mariadb/newbrt/ule.c
Bradley C. Kuszmaul fe23612513 Merge in changes. Refs #2608, #2609, and #2610. [t:2608] [t:2609] [t:2610]
{{{
svn merge -r 20187:20196 https://svn.tokutek.com/tokudb/toku/tokudb.2571
}}}
.


git-svn-id: file:///svn/toku/tokudb@20197 c7de825b-a66e-492c-adef-691d508d4ae1
2013-04-16 23:59:11 -04:00

1665 lines
53 KiB
C

/* -*- mode: C; c-basic-offset: 4 -*- */
#ident "$Id$"
#ident "The technology is licensed by the Massachusetts Institute of Technology, Rutgers State University of New Jersey, and the Research Foundation of State University of New York at Stony Brook under United States of America Serial No. 11/760379 and to the patents and/or patent applications resulting from it."
#ident "Copyright (c) 2007-2010 Tokutek Inc. All rights reserved."
// Purpose of this file is to handle all modifications and queries to the database
// at the level of leafentry.
//
// ule = Unpacked Leaf Entry
//
// This design unpacks the leafentry into a convenient format, performs all work
// on the unpacked form, then repacks the leafentry into its compact format.
//
// See design documentation for nested transactions at
// TokuWiki/Imp/TransactionsOverview.
#include <toku_portability.h>
#include "brttypes.h"
#include "brt-internal.h"
// Sorry:
#include "mempool.h"
#include "omt.h"
#include "leafentry.h"
#include "xids.h"
#include "brt_msg.h"
#include "ule.h"
///////////////////////////////////////////////////////////////////////////////////
//
// Question: Can any software outside this file modify or read a leafentry?
// If so, is it worthwhile to put it all here?
//
// There are two entries, one each for modification and query:
// apply_msg_to_leafentry() performs all inserts/deletes/aborts
// do_implicit_promotions_query()
//
//
//
//
//This is what we use to initialize uxrs[0] in a new unpacked leafentry.
const UXR_S committed_delete = {
.type = XR_DELETE,
.vallen = 0,
.xid = 0,
.valp = NULL
}; // static allocation of uxr with type set to committed delete and xid = 0
// Local functions:
static void msg_init_empty_ule(ULE ule, BRT_MSG msg);
static void msg_modify_ule(ULE ule, BRT_MSG msg);
static void ule_init_empty_ule(ULE ule, u_int32_t keylen, void * keyp);
static void ule_do_implicit_promotions(ULE ule, XIDS xids);
static void ule_promote_innermost_to_index(ULE ule, u_int8_t index);
static void ule_apply_insert(ULE ule, XIDS xids, u_int32_t vallen, void * valp);
static void ule_apply_delete(ULE ule, XIDS xids);
static void ule_prepare_for_new_uxr(ULE ule, XIDS xids);
static void ule_apply_abort(ULE ule, XIDS xids);
static void ule_apply_commit(ULE ule, XIDS xids);
static void ule_push_insert_uxr(ULE ule, TXNID xid, u_int32_t vallen, void * valp);
static void ule_push_delete_uxr(ULE ule, TXNID xid);
static void ule_push_placeholder_uxr(ULE ule, TXNID xid);
static UXR ule_get_outermost_uxr(ULE ule);
static UXR ule_get_innermost_uxr(ULE ule);
static UXR ule_get_first_empty_uxr(ULE ule);
static void ule_remove_innermost_uxr(ULE ule);
static TXNID ule_get_innermost_xid(ULE ule);
static TXNID ule_get_xid(ULE ule, u_int8_t index);
static void ule_remove_innermost_placeholders(ULE ule);
static void ule_add_placeholders(ULE ule, XIDS xids);
static inline BOOL uxr_type_is_insert(u_int8_t type);
static inline BOOL uxr_type_is_delete(u_int8_t type);
static inline BOOL uxr_type_is_placeholder(u_int8_t type);
static inline BOOL uxr_is_insert(UXR uxr);
static inline BOOL uxr_is_delete(UXR uxr);
static inline BOOL uxr_is_placeholder(UXR uxr);
static void *
le_malloc(OMT omt, struct mempool *mp, size_t size, void **maybe_free)
{
if (omt)
return mempool_malloc_from_omt(omt, mp, size, maybe_free);
else
return toku_malloc(size);
}
/////////////////////////////////////////////////////////////////////////////////
// This is the big enchilada. (Bring Tums.) Note that this level of abstraction
// has no knowledge of the inner structure of either leafentry or msg. It makes
// calls into the next lower layer (msg_xxx) which handles messages.
//
// NOTE: This is the only function (at least in this body of code) that modifies
// a leafentry.
//
// Return 0 if ??? (looking at original code, it seems that it always returns 0).
// ??? How to inform caller that leafentry is to be destroyed?
//
// Temporarily declared as static until we are ready to remove wrapper apply_cmd_to_leaf().
//
int
apply_msg_to_leafentry(BRT_MSG msg, // message to apply to leafentry
LEAFENTRY old_leafentry, // NULL if there was no stored data.
size_t *new_leafentry_memorysize,
size_t *new_leafentry_disksize,
LEAFENTRY *new_leafentry_p,
OMT omt,
struct mempool *mp,
void **maybe_free) {
ULE_S ule;
int rval;
if (old_leafentry == NULL) // if leafentry does not exist ...
msg_init_empty_ule(&ule, msg); // ... create empty unpacked leaf entry
else
le_unpack(&ule, old_leafentry); // otherwise unpack leafentry
msg_modify_ule(&ule, msg); // modify unpacked leafentry
rval = le_pack(&ule, // create packed leafentry
new_leafentry_memorysize,
new_leafentry_disksize,
new_leafentry_p,
omt, mp, maybe_free);
return rval;
}
/////////////////////////////////////////////////////////////////////////////////
// This layer of abstraction (msg_xxx)
// knows the accessors of msg, but not of leafentry or unpacked leaf entry.
// It makes calls into the lower layer (le_xxx) which handles leafentries.
// Purpose is to init the ule with given key and no transaction records
//
static void
msg_init_empty_ule(ULE ule, BRT_MSG msg) {
u_int32_t keylen = brt_msg_get_keylen(msg);
void *keyp = brt_msg_get_key(msg);
ule_init_empty_ule(ule, keylen, keyp);
}
// Purpose is to modify the unpacked leafentry in our private workspace.
//
static void
msg_modify_ule(ULE ule, BRT_MSG msg) {
XIDS xids = brt_msg_get_xids(msg);
assert(xids_get_num_xids(xids) <= MAX_TRANSACTION_RECORDS);
ule_do_implicit_promotions(ule, xids);
enum brt_msg_type type = brt_msg_get_type(msg);
switch (type) {
case BRT_INSERT_NO_OVERWRITE: {
UXR old_innermost_uxr = ule_get_innermost_uxr(ule);
//If something exists, quit (no overwrite).
if (uxr_is_insert(old_innermost_uxr)) break;
//else it is just an insert, so
//fall through to BRT_INSERT on purpose.
