mirror of
https://github.com/MariaDB/server.git
synced 2025-01-24 07:44:22 +01:00
6bf6272fda
bug #57006 "Deadlock between HANDLER and FLUSH TABLES WITH READ LOCK" and bug #54673 "It takes too long to get readlock for 'FLUSH TABLES WITH READ LOCK'". The first bug manifested itself as a deadlock which occurred when a connection, which had some table open through HANDLER statement, tried to update some data through DML statement while another connection tried to execute FLUSH TABLES WITH READ LOCK concurrently. What happened was that FTWRL in the second connection managed to perform first step of GRL acquisition and thus blocked all upcoming DML. After that it started to wait for table open through HANDLER statement to be flushed. When the first connection tried to execute DML it has started to wait for GRL/the second connection creating deadlock. The second bug manifested itself as starvation of FLUSH TABLES WITH READ LOCK statements in cases when there was a constant stream of concurrent DML statements (in two or more connections). This has happened because requests for protection against GRL which were acquired by DML statements were ignoring presence of pending GRL and thus the latter was starved. This patch solves both these problems by re-implementing GRL using metadata locks. Similar to the old implementation acquisition of GRL in new implementation is two-step. During the first step we block all concurrent DML and DDL statements by acquiring global S metadata lock (each DML and DDL statement acquires global IX lock for its duration). During the second step we block commits by acquiring global S lock in COMMIT namespace (commit code acquires global IX lock in this namespace). Note that unlike in old implementation acquisition of protection against GRL in DML and DDL is semi-automatic. We assume that any statement which should be blocked by GRL will either open and acquires write-lock on tables or acquires metadata locks on objects it is going to modify. For any such statement global IX metadata lock is automatically acquired for its duration. The first problem is solved because waits for GRL become visible to deadlock detector in metadata locking subsystem and thus deadlocks like one in the first bug become impossible. The second problem is solved because global S locks which are used for GRL implementation are given preference over IX locks which are acquired by concurrent DML (and we can switch to fair scheduling in future if needed). Important change: FTWRL/GRL no longer blocks DML and DDL on temporary tables. Before this patch behavior was not consistent in this respect: in some cases DML/DDL statements on temporary tables were blocked while in others they were not. Since the main use cases for FTWRL are various forms of backups and temporary tables are not preserved during backups we have opted for consistently allowing DML/DDL on temporary tables during FTWRL/GRL. Important change: This patch changes thread state names which are used when DML/DDL of FTWRL is waiting for global read lock. It is now either "Waiting for global read lock" or "Waiting for commit lock" depending on the stage on which FTWRL is. Incompatible change: To solve deadlock in events code which was exposed by this patch we have to replace LOCK_event_metadata mutex with metadata locks on events. As result we have to prohibit DDL on events under LOCK TABLES. This patch also adds extensive test coverage for interaction of DML/DDL and FTWRL. Performance of new and old global read lock implementations in sysbench tests were compared. There were no significant difference between new and old implementations. mysql-test/include/check_ftwrl_compatible.inc: Added helper script which allows to check that a statement is compatible with FLUSH TABLES WITH READ LOCK. mysql-test/include/check_ftwrl_incompatible.inc: Added helper script which allows to check that a statement is incompatible with FLUSH TABLES WITH READ LOCK. mysql-test/include/handler.inc: Adjusted test case to the fact that now DROP TABLE closes open HANDLERs for the table to be dropped before checking if there active FTWRL in this connection. mysql-test/include/wait_show_condition.inc: Fixed small error in the timeout message. The correct name of variable used as parameter for this script is "$condition" and not "$wait_condition". mysql-test/r/delayed.result: Added test coverage for scenario which triggered assert in metadata locking subsystem. mysql-test/r/events_2.result: Updated test results after prohibiting event DDL operations under LOCK TABLES. mysql-test/r/flush.result: Added test coverage for bug #57006 "Deadlock between HANDLER and FLUSH TABLES WITH READ LOCK". mysql-test/r/flush_read_lock.result: Added test coverage for various aspects of FLUSH TABLES WITH READ LOCK functionality. mysql-test/r/flush_read_lock_kill.result: Adjusted test case after replacing custom global read lock implementation with one based on metadata locks. Use new debug_sync point. Do not disable concurrent inserts as now InnoDB we always use InnoDB table. mysql-test/r/handler_innodb.result: Adjusted test case to the fact that now DROP TABLE closes open HANDLERs for the table to be dropped before checking if there active FTWRL in this connection. mysql-test/r/handler_myisam.result: Adjusted test case to the fact that now DROP TABLE closes open HANDLERs for the table to be dropped before checking if there active FTWRL in this connection. mysql-test/r/mdl_sync.result: Adjusted test case after replacing custom global read lock implementation with one based on metadata locks. Replaced usage of GRL-specific debug_sync's with appropriate sync points in MDL subsystem. mysql-test/suite/perfschema/r/dml_setup_instruments.result: Updated test results after removing global COND_global_read_lock condition variable. mysql-test/suite/perfschema/r/func_file_io.result: Ensure that this test doesn't affect subsequent tests. At the end of its execution enable back P_S instrumentation which this test disables at some point. mysql-test/suite/perfschema/r/func_mutex.result: Ensure that this test doesn't affect subsequent tests. At the end of its execution enable back P_S instrumentation which this test disables at some point. mysql-test/suite/perfschema/r/global_read_lock.result: Adjusted test case to take into account that new GRL implementation is based on MDL. mysql-test/suite/perfschema/r/server_init.result: Adjusted test case after replacing custom global read lock implementation with one based on MDL and replacing LOCK_event_metadata mutex with metadata lock. mysql-test/suite/perfschema/t/func_file_io.test: Ensure that this test doesn't affect subsequent tests. At the end of its execution enable back P_S instrumentation which this test disables at some point. mysql-test/suite/perfschema/t/func_mutex.test: Ensure that this test doesn't affect subsequent tests. At the end of its execution enable back P_S instrumentation which this test disables at some point. mysql-test/suite/perfschema/t/global_read_lock.test: Adjusted test case to take into account that new GRL implementation is based on MDL. mysql-test/suite/perfschema/t/server_init.test: Adjusted test case after replacing custom global read lock implementation with one based on MDL and replacing LOCK_event_metadata mutex with metadata lock. mysql-test/suite/rpl/r/rpl_tmp_table_and_DDL.result: Updated test results after prohibiting event DDL under LOCK TABLES. mysql-test/t/delayed.test: Added test coverage for scenario which triggered assert in metadata locking subsystem. mysql-test/t/events_2.test: Updated test case after prohibiting event DDL operations under LOCK TABLES. mysql-test/t/flush.test: Added test coverage for bug #57006 "Deadlock between HANDLER and FLUSH TABLES WITH READ LOCK". mysql-test/t/flush_block_commit.test: Adjusted test case after changing thread state name which is used when COMMIT waits for FLUSH TABLES WITH READ LOCK from "Waiting for release of readlock" to "Waiting for commit lock". mysql-test/t/flush_block_commit_notembedded.test: Adjusted test case after changing thread state name which is used when DML waits for FLUSH TABLES WITH READ LOCK. Now we use "Waiting for global read lock" in this case. mysql-test/t/flush_read_lock.test: Added test coverage for various aspects of FLUSH TABLES WITH READ LOCK functionality. mysql-test/t/flush_read_lock_kill-master.opt: We no longer need to use make_global_read_lock_block_commit_loop debug tag in this test. Instead we rely on an appropriate debug_sync point in MDL code. mysql-test/t/flush_read_lock_kill.test: Adjusted test case after replacing custom global read lock implementation with one based on metadata locks. Use new debug_sync point. Do not disable concurrent inserts as now InnoDB we always use InnoDB table. mysql-test/t/lock_multi.test: Adjusted test case after changing thread state names which are used when DML or DDL waits for FLUSH TABLES WITH READ LOCK to "Waiting for global read lock". mysql-test/t/mdl_sync.test: Adjusted test case after replacing custom global read lock implementation with one based on metadata locks. Replaced usage of GRL-specific debug_sync's with appropriate sync points in MDL subsystem. Updated thread state names which are used when DDL waits for FTWRL. mysql-test/t/trigger_notembedded.test: Adjusted test case after changing thread state names which are used when DML or DDL waits for FLUSH TABLES WITH READ LOCK to "Waiting for global read lock". sql/event_data_objects.cc: Removed Event_queue_element::status/last_executed_changed members and Event_queue_element::update_timing_fields() method. We no longer use this class for updating mysql.events once event is chosen for execution. Accesses to instances of this class in scheduler thread