mirror of
https://github.com/MariaDB/server.git
synced 2025-01-20 14:02:32 +01:00
4aea170bc6
detector". This patch addresses performance regression in OLTP_RO/MyISAM test on Windows introduced by the fix for bug #56405. Thus it makes original patch acceptable as a solution for bug #56585 "Slowdown of readonly sysbench benchmarks (e.g point_select) on Windows 5.5". With this patch, MySQL will use native Windows condition variables and reader-writer locks if they are supported by the OS. This speeds up MyISAM and the effect comes mostly from using native rwlocks. Native conditions improve scalability with higher number of concurrent users in other situations, e.g for prlocks. Benchmark numbers for this patch as measured on Win2008R2 quad core machine are attached to the bug report. ( direct link http://bugs.mysql.com/file.php?id=15883 ) Note that currently we require at least Windows7/WS2008R2 for reader-writer locks, even though native rwlock is available also on Vista. Reason is that "trylock" APIs are missing on Vista, and trylock is used in the server (in a single place in query cache). While this patch could have been written differently, to enable the native rwlock optimization also on Vista/WS2008 (e.g using native locks everywhere but portable implementation in query cache), this would come at the expense of the code clarity, as it would introduce a new "try-able" rwlock type, to handle Vista case. Another way to improve performance for the special case (OLTP_RO/MYISAM/Vista) would be to eliminate "trylock" usage from server, but this is outside of the scope here. Native conditions variables are used beginning with Vista though the effect of using condition variables alone is not measurable in this benchmark. But when used together with native rwlocks on Win7, native conditions improve performance in high-concurrency OLTP_RO/MyISAM (128 and more sysbench users).
474 lines
12 KiB
C
474 lines
12 KiB
C
/* Copyright (C) 2000 MySQL AB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
/* Synchronization - readers / writer thread locks */
|
|
|
|
#include "mysys_priv.h"
|
|
#if defined(THREAD)
|
|
#if defined(NEED_MY_RW_LOCK)
|
|
#include <errno.h>
|
|
|
|
#ifdef _WIN32
|
|
|
|
static BOOL have_srwlock= FALSE;
|
|
/* Prototypes and function pointers for windows functions */
|
|
typedef VOID (WINAPI* srw_func) (PSRWLOCK SRWLock);
|
|
typedef BOOL (WINAPI* srw_bool_func) (PSRWLOCK SRWLock);
|
|
|
|
static srw_func my_InitializeSRWLock;
|
|
static srw_func my_AcquireSRWLockExclusive;
|
|
static srw_func my_ReleaseSRWLockExclusive;
|
|
static srw_func my_AcquireSRWLockShared;
|
|
static srw_func my_ReleaseSRWLockShared;
|
|
|
|
static srw_bool_func my_TryAcquireSRWLockExclusive;
|
|
static srw_bool_func my_TryAcquireSRWLockShared;
|
|
|
|
/**
|
|
Check for presence of Windows slim reader writer lock function.
|
|
Load function pointers.
|
|
*/
|
|
|
|
static void check_srwlock_availability(void)
|
|
{
|
|
HMODULE module= GetModuleHandle("kernel32");
|
|
|
|
my_InitializeSRWLock= (srw_func) GetProcAddress(module,
|
|
"InitializeSRWLock");
|
|
my_AcquireSRWLockExclusive= (srw_func) GetProcAddress(module,
|
|
"AcquireSRWLockExclusive");
|
|
my_AcquireSRWLockShared= (srw_func) GetProcAddress(module,
|
|
"AcquireSRWLockShared");
|
|
my_ReleaseSRWLockExclusive= (srw_func) GetProcAddress(module,
|
|
"ReleaseSRWLockExclusive");
|
|
my_ReleaseSRWLockShared= (srw_func) GetProcAddress(module,
|
|
"ReleaseSRWLockShared");
|
|
my_TryAcquireSRWLockExclusive= (srw_bool_func) GetProcAddress(module,
|
|
"TryAcquireSRWLockExclusive");
|
|
my_TryAcquireSRWLockShared= (srw_bool_func) GetProcAddress(module,
|
|
"TryAcquireSRWLockShared");
|
|
|
|
/*
|
|
We currently require TryAcquireSRWLockExclusive. This API is missing on
|
|
Vista, this means SRWLock are only used starting with Win7.
|
|
|
|
If "trylock" usage for rwlocks is eliminated from server codebase (it is used
|
|
in a single place currently, in query cache), then SRWLock can be enabled on
|
|
Vista too. In this case condition below needs to be changed to e.g check
|
|
for my_InitializeSRWLock.