}
case BRT_INSERT: ;
u_int32_t vallen = brt_msg_get_vallen(msg);
void * valp = brt_msg_get_val(msg);
ule_apply_insert(ule, xids, vallen, valp);
break;
case BRT_DELETE_ANY:
case BRT_DELETE_BOTH:
ule_apply_delete(ule, xids);
break;
case BRT_ABORT_ANY:
case BRT_ABORT_BOTH:
case BRT_ABORT_BROADCAST_TXN:
ule_apply_abort(ule, xids);
break;
case BRT_COMMIT_ANY:
case BRT_COMMIT_BOTH:
case BRT_COMMIT_BROADCAST_TXN:
ule_apply_commit(ule, xids);
break;
default:
assert(FALSE /* illegal BRT_MSG.type */);
break;
}
}
/////////////////////////////////////////////////////////////////////////////////
// This layer of abstraction (le_xxx) understands the structure of the leafentry
// and of the unpacked leafentry. It is the only layer that understands the
// structure of leafentry. It has no knowledge of any other data structures.
//
// There are two formats for a packed leaf entry, indicated by the number of
// transaction records:
//
// No uncommitted transactions:
// num = 1 (one byte)
// keylen (4 bytes)
// vallen (4 bytes)
// key (keylen bytes)
// val (vallen bytes)
//
// At least one uncommitted transaction (maybe a committed value as well):
//
// num > 1
// keylen
// vallen of innermost insert
// type of innermost transaction record
// xid of outermost uncommitted transaction
// key
// val of innermost insert
// records excluding extracted data above
// first (innermost) record is missing the type (above)
// innermost insert record is missing the vallen and val
// outermost uncommitted record is missing xid
// outermost record (always committed) is missing xid (implied 0)
// default record:
// type = XR_INSERT or type = XR_PLACEHOLDER or XR_DELETE
// xid xid
// vallen
// val
//
//
#if 0
#if TOKU_WINDOWS
#pragma pack(push, 1)
#endif
//TODO: #1125 Add tests to verify ALL offsets (to verify we used 'pack' right).
// May need to add extra __attribute__((__packed__)) attributes within the definition
struct __attribute__ ((__packed__)) leafentry {
u_int8_t num_xrs;
u_int32_t keylen;
u_int32_t innermost_inserted_vallen;
union {
struct leafentry_committed {
u_int8_t key_val[0]; //Actual key, then actual val
} comm;
struct leafentry_provisional {
u_int8_t innermost_type;
TXNID xid_outermost_uncommitted;
u_int8_t key_val_xrs[]; //Actual key,
//then actual innermost inserted val,
//then transaction records.
} prov;
} u;
};
#if TOKU_WINDOWS
#pragma pack(pop)
#endif
#endif
// Purpose of le_unpack() is to populate our private workspace with the contents of the given le.
void
le_unpack(ULE ule, LEAFENTRY le) {
//Read num_uxrs
ule->num_uxrs = le->num_xrs;
assert(ule->num_uxrs > 0);
//Read the keylen
ule->keylen = toku_dtoh32(le->keylen);
//Read the vallen of innermost insert
u_int32_t vallen_of_innermost_insert = toku_dtoh32(le->innermost_inserted_vallen);
u_int8_t *p;
if (ule->num_uxrs == 1) {
//Unpack a 'committed leafentry' (No uncommitted transactions exist)
ule->keyp = le->u.comm.key_val;
ule->uxrs[0].type = XR_INSERT; //Must be or the leafentry would not exist
ule->uxrs[0].vallen = vallen_of_innermost_insert;
ule->uxrs[0].valp = &le->u.comm.key_val[ule->keylen];
ule->uxrs[0].xid = 0; //Required.
//Set p to immediately after leafentry
p = &le->u.comm.key_val[ule->keylen + vallen_of_innermost_insert];
}
else {
//Unpack a 'provisional leafentry' (Uncommitted transactions exist)
//Read in type.
u_int8_t innermost_type = le->u.prov.innermost_type;
assert(!uxr_type_is_placeholder(innermost_type));
//Read in xid
TXNID xid_outermost_uncommitted = toku_dtoh64(le->u.prov.xid_outermost_uncommitted);
//Read pointer to key
ule->keyp = le->u.prov.key_val_xrs;
//Read pointer to innermost inserted val (immediately after key)
u_int8_t *valp_of_innermost_insert = &le->u.prov.key_val_xrs[ule->keylen];
//Point p to immediately after 'header'
p = &le->u.prov.key_val_xrs[ule->keylen + vallen_of_innermost_insert];
BOOL found_innermost_insert = FALSE;
int i; //Index in ULE.uxrs[]
//Loop inner to outer
for (i = ule->num_uxrs - 1; i >= 0; i--) {
UXR uxr = &ule->uxrs[i];
//Innermost's type is in header.
if (i < ule->num_uxrs - 1) {
//Not innermost, so load the type.
uxr->type = *p;
p += 1;
}
else {
//Innermost, load the type previously read from header
uxr->type = innermost_type;
}
//Committed txn id is implicit (0). (i==0)
//Outermost uncommitted txnid is stored in header. (i==1)
if (i > 1) {
//Not committed nor outermost uncommitted, so load the xid.
uxr->xid = toku_dtoh64(*(TXNID*)p);
p += 8;
}
else if (i == 1) {
//Outermost uncommitted, load the xid previously read from header
uxr->xid = xid_outermost_uncommitted;
}
else {
// i == 0, committed entry
uxr->xid = 0;
}
if (uxr_is_insert(uxr)) {
if (found_innermost_insert) {
//Not the innermost insert. Load vallen/valp
uxr->vallen = toku_dtoh32(*(u_int32_t*)p);
p += 4;
uxr->valp = p;
p += uxr->vallen;
}
else {
//Innermost insert, load the vallen/valp previously read from header
uxr->vallen = vallen_of_innermost_insert;
uxr->valp = valp_of_innermost_insert;
found_innermost_insert = TRUE;
}
}
}
assert(found_innermost_insert);
}
#if ULE_DEBUG
size_t memsize = le_memsize_from_ule(ule);
assert(p == ((u_int8_t*)le) + memsize);
#endif
}
// Purpose is to return a newly allocated leaf entry in packed format, or
// return null if leaf entry should be destroyed (if no transaction records
// are for inserts).
// Transaction records in packed le are stored inner to outer (first xr is innermost),
// with some information extracted out of the transaction records into the header.
// Transaction records in ule are stored outer to inner (uxr[0] is outermost).
int
le_pack(ULE ule, // data to be packed into new leafentry
size_t *new_leafentry_memorysize,
size_t *new_leafentry_disksize,
LEAFENTRY * const new_leafentry_p, // this is what this function creates
OMT omt,
struct mempool *mp,
void **maybe_free) {
int rval;
u_int8_t index_of_innermost_insert;
void *valp_innermost_insert = NULL;
u_int32_t vallen_innermost_insert;
{
//If there are no 'insert' entries, return NO leafentry.
//Loop inner to outer searching for innermost insert.
