof(char *);
num_available_keys= memory_available / row_length;
if (queue_size < num_available_keys)
costs[PQ_SORT_ALL_FIELDS]= get_pq_sort_cost(num_rows, queue_size, true);
}
}
/*
Calculate cost of using qsort optional merge sort for resolving filesort.
There are two options: using addon fields or not
*/
void Sort_costs::compute_merge_sort_costs(Sort_param *param,
ha_rows num_rows,
size_t memory_available,
bool with_addon_fields)
{
size_t row_length= param->sort_length + param->ref_length + sizeof(char *);
size_t num_available_keys= memory_available / row_length;
costs[MERGE_SORT_ALL_FIELDS]= DBL_MAX;
costs[MERGE_SORT_ORDER_BY_FIELDS]= DBL_MAX;
if (num_available_keys)
{
handler *file= param->sort_form->file;
costs[MERGE_SORT_ORDER_BY_FIELDS]=
get_merge_many_buffs_cost_fast(num_rows, num_available_keys,
row_length, DEFAULT_KEY_COMPARE_COST,
default_optimizer_costs.disk_read_cost,
false) +
file->cost(file->ha_rnd_pos_call_time(MY_MIN(param->limit_rows, num_rows)));
}
if (with_addon_fields)
{
/* Compute cost of merge sort *if* we strip addon fields. */
row_length= param->rec_length + sizeof(char *);
num_available_keys= memory_available / row_length;
if (num_available_keys)
costs[MERGE_SORT_ALL_FIELDS]=
get_merge_many_buffs_cost_fast(num_rows, num_available_keys,
row_length, DEFAULT_KEY_COMPARE_COST,
DISK_READ_COST_THD(thd),
true);
}
/*
TODO(cvicentiu) we do not handle dynamic length fields yet.
The code should decide here if the format is FIXED length or DYNAMIC
and fill in the appropriate costs.
*/
}
void Sort_costs::compute_sort_costs(Sort_param *param, ha_rows num_rows,
size_t memory_available,
bool with_addon_fields)
{
compute_pq_sort_costs(param, num_rows, memory_available,
with_addon_fields);
compute_merge_sort_costs(param, num_rows, memory_available,
with_addon_fields);
compute_fastest_sort();
}
/*
alloc_sort_buffer()
Allocate buffer for sorting keys.
Try to reuse old buffer if possible.
@return
0 Error
# Pointer to allocated buffer
*/
uchar *Filesort_buffer::alloc_sort_buffer(uint num_records,
uint record_length)
{
size_t buff_size;
DBUG_ENTER("alloc_sort_buffer");
DBUG_EXECUTE_IF("alloc_sort_buffer_fail",
DBUG_SET("+d,simulate_out_of_memory"););
buff_size= ALIGN_SIZE(num_records * (record_length + sizeof(uchar*)));
if (m_rawmem)
{
/*
Reuse old buffer if exists and is large enough
Note that we don't make the buffer smaller, as we want to be
prepared for next subquery iteration.
*/
if (buff_size > m_size_in_bytes)
{
/*
Better to free and alloc than realloc as we don't have to remember
the old values
*/
my_free(m_rawmem);
if (!(m_rawmem= (uchar*) my_malloc(key_memory_Filesort_buffer_sort_keys,
buff_size, MYF(MY_THREAD_SPECIFIC))))
{
m_size_in_bytes= 0;
DBUG_RETURN(0);
}
}
}
else
{
if (!(m_rawmem= (uchar*) my_malloc(key_memory_Filesort_buffer_sort_keys,
buff_size, MYF(MY_THREAD_SPECIFIC))))
{
m_size_in_bytes= 0;
DBUG_RETURN(0);
}
}
m_size_in_bytes= buff_size;
m_record_pointers= reinterpret_cast<uchar**>(m_rawmem) +
((m_size_in_bytes / sizeof(uchar*)) - 1);
m_num_records= num_records;
m_record_length= record_length;
m_idx= 0;
DBUG_RETURN(m_rawmem);
}
void Filesort_buffer::free_sort_buffer()
{
my_free(m_rawmem);
*this= Filesort_buffer();
}
void Filesort_buffer::sort_buffer(const Sort_param *param, uint count)
{
size_t size= param->sort_length;
m_sort_keys= get_sort_keys();
if (count <= 1 || size == 0)
return;
// don't reverse for PQ, it is already done
if (!param->using_pq)
reverse_record_pointers();
uchar **buffer= NULL;
if (!param->using_packed_sortkeys() &&
radixsort_is_applicable(count, param->sort_length) &&
(buffer= (uchar**) my_malloc(PSI_INSTRUMENT_ME, count*sizeof(char*),
MYF(MY_THREAD_SPECIFIC))))
{
radixsort_for_str_ptr(m_sort_keys, count, param->sort_length, buffer);
my_free(buffer);
return;
}
my_qsort2(m_sort_keys, count, sizeof(uchar*),
param->get_compare_function(),
param->get_compare_argument(&size));
}
static
size_t get_sort_length(THD *thd, Item *item)
{
SORT_FIELD_ATTR sort_attr;
sort_attr.type= (item->type_handler()->is_packable() ?
SORT_FIELD_ATTR::VARIABLE_SIZE :
SORT_FIELD_ATTR::FIXED_SIZE);
item->type_handler()->sort_length(thd, item, &sort_attr);
return sort_attr.length + (item->maybe_null() ? 1 : 0);
}
/**
Calculate the cost of doing a filesort
@param table Table to sort
@param Order_by Fields to sort
@param rows_to_read Number of rows to be sorted
@param limit_rows Number of rows in result (when using limit)
@param used_sort_type Set to the sort algorithm used
@result cost of sorting
*/
double cost_of_filesort(TABLE *table, ORDER *order_by, ha_rows rows_to_read,
ha_rows limit_rows, enum sort_type *used_sort_type)
{
THD *thd= table->in_use;
Sort_costs costs;
Sort_param param;
size_t memory_available= (size_t) thd->variables.sortbuff_size;
uint sort_len= 0;
uint addon_field_length, num_addon_fields, num_nullable_fields;
uint packable_length;
bool with_addon_fields;
for (ORDER *ptr= order_by; ptr ; ptr= ptr->next)
{
size_t length= get_sort_length(thd, *ptr->item);
set_if_smaller(length, thd->variables.max_sort_length);
sort_len+= (uint) length;
}
with_addon_fields=
filesort_use_addons(table, sort_len, &addon_field_length,
&num_addon_fields, &num_nullable_fields,
&packable_length);
/* Fill in the Sort_param structure so we can compute the sort costs */
param.setup_lengths_and_limit(table, sort_len, addon_field_length,
limit_rows);
costs.compute_sort_costs(&param, rows_to_read, memory_available,
with_addon_fields);
*used_sort_type= costs.fastest_sort;
return costs.lowest_cost;
}