require protection by Event_queue::LOCK_event_queue mutex and we try to avoid updating table while holding this lock. sql/event_data_objects.h: Removed Event_queue_element::status/last_executed_changed members and Event_queue_element::update_timing_fields() method. We no longer use this class for updating mysql.events once event is chosen for execution. Accesses to instances of this class in scheduler thread require protection by Event_queue::LOCK_event_queue mutex and we try to avoid updating table while holding this lock. sql/event_db_repository.cc: - Changed Event_db_repository methods to not release all metadata locks once they are done updating mysql.events table. This allows to keep metadata lock protecting against GRL and lock protecting particular event around until corresponding DDL statement is written to the binary log. - Removed logic for conditional update of "status" and "last_executed" fields from update_timing_fields_for_event() method. In the only case when this method is called now "last_executed" is always modified and tracking change of "status" is too much hassle. sql/event_db_repository.h: Removed logic for conditional update of "status" and "last_executed" fields from Event_db_repository:: update_timing_fields_for_event() method. In the only case when this method is called now "last_executed" is always modified and tracking change of "status" field is too much hassle. sql/event_queue.cc: Changed event scheduler code not to update mysql.events table while holding Event_queue::LOCK_event_queue mutex. Doing so led to a deadlock with a new GRL implementation. This deadlock didn't occur with old implementation due to fact that code acquiring protection against GRL ignored pending GRL requests (which lead to GRL starvation). One of goals of new implementation is to disallow GRL starvation and so we have to solve problem with this deadlock in a different way. sql/events.cc: Changed methods of Events class to acquire protection against GRL while perfoming DDL statement and keep it until statement is written to the binary log. Unfortunately this step together with new GRL implementation exposed deadlock involving Events::LOCK_event_metadata and GRL. To solve it Events::LOCK_event_metadata mutex was replaced with a metadata lock on event. As a side-effect events DDL has to be prohibited under LOCK TABLES even in cases when mysql.events table was explicitly locked for write. sql/events.h: Replaced Events::LOCK_event_metadata mutex with a metadata lock on event. sql/ha_ndbcluster.cc: Updated code after replacing custom global read lock implementation with one based on MDL. Since MDL subsystem should now be able to detect deadlocks involving metadata locks and GRL there is no need for special handling of active GRL. sql/handler.cc: Replaced custom implementation of global read lock with one based on metadata locks. Consequently when doing commit instead of calling method of Global_read_lock class to acquire protection against GRL we simply acquire IX in COMMIT namespace. sql/lock.cc: Replaced custom implementation of global read lock with one based on metadata locks. This step allows to expose wait for GRL to deadlock detector of MDL subsystem and thus succesfully resolve deadlocks similar to one behind bug #57006 "Deadlock between HANDLER and FLUSH TABLES WITH READ LOCK". It also solves problem with GRL starvation described in bug #54673 "It takes too long to get readlock for 'FLUSH TABLES WITH READ LOCK'" since metadata locks used by GRL give preference to FTWRL statement instead of DML statements (if needed in future this can be changed to fair scheduling). Similar to old implementation of acquisition of GRL is two-step. During the first step we block all concurrent DML and DDL statements by acquiring global S metadata lock (each DML and DDL statement acquires global IX lock for its duration). During the second step we block commits by acquiring global S lock in COMMIT namespace (commit code acquires global IX lock in this namespace). Note that unlike in old implementation acquisition of protection against GRL in DML and DDL is semi-automatic. We assume that any statement which should be blocked by GRL will either open and acquires write-lock on tables or acquires metadata locks on objects it is going to modify. For any such statement global IX metadata lock is automatically acquired for its duration. To support this change: - Global_read_lock::lock/unlock_global_read_lock and make_global_read_lock_block_commit methods were changed accordingly. - Global_read_lock::wait_if_global_read_lock() and start_waiting_global_read_lock() methods were dropped. It is now responsibility of code acquiring metadata locks opening tables to acquire protection against GRL by explicitly taking global IX lock with statement duration. - Global variables, mutex and condition variable used by old implementation was removed. - lock_routine_name() was changed to use statement duration for its global IX lock. It was also renamed to lock_object_name() as it now also used to take metadata locks on events. - Global_read_lock::set_explicit_lock_duration() was added which allows not to release locks used for GRL when leaving prelocked mode. sql/lock.h: - Renamed lock_routine_name() to lock_object_name() and changed its signature to allow its usage for events. - Removed broadcast_refresh() function. It is no longer needed with new GRL implementation. sql/log_event.cc: Release metadata locks with statement duration at the end of processing legacy event for LOAD DATA. This ensures that replication thread processing such event properly releases its protection against global read lock. sql/mdl.cc: Changed MDL subsystem to support new MDL-based implementation of global read lock. Added COMMIT and EVENTS namespaces for metadata locks. Changed thread state name for GLOBAL namespace to "Waiting for global read lock". Optimized MDL_map::find_or_insert() method to avoid taking m_mutex mutex when looking up MDL_lock objects for GLOBAL or COMMIT namespaces. We keep pre-created MDL_lock objects for these namespaces around and simply return pointers to these global objects when needed. Changed MDL_lock/MDL_scoped_lock to properly handle notification of insert delayed handler threads when FTWRL takes global S lock. Introduced concept of lock duration. In addition to locks with transaction duration which work in the way which is similar to how locks worked before (i.e. they are released at the end of transaction), locks with statement and explicit duration were introduced. Locks with statement duration are automatically released at the end of statement. Locks with explicit duration require explicit release and obsolete concept of transactional sentinel. * Changed MDL_request and MDL_ticket classes to support notion of duration. * Changed MDL_context to keep locks with different duration in different lists. Changed code handling ticket list to take this into account. * Changed methods responsible for releasing locks to take into account duration of tickets. Particularly public MDL_context::release_lock() method now only can release tickets with explicit duration (there is still internal method which allows to specify duration). To release locks with statement or transaction duration one have to use release_statement/transactional_locks() methods. * Concept of savepoint for MDL subsystem now has to take into account locks with statement duration. Consequently MDL_savepoint class was introduced and methods working with savepoints were updated accordingly. * Added methods which allow to set duration for one or all locks in the context. sql/mdl.h: Changed MDL subsystem to support new MDL-based implementation of global read lock. Added COMMIT and EVENTS namespaces for metadata locks. Introduced concept of lock duration. In addition to locks with transaction duration which work in the way which is similar to how locks worked before (i.e. they are released at the end of transaction), locks with statement and explicit duration were introduced. Locks with statement duration are automatically released at the end of statement. Locks with explicit duration require explicit release and obsolete concept of transactional sentinel. * Changed MDL_request and MDL_ticket classes to support notion of duration. * Changed MDL_context to keep locks with different duration in different lists. Changed code handling ticket list to take this into account. * Changed methods responsible for releasing locks to take into account duration of tickets. Particularly public MDL_context::release_lock() method now only can release tickets with explicit duration (there is still internal method which allows to specify duration). To release locks with statement or transaction duration one have to use release_statement/transactional_locks() methods. * Concept of savepoint for MDL subsystem now has to take into account locks with statement duration. Consequently MDL_savepoint class was introduced and methods working with savepoints were updated accordingly. * Added methods which allow to set duration for one or all locks in the context. sql/mysqld.cc: Removed global mutex and condition variables which were used by old implementation of GRL. Also we no longer need to initialize Events::LOCK_event_metadata mutex as it was replaced with metadata locks on events. sql/mysqld.h: Removed global variable, mutex and condition variables which were used by old implementation of GRL. sql/rpl_rli.cc: When slave thread closes tables which were open for handling of RBR events ensure that it releases global IX lock which was acquired as protection against GRL. sql/sp.cc: Adjusted code to the new signature of lock_object/routine_name(), to the fact that one now needs specify