mirror of
https://github.com/MariaDB/server.git
synced 2025-01-16 20:12:31 +01:00
f56dd32bf7
Essentially, the problem is that safemalloc is excruciatingly slow as it checks all allocated blocks for overrun at each memory management primitive, yielding a almost exponential slowdown for the memory management functions (malloc, realloc, free). The overrun check basically consists of verifying some bytes of a block for certain magic keys, which catches some simple forms of overrun. Another minor problem is violation of aliasing rules and that its own internal list of blocks is prone to corruption. Another issue with safemalloc is rather the maintenance cost as the tool has a significant impact on the server code. Given the magnitude of memory debuggers available nowadays, especially those that are provided with the platform malloc implementation, maintenance of a in-house and largely obsolete memory debugger becomes a burden that is not worth the effort due to its slowness and lack of support for detecting more common forms of heap corruption. Since there are third-party tools that can provide the same functionality at a lower or comparable performance cost, the solution is to simply remove safemalloc. Third-party tools can provide the same functionality at a lower or comparable performance cost. The removal of safemalloc also allows a simplification of the malloc wrappers, removing quite a bit of kludge: redefinition of my_malloc, my_free and the removal of the unused second argument of my_free. Since free() always check whether the supplied pointer is null, redudant checks are also removed. Also, this patch adds unit testing for my_malloc and moves my_realloc implementation into the same file as the other memory allocation primitives. client/mysqldump.c: Pass my_free directly as its signature is compatible with the callback type -- which wasn't the case for free_table_ent.
757 lines
19 KiB
C
757 lines
19 KiB
C
/* Copyright (C) 2000 MySQL AB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
/*
|
|
Code for handling red-black (balanced) binary trees.
|
|
key in tree is allocated accrding to following:
|
|
|
|
1) If size < 0 then tree will not allocate keys and only a pointer to
|
|
each key is saved in tree.
|
|
compare and search functions uses and returns key-pointer
|
|
|
|
2) If size == 0 then there are two options:
|
|
- key_size != 0 to tree_insert: The key will be stored in the tree.
|
|
- key_size == 0 to tree_insert: A pointer to the key is stored.
|
|
compare and search functions uses and returns key-pointer.
|
|
|
|
3) if key_size is given to init_tree then each node will continue the
|
|
key and calls to insert_key may increase length of key.
|
|
if key_size > sizeof(pointer) and key_size is a multiple of 8 (double
|
|
allign) then key will be put on a 8 alligned adress. Else
|
|
the key will be on adress (element+1). This is transparent for user
|
|
compare and search functions uses a pointer to given key-argument.
|
|
|
|
- If you use a free function for tree-elements and you are freeing
|
|
the element itself, you should use key_size = 0 to init_tree and
|
|
tree_search
|
|
|
|
The actual key in TREE_ELEMENT is saved as a pointer or after the
|
|
TREE_ELEMENT struct.
|
|
If one uses only pointers in tree one can use tree_set_pointer() to
|
|
change address of data.
|
|
|
|
Implemented by monty.
|
|
*/
|
|
|
|
/*
|
|
NOTE:
|
|
tree->compare function should be ALWAYS called as
|
|
(*tree->compare)(custom_arg, ELEMENT_KEY(tree,element), key)
|
|
and not other way around, as
|
|
(*tree->compare)(custom_arg, key, ELEMENT_KEY(tree,element))
|
|
|
|
ft_boolean_search.c (at least) relies on that.
