mariadb/storage/innobase/os/os0sync.c
tsmith@ramayana.hindu.god b8b6c7fcf7 Applied InnoDB snapshot innodb-5.1-ss2298
Fixes the following bugs:

- Bug #33349: possible race condition revolving around data dictionary and repartitioning
  Introduce retry/sleep logic as a workaround for a transient bug
  where ::open fails for partitioned tables randomly if we are using
  one file per table.

- Bug #34053: normal users can enable innodb_monitor logging
  In CREATE TABLE and DROP TABLE check whether the table in question is one
  of the magic innodb_monitor tables and whether the user has enough rights
  to mess with it before doing anything else.

- Bug #22868: 'Thread thrashing' with > 50 concurrent conns under an upd-intensive workloadw
- Bug #29560: InnoDB >= 5.0.30 hangs on adaptive hash rw-lock 'waiting for an X-lock'
  This is a combination of changes that forward port the scalability fix applied to 5.0
  through r1001.
  It reverts changes r149 and r122 (these were 5.1 specific changes made in lieu of
  scalability fix of 5.0)
  Then it applies r1001 to 5.0 which is the original scalability fix.
  Finally it applies r2082 which fixes an issue with the original fix.

- Bug #30930: Add auxiliary function to retrieve THD::thread_id
  Add thd_get_thread_id() function.  Also make check_global_access() function
  visible to InnoDB under INNODB_COMPATIBILITY_HOOKS #define.
2008-02-19 09:44:09 -07:00

753 lines
17 KiB
C

/******************************************************
The interface to the operating system
synchronization primitives.
(c) 1995 Innobase Oy
Created 9/6/1995 Heikki Tuuri
*******************************************************/
#include "os0sync.h"
#ifdef UNIV_NONINL
#include "os0sync.ic"
#endif
#ifdef __WIN__
#include <windows.h>
#endif
#include "ut0mem.h"
#include "srv0start.h"
/* Type definition for an operating system mutex struct */
struct os_mutex_struct{
os_event_t event; /* Used by sync0arr.c for queing threads */
void* handle; /* OS handle to mutex */
ulint count; /* we use this counter to check
that the same thread does not
recursively lock the mutex: we
do not assume that the OS mutex
supports recursive locking, though
NT seems to do that */
UT_LIST_NODE_T(os_mutex_str_t) os_mutex_list;
/* list of all 'slow' OS mutexes created */
};
/* Mutex protecting counts and the lists of OS mutexes and events */
os_mutex_t os_sync_mutex;
ibool os_sync_mutex_inited = FALSE;
ibool os_sync_free_called = FALSE;
/* This is incremented by 1 in os_thread_create and decremented by 1 in
os_thread_exit */
ulint os_thread_count = 0;
/* The list of all events created */
UT_LIST_BASE_NODE_T(os_event_struct_t) os_event_list;
/* The list of all OS 'slow' mutexes */
UT_LIST_BASE_NODE_T(os_mutex_str_t) os_mutex_list;
ulint os_event_count = 0;
ulint os_mutex_count = 0;
ulint os_fast_mutex_count = 0;
/* Because a mutex is embedded inside an event and there is an
event embedded inside a mutex, on free, this generates a recursive call.