duration of lock when initializing MDL_request and to the fact that savepoints for MDL subsystem are now represented by MDL_savepoint class. sql/sp_head.cc: Ensure that statements in stored procedures release statement metadata locks and thus release their protectiong against GRL in proper moment in time. Adjusted code to the fact that one now needs specify duration of lock when initializing MDL_request. sql/sql_admin.cc: Adjusted code to the fact that one now needs specify duration of lock when initializing MDL_request. sql/sql_base.cc: - Implemented support for new approach to acquiring protection against global read lock. We no longer acquire such protection explicitly on the basis of statement flags. Instead we always rely on code which is responsible for acquiring metadata locks on object to be changed acquiring this protection. This is achieved by acquiring global IX metadata lock with statement duration. Code doing this also responsible for checking that current connection has no active GRL by calling an Global_read_lock::can_acquire_protection() method. Changed code in open_table() and lock_table_names() accordingly. Note that as result of this change DDL and DML on temporary tables is always compatible with GRL (before it was incompatible in some cases and compatible in other cases). - To speed-up code acquiring protection against GRL introduced m_has_protection_against_grl member in Open_table_context class. It indicates that protection was already acquired sometime during open_tables() execution and new attempts can be skipped. - Thanks to new GRL implementation calls to broadcast_refresh() became unnecessary and were removed. - Adjusted code to the fact that one now needs specify duration of lock when initializing MDL_request and to the fact that savepoints for MDL subsystem are now represented by MDL_savepoint class. sql/sql_base.h: Adjusted code to the fact that savepoints for MDL subsystem are now represented by MDL_savepoint class. Also introduced Open_table_context::m_has_protection_against_grl member which allows to avoid acquiring protection against GRL while opening tables if such protection was already acquired. sql/sql_class.cc: Changed THD::leave_locked_tables_mode() after transactional sentinel for metadata locks was obsoleted by introduction of locks with explicit duration. sql/sql_class.h: - Adjusted code to the fact that savepoints for MDL subsystem are now represented by MDL_savepoint class. - Changed Global_read_lock class according to changes in global read lock implementation: * wait_if_global_read_lock and start_waiting_global_read_lock are now gone. Instead code needing protection against GRL has to acquire global IX metadata lock with statement duration itself. To help it new can_acquire_protection() was introduced. Also as result of the above change m_protection_count member is gone too. * Added m_mdl_blocks_commits_lock member to store metadata lock blocking commits. * Adjusted code to the fact that concept of transactional sentinel was obsoleted by concept of lock duration. - Removed CF_PROTECT_AGAINST_GRL flag as it is no longer necessary. New GRL implementation acquires protection against global read lock automagically when statement acquires metadata locks on tables or other objects it is going to change. sql/sql_db.cc: Adjusted code to the fact that one now needs specify duration of lock when initializing MDL_request. sql/sql_handler.cc: Removed call to broadcast_refresh() function. It is no longer needed with new GRL implementation. Adjusted code after introducing duration concept for metadata locks. Particularly to the fact transactional sentinel was replaced with explicit duration. sql/sql_handler.h: Renamed mysql_ha_move_tickets_after_trans_sentinel() to mysql_ha_set_explicit_lock_duration() after transactional sentinel was obsoleted by locks with explicit duration. sql/sql_insert.cc: Adjusted code handling delaying inserts after switching to new GRL implementation. Now connection thread initiating delayed insert has to acquire global IX lock in addition to metadata lock on table being inserted into. This IX lock protects against GRL and similarly to SW lock on table being inserted into has to be passed to handler thread in order to avoid deadlocks. sql/sql_lex.cc: LEX::protect_against_global_read_lock member is no longer necessary since protection against GRL is automatically taken by code acquiring metadata locks/opening tables. sql/sql_lex.h: LEX::protect_against_global_read_lock member is no longer necessary since protection against GRL is automatically taken by code acquiring metadata locks/opening tables. sql/sql_parse.cc: - Implemented support for new approach to acquiring protection against global read lock. We no longer acquire such protection explicitly on the basis of statement flags. Instead we always rely on code which is responsible for acquiring metadata locks on object to be changed acquiring this protection. This is achieved by acquiring global IX metadata lock with statement duration. This lock is automatically released at the end of statement execution. - Changed implementation of CREATE/DROP PROCEDURE/FUNCTION not to release metadata locks and thus protection against of GRL in the middle of statement execution. - Adjusted code to the fact that one now needs specify duration of lock when initializing MDL_request and to the fact that savepoints for MDL subsystem are now represented by MDL_savepoint class. sql/sql_prepare.cc: Adjusted code to the to the fact that savepoints for MDL subsystem are now represented by MDL_savepoint class. sql/sql_rename.cc: With new GRL implementation there is no need to explicitly acquire protection against GRL before renaming tables. This happens automatically in code which acquires metadata locks on tables being renamed. sql/sql_show.cc: Adjusted code to the fact that one now needs specify duration of lock when initializing MDL_request and to the fact that savepoints for MDL subsystem are now represented by MDL_savepoint class. sql/sql_table.cc: - With new GRL implementation there is no need to explicitly acquire protection against GRL before dropping tables. This happens automatically in code which acquires metadata locks on tables being dropped. - Changed mysql_alter_table() not to release lock on new table name explicitly and to rely on automatic release of locks at the end of statement instead. This was necessary since now MDL_context::release_lock() is supported only for locks for explicit duration. sql/sql_trigger.cc: With new GRL implementation there is no need to explicitly acquire protection against GRL before changing table triggers. This happens automatically in code which acquires metadata locks on tables which triggers are to be changed. sql/sql_update.cc: Fix bug exposed by GRL testing. During prepare phase acquire only S metadata locks instead of SW locks to keep prepare of multi-UPDATE compatible with concurrent LOCK TABLES WRITE and global read lock. sql/sql_view.cc: With new GRL implementation there is no need to explicitly acquire protection against GRL before creating view. This happens automatically in code which acquires metadata lock on view to be created. sql/sql_yacc.yy: LEX::protect_against_global_read_lock member is no longer necessary since protection against GRL is automatically taken by code acquiring metadata locks/opening tables. sql/table.cc: Adjusted code to the fact that one now needs specify duration of lock when initializing MDL_request. sql/table.h: Adjusted code to the fact that one now needs specify duration of lock when initializing MDL_request. sql/transaction.cc: Replaced custom implementation of global read lock with one based on metadata locks. Consequently when doing commit instead of calling method of Global_read_lock class to acquire protection against GRL we simply acquire IX in COMMIT namespace. Also adjusted code to the fact that MDL savepoint is now represented by MDL_savepoint class.
1074 lines
33 KiB
C++
1074 lines
33 KiB
C++
/* Copyright 2000-2008 MySQL AB, 2008-2009 Sun Microsystems, Inc.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
|
|
/**
|
|
@file
|
|
|
|
Locking functions for mysql.
|
|
|
|
Because of the new concurrent inserts, we must first get external locks
|
|
before getting internal locks. If we do it in the other order, the status
|
|
information is not up to date when called from the lock handler.
|
|
|
|
GENERAL DESCRIPTION OF LOCKING
|
|
|
|
When not using LOCK TABLES:
|
|
|
|
- For each SQL statement mysql_lock_tables() is called for all involved
|
|
tables.
|
|
- mysql_lock_tables() will call
|
|
table_handler->external_lock(thd,locktype) for each table.
|
|
This is followed by a call to thr_multi_lock() for all tables.
|
|
|
|
- When statement is done, we call mysql_unlock_tables().
|
|
This will call thr_multi_unlock() followed by
|
|
table_handler->external_lock(thd, F_UNLCK) for each table.
|
|
|
|
- Note that mysql_unlock_tables() may be called several times as
|
|
MySQL in some cases can free some tables earlier than others.
|
|
|
|
- The above is true both for normal and temporary tables.
|
|
|
|
- Temporary non transactional tables are never passed to thr_multi_lock()
|
|
and we never call external_lock(thd, F_UNLOCK) on these.
|
|
|
|
When using LOCK TABLES:
|
|
|
|
- LOCK TABLE will call mysql_lock_tables() for all tables.
|
|
mysql_lock_tables() will call
|
|
table_handler->external_lock(thd,locktype) for each table.
|
|
This is followed by a call to thr_multi_lock() for all tables.
|
|
|
|
- For each statement, we will call table_handler->start_stmt(THD)
|
|
to inform the table handler that we are using the table.
|
|
|
|
The tables used can only be tables used in LOCK TABLES or a
|
|
temporary table.