|
|
*/
|
|
|
|
if (my_TryAcquireSRWLockExclusive)
|
|
have_srwlock= TRUE;
|
|
|
|
}
|
|
|
|
|
|
static int srw_init(my_rw_lock_t *rwp)
|
|
{
|
|
my_InitializeSRWLock(&rwp->srwlock);
|
|
rwp->have_exclusive_srwlock = FALSE;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int srw_rdlock(my_rw_lock_t *rwp)
|
|
{
|
|
my_AcquireSRWLockShared(&rwp->srwlock);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int srw_tryrdlock(my_rw_lock_t *rwp)
|
|
{
|
|
|
|
if (!my_TryAcquireSRWLockShared(&rwp->srwlock))
|
|
return EBUSY;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int srw_wrlock(my_rw_lock_t *rwp)
|
|
{
|
|
my_AcquireSRWLockExclusive(&rwp->srwlock);
|
|
rwp->have_exclusive_srwlock= TRUE;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int srw_trywrlock(my_rw_lock_t *rwp)
|
|
{
|
|
if (!my_TryAcquireSRWLockExclusive(&rwp->srwlock))
|
|
return EBUSY;
|
|
rwp->have_exclusive_srwlock= TRUE;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int srw_unlock(my_rw_lock_t *rwp)
|
|
{
|
|
if (rwp->have_exclusive_srwlock)
|
|
{
|
|
rwp->have_exclusive_srwlock= FALSE;
|
|
my_ReleaseSRWLockExclusive(&rwp->srwlock);
|
|
}
|
|
else
|
|
{
|
|
my_ReleaseSRWLockShared(&rwp->srwlock);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#endif /*_WIN32 */
|
|
|
|
/*
|
|
Source base from Sun Microsystems SPILT, simplified for MySQL use
|
|
-- Joshua Chamas
|
|
Some cleanup and additional code by Monty
|
|
*/
|
|
|
|
/*
|
|
* Multithreaded Demo Source
|
|
*
|
|
* Copyright (C) 1995 by Sun Microsystems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This file is a product of SunSoft, Inc. and is provided for
|
|
* unrestricted use provided that this legend is included on all
|
|
* media and as a part of the software program in whole or part.
|
|
* Users may copy, modify or distribute this file at will.
|
|
*
|
|
* THIS FILE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
|
|
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
|
|
*
|
|
* This file is provided with no support and without any obligation on the
|
|
* part of SunSoft, Inc. to assist in its use, correction, modification or
|
|
* enhancement.
|
|
*
|
|
* SUNSOFT AND SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT
|
|
* TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS
|
|
* FILE OR ANY PART THEREOF.
|
|
*
|
|
* IN NO EVENT WILL SUNSOFT OR SUN MICROSYSTEMS, INC. BE LIABLE FOR ANY
|
|
* LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSEQUENTIAL
|
|
* DAMAGES, EVEN IF THEY HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
|
|
* DAMAGES.
|
|
*
|
|
* SunSoft, Inc.
|
|
* 2550 Garcia Avenue
|
|
* Mountain View, California 94043
|
|
*/
|
|
|
|
int my_rw_init(my_rw_lock_t *rwp)
|
|
{
|
|
pthread_condattr_t cond_attr;
|
|
|
|
#ifdef _WIN32
|
|
/*
|
|
Once initialization is used here rather than in my_init(), in order to
|
|
- avoid my_init() pitfalls- (undefined order in which initialization should
|
|
run)
|
|
- be potentially useful C++ (static constructors)
|
|
- just to simplify the API.
|
|
Also, the overhead is of my_pthread_once is very small.