//uxrs[0] is outermost (committed)
int i;
for (i = ule->num_uxrs - 1; i >= 0; i--) {
if (uxr_is_insert(&ule->uxrs[i])) {
index_of_innermost_insert = (u_int8_t) i;
vallen_innermost_insert = ule->uxrs[i].vallen;
valp_innermost_insert = ule->uxrs[i].valp;
goto found_insert;
}
}
*new_leafentry_p = NULL;
rval = 0;
goto cleanup;
}
found_insert:;
size_t memsize = le_memsize_from_ule(ule);
LEAFENTRY new_leafentry = le_malloc(omt, mp, memsize, maybe_free);
if (new_leafentry==NULL) {
rval = ENOMEM;
goto cleanup;
}
//Universal data
new_leafentry->num_xrs = ule->num_uxrs;
new_leafentry->keylen = toku_htod32(ule->keylen);
new_leafentry->innermost_inserted_vallen = toku_htod32(vallen_innermost_insert);
u_int8_t *p;
//Type (committed/provisional) specific data
if (ule->num_uxrs == 1) {
//Pack a 'committed leafentry' (No uncommitted transactions exist)
//Store actual key.
memcpy(new_leafentry->u.comm.key_val, ule->keyp, ule->keylen);
//Store actual val of innermost insert immediately after actual key
memcpy(&new_leafentry->u.comm.key_val[ule->keylen],
valp_innermost_insert,
vallen_innermost_insert);
//Set p to after leafentry
p = &new_leafentry->u.comm.key_val[ule->keylen + vallen_innermost_insert];
}
else {
//Pack a 'provisional leafentry' (Uncommitted transactions exist)
//Store the type of the innermost transaction record
new_leafentry->u.prov.innermost_type = ule_get_innermost_uxr(ule)->type;
//uxrs[0] is the committed, uxrs[1] is the outermost non-committed
//Store the outermost non-committed xid
new_leafentry->u.prov.xid_outermost_uncommitted = toku_htod64(ule->uxrs[1].xid);
//Store actual key.
memcpy(new_leafentry->u.prov.key_val_xrs, ule->keyp, ule->keylen);
//Store actual val of innermost insert immediately after actual key
memcpy(&new_leafentry->u.prov.key_val_xrs[ule->keylen],
valp_innermost_insert,
vallen_innermost_insert);
//Set p to after 'header'
p = &new_leafentry->u.prov.key_val_xrs[ule->keylen + vallen_innermost_insert];
int i; //index into ULE
//Loop inner to outer
for (i = ule->num_uxrs - 1; i >= 0; i--) {
UXR uxr = &ule->uxrs[i];
//Innermost's type is in header.
if (i < ule->num_uxrs - 1) {
//Not innermost, so record the type.
*p = uxr->type;
p += 1;
}
//Committed txn id is implicit (0). (i==0)
//Outermost uncommitted txnid is stored in header. (i==1)
if (i > 1) {
//Not committed nor outermost uncommitted, so record the xid.
*((TXNID*)p) = toku_htod64(uxr->xid);
p += 8;
}
//Innermost insert's length and value are stored in header.
if (uxr_is_insert(uxr) && i != index_of_innermost_insert) {
//Is an insert, and not the innermost insert, so store length/val
*((u_int32_t*)p) = toku_htod32(uxr->vallen);
p += 4;
memcpy(p, uxr->valp, uxr->vallen); //Store actual val
p += uxr->vallen;
}
}
}
//p points to first unused byte after packed leafentry
size_t bytes_written = (size_t)p - (size_t)new_leafentry;
assert(bytes_written == memsize);
#if ULE_DEBUG
if (omt) { //Disable recursive debugging.
size_t memsize_verify = leafentry_memsize(new_leafentry);
assert(memsize_verify == memsize);
ULE_S ule_tmp;
le_unpack(&ule_tmp, new_leafentry);
memsize_verify = le_memsize_from_ule(&ule_tmp);
assert(memsize_verify == memsize);
//Debugging code inside le_unpack will repack and verify it is the same.
LEAFENTRY le_copy;
int r_tmp = le_pack(&ule_tmp, &memsize_verify, &memsize_verify,
&le_copy, NULL, NULL, NULL);
assert(r_tmp==0);
assert(memsize_verify == memsize);
assert(memcmp(new_leafentry, le_copy, memsize)==0);
toku_free(le_copy);
}
#endif
*new_leafentry_p = (LEAFENTRY)new_leafentry;
*new_leafentry_memorysize = memsize;
*new_leafentry_disksize = memsize;
rval = 0;
cleanup:
return rval;
}
//////////////////////////////////////////////////////////////////////////////////
// Following functions provide convenient access to a packed leafentry.
//Requires:
// Leafentry that ule represents should not be destroyed (is not just all deletes)
size_t
le_memsize_from_ule (ULE ule) {
assert(ule->num_uxrs);
size_t rval;
if (ule->num_uxrs == 1) {
assert(uxr_is_insert(&ule->uxrs[0]));
rval = 1 //num_uxrs
+4 //keylen
+4 //vallen
+ule->keylen //actual key
+ule->uxrs[0].vallen; //actual val
}
else {
rval = 1 //num_uxrs
+4 //keylen
+ule->keylen //actual key
+1*ule->num_uxrs //types
+8*(ule->num_uxrs-1); //txnids
u_int8_t i;
for (i = 0; i < ule->num_uxrs; i++) {
UXR uxr = &ule->uxrs[i];
if (uxr_is_insert(uxr)) {
rval += 4; //vallen
rval += uxr->vallen; //actual val
}
}
}
return rval;
}
#define LE_COMMITTED_MEMSIZE(le, keylen, vallen) \
(sizeof((le)->num_xrs) /* num_uxrs */ \
+sizeof((le)->keylen) /* keylen */ \
+sizeof((le)->innermost_inserted_vallen) /* vallen */ \
+keylen /* actual key */ \
+vallen) /* actual val */
size_t
leafentry_memsize (LEAFENTRY le) {
size_t rval = 0;
//Read num_uxrs
u_int8_t num_uxrs = le->num_xrs;
assert(num_uxrs > 0);
//Read the keylen
u_int32_t keylen = toku_dtoh32(le->keylen);
//Read the vallen of innermost insert
u_int32_t vallen_of_innermost_insert = toku_dtoh32(le->innermost_inserted_vallen);
if (num_uxrs == 1) {
//Committed version (no uncommitted records)
rval = LE_COMMITTED_MEMSIZE(le, keylen, vallen_of_innermost_insert);
}
else {
//A 'provisional leafentry' (Uncommitted transactions exist)
//Read in type.
u_int8_t innermost_type = le->u.prov.innermost_type;
assert(!uxr_type_is_placeholder(innermost_type));
//Set p to immediately after key,val (begginning of transaction records)
u_int8_t *p = &le->u.prov.key_val_xrs[keylen + vallen_of_innermost_insert];
BOOL found_innermost_insert = FALSE;
int i; //would be index in ULE.uxrs[] were we to unpack
//Loop inner to outer
UXR_S current_uxr;
UXR uxr = &current_uxr;
for (i = num_uxrs - 1; i >= 0; i--) {
//Innermost's type is in header.