|
|
|
|
- When statement is done, we will call ha_commit_stmt(thd);
|
|
|
|
- When calling UNLOCK TABLES we call mysql_unlock_tables() for all
|
|
tables used in LOCK TABLES
|
|
|
|
If table_handler->external_lock(thd, locktype) fails, we call
|
|
table_handler->external_lock(thd, F_UNLCK) for each table that was locked,
|
|
excluding one that caused failure. That means handler must cleanup itself
|
|
in case external_lock() fails.
|
|
|
|
@todo
|
|
Change to use my_malloc() ONLY when using LOCK TABLES command or when
|
|
we are forced to use mysql_lock_merge.
|
|
*/
|
|
|
|
#include "sql_priv.h"
|
|
#include "debug_sync.h"
|
|
#include "unireg.h" // REQUIRED: for other includes
|
|
#include "lock.h"
|
|
#include "sql_base.h" // close_tables_for_reopen
|
|
#include "sql_parse.h" // is_log_table_write_query
|
|
#include "sql_acl.h" // SUPER_ACL
|
|
#include <hash.h>
|
|
#include <assert.h>
|
|
|
|
/**
|
|
@defgroup Locking Locking
|
|
@{
|
|
*/
|
|
|
|
extern HASH open_cache;
|
|
|
|
/* flags for get_lock_data */
|
|
#define GET_LOCK_UNLOCK 1
|
|
#define GET_LOCK_STORE_LOCKS 2
|
|
|
|
static MYSQL_LOCK *get_lock_data(THD *thd, TABLE **table_ptr, uint count,
|
|
uint flags);
|
|
static int lock_external(THD *thd, TABLE **table,uint count);
|
|
static int unlock_external(THD *thd, TABLE **table,uint count);
|
|
static void print_lock_error(int error, const char *);
|
|
|
|
/* Map the return value of thr_lock to an error from errmsg.txt */
|
|
static int thr_lock_errno_to_mysql[]=
|
|
{ 0, ER_LOCK_ABORTED, ER_LOCK_WAIT_TIMEOUT, ER_LOCK_DEADLOCK };
|
|
|
|
/**
|
|
Perform semantic checks for mysql_lock_tables.
|
|
@param thd The current thread
|
|
@param tables The tables to lock
|
|
@param count The number of tables to lock
|
|
@param flags Lock flags
|
|
@return 0 if all the check passed, non zero if a check failed.
|
|
*/
|
|
static int
|
|
lock_tables_check(THD *thd, TABLE **tables, uint count, uint flags)
|
|
{
|
|
uint system_count, i;
|
|
bool is_superuser, log_table_write_query;
|
|
|
|
DBUG_ENTER("lock_tables_check");
|
|
|
|
system_count= 0;
|
|
is_superuser= thd->security_ctx->master_access & SUPER_ACL;
|
|
log_table_write_query= (is_log_table_write_query(thd->lex->sql_command)
|
|
|| ((flags & MYSQL_LOCK_LOG_TABLE) != 0));
|
|
|
|
for (i=0 ; i<count; i++)
|
|
{
|
|
TABLE *t= tables[i];
|
|
|
|
/* Protect against 'fake' partially initialized TABLE_SHARE */
|
|
DBUG_ASSERT(t->s->table_category != TABLE_UNKNOWN_CATEGORY);
|
|
|
|
/*
|
|
Table I/O to performance schema tables is performed
|
|
only internally by the server implementation.
|
|
When a user is requesting a lock, the following
|
|
constraints are enforced:
|
|
*/
|
|
if (t->s->require_write_privileges() &&
|
|
! log_table_write_query)
|
|
{
|
|
/*
|
|
A user should not be able to prevent writes,
|
|
or hold any type of lock in a session,
|
|
since this would be a DOS attack.
|
|
*/
|
|
if ((t->reginfo.lock_type >= TL_READ_NO_INSERT)
|
|
|| (thd->lex->sql_command == SQLCOM_LOCK_TABLES))
|
|
{
|
|
my_error(ER_CANT_LOCK_LOG_TABLE, MYF(0));
|
|
DBUG_RETURN(1);
|
|
}
|
|
}
|
|
|
|
if (t->reginfo.lock_type >= TL_WRITE_ALLOW_WRITE)
|
|
{
|
|
if (t->s->table_category == TABLE_CATEGORY_SYSTEM)
|
|
system_count++;
|
|
|
|
if (t->db_stat & HA_READ_ONLY)
|
|
{
|
|
my_error(ER_OPEN_AS_READONLY, MYF(0), t->alias);
|
|
DBUG_RETURN(1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
If we are going to lock a non-temporary table we must own metadata
|
|
lock of appropriate type on it (I.e. for table to be locked for
|
|
write we must own metadata lock of MDL_SHARED_WRITE or stronger
|
|
type. For table to be locked for read we must own metadata lock
|
|
of MDL_SHARED_READ or stronger type).
|
|
The only exception are HANDLER statements which are allowed to
|
|
lock table for read while having only MDL_SHARED lock on it.
|
|
*/
|
|
DBUG_ASSERT(t->s->tmp_table ||
|
|
thd->mdl_context.is_lock_owner(MDL_key::TABLE,
|
|
t->s->db.str, t->s->table_name.str,
|
|
t->reginfo.lock_type >= TL_WRITE_ALLOW_WRITE ?
|
|
MDL_SHARED_WRITE : MDL_SHARED_READ) ||
|
|
(t->open_by_handler &&
|
|
thd->mdl_context.is_lock_owner(MDL_key::TABLE,
|
|
t->s->db.str, t->s->table_name.str,
|
|
MDL_SHARED)));
|
|
|
|
/*
|
|
Prevent modifications to base tables if READ_ONLY is activated.
|
|
In any case, read only does not apply to temporary tables.
|
|
*/
|
|
if (!(flags & MYSQL_LOCK_IGNORE_GLOBAL_READ_ONLY) && !t->s->tmp_table)
|
|
{
|
|
if (t->reginfo.lock_type >= TL_WRITE_ALLOW_WRITE &&
|
|
!is_superuser && opt_readonly && !thd->slave_thread)
|
|
{
|
|
my_error(ER_OPTION_PREVENTS_STATEMENT, MYF(0), "--read-only");
|
|
DBUG_RETURN(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Locking of system tables is restricted:
|
|
locking a mix of system and non-system tables in the same lock
|
|
is prohibited, to prevent contention.
|
|
*/
|
|
if ((system_count > 0) && (system_count < count))
|
|
{
|
|
my_error(ER_WRONG_LOCK_OF_SYSTEM_TABLE, MYF(0));
|
|
DBUG_RETURN(1);
|
|
}
|
|
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
/**
|
|
Reset lock type in lock data
|
|
|
|
@param mysql_lock Lock structures to reset.
|
|
|
|
@note After a locking error we want to quit the locking of the table(s).
|
|
The test case in the bug report for Bug #18544 has the following
|
|
cases: 1. Locking error in lock_external() due to InnoDB timeout.
|
|
2. Locking error in get_lock_data() due to missing write permission.
|
|
3. Locking error in wait_if_global_read_lock() due to lock conflict.
|
|
|
|
@note In all these cases we have already set the lock type into the lock
|
|
data of the open table(s). If the table(s) are in the open table
|
|
cache, they could be reused with the non-zero lock type set. This
|
|
could lead to ignoring a different lock type with the next lock.
|
|
|
|
@note Clear the lock type of all lock data. This ensures that the next
|
|
lock request will set its lock type properly.
|
|
*/
|
|
|
|
|
|
static void reset_lock_data(MYSQL_LOCK *sql_lock)
|
|
{
|
|
THR_LOCK_DATA **ldata, **ldata_end;
|
|
DBUG_ENTER("reset_lock_data");
|
|
|
|
/* Clear the lock type of all lock data to avoid reusage. */
|
|
for (ldata= sql_lock->locks, ldata_end= ldata + sql_lock->lock_count;
|
|
ldata < ldata_end;
|
|
ldata++)
|
|
{
|
|
/* Reset lock type. */
|
|
(*ldata)->type= TL_UNLOCK;
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/**
|
|
Reset lock type in lock data and free.
|
|
|
|
@param mysql_lock Lock structures to reset.
|
|
|
|
*/
|
|
|
|
static void reset_lock_data_and_free(MYSQL_LOCK **mysql_lock)
|
|
{
|
|
reset_lock_data(*mysql_lock);
|
|
my_free(*mysql_lock);
|
|
*mysql_lock= 0;
|
|
}
|
|
|
|
|
|
/**
|
|
Lock tables.