|
|
*/
|
|
|
|
#include "mysys_priv.h"
|
|
#include <m_string.h>
|
|
#include <my_tree.h>
|
|
#include "my_base.h"
|
|
|
|
#define BLACK 1
|
|
#define RED 0
|
|
#define DEFAULT_ALLOC_SIZE 8192
|
|
#define DEFAULT_ALIGN_SIZE 8192
|
|
|
|
static void delete_tree_element(TREE *,TREE_ELEMENT *);
|
|
static int tree_walk_left_root_right(TREE *,TREE_ELEMENT *,
|
|
tree_walk_action,void *);
|
|
static int tree_walk_right_root_left(TREE *,TREE_ELEMENT *,
|
|
tree_walk_action,void *);
|
|
static void left_rotate(TREE_ELEMENT **parent,TREE_ELEMENT *leaf);
|
|
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf);
|
|
static void rb_insert(TREE *tree,TREE_ELEMENT ***parent,
|
|
TREE_ELEMENT *leaf);
|
|
static void rb_delete_fixup(TREE *tree,TREE_ELEMENT ***parent);
|
|
|
|
|
|
/* The actuall code for handling binary trees */
|
|
|
|
#ifndef DBUG_OFF
|
|
static int test_rb_tree(TREE_ELEMENT *element);
|
|
#endif
|
|
|
|
void init_tree(TREE *tree, ulong default_alloc_size, ulong memory_limit,
|
|
int size, qsort_cmp2 compare, my_bool with_delete,
|
|
tree_element_free free_element, void *custom_arg)
|
|
{
|
|
DBUG_ENTER("init_tree");
|
|
DBUG_PRINT("enter",("tree: 0x%lx size: %d", (long) tree, size));
|
|
|
|
if (default_alloc_size < DEFAULT_ALLOC_SIZE)
|
|
default_alloc_size= DEFAULT_ALLOC_SIZE;
|
|
default_alloc_size= MY_ALIGN(default_alloc_size, DEFAULT_ALIGN_SIZE);
|
|
bzero((uchar*) &tree->null_element,sizeof(tree->null_element));
|
|
tree->root= &tree->null_element;
|
|
tree->compare=compare;
|
|
tree->size_of_element=size > 0 ? (uint) size : 0;
|
|
tree->memory_limit=memory_limit;
|
|
tree->free=free_element;
|
|
tree->allocated=0;
|
|
tree->elements_in_tree=0;
|
|
tree->custom_arg = custom_arg;
|
|
tree->null_element.colour=BLACK;
|
|
tree->null_element.left=tree->null_element.right=0;
|
|
tree->flag= 0;
|
|
if (!free_element && size >= 0 &&
|
|
((uint) size <= sizeof(void*) || ((uint) size & (sizeof(void*)-1))))
|
|
{
|
|
/*
|
|
We know that the data doesn't have to be aligned (like if the key
|
|
contains a double), so we can store the data combined with the
|
|
TREE_ELEMENT.
|
|
*/
|
|
tree->offset_to_key=sizeof(TREE_ELEMENT); /* Put key after element */
|
|
/* Fix allocation size so that we don't lose any memory */
|
|
default_alloc_size/=(sizeof(TREE_ELEMENT)+size);
|
|
if (!default_alloc_size)
|
|
default_alloc_size=1;
|
|
default_alloc_size*=(sizeof(TREE_ELEMENT)+size);
|
|
}
|
|
else
|
|
{
|
|
tree->offset_to_key=0; /* use key through pointer */
|
|
tree->size_of_element+=sizeof(void*);
|
|
}
|
|
if (!(tree->with_delete=with_delete))
|
|
{
|
|
init_alloc_root(&tree->mem_root, (uint) default_alloc_size, 0);
|
|
tree->mem_root.min_malloc=(sizeof(TREE_ELEMENT)+tree->size_of_element);
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
static void free_tree(TREE *tree, myf free_flags)
|
|
{
|
|
DBUG_ENTER("free_tree");
|
|
DBUG_PRINT("enter",("tree: 0x%lx", (long) tree));
|
|
|
|
if (tree->root) /* If initialized */
|