if (i < num_uxrs - 1) {
//Not innermost, so load the type.
uxr->type = *p;
p += 1;
}
else {
//Innermost, load the type previously read from header
uxr->type = innermost_type;
}
//Committed txn id is implicit (0). (i==0)
//Outermost uncommitted txnid is stored in header. (i==1)
if (i > 1) {
//Not committed nor outermost uncommitted, so load the xid.
p += 8;
}
if (uxr_is_insert(uxr)) {
if (found_innermost_insert) {
//Not the innermost insert. Load vallen/valp
uxr->vallen = toku_dtoh32(*(u_int32_t*)p);
p += 4;
p += uxr->vallen;
}
else
found_innermost_insert = TRUE;
}
}
assert(found_innermost_insert);
rval = (size_t)p - (size_t)le;
}
#if ULE_DEBUG
ULE_S ule;
le_unpack(&ule, le);
size_t slow_rval = le_memsize_from_ule(&ule);
assert(slow_rval == rval);
#endif
return rval;
}
size_t
leafentry_disksize (LEAFENTRY le) {
return leafentry_memsize(le);
}
// le is normally immutable. This is the only exception.
void
le_full_promotion(LEAFENTRY le,
size_t *new_leafentry_memorysize,
size_t *new_leafentry_disksize) {
#if ULE_DEBUG
// Create a new le ("slow_le") using normal commit message for comparison.
// Creation of slow_le must be done first, because le is being modified.
assert(le);
assert(le->num_xrs > 1); //Not committed
assert(!le_is_provdel(le));
TXNID outermost_uncommitted_xid = le_outermost_uncommitted_xid(le);
assert(outermost_uncommitted_xid != 0);
size_t old_memsize = leafentry_memsize(le);
u_int32_t old_keylen;
u_int32_t old_vallen;
void *old_key = le_key_and_len(le, &old_keylen);
void *old_val = le_innermost_inserted_val_and_len(le, &old_vallen);
assert(old_key == le_latest_key(le));
assert(old_keylen == le_latest_keylen(le));
assert(old_val == le_latest_val(le));
assert(old_vallen == le_latest_vallen(le));
//Save copies for verification.
old_key = toku_memdup(old_key, old_keylen);
assert(old_key);
old_val = toku_memdup(old_val, old_vallen);
assert(old_val);
BRT_MSG_S slow_full_promotion_msg = {
.type = BRT_COMMIT_ANY,
.u.id = {
.key = NULL,
.val = NULL,
}
};
int r_xids = xids_create_child(xids_get_root_xids(),
&slow_full_promotion_msg.xids,
outermost_uncommitted_xid);
assert(r_xids==0);
size_t slow_new_memsize;
size_t slow_new_disksize;
LEAFENTRY slow_le;
int r_apply = apply_msg_to_leafentry(&slow_full_promotion_msg,
le,
&slow_new_memsize, &slow_new_disksize,
&slow_le,
NULL, NULL, NULL);
assert(r_apply == 0);
assert(slow_new_memsize == slow_new_disksize);
assert(slow_new_memsize < old_memsize);
assert(slow_le);
#endif
//Save keylen for later use.
u_int32_t keylen = le_keylen(le);
//Save innermost inserted vallen for later use.
u_int32_t vallen = le_innermost_inserted_vallen(le);
//Set as committed.
le->num_xrs = 1;
//Keylen is unchanged but we need to extract it.
//Innermost inserted vallen is unchanged but we need to extract it.
//Move key and value using memmove. memcpy does not support overlapping memory.
//Move the key
memmove(le->u.comm.key_val, le->u.prov.key_val_xrs, keylen);
//Move the val
memmove(&le->u.comm.key_val[keylen], &le->u.prov.key_val_xrs[keylen], vallen);
size_t new_memsize = LE_COMMITTED_MEMSIZE(le, keylen, vallen);
*new_leafentry_memorysize = new_memsize;
*new_leafentry_disksize = new_memsize;
#if ULE_DEBUG
// now compare le with "slow_le" created via normal commit message.
assert(*new_leafentry_memorysize == slow_new_memsize); //Size same
assert(*new_leafentry_disksize == slow_new_disksize); //Size same
assert(memcmp(le, slow_le, slow_new_memsize) == 0); //Bitwise the same.
assert(!le_is_provdel(le));
assert(le_outermost_uncommitted_xid(le) == 0);
//Verify key(len), val(len) unchanged.
u_int32_t new_keylen;
u_int32_t new_vallen;
void *new_key = le_key_and_len(le, &new_keylen);
void *new_val = le_innermost_inserted_val_and_len(le, &new_vallen);
assert(new_key == le_latest_key(le));
assert(new_keylen == le_latest_keylen(le));
assert(new_val == le_latest_val(le));
assert(new_vallen == le_latest_vallen(le));
assert(new_keylen == old_keylen);
assert(new_vallen == old_vallen);
assert(memcmp(new_key, old_key, old_keylen) == 0);
assert(memcmp(new_val, old_val, old_vallen) == 0);
xids_destroy(&slow_full_promotion_msg.xids);
toku_free(slow_le);
toku_free(old_key);
toku_free(old_val);
#endif
}
int le_outermost_is_del(LEAFENTRY le) {
ULE_S ule;
le_unpack(&ule, le);
UXR outermost_uxr = ule_get_outermost_uxr(&ule);
int rval = uxr_is_delete(outermost_uxr);
return rval;
}
int le_is_provdel(LEAFENTRY le) {
int rval;
u_int8_t num_xrs = le->num_xrs;
if (num_xrs == 1)
rval = 0;
else
rval = uxr_type_is_delete(le->u.prov.innermost_type);
#if ULE_DEBUG
assert(num_xrs);
ULE_S ule;
le_unpack(&ule, le);
UXR uxr = ule_get_innermost_uxr(&ule);
int slow_rval = uxr_is_delete(uxr);
assert((rval==0) == (slow_rval==0));
#endif
return rval;
}
int
le_has_xids(LEAFENTRY le, XIDS xids) {
int rval=0;
//Read num_uxrs
u_int8_t num_uxrs = le->num_xrs;
assert(num_uxrs > 0);
u_int8_t num_xids = xids_get_num_xids(xids);
assert(num_xids > 1); //Disallow checking for having 'root txn'
if (num_xids > num_uxrs) {
//Not enough transaction records in le to have all of xids
rval = 0;
goto have_answer;
}
if (le_outermost_uncommitted_xid(le) != xids_get_xid(xids, 1)) {
rval = 0;
goto have_answer;
}
if (num_xids == 2) {
//Outermost uncommitted xid is the only xid (other than 0). We're done.
rval = 1;
goto have_answer;
}
//Hard case: shares outermost uncommitted xid, but has more in the stack.
// Need to unpack iteratively till we reach the right xid.