|
|
|
|
@param thd The current thread.
|
|
@param tables An array of pointers to the tables to lock.
|
|
@param count The number of tables to lock.
|
|
@param flags Options:
|
|
MYSQL_LOCK_IGNORE_GLOBAL_READ_ONLY Ignore SET GLOBAL READ_ONLY
|
|
MYSQL_LOCK_IGNORE_TIMEOUT Use maximum timeout value.
|
|
|
|
@retval A lock structure pointer on success.
|
|
@retval NULL if an error or if wait on a lock was killed.
|
|
*/
|
|
|
|
MYSQL_LOCK *mysql_lock_tables(THD *thd, TABLE **tables, uint count, uint flags)
|
|
{
|
|
int rc;
|
|
MYSQL_LOCK *sql_lock;
|
|
ulong timeout= (flags & MYSQL_LOCK_IGNORE_TIMEOUT) ?
|
|
LONG_TIMEOUT : thd->variables.lock_wait_timeout;
|
|
|
|
DBUG_ENTER("mysql_lock_tables");
|
|
|
|
if (lock_tables_check(thd, tables, count, flags))
|
|
DBUG_RETURN(NULL);
|
|
|
|
if (! (sql_lock= get_lock_data(thd, tables, count, GET_LOCK_STORE_LOCKS)))
|
|
DBUG_RETURN(NULL);
|
|
|
|
thd_proc_info(thd, "System lock");
|
|
DBUG_PRINT("info", ("thd->proc_info %s", thd->proc_info));
|
|
if (sql_lock->table_count && lock_external(thd, sql_lock->table,
|
|
sql_lock->table_count))
|
|
{
|
|
/* Clear the lock type of all lock data to avoid reusage. */
|
|
reset_lock_data_and_free(&sql_lock);
|
|
goto end;
|
|
}
|
|
|
|
/* Copy the lock data array. thr_multi_lock() reorders its contents. */
|
|
memcpy(sql_lock->locks + sql_lock->lock_count, sql_lock->locks,
|
|
sql_lock->lock_count * sizeof(*sql_lock->locks));
|
|
/* Lock on the copied half of the lock data array. */
|
|
rc= thr_lock_errno_to_mysql[(int) thr_multi_lock(sql_lock->locks +
|
|
sql_lock->lock_count,
|
|
sql_lock->lock_count,
|
|
&thd->lock_info, timeout)];
|
|
if (rc)
|
|
{
|
|
if (sql_lock->table_count)
|
|
(void) unlock_external(thd, sql_lock->table, sql_lock->table_count);
|
|
reset_lock_data_and_free(&sql_lock);
|
|
if (! thd->killed)
|
|
my_error(rc, MYF(0));
|
|
}
|
|
end:
|
|
thd_proc_info(thd, 0);
|
|
|
|
if (thd->killed)
|
|
{
|
|
thd->send_kill_message();
|
|
if (sql_lock)
|
|
{
|
|
mysql_unlock_tables(thd, sql_lock);
|
|
sql_lock= 0;
|
|
}
|
|
}
|
|
|
|
thd->set_time_after_lock();
|
|
DBUG_RETURN(sql_lock);
|
|
}
|
|
|
|
|
|
static int lock_external(THD *thd, TABLE **tables, uint count)
|
|
{
|
|
reg1 uint i;
|
|
int lock_type,error;
|
|
DBUG_ENTER("lock_external");
|
|
|
|
DBUG_PRINT("info", ("count %d", count));
|
|
for (i=1 ; i <= count ; i++, tables++)
|
|
{
|
|
DBUG_ASSERT((*tables)->reginfo.lock_type >= TL_READ);
|
|
lock_type=F_WRLCK; /* Lock exclusive */
|
|
if ((*tables)->db_stat & HA_READ_ONLY ||
|
|
((*tables)->reginfo.lock_type >= TL_READ &&
|
|
(*tables)->reginfo.lock_type <= TL_READ_NO_INSERT))
|
|
lock_type=F_RDLCK;
|
|
|
|
if ((error=(*tables)->file->ha_external_lock(thd,lock_type)))
|
|
{
|
|
print_lock_error(error, (*tables)->file->table_type());
|
|
while (--i)
|
|
{
|
|
tables--;
|
|
(*tables)->file->ha_external_lock(thd, F_UNLCK);
|
|
(*tables)->current_lock=F_UNLCK;
|
|
}
|
|
DBUG_RETURN(error);
|
|
}
|
|
else
|
|
{
|
|
(*tables)->db_stat &= ~ HA_BLOCK_LOCK;
|
|
(*tables)->current_lock= lock_type;
|
|
}
|
|
}
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
void mysql_unlock_tables(THD *thd, MYSQL_LOCK *sql_lock)
|
|
{
|
|
DBUG_ENTER("mysql_unlock_tables");
|
|
if (sql_lock->lock_count)
|
|
thr_multi_unlock(sql_lock->locks,sql_lock->lock_count);
|
|
if (sql_lock->table_count)
|
|
(void) unlock_external(thd,sql_lock->table,sql_lock->table_count);
|
|
my_free(sql_lock);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
/**
|
|
Unlock some of the tables locked by mysql_lock_tables.
|
|
|
|
This will work even if get_lock_data fails (next unlock will free all)
|
|
*/
|
|
|
|
void mysql_unlock_some_tables(THD *thd, TABLE **table,uint count)
|
|
{
|
|
MYSQL_LOCK *sql_lock;
|
|
if ((sql_lock= get_lock_data(thd, table, count, GET_LOCK_UNLOCK)))
|
|
mysql_unlock_tables(thd, sql_lock);
|
|
}
|
|
|
|
|
|
/**
|
|
unlock all tables locked for read.
|
|
*/
|
|
|
|
void mysql_unlock_read_tables(THD *thd, MYSQL_LOCK *sql_lock)
|
|
{
|
|
uint i,found;
|
|
DBUG_ENTER("mysql_unlock_read_tables");
|
|
|
|
/* Move all write locks first */
|
|
THR_LOCK_DATA **lock=sql_lock->locks;
|
|
for (i=found=0 ; i < sql_lock->lock_count ; i++)
|
|
{
|
|
if (sql_lock->locks[i]->type > TL_WRITE_ALLOW_WRITE)
|
|
{
|
|
swap_variables(THR_LOCK_DATA *, *lock, sql_lock->locks[i]);
|
|
lock++;
|
|
found++;
|
|
}
|
|
}
|
|
/* unlock the read locked tables */
|
|
if (i != found)
|
|
{
|
|
thr_multi_unlock(lock,i-found);
|
|
sql_lock->lock_count= found;
|
|
}
|
|
|
|
/* Then do the same for the external locks */
|
|
/* Move all write locked tables first */
|
|
TABLE **table=sql_lock->table;
|
|
for (i=found=0 ; i < sql_lock->table_count ; i++)
|
|
{
|
|
DBUG_ASSERT(sql_lock->table[i]->lock_position == i);
|
|
if ((uint) sql_lock->table[i]->reginfo.lock_type > TL_WRITE_ALLOW_WRITE)
|
|
{
|
|
swap_variables(TABLE *, *table, sql_lock->table[i]);
|
|
table++;
|
|
found++;
|
|
}
|
|
}
|
|
/* Unlock all read locked tables */
|
|
if (i != found)
|
|
{
|
|
(void) unlock_external(thd,table,i-found);
|
|
sql_lock->table_count=found;
|
|
}
|
|
/* Fix the lock positions in TABLE */
|
|
table= sql_lock->table;
|
|
found= 0;
|
|
for (i= 0; i < sql_lock->table_count; i++)
|
|
{
|
|
TABLE *tbl= *table;
|
|
tbl->lock_position= (uint) (table - sql_lock->table);
|
|
tbl->lock_data_start= found;
|
|
found+= tbl->lock_count;
|
|
table++;
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/**
|
|
Try to find the table in the list of locked tables.
|
|
In case of success, unlock the table and remove it from this list.
|
|
If a table has more than one lock instance, removes them all.