|
|
*/
|
|
static my_pthread_once_t once_control= MY_PTHREAD_ONCE_INIT;
|
|
my_pthread_once(&once_control, check_srwlock_availability);
|
|
|
|
if (have_srwlock)
|
|
return srw_init(rwp);
|
|
#endif
|
|
|
|
pthread_mutex_init( &rwp->lock, MY_MUTEX_INIT_FAST);
|
|
pthread_condattr_init( &cond_attr );
|
|
pthread_cond_init( &rwp->readers, &cond_attr );
|
|
pthread_cond_init( &rwp->writers, &cond_attr );
|
|
pthread_condattr_destroy(&cond_attr);
|
|
|
|
rwp->state = 0;
|
|
rwp->waiters = 0;
|
|
#ifdef SAFE_MUTEX
|
|
rwp->write_thread = 0;
|
|
#endif
|
|
|
|
return(0);
|
|
}
|
|
|
|
|
|
int my_rw_destroy(my_rw_lock_t *rwp)
|
|
{
|
|
#ifdef _WIN32
|
|
if (have_srwlock)
|
|
return 0; /* no destroy function */
|
|
#endif
|
|
DBUG_ASSERT(rwp->state == 0);
|
|
pthread_mutex_destroy( &rwp->lock );
|
|
pthread_cond_destroy( &rwp->readers );
|
|
pthread_cond_destroy( &rwp->writers );
|
|
return(0);
|
|
}
|
|
|
|
|
|
int my_rw_rdlock(my_rw_lock_t *rwp)
|
|
{
|
|
#ifdef _WIN32
|
|
if (have_srwlock)
|
|
return srw_rdlock(rwp);
|
|
#endif
|
|
|
|
pthread_mutex_lock(&rwp->lock);
|
|
|
|
/* active or queued writers */
|
|
while (( rwp->state < 0 ) || rwp->waiters)
|
|
pthread_cond_wait( &rwp->readers, &rwp->lock);
|
|
|
|
rwp->state++;
|
|
pthread_mutex_unlock(&rwp->lock);
|
|
return(0);
|
|
}
|
|
|
|
int my_rw_tryrdlock(my_rw_lock_t *rwp)
|
|
{
|
|
int res;
|
|
|
|
#ifdef _WIN32
|
|
if (have_srwlock)
|
|
return srw_tryrdlock(rwp);
|
|
#endif
|
|
|
|
pthread_mutex_lock(&rwp->lock);
|
|
if ((rwp->state < 0 ) || rwp->waiters)
|
|
res= EBUSY; /* Can't get lock */
|
|
else
|
|
{
|
|
res=0;
|
|
rwp->state++;
|
|
}
|
|
pthread_mutex_unlock(&rwp->lock);
|
|
return(res);
|
|
}
|
|
|
|
|
|
int my_rw_wrlock(my_rw_lock_t *rwp)
|
|
{
|
|
#ifdef _WIN32
|
|
if (have_srwlock)
|
|
return srw_wrlock(rwp);
|
|
#endif
|
|
|
|
pthread_mutex_lock(&rwp->lock);
|
|
rwp->waiters++; /* another writer queued */
|
|
|
|
my_rw_lock_assert_not_write_owner(rwp);
|
|
|
|
while (rwp->state)
|
|
pthread_cond_wait(&rwp->writers, &rwp->lock);
|
|
rwp->state = -1;
|
|
rwp->waiters--;
|
|
#ifdef SAFE_MUTEX
|
|
rwp->write_thread= pthread_self();
|
|
#endif
|
|
pthread_mutex_unlock(&rwp->lock);
|
|
return(0);
|
|
}
|
|
|
|
|
|
int my_rw_trywrlock(my_rw_lock_t *rwp)
|
|
{
|
|
int res;
|
|
|
|
#ifdef _WIN32
|
|
if (have_srwlock)
|
|
return srw_trywrlock(rwp);
|
|
#endif
|
|
|
|
pthread_mutex_lock(&rwp->lock);
|
|
if (rwp->state)
|
|
res= EBUSY; /* Can't get lock */
|
|
else
|
|
{
|
|
res=0;
|
|
rwp->state = -1;
|
|
#ifdef SAFE_MUTEX
|
|
rwp->write_thread= pthread_self();
|
|
#endif
|
|
}
|
|
pthread_mutex_unlock(&rwp->lock);
|
|
return(res);
|
|
}
|
|
|
|
|
|
int my_rw_unlock(my_rw_lock_t *rwp)
|
|
{
|
|
#ifdef _WIN32
|
|
if (have_srwlock)
|
|
return srw_unlock(rwp);
|
|
#endif
|
|
|
|
DBUG_PRINT("rw_unlock",
|
|
("state: %d waiters: %d", rwp->state, rwp->waiters));
|
|
pthread_mutex_lock(&rwp->lock);
|
|
|
|
DBUG_ASSERT(rwp->state != 0);
|
|
|
|
if (rwp->state == -1) /* writer releasing */
|
|
{
|
|
my_rw_lock_assert_write_owner(rwp);
|
|
rwp->state= 0; /* mark as available */
|
|
#ifdef SAFE_MUTEX
|
|
rwp->write_thread= 0;
|
|
#endif
|
|
|
|
if ( rwp->waiters ) /* writers queued */
|
|
pthread_cond_signal( &rwp->writers );
|
|
else
|
|
pthread_cond_broadcast( &rwp->readers );
|
|
}
|
|
else
|
|
{
|
|
if ( --rwp->state == 0 && /* no more readers */
|
|
rwp->waiters)
|
|
pthread_cond_signal( &rwp->writers );
|
|
}
|
|
|
|
pthread_mutex_unlock( &rwp->lock );
|
|
return(0);
|
|
}
|
|
|
|
#endif /* defined(NEED_MY_RW_LOCK) */
|
|
|
|
|
|
int rw_pr_init(rw_pr_lock_t *rwlock)
|
|
{
|
|
pthread_mutex_init(&rwlock->lock, NULL);
|
|
pthread_cond_init(&rwlock->no_active_readers, NULL);
|
|
rwlock->active_readers= 0;
|
|
rwlock->writers_waiting_readers= 0;
|
|
rwlock->active_writer= FALSE;
|
|
#ifdef SAFE_MUTEX
|
|
rwlock->writer_thread= 0;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
|
|
int rw_pr_destroy(rw_pr_lock_t *rwlock)
|
|
{
|
|
pthread_cond_destroy(&rwlock->no_active_readers);
|
|
pthread_mutex_destroy(&rwlock->lock);
|
|
return 0;
|
|
}
|
|
|
|
|
|
int rw_pr_rdlock(rw_pr_lock_t *rwlock)
|
|
{
|
|
pthread_mutex_lock(&rwlock->lock);
|
|
/*
|
|
The fact that we were able to acquire 'lock' mutex means
|
|
that there are no active writers and we can acquire rd-lock.