|
{
|
|
if (tree->with_delete)
|
|
delete_tree_element(tree,tree->root);
|
|
else
|
|
{
|
|
if (tree->free)
|
|
{
|
|
if (tree->memory_limit)
|
|
(*tree->free)(NULL, free_init, tree->custom_arg);
|
|
delete_tree_element(tree,tree->root);
|
|
if (tree->memory_limit)
|
|
(*tree->free)(NULL, free_end, tree->custom_arg);
|
|
}
|
|
free_root(&tree->mem_root, free_flags);
|
|
}
|
|
}
|
|
tree->root= &tree->null_element;
|
|
tree->elements_in_tree=0;
|
|
tree->allocated=0;
|
|
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
void delete_tree(TREE* tree)
|
|
{
|
|
free_tree(tree, MYF(0)); /* my_free() mem_root if applicable */
|
|
}
|
|
|
|
void reset_tree(TREE* tree)
|
|
{
|
|
/* do not free mem_root, just mark blocks as free */
|
|
free_tree(tree, MYF(MY_MARK_BLOCKS_FREE));
|
|
}
|
|
|
|
|
|
static void delete_tree_element(TREE *tree, TREE_ELEMENT *element)
|
|
{
|
|
if (element != &tree->null_element)
|
|
{
|
|
delete_tree_element(tree,element->left);
|
|
if (tree->free)
|
|
(*tree->free)(ELEMENT_KEY(tree,element), free_free, tree->custom_arg);
|
|
delete_tree_element(tree,element->right);
|
|
if (tree->with_delete)
|
|
my_free(element);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
insert, search and delete of elements
|
|
|
|
The following should be true:
|
|
parent[0] = & parent[-1][0]->left ||
|
|
parent[0] = & parent[-1][0]->right
|
|
*/
|
|
|
|
TREE_ELEMENT *tree_insert(TREE *tree, void *key, uint key_size,
|
|
void* custom_arg)
|
|
{
|
|
int cmp;
|
|
TREE_ELEMENT *element,***parent;
|
|
|
|
parent= tree->parents;
|
|
*parent = &tree->root; element= tree->root;
|
|
for (;;)
|
|
{
|
|
if (element == &tree->null_element ||
|
|
(cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
|
|
key)) == 0)
|
|
break;
|
|
if (cmp < 0)
|
|
{
|
|
*++parent= &element->right; element= element->right;
|
|
}
|
|
else
|
|
{
|
|
*++parent = &element->left; element= element->left;
|
|
}
|
|
}
|
|
if (element == &tree->null_element)
|
|
{
|
|
uint alloc_size=sizeof(TREE_ELEMENT)+key_size+tree->size_of_element;
|
|
tree->allocated+=alloc_size;
|
|
|
|
if (tree->memory_limit && tree->elements_in_tree
|
|
&& tree->allocated > tree->memory_limit)
|
|
{
|
|
reset_tree(tree);
|
|
return tree_insert(tree, key, key_size, custom_arg);
|
|
}
|
|
|
|
key_size+=tree->size_of_element;
|
|
if (tree->with_delete)
|
|
element=(TREE_ELEMENT *) my_malloc(alloc_size, MYF(MY_WME));
|
|
else
|
|
element=(TREE_ELEMENT *) alloc_root(&tree->mem_root,alloc_size);
|
|
if (!element)
|
|
return(NULL);
|
|
**parent=element;
|
|
element->left=element->right= &tree->null_element;
|
|
if (!tree->offset_to_key)
|
|
{
|
|
if (key_size == sizeof(void*)) /* no length, save pointer */
|
|
*((void**) (element+1))=key;
|
|
else
|
|
{
|
|
*((void**) (element+1))= (void*) ((void **) (element+1)+1);
|
|
memcpy((uchar*) *((void **) (element+1)),key,
|
|
(size_t) (key_size-sizeof(void*)));
|
|
}
|
|
}
|
|
else
|
|
memcpy((uchar*) element+tree->offset_to_key,key,(size_t) key_size);