|
|
|
|
@param thd thread context
|
|
@param locked list of locked tables
|
|
@param table the table to unlock
|
|
*/
|
|
|
|
void mysql_lock_remove(THD *thd, MYSQL_LOCK *locked,TABLE *table)
|
|
{
|
|
if (locked)
|
|
{
|
|
reg1 uint i;
|
|
for (i=0; i < locked->table_count; i++)
|
|
{
|
|
if (locked->table[i] == table)
|
|
{
|
|
uint j, removed_locks, old_tables;
|
|
TABLE *tbl;
|
|
uint lock_data_end;
|
|
|
|
DBUG_ASSERT(table->lock_position == i);
|
|
|
|
/* Unlock the table. */
|
|
mysql_unlock_some_tables(thd, &table, /* table count */ 1);
|
|
|
|
/* Decrement table_count in advance, making below expressions easier */
|
|
old_tables= --locked->table_count;
|
|
|
|
/* The table has 'removed_locks' lock data elements in locked->locks */
|
|
removed_locks= table->lock_count;
|
|
|
|
/* Move down all table pointers above 'i'. */
|
|
bmove((char*) (locked->table+i),
|
|
(char*) (locked->table+i+1),
|
|
(old_tables - i) * sizeof(TABLE*));
|
|
|
|
lock_data_end= table->lock_data_start + table->lock_count;
|
|
/* Move down all lock data pointers above 'table->lock_data_end-1' */
|
|
bmove((char*) (locked->locks + table->lock_data_start),
|
|
(char*) (locked->locks + lock_data_end),
|
|
(locked->lock_count - lock_data_end) *
|
|
sizeof(THR_LOCK_DATA*));
|
|
|
|
/*
|
|
Fix moved table elements.
|
|
lock_position is the index in the 'locked->table' array,
|
|
it must be fixed by one.
|
|
table->lock_data_start is pointer to the lock data for this table
|
|
in the 'locked->locks' array, they must be fixed by 'removed_locks',
|
|
the lock data count of the removed table.
|
|
*/
|
|
for (j= i ; j < old_tables; j++)
|
|
{
|
|
tbl= locked->table[j];
|
|
tbl->lock_position--;
|
|
DBUG_ASSERT(tbl->lock_position == j);
|
|
tbl->lock_data_start-= removed_locks;
|
|
}
|
|
|
|
/* Finally adjust lock_count. */
|
|
locked->lock_count-= removed_locks;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/** Abort all other threads waiting to get lock in table. */
|
|
|
|
void mysql_lock_abort(THD *thd, TABLE *table, bool upgrade_lock)
|
|
{
|
|
MYSQL_LOCK *locked;
|
|
DBUG_ENTER("mysql_lock_abort");
|
|
|
|
if ((locked= get_lock_data(thd, &table, 1, GET_LOCK_UNLOCK)))
|
|
{
|
|
for (uint i=0; i < locked->lock_count; i++)
|
|
thr_abort_locks(locked->locks[i]->lock, upgrade_lock);
|
|
my_free(locked);
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/**
|
|
Abort one thread / table combination.
|
|
|
|
@param thd Thread handler
|
|
@param table Table that should be removed from lock queue
|
|
|
|
@retval
|
|
0 Table was not locked by another thread
|
|
@retval
|
|
1 Table was locked by at least one other thread
|
|
*/
|
|
|
|
bool mysql_lock_abort_for_thread(THD *thd, TABLE *table)
|
|
{
|
|
MYSQL_LOCK *locked;
|
|
bool result= FALSE;
|
|
DBUG_ENTER("mysql_lock_abort_for_thread");
|
|
|
|
if ((locked= get_lock_data(thd, &table, 1, GET_LOCK_UNLOCK)))
|
|
{
|
|
for (uint i=0; i < locked->lock_count; i++)
|
|
{
|
|
if (thr_abort_locks_for_thread(locked->locks[i]->lock,
|
|
table->in_use->thread_id))
|
|
result= TRUE;
|
|
}
|
|
my_free(locked);
|
|
}
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
MYSQL_LOCK *mysql_lock_merge(MYSQL_LOCK *a,MYSQL_LOCK *b)
|
|
{
|
|
MYSQL_LOCK *sql_lock;
|
|
TABLE **table, **end_table;
|
|
DBUG_ENTER("mysql_lock_merge");
|
|
|
|
if (!(sql_lock= (MYSQL_LOCK*)
|
|
my_malloc(sizeof(*sql_lock)+
|
|
sizeof(THR_LOCK_DATA*)*(a->lock_count+b->lock_count)+
|
|
sizeof(TABLE*)*(a->table_count+b->table_count),MYF(MY_WME))))
|
|
DBUG_RETURN(0); // Fatal error
|
|
sql_lock->lock_count=a->lock_count+b->lock_count;
|
|
sql_lock->table_count=a->table_count+b->table_count;
|
|
sql_lock->locks=(THR_LOCK_DATA**) (sql_lock+1);
|
|
sql_lock->table=(TABLE**) (sql_lock->locks+sql_lock->lock_count);
|
|
memcpy(sql_lock->locks,a->locks,a->lock_count*sizeof(*a->locks));
|
|
memcpy(sql_lock->locks+a->lock_count,b->locks,
|
|
b->lock_count*sizeof(*b->locks));
|
|
memcpy(sql_lock->table,a->table,a->table_count*sizeof(*a->table));
|
|
memcpy(sql_lock->table+a->table_count,b->table,
|
|
b->table_count*sizeof(*b->table));
|
|
|
|
/*
|
|
Now adjust lock_position and lock_data_start for all objects that was
|
|
moved in 'b' (as there is now all objects in 'a' before these).
|
|
*/
|
|
for (table= sql_lock->table + a->table_count,
|
|
end_table= table + b->table_count;
|
|
table < end_table;
|
|
table++)
|
|
{
|
|
(*table)->lock_position+= a->table_count;
|
|
(*table)->lock_data_start+= a->lock_count;
|
|
}
|
|
|
|
/* Delete old, not needed locks */
|
|
my_free(a);
|
|
my_free(b);
|
|
|
|
thr_lock_merge_status(sql_lock->locks, sql_lock->lock_count);
|
|
DBUG_RETURN(sql_lock);
|
|
}
|
|
|
|
|
|
/** Unlock a set of external. */
|
|
|
|
static int unlock_external(THD *thd, TABLE **table,uint count)
|
|
{
|
|
int error,error_code;
|
|
DBUG_ENTER("unlock_external");
|
|
|
|
error_code=0;
|
|
do
|
|
{
|
|
if ((*table)->current_lock != F_UNLCK)
|
|
{
|
|
(*table)->current_lock = F_UNLCK;
|
|
if ((error=(*table)->file->ha_external_lock(thd, F_UNLCK)))
|
|
{
|
|
error_code=error;
|
|
print_lock_error(error_code, (*table)->file->table_type());
|
|
}
|
|
}
|
|
table++;
|
|
} while (--count);
|
|
DBUG_RETURN(error_code);
|
|
}
|
|
|
|
|
|
/**
|
|
Get lock structures from table structs and initialize locks.
|
|
|
|
@param thd Thread handler
|
|
@param table_ptr Pointer to tables that should be locks
|
|
@param flags One of:
|
|
- GET_LOCK_UNLOCK : If we should send TL_IGNORE to store lock
|
|
- GET_LOCK_STORE_LOCKS : Store lock info in TABLE
|
|
*/
|
|
|
|
static MYSQL_LOCK *get_lock_data(THD *thd, TABLE **table_ptr, uint count,
|
|
uint flags)
|
|
{
|
|
uint i,tables,lock_count;
|
|
MYSQL_LOCK *sql_lock;
|
|
THR_LOCK_DATA **locks, **locks_buf, **locks_start;
|
|
TABLE **to, **table_buf;
|
|
DBUG_ENTER("get_lock_data");
|
|
|
|
DBUG_ASSERT((flags == GET_LOCK_UNLOCK) || (flags == GET_LOCK_STORE_LOCKS));
|
|
DBUG_PRINT("info", ("count %d", count));
|
|
|
|
for (i=tables=lock_count=0 ; i < count ; i++)
|
|
{
|
|
TABLE *t= table_ptr[i];
|
|
|
|
if (t->s->tmp_table != NON_TRANSACTIONAL_TMP_TABLE)
|
|
{
|
|
tables+= t->file->lock_count();
|
|
lock_count++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Allocating twice the number of pointers for lock data for use in
|
|
thr_mulit_lock(). This function reorders the lock data, but cannot
|
|
update the table values. So the second part of the array is copied
|
|
from the first part immediately before calling thr_multi_lock().