This version of the free event function doesn't acquire the global lock */
static void os_event_free_internal(os_event_t event);
/*************************************************************
Initializes global event and OS 'slow' mutex lists. */
void
os_sync_init(void)
/*==============*/
{
UT_LIST_INIT(os_event_list);
UT_LIST_INIT(os_mutex_list);
os_sync_mutex = os_mutex_create(NULL);
os_sync_mutex_inited = TRUE;
}
/*************************************************************
Frees created events and OS 'slow' mutexes. */
void
os_sync_free(void)
/*==============*/
{
os_event_t event;
os_mutex_t mutex;
os_sync_free_called = TRUE;
event = UT_LIST_GET_FIRST(os_event_list);
while (event) {
os_event_free(event);
event = UT_LIST_GET_FIRST(os_event_list);
}
mutex = UT_LIST_GET_FIRST(os_mutex_list);
while (mutex) {
if (mutex == os_sync_mutex) {
/* Set the flag to FALSE so that we do not try to
reserve os_sync_mutex any more in remaining freeing
operations in shutdown */
os_sync_mutex_inited = FALSE;
}
os_mutex_free(mutex);
mutex = UT_LIST_GET_FIRST(os_mutex_list);
}
os_sync_free_called = FALSE;
}
/*************************************************************
Creates an event semaphore, i.e., a semaphore which may just have two
states: signaled and nonsignaled. The created event is manual reset: it
must be reset explicitly by calling sync_os_reset_event. */
os_event_t
os_event_create(
/*============*/
/* out: the event handle */
const char* name) /* in: the name of the event, if NULL
the event is created without a name */
{
#ifdef __WIN__
os_event_t event;
event = ut_malloc(sizeof(struct os_event_struct));
event->handle = CreateEvent(NULL, /* No security attributes */
TRUE, /* Manual reset */
FALSE, /* Initial state nonsignaled */
(LPCTSTR) name);
if (!event->handle) {
fprintf(stderr,
"InnoDB: Could not create a Windows event semaphore;"
" Windows error %lu\n",
(ulong) GetLastError());
}
#else /* Unix */
os_event_t event;
UT_NOT_USED(name);
event = ut_malloc(sizeof(struct os_event_struct));
os_fast_mutex_init(&(event->os_mutex));
#if defined(UNIV_HOTBACKUP) && defined(UNIV_HPUX10)
ut_a(0 == pthread_cond_init(&(event->cond_var),
pthread_condattr_default));
#else
ut_a(0 == pthread_cond_init(&(event->cond_var), NULL));
#endif
event->is_set = FALSE;
/* We return this value in os_event_reset(), which can then be
be used to pass to the os_event_wait_low(). The value of zero
is reserved in os_event_wait_low() for the case when the
caller does not want to pass any signal_count value. To
distinguish between the two cases we initialize signal_count
to 1 here. */
event->signal_count = 1;
#endif /* __WIN__ */
/* The os_sync_mutex can be NULL because during startup an event
can be created [ because it's embedded in the mutex/rwlock ] before
this module has been initialized */
if (os_sync_mutex != NULL) {
os_mutex_enter(os_sync_mutex);
}
/* Put to the list of events */
UT_LIST_ADD_FIRST(os_event_list, os_event_list, event);
os_event_count++;
if (os_sync_mutex != NULL) {
os_mutex_exit(os_sync_mutex);
}
return(event);
}
#ifdef __WIN__
/*************************************************************
Creates an auto-reset event semaphore, i.e., an event which is automatically
reset when a single thread is released. Works only in Windows. */
os_event_t
os_event_create_auto(
/*=================*/
/* out: the event handle */
const char* name) /* in: the name of the event, if NULL
the event is created without a name */
{
os_event_t event;
event = ut_malloc(sizeof(struct os_event_struct));
event->handle = CreateEvent(NULL, /* No security attributes */
FALSE, /* Auto-reset */
FALSE, /* Initial state nonsignaled */
(LPCTSTR) name);
if (!event->handle) {
fprintf(stderr,
"InnoDB: Could not create a Windows auto"
" event semaphore; Windows error %lu\n",
(ulong) GetLastError());
}
/* Put to the list of events */
os_mutex_enter(os_sync_mutex);
UT_LIST_ADD_FIRST(os_event_list, os_event_list, event);
os_event_count++;
os_mutex_exit(os_sync_mutex);
return(event);
}
#endif
/**************************************************************
Sets an event semaphore to the signaled state: lets waiting threads
proceed. */
void
os_event_set(
/*=========*/
os_event_t event) /* in: event to set */
{
#ifdef __WIN__
ut_a(event);
ut_a(SetEvent(event->handle));
#else
ut_a(event);
os_fast_mutex_lock(&(event->os_mutex));
if (event->is_set) {
/* Do nothing */
} else {
event->is_set = TRUE;
event->signal_count += 1;
ut_a(0 == pthread_cond_broadcast(&(event->cond_var)));
}
os_fast_mutex_unlock(&(event->os_mutex));
#endif
}
/**************************************************************
Resets an event semaphore to the nonsignaled state. Waiting threads will
stop to wait for the event.