|
|
element->count=1; /* May give warning in purify */
|
|
tree->elements_in_tree++;
|
|
rb_insert(tree,parent,element); /* rebalance tree */
|
|
}
|
|
else
|
|
{
|
|
if (tree->flag & TREE_NO_DUPS)
|
|
return(NULL);
|
|
element->count++;
|
|
/* Avoid a wrap over of the count. */
|
|
if (! element->count)
|
|
element->count--;
|
|
}
|
|
DBUG_EXECUTE("check_tree", test_rb_tree(tree->root););
|
|
return element;
|
|
}
|
|
|
|
int tree_delete(TREE *tree, void *key, uint key_size, void *custom_arg)
|
|
{
|
|
int cmp,remove_colour;
|
|
TREE_ELEMENT *element,***parent, ***org_parent, *nod;
|
|
if (!tree->with_delete)
|
|
return 1; /* not allowed */
|
|
|
|
parent= tree->parents;
|
|
*parent= &tree->root; element= tree->root;
|
|
for (;;)
|
|
{
|
|
if (element == &tree->null_element)
|
|
return 1; /* Was not in tree */
|
|
if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
|
|
key)) == 0)
|
|
break;
|
|
if (cmp < 0)
|
|
{
|
|
*++parent= &element->right; element= element->right;
|
|
}
|
|
else
|
|
{
|
|
*++parent = &element->left; element= element->left;
|
|
}
|
|
}
|
|
if (element->left == &tree->null_element)
|
|
{
|
|
(**parent)=element->right;
|
|
remove_colour= element->colour;
|
|
}
|
|
else if (element->right == &tree->null_element)
|
|
{
|
|
(**parent)=element->left;
|
|
remove_colour= element->colour;
|
|
}
|
|
else
|
|
{
|
|
org_parent= parent;
|
|
*++parent= &element->right; nod= element->right;
|
|
while (nod->left != &tree->null_element)
|
|
{
|
|
*++parent= &nod->left; nod= nod->left;
|
|
}
|
|
(**parent)=nod->right; /* unlink nod from tree */
|
|
remove_colour= nod->colour;
|
|
org_parent[0][0]=nod; /* put y in place of element */
|
|
org_parent[1]= &nod->right;
|
|
nod->left=element->left;
|
|
nod->right=element->right;
|
|
nod->colour=element->colour;
|
|
}
|
|
if (remove_colour == BLACK)
|
|
rb_delete_fixup(tree,parent);
|
|
if (tree->free)
|
|
(*tree->free)(ELEMENT_KEY(tree,element), free_free, tree->custom_arg);
|
|
tree->allocated-= sizeof(TREE_ELEMENT) + tree->size_of_element + key_size;
|
|
my_free(element);
|
|
tree->elements_in_tree--;
|
|
return 0;
|
|
}
|
|
|
|
|
|
void *tree_search(TREE *tree, void *key, void *custom_arg)
|
|
{
|
|
int cmp;
|
|
TREE_ELEMENT *element=tree->root;
|
|
|
|
for (;;)
|
|
{
|
|
if (element == &tree->null_element)
|
|
return (void*) 0;
|
|
if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
|
|
key)) == 0)
|
|
return ELEMENT_KEY(tree,element);
|
|
if (cmp < 0)
|
|
element=element->right;
|
|
else
|
|
element=element->left;
|
|
}
|
|
}
|
|
|
|
void *tree_search_key(TREE *tree, const void *key,
|
|
TREE_ELEMENT **parents, TREE_ELEMENT ***last_pos,
|
|
enum ha_rkey_function flag, void *custom_arg)
|
|
{
|
|
int cmp;
|
|
TREE_ELEMENT *element= tree->root;
|
|
TREE_ELEMENT **last_left_step_parent= NULL, **last_right_step_parent= NULL;
|
|
TREE_ELEMENT **last_equal_element= NULL;
|
|
|
|
/*
|
|
TODO: support for HA_READ_KEY_OR_PREV, HA_READ_PREFIX flags if needed.