|
|
Increment active readers counter to prevent requests for
|
|
wr-lock from succeeding and unlock mutex.
|
|
*/
|
|
rwlock->active_readers++;
|
|
pthread_mutex_unlock(&rwlock->lock);
|
|
return 0;
|
|
}
|
|
|
|
|
|
int rw_pr_wrlock(rw_pr_lock_t *rwlock)
|
|
{
|
|
pthread_mutex_lock(&rwlock->lock);
|
|
|
|
if (rwlock->active_readers != 0)
|
|
{
|
|
/* There are active readers. We have to wait until they are gone. */
|
|
rwlock->writers_waiting_readers++;
|
|
|
|
while (rwlock->active_readers != 0)
|
|
pthread_cond_wait(&rwlock->no_active_readers, &rwlock->lock);
|
|
|
|
rwlock->writers_waiting_readers--;
|
|
}
|
|
|
|
/*
|
|
We own 'lock' mutex so there is no active writers.
|
|
Also there are no active readers.
|
|
This means that we can grant wr-lock.
|
|
Not releasing 'lock' mutex until unlock will block
|
|
both requests for rd and wr-locks.
|
|
Set 'active_writer' flag to simplify unlock.
|
|
|
|
Thanks to the fact wr-lock/unlock in the absence of
|
|
contention from readers is essentially mutex lock/unlock
|
|
with a few simple checks make this rwlock implementation
|
|
wr-lock optimized.
|
|
*/
|
|
rwlock->active_writer= TRUE;
|
|
#ifdef SAFE_MUTEX
|
|
rwlock->writer_thread= pthread_self();
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
|
|
int rw_pr_unlock(rw_pr_lock_t *rwlock)
|
|
{
|
|
if (rwlock->active_writer)
|
|
{
|
|
/* We are unlocking wr-lock. */
|
|
#ifdef SAFE_MUTEX
|
|
rwlock->writer_thread= 0;
|
|
#endif
|
|
rwlock->active_writer= FALSE;
|
|
if (rwlock->writers_waiting_readers)
|
|
{
|
|
/*
|
|
Avoid expensive cond signal in case when there is no contention
|
|
or it is wr-only.
|
|
|
|
Note that from view point of performance it would be better to
|
|
signal on the condition variable after unlocking mutex (as it
|
|
reduces number of contex switches).
|
|
|
|
Unfortunately this would mean that such rwlock can't be safely
|
|
used by MDL subsystem, which relies on the fact that it is OK
|
|
to destroy rwlock once it is in unlocked state.
|
|
*/
|
|
pthread_cond_signal(&rwlock->no_active_readers);
|
|
}
|
|
pthread_mutex_unlock(&rwlock->lock);
|
|
}
|
|
else
|
|
{
|
|
/* We are unlocking rd-lock. */
|
|
pthread_mutex_lock(&rwlock->lock);
|
|
rwlock->active_readers--;
|
|
if (rwlock->active_readers == 0 &&
|
|
rwlock->writers_waiting_readers)
|
|
{
|
|
/*
|
|
If we are last reader and there are waiting
|
|
writers wake them up.
|
|
*/
|
|
pthread_cond_signal(&rwlock->no_active_readers);
|
|
}
|
|
pthread_mutex_unlock(&rwlock->lock);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
#endif /* defined(THREAD) */
|