|
|
*/
|
|
if (!(sql_lock= (MYSQL_LOCK*)
|
|
my_malloc(sizeof(*sql_lock) +
|
|
sizeof(THR_LOCK_DATA*) * tables * 2 +
|
|
sizeof(table_ptr) * lock_count,
|
|
MYF(0))))
|
|
DBUG_RETURN(0);
|
|
locks= locks_buf= sql_lock->locks= (THR_LOCK_DATA**) (sql_lock + 1);
|
|
to= table_buf= sql_lock->table= (TABLE**) (locks + tables * 2);
|
|
sql_lock->table_count=lock_count;
|
|
|
|
for (i=0 ; i < count ; i++)
|
|
{
|
|
TABLE *table;
|
|
enum thr_lock_type lock_type;
|
|
THR_LOCK_DATA **org_locks = locks;
|
|
|
|
if ((table=table_ptr[i])->s->tmp_table == NON_TRANSACTIONAL_TMP_TABLE)
|
|
continue;
|
|
lock_type= table->reginfo.lock_type;
|
|
DBUG_ASSERT(lock_type != TL_WRITE_DEFAULT && lock_type != TL_READ_DEFAULT);
|
|
locks_start= locks;
|
|
locks= table->file->store_lock(thd, locks,
|
|
(flags & GET_LOCK_UNLOCK) ? TL_IGNORE :
|
|
lock_type);
|
|
if (flags & GET_LOCK_STORE_LOCKS)
|
|
{
|
|
table->lock_position= (uint) (to - table_buf);
|
|
table->lock_data_start= (uint) (locks_start - locks_buf);
|
|
table->lock_count= (uint) (locks - locks_start);
|
|
}
|
|
*to++= table;
|
|
if (locks)
|
|
for ( ; org_locks != locks ; org_locks++)
|
|
(*org_locks)->debug_print_param= (void *) table;
|
|
}
|
|
/*
|
|
We do not use 'tables', because there are cases where store_lock()
|
|
returns less locks than lock_count() claimed. This can happen when
|
|
a FLUSH TABLES tries to abort locks from a MERGE table of another
|
|
thread. When that thread has just opened the table, but not yet
|
|
attached its children, it cannot return the locks. lock_count()
|
|
always returns the number of locks that an attached table has.
|
|
This is done to avoid the reverse situation: If lock_count() would
|
|
return 0 for a non-attached MERGE table, and that table becomes
|
|
attached between the calls to lock_count() and store_lock(), then
|
|
we would have allocated too little memory for the lock data. Now
|
|
we may allocate too much, but better safe than memory overrun.
|
|
And in the FLUSH case, the memory is released quickly anyway.
|
|
*/
|
|
sql_lock->lock_count= locks - locks_buf;
|
|
DBUG_PRINT("info", ("sql_lock->table_count %d sql_lock->lock_count %d",
|
|
sql_lock->table_count, sql_lock->lock_count));
|
|
DBUG_RETURN(sql_lock);
|
|
}
|
|
|
|
|
|
/**
|
|
Obtain an exclusive metadata lock on a schema name.
|
|
|
|
@param thd Thread handle.
|
|
@param db The database name.
|
|
|
|
This function cannot be called while holding LOCK_open mutex.
|
|
To avoid deadlocks, we do not try to obtain exclusive metadata
|
|
locks in LOCK TABLES mode, since in this mode there may be
|
|
other metadata locks already taken by the current connection,
|
|
and we must not wait for MDL locks while holding locks.
|
|
|
|
@retval FALSE Success.
|
|
@retval TRUE Failure: we're in LOCK TABLES mode, or out of memory,
|
|
or this connection was killed.
|
|
*/
|
|
|
|
bool lock_schema_name(THD *thd, const char *db)
|
|
{
|
|
MDL_request_list mdl_requests;
|
|
MDL_request global_request;
|
|
MDL_request mdl_request;
|
|
|
|
if (thd->locked_tables_mode)
|
|
{
|
|
my_message(ER_LOCK_OR_ACTIVE_TRANSACTION,
|
|
ER(ER_LOCK_OR_ACTIVE_TRANSACTION), MYF(0));
|
|
return TRUE;
|
|
}
|
|
|
|
if (thd->global_read_lock.can_acquire_protection())
|
|
return TRUE;
|
|
global_request.init(MDL_key::GLOBAL, "", "", MDL_INTENTION_EXCLUSIVE,
|
|
MDL_STATEMENT);
|
|
mdl_request.init(MDL_key::SCHEMA, db, "", MDL_EXCLUSIVE, MDL_TRANSACTION);
|
|
|
|
mdl_requests.push_front(&mdl_request);
|
|
mdl_requests.push_front(&global_request);
|
|
|
|
if (thd->mdl_context.acquire_locks(&mdl_requests,
|
|
thd->variables.lock_wait_timeout))
|
|
return TRUE;
|
|
|
|
DEBUG_SYNC(thd, "after_wait_locked_schema_name");
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
Obtain an exclusive metadata lock on an object name.
|
|
|
|
@param thd Thread handle.
|
|
@param mdl_type Object type (currently functions, procedures
|
|
and events can be name-locked).
|
|
@param db The schema the object belongs to.
|
|
@param name Object name in the schema.
|
|
|
|
This function assumes that no metadata locks were acquired
|
|
before calling it. Additionally, it cannot be called while
|
|
holding LOCK_open mutex. Both these invariants are enforced by
|
|
asserts in MDL_context::acquire_locks().
|
|
To avoid deadlocks, we do not try to obtain exclusive metadata
|
|
locks in LOCK TABLES mode, since in this mode there may be
|
|
other metadata locks already taken by the current connection,
|
|
and we must not wait for MDL locks while holding locks.
|
|
|
|
@retval FALSE Success.
|
|
@retval TRUE Failure: we're in LOCK TABLES mode, or out of memory,
|
|
or this connection was killed.
|
|
*/
|
|
|
|
bool lock_object_name(THD *thd, MDL_key::enum_mdl_namespace mdl_type,
|
|
const char *db, const char *name)
|
|
{
|
|
MDL_request_list mdl_requests;
|
|
MDL_request global_request;
|
|
MDL_request schema_request;
|
|
MDL_request mdl_request;
|
|
|
|
if (thd->locked_tables_mode)
|
|
{
|
|
my_message(ER_LOCK_OR_ACTIVE_TRANSACTION,
|
|
ER(ER_LOCK_OR_ACTIVE_TRANSACTION), MYF(0));
|
|
return TRUE;
|
|
}
|
|
|
|
DBUG_ASSERT(name);
|
|
DEBUG_SYNC(thd, "before_wait_locked_pname");
|
|
|
|
if (thd->global_read_lock.can_acquire_protection())
|
|
return TRUE;
|
|
global_request.init(MDL_key::GLOBAL, "", "", MDL_INTENTION_EXCLUSIVE,
|
|
MDL_STATEMENT);
|
|
schema_request.init(MDL_key::SCHEMA, db, "", MDL_INTENTION_EXCLUSIVE,
|
|
MDL_TRANSACTION);
|
|
mdl_request.init(mdl_type, db, name, MDL_EXCLUSIVE, MDL_TRANSACTION);
|
|
|
|
mdl_requests.push_front(&mdl_request);
|
|
mdl_requests.push_front(&schema_request);
|
|
mdl_requests.push_front(&global_request);
|
|
|
|
if (thd->mdl_context.acquire_locks(&mdl_requests,
|
|
thd->variables.lock_wait_timeout))
|
|
return TRUE;
|
|
|
|
DEBUG_SYNC(thd, "after_wait_locked_pname");
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
static void print_lock_error(int error, const char *table)
|
|
{
|
|
int textno;
|
|
DBUG_ENTER("print_lock_error");
|
|
|
|
switch (error) {
|
|
case HA_ERR_LOCK_WAIT_TIMEOUT:
|
|
textno=ER_LOCK_WAIT_TIMEOUT;
|
|
break;
|
|
case HA_ERR_READ_ONLY_TRANSACTION:
|
|
textno=ER_READ_ONLY_TRANSACTION;
|
|
break;
|
|
case HA_ERR_LOCK_DEADLOCK:
|
|
textno=ER_LOCK_DEADLOCK;
|
|
break;
|
|
case HA_ERR_WRONG_COMMAND:
|
|
textno=ER_ILLEGAL_HA;
|
|
break;
|
|
default:
|
|
textno=ER_CANT_LOCK;
|
|
break;
|
|
}
|
|
|
|
if ( textno == ER_ILLEGAL_HA )
|
|
my_error(textno, MYF(ME_BELL+ME_OLDWIN+ME_WAITTANG), table);
|
|
else
|
|
my_error(textno, MYF(ME_BELL+ME_OLDWIN+ME_WAITTANG), error);
|
|
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
Handling of global read locks
|
|
|
|
Global read lock is implemented using metadata lock infrastructure.