|
|
*/
|
|
|
|
*parents = &tree->null_element;
|
|
while (element != &tree->null_element)
|
|
{
|
|
*++parents= element;
|
|
if ((cmp= (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element),
|
|
key)) == 0)
|
|
{
|
|
switch (flag) {
|
|
case HA_READ_KEY_EXACT:
|
|
case HA_READ_KEY_OR_NEXT:
|
|
case HA_READ_BEFORE_KEY:
|
|
last_equal_element= parents;
|
|
cmp= 1;
|
|
break;
|
|
case HA_READ_AFTER_KEY:
|
|
cmp= -1;
|
|
break;
|
|
case HA_READ_PREFIX_LAST:
|
|
case HA_READ_PREFIX_LAST_OR_PREV:
|
|
last_equal_element= parents;
|
|
cmp= -1;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
if (cmp < 0) /* element < key */
|
|
{
|
|
last_right_step_parent= parents;
|
|
element= element->right;
|
|
}
|
|
else
|
|
{
|
|
last_left_step_parent= parents;
|
|
element= element->left;
|
|
}
|
|
}
|
|
switch (flag) {
|
|
case HA_READ_KEY_EXACT:
|
|
case HA_READ_PREFIX_LAST:
|
|
*last_pos= last_equal_element;
|
|
break;
|
|
case HA_READ_KEY_OR_NEXT:
|
|
*last_pos= last_equal_element ? last_equal_element : last_left_step_parent;
|
|
break;
|
|
case HA_READ_AFTER_KEY:
|
|
*last_pos= last_left_step_parent;
|
|
break;
|
|
case HA_READ_PREFIX_LAST_OR_PREV:
|
|
*last_pos= last_equal_element ? last_equal_element : last_right_step_parent;
|
|
break;
|
|
case HA_READ_BEFORE_KEY:
|
|
*last_pos= last_right_step_parent;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
return *last_pos ? ELEMENT_KEY(tree, **last_pos) : NULL;
|
|
}
|
|
|
|
/*
|
|
Search first (the most left) or last (the most right) tree element
|
|
*/
|
|
void *tree_search_edge(TREE *tree, TREE_ELEMENT **parents,
|
|
TREE_ELEMENT ***last_pos, int child_offs)
|
|
{
|
|
TREE_ELEMENT *element= tree->root;
|
|
|
|
*parents= &tree->null_element;
|
|
while (element != &tree->null_element)
|
|
{
|
|
*++parents= element;
|
|
element= ELEMENT_CHILD(element, child_offs);
|
|
}
|
|
*last_pos= parents;
|
|
return **last_pos != &tree->null_element ?
|
|
ELEMENT_KEY(tree, **last_pos) : NULL;
|
|
}
|
|
|
|
void *tree_search_next(TREE *tree, TREE_ELEMENT ***last_pos, int l_offs,
|
|
int r_offs)
|
|
{
|
|
TREE_ELEMENT *x= **last_pos;
|
|
|
|
if (ELEMENT_CHILD(x, r_offs) != &tree->null_element)
|
|
{
|
|
x= ELEMENT_CHILD(x, r_offs);
|
|
*++*last_pos= x;
|
|
while (ELEMENT_CHILD(x, l_offs) != &tree->null_element)
|
|
{
|
|
x= ELEMENT_CHILD(x, l_offs);
|
|
*++*last_pos= x;
|
|
}
|
|
return ELEMENT_KEY(tree, x);
|
|
}
|
|
else
|
|
{
|
|
TREE_ELEMENT *y= *--*last_pos;
|
|
while (y != &tree->null_element && x == ELEMENT_CHILD(y, r_offs))
|
|
{
|
|
x= y;
|
|
y= *--*last_pos;
|
|
}
|
|
return y == &tree->null_element ? NULL : ELEMENT_KEY(tree, y);
|
|
}
|
|
}
|
|
|
|
/*
|
|
Expected that tree is fully balanced
|
|
(each path from root to leaf has the same length)
|
|
*/
|
|
ha_rows tree_record_pos(TREE *tree, const void *key,
|
|
enum ha_rkey_function flag, void *custom_arg)
|
|
{
|
|
int cmp;
|
|
TREE_ELEMENT *element= tree->root;
|
|
double left= 1;
|
|
double right= tree->elements_in_tree;
|
|
|
|
while (element != &tree->null_element)