//Read the keylen
u_int32_t keylen = toku_dtoh32(le->keylen);
//Read the vallen of innermost insert
u_int32_t vallen_of_innermost_insert = toku_dtoh32(le->innermost_inserted_vallen);
assert(num_uxrs > 1);
//A 'provisional leafentry' (Uncommitted transactions exist)
//Read in type.
u_int8_t innermost_type = le->u.prov.innermost_type;
assert(!uxr_type_is_placeholder(innermost_type));
//Set p to immediately after key,val (begginning of transaction records)
u_int8_t *p = &le->u.prov.key_val_xrs[keylen + vallen_of_innermost_insert];
BOOL found_innermost_insert = FALSE;
u_int8_t i; //would be index in ULE.uxrs[] were we to unpack
//Loop inner to outer
UXR_S current_uxr;
UXR uxr = &current_uxr;
for (i = num_uxrs - 1; i >= num_xids-1; i--) {
//Innermost's type is in header.
if (i < num_uxrs - 1) {
//Not innermost, so load the type.
uxr->type = *p;
p += 1;
}
else {
//Innermost, load the type previously read from header
uxr->type = innermost_type;
}
//Committed txn id is implicit (0). (i==0)
//Outermost uncommitted txnid is stored in header. (i==1)
//Not committed nor outermost uncommitted, so load the xid.
if (i == num_xids-1) {
//Done. This is the interesting txn.
TXNID candidate_txn = toku_dtoh64(*(TXNID*)p);
TXNID target_txn = xids_get_innermost_xid(xids);
rval = candidate_txn == target_txn;
goto have_answer;
}
p += 8;
if (uxr_is_insert(uxr)) {
if (found_innermost_insert) {
//Not the innermost insert. Load vallen/valp
uxr->vallen = toku_dtoh32(*(u_int32_t*)p);
p += 4;
p += uxr->vallen;
}
else
found_innermost_insert = TRUE;
}
}
assert(FALSE);
have_answer:
#if ULE_DEBUG
{
u_int32_t num_xids_slow = xids_get_num_xids(xids);
int slow_rval = 0;
ULE_S ule_slow;
le_unpack(&ule_slow, le);
if (num_xids_slow > 1 && ule_slow.num_uxrs >= num_xids_slow) {
u_int32_t idx_slow;
for (idx_slow = 0; idx_slow < num_xids_slow; idx_slow++) {
if (xids_get_xid(xids, idx_slow) != ule_get_xid(&ule_slow, idx_slow))
break;
}
if (idx_slow == num_xids_slow)
slow_rval = 1;
}
assert(slow_rval == rval);
}
#endif
return rval;
}
void*
le_outermost_key_and_len (LEAFENTRY le, u_int32_t *len) {
ULE_S ule;
le_unpack(&ule, le);
UXR uxr = ule_get_outermost_uxr(&ule);
void *slow_keyp;
u_int32_t slow_len;
if (uxr_is_insert(uxr)) {
slow_keyp = ule.keyp;
slow_len = ule.keylen;
}
else {
slow_keyp = NULL;
slow_len = 0;
}
*len = slow_len;
return slow_keyp;
}
//If le_is_provdel, return (NULL,0)
//Else, return (key,keylen)
void*
le_latest_key_and_len (LEAFENTRY le, u_int32_t *len) {
u_int8_t num_xrs = le->num_xrs;
void *keyp;
*len = toku_dtoh32(le->keylen);
if (num_xrs == 1)
keyp = le->u.comm.key_val;
else {
keyp = le->u.prov.key_val_xrs;
if (uxr_type_is_delete(le->u.prov.innermost_type)) {
keyp = NULL;
*len = 0;
}
}
#if ULE_DEBUG
assert(num_xrs);
ULE_S ule;
le_unpack(&ule, le);
UXR uxr = ule_get_innermost_uxr(&ule);
void *slow_keyp;
u_int32_t slow_len;
if (uxr_is_insert(uxr)) {
slow_keyp = ule.keyp;
slow_len = ule.keylen;
}
else {
slow_keyp = NULL;
slow_len = 0;
}
assert(slow_keyp == le_latest_key(le));
assert(slow_len == le_latest_keylen(le));
assert(keyp==slow_keyp);
assert(*len==slow_len);
#endif
return keyp;
}
void*
le_latest_key (LEAFENTRY le) {
u_int8_t num_xrs = le->num_xrs;
void *rval;
if (num_xrs == 1)
rval = le->u.comm.key_val;
else {
rval = le->u.prov.key_val_xrs;
if (uxr_type_is_delete(le->u.prov.innermost_type))
rval = NULL;
}
#if ULE_DEBUG
assert(num_xrs);
ULE_S ule;
le_unpack(&ule, le);
UXR uxr = ule_get_innermost_uxr(&ule);
void *slow_rval;
if (uxr_is_insert(uxr))
slow_rval = ule.keyp;
else
slow_rval = NULL;
assert(rval==slow_rval);
#endif
return rval;
}
u_int32_t
le_latest_keylen (LEAFENTRY le) {
u_int8_t num_xrs = le->num_xrs;
u_int32_t rval = toku_dtoh32(le->keylen);
if (num_xrs > 1 && uxr_type_is_delete(le->u.prov.innermost_type))
rval = 0;
#if ULE_DEBUG
assert(num_xrs);
ULE_S ule;
le_unpack(&ule, le);
UXR uxr = ule_get_innermost_uxr(&ule);
u_int32_t slow_rval;
if (uxr_is_insert(uxr))
slow_rval = ule.keylen;
else
slow_rval = 0;
assert(rval==slow_rval);
#endif
return rval;
}
void*
le_outermost_val_and_len (LEAFENTRY le, u_int32_t *len) {
ULE_S ule;
le_unpack(&ule, le);
UXR uxr = ule_get_outermost_uxr(&ule);
void *slow_valp;
u_int32_t slow_len;
if (uxr_is_insert(uxr)) {
slow_valp = uxr->valp;
slow_len = uxr->vallen;
}
else {
slow_valp = NULL;
slow_len = 0;
}
*len = slow_len;
return slow_valp;
}
void*
le_latest_val_and_len (LEAFENTRY le, u_int32_t *len) {
u_int8_t num_xrs = le->num_xrs;
void *valp;
u_int32_t keylen = toku_dtoh32(le->keylen);
*len = toku_dtoh32(le->innermost_inserted_vallen);
if (num_xrs == 1)
valp = &le->u.comm.key_val[keylen];
else {
valp = &le->u.prov.key_val_xrs[keylen];
if (uxr_type_is_delete(le->u.prov.innermost_type)) {
valp = NULL;
*len = 0;
}
}
#if ULE_DEBUG
assert(num_xrs);
ULE_S ule;
le_unpack(&ule, le);
UXR uxr = ule_get_innermost_uxr(&ule);
void *slow_valp;
u_int32_t slow_len;
if (uxr_is_insert(uxr)) {
slow_valp = uxr->valp;
slow_len = uxr->vallen;
}
else {
slow_valp = NULL;
slow_len = 0;
}
assert(slow_valp == le_latest_val(le));
assert(slow_len == le_latest_vallen(le));