|
|
|
|
Taking the global read lock is TWO steps (2nd step is optional; without
|
|
it, COMMIT of existing transactions will be allowed):
|
|
lock_global_read_lock() THEN make_global_read_lock_block_commit().
|
|
|
|
How blocking of threads by global read lock is achieved: that's
|
|
semi-automatic. We assume that any statement which should be blocked
|
|
by global read lock will either open and acquires write-lock on tables
|
|
or acquires metadata locks on objects it is going to modify. For any
|
|
such statement global IX metadata lock is automatically acquired for
|
|
its duration (in case of LOCK TABLES until end of LOCK TABLES mode).
|
|
And lock_global_read_lock() simply acquires global S metadata lock
|
|
and thus prohibits execution of statements which modify data (unless
|
|
they modify only temporary tables). If deadlock happens it is detected
|
|
by MDL subsystem and resolved in the standard fashion (by backing-off
|
|
metadata locks acquired so far and restarting open tables process
|
|
if possible).
|
|
|
|
Why does FLUSH TABLES WITH READ LOCK need to block COMMIT: because it's used
|
|
to read a non-moving SHOW MASTER STATUS, and a COMMIT writes to the binary
|
|
log.
|
|
|
|
Why getting the global read lock is two steps and not one. Because FLUSH
|
|
TABLES WITH READ LOCK needs to insert one other step between the two:
|
|
flushing tables. So the order is
|
|
1) lock_global_read_lock() (prevents any new table write locks, i.e. stalls
|
|
all new updates)
|
|
2) close_cached_tables() (the FLUSH TABLES), which will wait for tables
|
|
currently opened and being updated to close (so it's possible that there is
|
|
a moment where all new updates of server are stalled *and* FLUSH TABLES WITH
|
|
READ LOCK is, too).
|
|
3) make_global_read_lock_block_commit().
|
|
If we have merged 1) and 3) into 1), we would have had this deadlock:
|
|
imagine thread 1 and 2, in non-autocommit mode, thread 3, and an InnoDB
|
|
table t.
|
|
thd1: SELECT * FROM t FOR UPDATE;
|
|
thd2: UPDATE t SET a=1; # blocked by row-level locks of thd1
|
|
thd3: FLUSH TABLES WITH READ LOCK; # blocked in close_cached_tables() by the
|
|
table instance of thd2
|
|
thd1: COMMIT; # blocked by thd3.
|
|
thd1 blocks thd2 which blocks thd3 which blocks thd1: deadlock.
|
|
|
|
Note that we need to support that one thread does
|
|
FLUSH TABLES WITH READ LOCK; and then COMMIT;
|
|
(that's what innobackup does, for some good reason).
|
|
So in this exceptional case the COMMIT should not be blocked by the FLUSH
|
|
TABLES WITH READ LOCK.
|
|
|
|
****************************************************************************/
|
|
|
|
/**
|
|
Take global read lock, wait if there is protection against lock.
|
|
|
|
If the global read lock is already taken by this thread, then nothing is done.
|
|
|
|
See also "Handling of global read locks" above.
|
|
|
|
@param thd Reference to thread.
|
|
|
|
@retval False Success, global read lock set, commits are NOT blocked.
|
|
@retval True Failure, thread was killed.
|
|
*/
|
|
|
|
bool Global_read_lock::lock_global_read_lock(THD *thd)
|
|
{
|
|
DBUG_ENTER("lock_global_read_lock");
|
|
|
|
if (!m_state)
|
|
{
|
|
MDL_request mdl_request;
|
|
|
|
DBUG_ASSERT(! thd->mdl_context.is_lock_owner(MDL_key::GLOBAL, "", "",
|
|
MDL_SHARED));
|
|
mdl_request.init(MDL_key::GLOBAL, "", "", MDL_SHARED, MDL_EXPLICIT);
|
|
|
|
if (thd->mdl_context.acquire_lock(&mdl_request,
|
|
thd->variables.lock_wait_timeout))
|
|
DBUG_RETURN(1);
|
|
|
|
m_mdl_global_shared_lock= mdl_request.ticket;
|
|
m_state= GRL_ACQUIRED;
|
|
}
|
|
/*
|
|
We DON'T set global_read_lock_blocks_commit now, it will be set after
|
|
tables are flushed (as the present function serves for FLUSH TABLES WITH
|
|
READ LOCK only). Doing things in this order is necessary to avoid
|
|
deadlocks (we must allow COMMIT until all tables are closed; we should not
|
|
forbid it before, or we can have a 3-thread deadlock if 2 do SELECT FOR
|
|
UPDATE and one does FLUSH TABLES WITH READ LOCK).
|
|
*/
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/**
|
|
Unlock global read lock.
|
|
|
|
Commits may or may not be blocked when this function is called.
|
|
|
|
See also "Handling of global read locks" above.
|
|
|
|
@param thd Reference to thread.
|
|
*/
|
|
|
|
void Global_read_lock::unlock_global_read_lock(THD *thd)
|
|
{
|
|
DBUG_ENTER("unlock_global_read_lock");
|
|
|
|
DBUG_ASSERT(m_mdl_global_shared_lock && m_state);
|
|
|
|
if (m_mdl_blocks_commits_lock)
|
|
{
|
|
thd->mdl_context.release_lock(m_mdl_blocks_commits_lock);
|
|
m_mdl_blocks_commits_lock= NULL;
|
|
}
|
|
thd->mdl_context.release_lock(m_mdl_global_shared_lock);
|
|
m_mdl_global_shared_lock= NULL;
|
|
m_state= GRL_NONE;
|
|
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/**
|
|
Make global read lock also block commits.
|
|
|
|
The scenario is:
|
|
- This thread has the global read lock.
|
|
- Global read lock blocking of commits is not set.
|
|
|
|
See also "Handling of global read locks" above.
|
|
|
|
@param thd Reference to thread.
|
|
|
|
@retval False Success, global read lock set, commits are blocked.
|
|
@retval True Failure, thread was killed.
|
|
*/
|
|
|
|
bool Global_read_lock::make_global_read_lock_block_commit(THD *thd)
|
|
{
|
|
MDL_request mdl_request;
|
|
DBUG_ENTER("make_global_read_lock_block_commit");
|
|
/*
|
|
If we didn't succeed lock_global_read_lock(), or if we already suceeded
|
|
make_global_read_lock_block_commit(), do nothing.
|
|
*/
|
|
if (m_state != GRL_ACQUIRED)
|
|
DBUG_RETURN(0);
|
|
|
|
mdl_request.init(MDL_key::COMMIT, "", "", MDL_SHARED, MDL_EXPLICIT);
|
|
|
|
if (thd->mdl_context.acquire_lock(&mdl_request,
|
|
thd->variables.lock_wait_timeout))
|
|
DBUG_RETURN(TRUE);
|
|
|
|
m_mdl_blocks_commits_lock= mdl_request.ticket;
|
|
m_state= GRL_ACQUIRED_AND_BLOCKS_COMMIT;
|
|
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
/**
|
|
Set explicit duration for metadata locks which are used to implement GRL.
|
|
|
|
@param thd Reference to thread.
|
|
*/
|
|
|
|
void Global_read_lock::set_explicit_lock_duration(THD *thd)
|
|
{
|
|
if (m_mdl_global_shared_lock)
|
|
thd->mdl_context.set_lock_duration(m_mdl_global_shared_lock, MDL_EXPLICIT);
|
|
if (m_mdl_blocks_commits_lock)
|
|
thd->mdl_context.set_lock_duration(m_mdl_blocks_commits_lock, MDL_EXPLICIT);
|
|
}
|
|
|
|
/**
|
|
@} (end of group Locking)
|
|
*/
|