|
|
{
|
|
if ((cmp= (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element),
|
|
key)) == 0)
|
|
{
|
|
switch (flag) {
|
|
case HA_READ_KEY_EXACT:
|
|
case HA_READ_BEFORE_KEY:
|
|
cmp= 1;
|
|
break;
|
|
case HA_READ_AFTER_KEY:
|
|
cmp= -1;
|
|
break;
|
|
default:
|
|
return HA_POS_ERROR;
|
|
}
|
|
}
|
|
if (cmp < 0) /* element < key */
|
|
{
|
|
element= element->right;
|
|
left= (left + right) / 2;
|
|
}
|
|
else
|
|
{
|
|
element= element->left;
|
|
right= (left + right) / 2;
|
|
}
|
|
}
|
|
switch (flag) {
|
|
case HA_READ_KEY_EXACT:
|
|
case HA_READ_BEFORE_KEY:
|
|
return (ha_rows) right;
|
|
case HA_READ_AFTER_KEY:
|
|
return (ha_rows) left;
|
|
default:
|
|
return HA_POS_ERROR;
|
|
}
|
|
}
|
|
|
|
int tree_walk(TREE *tree, tree_walk_action action, void *argument, TREE_WALK visit)
|
|
{
|
|
switch (visit) {
|
|
case left_root_right:
|
|
return tree_walk_left_root_right(tree,tree->root,action,argument);
|
|
case right_root_left:
|
|
return tree_walk_right_root_left(tree,tree->root,action,argument);
|
|
}
|
|
return 0; /* Keep gcc happy */
|
|
}
|
|
|
|
static int tree_walk_left_root_right(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
|
|
{
|
|
int error;
|
|
if (element->left) /* Not null_element */
|
|
{
|
|
if ((error=tree_walk_left_root_right(tree,element->left,action,
|
|
argument)) == 0 &&
|
|
(error=(*action)(ELEMENT_KEY(tree,element),
|
|
(element_count) element->count,
|
|
argument)) == 0)
|
|
error=tree_walk_left_root_right(tree,element->right,action,argument);
|
|
return error;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int tree_walk_right_root_left(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
|
|
{
|
|
int error;
|
|
if (element->right) /* Not null_element */
|
|
{
|
|
if ((error=tree_walk_right_root_left(tree,element->right,action,
|
|
argument)) == 0 &&
|
|
(error=(*action)(ELEMENT_KEY(tree,element),
|
|
(element_count) element->count,
|
|
argument)) == 0)
|
|
error=tree_walk_right_root_left(tree,element->left,action,argument);
|
|
return error;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Functions to fix up the tree after insert and delete */
|
|
|
|
static void left_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
|
|
{
|
|
TREE_ELEMENT *y;
|
|
|
|
y=leaf->right;
|
|
leaf->right=y->left;
|
|
parent[0]=y;
|
|
y->left=leaf;
|
|
}
|
|
|
|
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
|
|
{
|
|
TREE_ELEMENT *x;
|
|
|
|
x=leaf->left;
|
|
leaf->left=x->right;
|
|
parent[0]=x;
|
|
x->right=leaf;
|
|
}
|
|
|
|
static void rb_insert(TREE *tree, TREE_ELEMENT ***parent, TREE_ELEMENT *leaf)
|
|
{
|
|
TREE_ELEMENT *y,*par,*par2;
|
|
|
|
leaf->colour=RED;
|
|
while (leaf != tree->root && (par=parent[-1][0])->colour == RED)
|
|
{
|
|
if (par == (par2=parent[-2][0])->left)
|
|
{
|
|
y= par2->right;
|
|
if (y->colour == RED)
|
|
{
|
|
par->colour=BLACK;
|
|
y->colour=BLACK;
|
|
leaf=par2;
|
|
parent-=2;
|
|
leaf->colour=RED; /* And the loop continues */
|
|
}
|
|
else
|
|
{
|
|