The return value should be passed to os_even_wait_low() if it is desired
that this thread should not wait in case of an intervening call to
os_event_set() between this os_event_reset() and the
os_event_wait_low() call. See comments for os_event_wait_low(). */
ib_longlong
os_event_reset(
/*===========*/
/* out: current signal_count. */
os_event_t event) /* in: event to reset */
{
ib_longlong ret = 0;
#ifdef __WIN__
ut_a(event);
ut_a(ResetEvent(event->handle));
#else
ut_a(event);
os_fast_mutex_lock(&(event->os_mutex));
if (!event->is_set) {
/* Do nothing */
} else {
event->is_set = FALSE;
}
ret = event->signal_count;
os_fast_mutex_unlock(&(event->os_mutex));
#endif
return(ret);
}
/**************************************************************
Frees an event object, without acquiring the global lock. */
static
void
os_event_free_internal(
/*===================*/
os_event_t event) /* in: event to free */
{
#ifdef __WIN__
ut_a(event);
ut_a(CloseHandle(event->handle));
#else
ut_a(event);
/* This is to avoid freeing the mutex twice */
os_fast_mutex_free(&(event->os_mutex));
ut_a(0 == pthread_cond_destroy(&(event->cond_var)));
#endif
/* Remove from the list of events */
UT_LIST_REMOVE(os_event_list, os_event_list, event);
os_event_count--;
ut_free(event);
}
/**************************************************************
Frees an event object. */
void
os_event_free(
/*==========*/
os_event_t event) /* in: event to free */
{
#ifdef __WIN__
ut_a(event);
ut_a(CloseHandle(event->handle));
#else
ut_a(event);
os_fast_mutex_free(&(event->os_mutex));
ut_a(0 == pthread_cond_destroy(&(event->cond_var)));
#endif
/* Remove from the list of events */
os_mutex_enter(os_sync_mutex);
UT_LIST_REMOVE(os_event_list, os_event_list, event);
os_event_count--;
os_mutex_exit(os_sync_mutex);
ut_free(event);
}
/**************************************************************
Waits for an event object until it is in the signaled state. If
srv_shutdown_state == SRV_SHUTDOWN_EXIT_THREADS this also exits the
waiting thread when the event becomes signaled (or immediately if the
event is already in the signaled state).
Typically, if the event has been signalled after the os_event_reset()
we'll return immediately because event->is_set == TRUE.
There are, however, situations (e.g.: sync_array code) where we may
lose this information. For example:
thread A calls os_event_reset()
thread B calls os_event_set() [event->is_set == TRUE]
thread C calls os_event_reset() [event->is_set == FALSE]
thread A calls os_event_wait() [infinite wait!]
thread C calls os_event_wait() [infinite wait!]
Where such a scenario is possible, to avoid infinite wait, the
value returned by os_event_reset() should be passed in as
reset_sig_count. */
void
os_event_wait_low(
/*==============*/
os_event_t event, /* in: event to wait */
ib_longlong reset_sig_count)/* in: zero or the value
returned by previous call of
os_event_reset(). */
{
#ifdef __WIN__
DWORD err;
ut_a(event);
UT_NOT_USED(reset_sig_count);
/* Specify an infinite time limit for waiting */
err = WaitForSingleObject(event->handle, INFINITE);
ut_a(err == WAIT_OBJECT_0);
if (srv_shutdown_state == SRV_SHUTDOWN_EXIT_THREADS) {
os_thread_exit(NULL);
}
#else
ib_longlong old_signal_count;
os_fast_mutex_lock(&(event->os_mutex));
if (reset_sig_count) {
old_signal_count = reset_sig_count;
} else {
old_signal_count = event->signal_count;
}
for (;;) {
if (event->is_set == TRUE
|| event->signal_count != old_signal_count) {