assert(valp==slow_valp);
assert(*len==slow_len);
#endif
return valp;
}
void*
le_latest_val (LEAFENTRY le) {
u_int8_t num_xrs = le->num_xrs;
void *rval;
u_int32_t keylen = toku_dtoh32(le->keylen);
if (num_xrs == 1)
rval = &le->u.comm.key_val[keylen];
else {
rval = &le->u.prov.key_val_xrs[keylen];
if (uxr_type_is_delete(le->u.prov.innermost_type))
rval = NULL;
}
#if ULE_DEBUG
ULE_S ule;
le_unpack(&ule, le);
UXR uxr = ule_get_innermost_uxr(&ule);
void *slow_rval;
if (uxr_is_insert(uxr))
slow_rval = uxr->valp;
else
slow_rval = NULL;
assert(rval==slow_rval);
#endif
return rval;
}
u_int32_t
le_latest_vallen (LEAFENTRY le) {
u_int8_t num_xrs = le->num_xrs;
u_int32_t rval = toku_dtoh32(le->innermost_inserted_vallen);
if (num_xrs > 1 && uxr_type_is_delete(le->u.prov.innermost_type))
rval = 0;
#if ULE_DEBUG
assert(num_xrs);
ULE_S ule;
le_unpack(&ule, le);
UXR uxr = ule_get_innermost_uxr(&ule);
u_int32_t slow_rval;
if (uxr_is_insert(uxr))
slow_rval = uxr->vallen;
else
slow_rval = 0;
assert(rval==slow_rval);
#endif
return rval;
}
//Return key and keylen unconditionally
void*
le_key_and_len (LEAFENTRY le, u_int32_t *len) {
u_int8_t num_xrs = le->num_xrs;
*len = toku_dtoh32(le->keylen);
void *keyp;
if (num_xrs == 1)
keyp = le->u.comm.key_val;
else
keyp = le->u.prov.key_val_xrs;
#if ULE_DEBUG
assert(num_xrs);
ULE_S ule;
le_unpack(&ule, le);
void *slow_keyp;
u_int32_t slow_len;
slow_keyp = ule.keyp;
slow_len = ule.keylen;
assert(slow_keyp == le_key(le));
assert(slow_len == le_keylen(le));
assert(keyp==slow_keyp);
assert(*len==slow_len);
#endif
return keyp;
}
void*
le_key (LEAFENTRY le) {
u_int8_t num_xrs = le->num_xrs;
void *rval;
if (num_xrs == 1)
rval = le->u.comm.key_val;
else
rval = le->u.prov.key_val_xrs;
#if ULE_DEBUG
assert(num_xrs);
ULE_S ule;
le_unpack(&ule, le);
void *slow_rval = ule.keyp;
assert(rval==slow_rval);
#endif
return rval;
}
u_int32_t
le_keylen (LEAFENTRY le) {
u_int32_t rval = toku_dtoh32(le->keylen);
#if ULE_DEBUG
ULE_S ule;
le_unpack(&ule, le);
u_int32_t slow_rval = ule.keylen;
assert(rval==slow_rval);
#endif
return rval;
}
void*
le_innermost_inserted_val_and_len (LEAFENTRY le, u_int32_t *len) {
u_int8_t num_xrs = le->num_xrs;
void *valp;
u_int32_t keylen = toku_dtoh32(le->keylen);
*len = toku_dtoh32(le->innermost_inserted_vallen);
if (num_xrs == 1)
valp = &le->u.comm.key_val[keylen];
else
valp = &le->u.prov.key_val_xrs[keylen];
#if ULE_DEBUG
assert(num_xrs);
ULE_S ule;
le_unpack(&ule, le);
u_int8_t i;
for (i = ule.num_uxrs; i > 0; i--) {
if (uxr_is_insert(&ule.uxrs[i-1]))
break;
}
assert(i > 0);
i--;
UXR uxr = &ule.uxrs[i];
void *slow_valp;
u_int32_t slow_len;
slow_valp = uxr->valp;
slow_len = uxr->vallen;
assert(slow_valp == le_innermost_inserted_val(le));
assert(slow_len == le_innermost_inserted_vallen(le));
assert(valp==slow_valp);
assert(*len==slow_len);
#endif
return valp;
}
void*
le_innermost_inserted_val (LEAFENTRY le) {
u_int8_t num_xrs = le->num_xrs;
void *rval;
u_int32_t keylen = toku_dtoh32(le->keylen);
if (num_xrs == 1)
rval = &le->u.comm.key_val[keylen];
else
rval = &le->u.prov.key_val_xrs[keylen];
#if ULE_DEBUG
assert(num_xrs);
ULE_S ule;
le_unpack(&ule, le);
u_int8_t i;
for (i = ule.num_uxrs; i > 0; i--) {
if (uxr_is_insert(&ule.uxrs[i-1]))
break;
}
assert(i > 0);
i--;
void *slow_rval = ule.uxrs[i].valp;
assert(rval==slow_rval);
#endif
return rval;
}
u_int32_t
le_innermost_inserted_vallen (LEAFENTRY le) {
u_int32_t rval = toku_dtoh32(le->innermost_inserted_vallen);
#if ULE_DEBUG
ULE_S ule;
le_unpack(&ule, le);
u_int8_t i;
for (i = ule.num_uxrs; i > 0; i--) {
if (uxr_is_insert(&ule.uxrs[i-1]))
break;
}
assert(i > 0);
i--;
u_int32_t slow_rval = ule.uxrs[i].vallen;
assert(rval==slow_rval);
#endif
return rval;
}
u_int64_t
le_outermost_uncommitted_xid (LEAFENTRY le) {
u_int8_t num_xrs = le->num_xrs;
TXNID rval;
if (num_xrs == 1)
rval = 0;
else
rval = toku_dtoh64(le->u.prov.xid_outermost_uncommitted);
#if ULE_DEBUG
assert(num_xrs);
ULE_S ule;
le_unpack(&ule, le);
TXNID slow_rval = 0;
if (ule.num_uxrs > 1)
slow_rval = ule.uxrs[1].xid;
assert(rval==slow_rval);
#endif
return rval;
}
//Optimization not required. This is a debug only function.
//Print a leafentry out in human-readable format
int
print_leafentry (FILE *outf, LEAFENTRY le) {
ULE_S ule;
le_unpack(&ule, le);
u_int8_t i;
assert(ule.num_uxrs > 0);
UXR uxr = &ule.uxrs[0];
if (!le) { printf("NULL"); return 0; }
fprintf(outf, "{key=");
toku_print_BYTESTRING(outf, ule.keylen, ule.keyp);
for (i = 0; i < ule.num_uxrs; i++) {
fprintf(outf, "\n%*s", i+1, " "); //Nested indenting
uxr = &ule.uxrs[i];
if (uxr_is_placeholder(uxr))
fprintf(outf, "P: xid=%016" PRIx64, uxr->xid);
else if (uxr_is_delete(uxr))
fprintf(outf, "D: xid=%016" PRIx64, uxr->xid);
else {
assert(uxr_is_insert(uxr));
fprintf(outf, "I: xid=%016" PRIx64 " val=", uxr->xid);
toku_print_BYTESTRING(outf, uxr->vallen, uxr->valp);
}
}
fprintf(outf, "}");
return 0;
}
/////////////////////////////////////////////////////////////////////////////////
// This layer of abstraction (ule_xxx) knows the structure of the unpacked
// leafentry and no other structure.