if (leaf == par->right)
|
|
{
|
|
left_rotate(parent[-1],par);
|
|
par=leaf; /* leaf is now parent to old leaf */
|
|
}
|
|
par->colour=BLACK;
|
|
par2->colour=RED;
|
|
right_rotate(parent[-2],par2);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
y= par2->left;
|
|
if (y->colour == RED)
|
|
{
|
|
par->colour=BLACK;
|
|
y->colour=BLACK;
|
|
leaf=par2;
|
|
parent-=2;
|
|
leaf->colour=RED; /* And the loop continues */
|
|
}
|
|
else
|
|
{
|
|
if (leaf == par->left)
|
|
{
|
|
right_rotate(parent[-1],par);
|
|
par=leaf;
|
|
}
|
|
par->colour=BLACK;
|
|
par2->colour=RED;
|
|
left_rotate(parent[-2],par2);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
tree->root->colour=BLACK;
|
|
}
|
|
|
|
static void rb_delete_fixup(TREE *tree, TREE_ELEMENT ***parent)
|
|
{
|
|
TREE_ELEMENT *x,*w,*par;
|
|
|
|
x= **parent;
|
|
while (x != tree->root && x->colour == BLACK)
|
|
{
|
|
if (x == (par=parent[-1][0])->left)
|
|
{
|
|
w=par->right;
|
|
if (w->colour == RED)
|
|
{
|
|
w->colour=BLACK;
|
|
par->colour=RED;
|
|
left_rotate(parent[-1],par);
|
|
parent[0]= &w->left;
|
|
*++parent= &par->left;
|
|
w=par->right;
|
|
}
|
|
if (w->left->colour == BLACK && w->right->colour == BLACK)
|
|
{
|
|
w->colour=RED;
|
|
x=par;
|
|
parent--;
|
|
}
|
|
else
|
|
{
|
|
if (w->right->colour == BLACK)
|
|
{
|
|
w->left->colour=BLACK;
|
|
w->colour=RED;
|
|
right_rotate(&par->right,w);
|
|
w=par->right;
|
|
}
|
|
w->colour=par->colour;
|
|
par->colour=BLACK;
|
|
w->right->colour=BLACK;
|
|
left_rotate(parent[-1],par);
|
|
x=tree->root;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
w=par->left;
|
|
if (w->colour == RED)
|
|
{
|
|
w->colour=BLACK;
|
|
par->colour=RED;
|
|
right_rotate(parent[-1],par);
|
|
parent[0]= &w->right;
|
|
*++parent= &par->right;
|
|
w=par->left;
|
|
}
|
|
if (w->right->colour == BLACK && w->left->colour == BLACK)
|
|
{
|
|
w->colour=RED;
|
|
x=par;
|
|
parent--;
|
|
}
|
|
else
|
|
{
|
|
if (w->left->colour == BLACK)
|
|
{
|
|
w->right->colour=BLACK;
|
|
w->colour=RED;
|
|
left_rotate(&par->left,w);
|
|
w=par->left;
|
|
}
|
|
w->colour=par->colour;
|
|
par->colour=BLACK;
|
|
w->left->colour=BLACK;
|
|
right_rotate(parent[-1],par);
|
|
x=tree->root;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
x->colour=BLACK;
|
|
}
|
|
|
|
#ifndef DBUG_OFF
|
|
|
|
/* Test that the proporties for a red-black tree holds */
|
|
|
|
static int test_rb_tree(TREE_ELEMENT *element)
|
|
{
|
|
int count_l,count_r;
|
|
|
|
if (!element->left)
|
|
return 0; /* Found end of tree */
|
|
if (element->colour == RED &&
|
|
(element->left->colour == RED || element->right->colour == RED))
|
|
{
|
|
printf("Wrong tree: Found two red in a row\n");
|
|
return -1;
|
|
}
|
|
count_l=test_rb_tree(element->left);
|
|
count_r=test_rb_tree(element->right);
|
|
if (count_l >= 0 && count_r >= 0)
|
|
{
|
|
if (count_l == count_r)
|
|
return count_l+(element->colour == BLACK);
|
|
printf("Wrong tree: Incorrect black-count: %d - %d\n",count_l,count_r);
|
|
}
|
|
return -1;
|
|
}
|
|
#endif
|