os_fast_mutex_unlock(&(event->os_mutex));
if (srv_shutdown_state == SRV_SHUTDOWN_EXIT_THREADS) {
os_thread_exit(NULL);
}
/* Ok, we may return */
return;
}
pthread_cond_wait(&(event->cond_var), &(event->os_mutex));
/* Solaris manual said that spurious wakeups may occur: we
have to check if the event really has been signaled after
we came here to wait */
}
#endif
}
/**************************************************************
Waits for an event object until it is in the signaled state or
a timeout is exceeded. In Unix the timeout is always infinite. */
ulint
os_event_wait_time(
/*===============*/
/* out: 0 if success, OS_SYNC_TIME_EXCEEDED if
timeout was exceeded */
os_event_t event, /* in: event to wait */
ulint time) /* in: timeout in microseconds, or
OS_SYNC_INFINITE_TIME */
{
#ifdef __WIN__
DWORD err;
ut_a(event);
if (time != OS_SYNC_INFINITE_TIME) {
err = WaitForSingleObject(event->handle, (DWORD) time / 1000);
} else {
err = WaitForSingleObject(event->handle, INFINITE);
}
if (err == WAIT_OBJECT_0) {
return(0);
} else if (err == WAIT_TIMEOUT) {
return(OS_SYNC_TIME_EXCEEDED);
} else {
ut_error;
return(1000000); /* dummy value to eliminate compiler warn. */
}
#else
UT_NOT_USED(time);
/* In Posix this is just an ordinary, infinite wait */
os_event_wait(event);
return(0);
#endif
}
#ifdef __WIN__
/**************************************************************
Waits for any event in an OS native event array. Returns if even a single
one is signaled or becomes signaled. */
ulint
os_event_wait_multiple(
/*===================*/
/* out: index of the event
which was signaled */
ulint n, /* in: number of events in the
array */
os_native_event_t* native_event_array)
/* in: pointer to an array of event
handles */
{
DWORD index;
ut_a(native_event_array);
ut_a(n > 0);
index = WaitForMultipleObjects((DWORD) n, native_event_array,
FALSE, /* Wait for any 1 event */
INFINITE); /* Infinite wait time
limit */
ut_a(index >= WAIT_OBJECT_0); /* NOTE: Pointless comparision */
ut_a(index < WAIT_OBJECT_0 + n);
if (srv_shutdown_state == SRV_SHUTDOWN_EXIT_THREADS) {
os_thread_exit(NULL);
}
return(index - WAIT_OBJECT_0);
}
#endif
/*************************************************************
Creates an operating system mutex semaphore. Because these are slow, the
mutex semaphore of InnoDB itself (mutex_t) should be used where possible. */
os_mutex_t
os_mutex_create(
/*============*/
/* out: the mutex handle */
const char* name) /* in: the name of the mutex, if NULL
the mutex is created without a name */
{
#ifdef __WIN__
HANDLE mutex;
os_mutex_t mutex_str;
mutex = CreateMutex(NULL, /* No security attributes */
FALSE, /* Initial state: no owner */
(LPCTSTR) name);
ut_a(mutex);
#else
os_fast_mutex_t* mutex;
os_mutex_t mutex_str;
UT_NOT_USED(name);
mutex = ut_malloc(sizeof(os_fast_mutex_t));
os_fast_mutex_init(mutex);
#endif
mutex_str = ut_malloc(sizeof(os_mutex_str_t));
mutex_str->handle = mutex;
mutex_str->count = 0;
mutex_str->event = os_event_create(NULL);
if (os_sync_mutex_inited) {
/* When creating os_sync_mutex itself we cannot reserve it */
os_mutex_enter(os_sync_mutex);
}
UT_LIST_ADD_FIRST(os_mutex_list, os_mutex_list, mutex_str);
os_mutex_count++;
if (os_sync_mutex_inited) {
os_mutex_exit(os_sync_mutex);
}
return(mutex_str);
}
/**************************************************************
Acquires ownership of a mutex semaphore. */
void
os_mutex_enter(
/*===========*/
os_mutex_t mutex) /* in: mutex to acquire */
{
#ifdef __WIN__
DWORD err;