//
// ule constructor
// Note that transaction 0 is explicit in the ule
static void
ule_init_empty_ule(ULE ule, u_int32_t keylen, void * keyp) {
ule->keylen = keylen;
ule->keyp = keyp;
ule->num_uxrs = 1;
ule->uxrs[0] = committed_delete;
}
static inline u_int8_t
min_u8(u_int8_t a, u_int8_t b) {
u_int8_t rval = a < b ? a : b;
return rval;
}
///////////////////
// Implicit promotion logic:
//
// If the leafentry has already been promoted, there is nothing to do.
// We have two transaction stacks (one from message, one from leaf entry).
// We want to implicitly promote transactions newer than (but not including)
// the innermost common ancestor (ICA) of the two stacks of transaction ids. We
// know that this is the right thing to do because each transaction with an id
// greater (later) than the ICA must have been either committed or aborted.
// If it was aborted then we would have seen an abort message and removed the
// xid from the stack of transaction records. So any transaction still on the
// leaf entry stack must have been successfully promoted.
//
// After finding the ICA, promote transaction later than the ICA by copying
// value and type from innermost transaction record of leafentry to transaction
// record of ICA, keeping the transaction id of the ICA.
// Outermost xid is zero for both ule and xids<>
//
static void
ule_do_implicit_promotions(ULE ule, XIDS xids) {
//Optimization for (most) common case.
//No commits necessary if everything is already committed.
if (ule->num_uxrs > 1) {
u_int8_t max_index = min_u8(ule->num_uxrs, xids_get_num_xids(xids)) - 1;
u_int8_t ica_index = max_index;
u_int8_t index;
for (index = 1; index <= max_index; index++) { //xids at index 0 are defined to be equal.
TXNID current_msg_xid = xids_get_xid(xids, index);
TXNID current_ule_xid = ule_get_xid(ule, index);
if (current_msg_xid != current_ule_xid) {
//ica is innermost transaction with matching xids.
ica_index = index - 1;
break;
}
}
//If ica is the innermost uxr in the leafentry, no commits are necessary.
if (ica_index < ule->num_uxrs - 1) {
ule_promote_innermost_to_index(ule, ica_index);
}
}
}
// Purpose is to promote the value (and type) of the innermost transaction
// record to the uxr at the specified index (keeping the txnid of the uxr at
// specified index.)
static void
ule_promote_innermost_to_index(ULE ule, u_int8_t index) {
assert(ule->num_uxrs - 1 > index);
UXR old_innermost_uxr = ule_get_innermost_uxr(ule);
assert(!uxr_is_placeholder(old_innermost_uxr));
TXNID new_innermost_xid = ule->uxrs[index].xid;
ule->num_uxrs = index; //Discard old uxr at index (and everything inner)
if (uxr_is_delete(old_innermost_uxr)) {
ule_push_delete_uxr(ule, new_innermost_xid);
}
else {
ule_push_insert_uxr(ule,
new_innermost_xid,
old_innermost_uxr->vallen,
old_innermost_uxr->valp);
}
}
///////////////////
// All ule_apply_xxx operations are done after implicit promotions,
// so the innermost transaction record in the leafentry is the ICA.
//
// Purpose is to apply an insert message to this leafentry:
static void
ule_apply_insert(ULE ule, XIDS xids, u_int32_t vallen, void * valp) {
ule_prepare_for_new_uxr(ule, xids);
TXNID this_xid = xids_get_innermost_xid(xids); // xid of transaction doing this insert
ule_push_insert_uxr(ule, this_xid, vallen, valp);
}
// Purpose is to apply a delete message to this leafentry:
static void
ule_apply_delete(ULE ule, XIDS xids) {
ule_prepare_for_new_uxr(ule, xids);
TXNID this_xid = xids_get_innermost_xid(xids); // xid of transaction doing this delete
ule_push_delete_uxr(ule, this_xid);
}
// First, discard anything done earlier by this transaction.
// Then, add placeholders if necessary. This transaction may be nested within
// outer transactions that are newer than then newest (innermost) transaction in
// the leafentry. If so, record those outer transactions in the leafentry
// with placeholders.
static void
ule_prepare_for_new_uxr(ULE ule, XIDS xids) {
TXNID this_xid = xids_get_innermost_xid(xids);
if (ule_get_innermost_xid(ule) == this_xid)
ule_remove_innermost_uxr(ule);
else
ule_add_placeholders(ule, xids);
}
// Purpose is to apply an abort message to this leafentry.
// If the aborted transaction (the transaction whose xid is the innermost xid
// in the id stack passed in the message), has not modified this leafentry,
// then there is nothing to be done.
// If this transaction did modify the leafentry, then undo whatever it did (by
// removing the transaction record (uxr) and any placeholders underneath.
// Remember, the innermost uxr can only be an insert or a delete, not a placeholder.
static void
ule_apply_abort(ULE ule, XIDS xids) {
TXNID this_xid = xids_get_innermost_xid(xids); // xid of transaction doing this abort
assert(this_xid!=0);
if (ule_get_innermost_xid(ule) == this_xid) {
assert(ule->num_uxrs>1);
ule_remove_innermost_uxr(ule);
ule_remove_innermost_placeholders(ule);
}
assert(ule->num_uxrs > 0);
}
// Purpose is to apply a commit message to this leafentry.
// If the committed transaction (the transaction whose xid is the innermost xid
// in the id stack passed in the message), has not modified this leafentry,
// then there is nothing to be done.
// Also, if there are no uncommitted transaction records there is nothing to do.
// If this transaction did modify the leafentry, then promote whatever it did.
// Remember, the innermost uxr can only be an insert or a delete, not a placeholder.
void ule_apply_commit(ULE ule, XIDS xids) {
TXNID this_xid = xids_get_innermost_xid(xids); // xid of transaction committing
assert(this_xid!=0);
if (ule_get_innermost_xid(ule) == this_xid) {
//ule->uxrs[ule->num_uxrs-1] is the innermost (this transaction)
//ule->uxrs[ule->num_uxrs-2] is the 2nd innermost
assert(ule->num_uxrs > 1);
//We want to promote the innermost uxr one level out.
ule_promote_innermost_to_index(ule, ule->num_uxrs-2);
}
}
///////////////////
// Helper functions called from the functions above:
//
// Purpose is to record an insert for this transaction (and set type correctly).
static void
ule_push_insert_uxr(ULE ule, TXNID xid, u_int32_t vallen, void * valp) {
UXR uxr = ule_get_first_empty_uxr(ule);
uxr->xid = xid;
uxr->vallen = vallen;
uxr->valp = valp;
uxr->type = XR_INSERT;
ule->num_uxrs++;
}
// Purpose is to record a delete for this transaction. If this transaction
// is the root transaction, then truly delete the leafentry by marking the
// ule as empty.
static void
ule_push_delete_uxr(ULE ule, TXNID xid) {
UXR uxr = ule_get_first_empty_uxr(ule);
uxr->xid = xid;
uxr->type = XR_DELETE;
ule->num_uxrs++;
}
// Purpose is to push a placeholder on the top of the leafentry's transaction stack.