ut_a(mutex);
/* Specify infinite time limit for waiting */
err = WaitForSingleObject(mutex->handle, INFINITE);
ut_a(err == WAIT_OBJECT_0);
(mutex->count)++;
ut_a(mutex->count == 1);
#else
os_fast_mutex_lock(mutex->handle);
(mutex->count)++;
ut_a(mutex->count == 1);
#endif
}
/**************************************************************
Releases ownership of a mutex. */
void
os_mutex_exit(
/*==========*/
os_mutex_t mutex) /* in: mutex to release */
{
ut_a(mutex);
ut_a(mutex->count == 1);
(mutex->count)--;
#ifdef __WIN__
ut_a(ReleaseMutex(mutex->handle));
#else
os_fast_mutex_unlock(mutex->handle);
#endif
}
/**************************************************************
Frees a mutex object. */
void
os_mutex_free(
/*==========*/
os_mutex_t mutex) /* in: mutex to free */
{
ut_a(mutex);
if (!os_sync_free_called) {
os_event_free_internal(mutex->event);
}
if (os_sync_mutex_inited) {
os_mutex_enter(os_sync_mutex);
}
UT_LIST_REMOVE(os_mutex_list, os_mutex_list, mutex);
os_mutex_count--;
if (os_sync_mutex_inited) {
os_mutex_exit(os_sync_mutex);
}
#ifdef __WIN__
ut_a(CloseHandle(mutex->handle));
ut_free(mutex);
#else
os_fast_mutex_free(mutex->handle);
ut_free(mutex->handle);
ut_free(mutex);
#endif
}
/*************************************************************
Initializes an operating system fast mutex semaphore. */
void
os_fast_mutex_init(
/*===============*/
os_fast_mutex_t* fast_mutex) /* in: fast mutex */
{
#ifdef __WIN__
ut_a(fast_mutex);
InitializeCriticalSection((LPCRITICAL_SECTION) fast_mutex);
#else
#if defined(UNIV_HOTBACKUP) && defined(UNIV_HPUX10)
ut_a(0 == pthread_mutex_init(fast_mutex, pthread_mutexattr_default));
#else
ut_a(0 == pthread_mutex_init(fast_mutex, MY_MUTEX_INIT_FAST));
#endif
#endif
if (os_sync_mutex_inited) {
/* When creating os_sync_mutex itself (in Unix) we cannot
reserve it */
os_mutex_enter(os_sync_mutex);
}
os_fast_mutex_count++;
if (os_sync_mutex_inited) {
os_mutex_exit(os_sync_mutex);
}
}
/**************************************************************
Acquires ownership of a fast mutex. */
void
os_fast_mutex_lock(
/*===============*/
os_fast_mutex_t* fast_mutex) /* in: mutex to acquire */
{
#ifdef __WIN__
EnterCriticalSection((LPCRITICAL_SECTION) fast_mutex);
#else
pthread_mutex_lock(fast_mutex);
#endif
}
/**************************************************************
Releases ownership of a fast mutex. */
void
os_fast_mutex_unlock(
/*=================*/
os_fast_mutex_t* fast_mutex) /* in: mutex to release */
{
#ifdef __WIN__
LeaveCriticalSection(fast_mutex);
#else
pthread_mutex_unlock(fast_mutex);
#endif
}
/**************************************************************
Frees a mutex object. */
void
os_fast_mutex_free(
/*===============*/
os_fast_mutex_t* fast_mutex) /* in: mutex to free */
{
#ifdef __WIN__
ut_a(fast_mutex);
DeleteCriticalSection((LPCRITICAL_SECTION) fast_mutex);
#else
int ret;
ret = pthread_mutex_destroy(fast_mutex);
if (ret != 0) {
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: error: return value %lu when calling\n"
"InnoDB: pthread_mutex_destroy().\n", (ulint)ret);
fprintf(stderr,
"InnoDB: Byte contents of the pthread mutex at %p:\n",
(void*) fast_mutex);
ut_print_buf(stderr, fast_mutex, sizeof(os_fast_mutex_t));
fprintf(stderr, "\n");
}
#endif
if (os_sync_mutex_inited) {
/* When freeing the last mutexes, we have
already freed os_sync_mutex */
os_mutex_enter(os_sync_mutex);
}
os_fast_mutex_count--;
if (os_sync_mutex_inited) {
os_mutex_exit(os_sync_mutex);
}
}