static void
ule_push_placeholder_uxr(ULE ule, TXNID xid) {
UXR uxr = ule_get_first_empty_uxr(ule);
uxr->xid = xid;
uxr->type = XR_PLACEHOLDER;
ule->num_uxrs++;
}
// Return innermost transaction record.
static UXR
ule_get_innermost_uxr(ULE ule) {
assert(ule->num_uxrs > 0);
UXR rval = &(ule->uxrs[ule->num_uxrs - 1]);
return rval;
}
// Return innermost transaction record.
static UXR
ule_get_outermost_uxr(ULE ule) {
assert(ule->num_uxrs > 0);
UXR rval = &(ule->uxrs[0]);
return rval;
}
// Return first empty transaction record
static UXR
ule_get_first_empty_uxr(ULE ule) {
assert(ule->num_uxrs < MAX_TRANSACTION_RECORDS);
UXR rval = &(ule->uxrs[ule->num_uxrs]);
return rval;
}
// Remove the innermost transaction (pop the leafentry's stack), undoing
// whatever the innermost transaction did.
static void
ule_remove_innermost_uxr(ULE ule) {
//It is possible to remove the committed delete at first insert.
assert(ule->num_uxrs > 0);
ule->num_uxrs--;
}
static TXNID
ule_get_innermost_xid(ULE ule) {
TXNID rval = ule_get_xid(ule, ule->num_uxrs - 1);
return rval;
}
static TXNID
ule_get_xid(ULE ule, u_int8_t index) {
assert(index < ule->num_uxrs);
TXNID rval = ule->uxrs[index].xid;
return rval;
}
// Purpose is to remove any placeholders from the top of the leaf stack (the
// innermost recorded transactions), if necessary. This function is idempotent.
// It makes no logical sense for a placeholder to be the innermost recorded
// transaction record, so placeholders at the top of the stack are not legal.
static void
ule_remove_innermost_placeholders(ULE ule) {
UXR uxr = ule_get_innermost_uxr(ule);
while (uxr_is_placeholder(uxr)) {
assert(ule->num_uxrs > 1); // outermost is committed, cannot be placeholder
ule_remove_innermost_uxr(ule);
uxr = ule_get_innermost_uxr(ule);
}
}
// Purpose is to add placeholders to the top of the leaf stack (the innermost
// recorded transactions), if necessary. This function is idempotent.
// Note, after placeholders are added, an insert or delete will be added. This
// function temporarily leaves the transaction stack in an illegal state (having
// placeholders on top).
static void
ule_add_placeholders(ULE ule, XIDS xids) {
//Placeholders can be placed on top of the committed uxr.
assert(ule->num_uxrs > 0);
TXNID ica_xid = ule_get_innermost_xid(ule); // xid of ica
TXNID this_xid = xids_get_innermost_xid(xids); // xid of this transaction
if (ica_xid != this_xid) { // if this transaction is the ICA, don't push any placeholders
u_int8_t index = xids_find_index_of_xid(xids, ica_xid) + 1; // Get index of next inner transaction after ICA
TXNID current_msg_xid = xids_get_xid(xids, index);
while (current_msg_xid != this_xid) { // Placeholder for each transaction before this transaction
ule_push_placeholder_uxr(ule, current_msg_xid);
index++;
current_msg_xid = xids_get_xid(xids, index);
}
}
}
/////////////////////////////////////////////////////////////////////////////////
// This layer of abstraction (uxr_xxx) understands uxr and nothing else.
//
static inline BOOL
uxr_type_is_insert(u_int8_t type) {
BOOL rval = (BOOL)(type == XR_INSERT);
return rval;
}
static inline BOOL
uxr_is_insert(UXR uxr) {
return uxr_type_is_insert(uxr->type);
}
static inline BOOL
uxr_type_is_delete(u_int8_t type) {
BOOL rval = (BOOL)(type == XR_DELETE);
return rval;
}
static inline BOOL
uxr_is_delete(UXR uxr) {
return uxr_type_is_delete(uxr->type);
}
static inline BOOL
uxr_type_is_placeholder(u_int8_t type) {
BOOL rval = (BOOL)(type == XR_PLACEHOLDER);
return rval;
}
static inline BOOL
uxr_is_placeholder(UXR uxr) {
return uxr_type_is_placeholder(uxr->type);
}
#ifdef IMPLICIT_PROMOTION_ON_QUERY
////////////////////////////////////////////////////////////////////////////////
// Functions here are responsible for implicit promotions on queries.
//
// Purpose is to promote any transactions in this leafentry by detecting if
// transactions that have modified it have been committed.
// During a query, the read lock for the leaf entry is not necessarily taken.
// (We use a locking regime that tests the lock after the read.)
// If a transaction unrelated to the transaction issuing the query is writing
// to this leafentry (possible because we didn't take the read lock), then that
// unrelated transaction is alive and there should be no implicit promotion.
// So any implicit promotions done during the query must be based solely on
// whether the transactions whose xids are recorded in the leafentry are still
// open. (An open transaction is one that has not committed or aborted.)
// Our logic is:
// If the innermost transaction in the leafentry is definitely open, then no
// implicit promotions are necessary (or possible). This is a fast test.
// Otherwise, scan from inner to outer to find the innermost uncommitted
// transaction. Then promote the innermost transaction to the transaction
// record of the innermost open (uncommitted) transaction.
// Transaction id of zero is always considered open for this purpose.
leafentry do_implicit_promotions_on_query(le) {
innermost_xid = le_get_innermost_xid(le);
// if innermost transaction still open, nothing to promote
if (!transaction_open(innermost_xid)) {
ule = unpack(le);
// scan outward starting with next outer transaction
for (index = ule->num_uxrs - 2; index > 0; index--) {
xid = ule_get_xid(ule, index);
if (transaction_open(xid)) break;
}
promote_innermost_to_index(ule, index);
le = le_pack(ule);
}
return le;
}
// Examine list of open transactions, return true if transaction is still open.
// Transaction zero is always open.
//
// NOTE: Old code already does implicit promotion of provdel on query,
// and that code uses some equivalent of transaction_open().
//
bool transaction_open(TXNID xid) {
rval = TRUE;
if (xid != 0) {
//TODO: Logic
}
return rval;
}
#endif
// Wrapper code to support backwards compatibility with version 10 (until we don't want it).
// These wrappers should be removed if/when we remove support for version 10 leafentries.
#include "backwards_10.h"
void
toku_upgrade_ule_init_empty_ule(ULE ule, u_int32_t keylen, void * keyp) {
ule_init_empty_ule(ule, keylen, keyp);
}
void
toku_upgrade_ule_remove_innermost_uxr(ULE ule) {
ule_remove_innermost_uxr(ule);
}
void
toku_upgrade_ule_push_insert_uxr(ULE ule, TXNID xid, u_int32_t vallen, void * valp) {
ule_push_insert_uxr(ule, xid, vallen, valp);
}
void
toku_upgrade_ule_push_delete_uxr(ULE ule, TXNID xid) {
ule_push_delete_uxr(ule, xid);
}