mariadb/newbrt/recover.c
Bradley C. Kuszmaul 7e5dfd3e5d Write leafentry code, and get things to compile. Addresses #558.
git-svn-id: file:///svn/tokudb@3269 c7de825b-a66e-492c-adef-691d508d4ae1
2008-04-04 18:03:03 +00:00

694 lines
24 KiB
C

/* -*- mode: C; c-basic-offset: 4 -*- */
#ident "Copyright (c) 2007, 2008 Tokutek Inc. All rights reserved."
/* Recover an env. The logs are in argv[1]. The new database is created in the cwd. */
// Test:
// cd ../src/tests/tmpdir
// ../../../newbrt/recover ../dir.test_log2.c.tdb
#include "cachetable.h"
#include "key.h"
#include "log-internal.h"
#include "log_header.h"
#include "toku_assert.h"
#include "kv-pair.h"
#include "gpma-internal.h"
#include <fcntl.h>
#include <stdlib.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <unistd.h>
#define DO_VERIFY_COUNTS
#ifdef DO_VERIFY_COUNTS
#define VERIFY_COUNTS(n) toku_verify_counts(n)
#else
#define VERIFY_COUNTS(n) ((void)0)
#endif
static DB * const null_db=0;
// These data structures really should be part of a recovery data structure. Recovery could be multithreaded (on different environments...) But this is OK since recovery can only happen in one
static CACHETABLE ct;
static struct cf_pair {
FILENUM filenum;
CACHEFILE cf;
BRT brt; // set to zero on an fopen, but filled in when an fheader is seen.
} *cf_pairs;
static int n_cf_pairs=0, max_cf_pairs=0;;
int toku_recover_init (void) {
int r = toku_create_cachetable(&ct, 1<<25, (LSN){0}, 0);
return r;
}
void toku_recover_cleanup (void) {
int i;
for (i=0; i<n_cf_pairs; i++) {
if (cf_pairs[i].brt) {
int r = toku_close_brt(cf_pairs[i].brt);
//r = toku_cachefile_close(&cf_pairs[i].cf);
assert(r==0);
}
}
toku_free(cf_pairs);
{
int r = toku_cachetable_close(&ct);
assert(r==0);
}
}
void toku_recover_commit (LSN UU(lsn), TXNID UU(txnid)) {
}
void toku_recover_fcreate (LSN UU(lsn), TXNID UU(txnid),BYTESTRING fname,u_int32_t mode) {
char *fixed_fname = fixup_fname(&fname);
int fd = creat(fixed_fname, mode);
assert(fd>=0);
toku_free(fixed_fname);
toku_free_BYTESTRING(fname);
}
int toku_recover_note_cachefile (FILENUM fnum, CACHEFILE cf, BRT brt) {
if (max_cf_pairs==0) {
n_cf_pairs=1;
max_cf_pairs=2;
MALLOC_N(max_cf_pairs, cf_pairs);
if (cf_pairs==0) return errno;
} else {
if (n_cf_pairs>=max_cf_pairs) {
max_cf_pairs*=2;
cf_pairs = toku_realloc(cf_pairs, max_cf_pairs*sizeof(*cf_pairs));
}
n_cf_pairs++;
}
cf_pairs[n_cf_pairs-1].filenum = fnum;
cf_pairs[n_cf_pairs-1].cf = cf;
cf_pairs[n_cf_pairs-1].brt = brt;
return 0;
}
static int find_cachefile (FILENUM fnum, struct cf_pair **cf_pair) {
int i;
for (i=0; i<n_cf_pairs; i++) {
if (fnum.fileid==cf_pairs[i].filenum.fileid) {
*cf_pair = cf_pairs+i;
return 0;
}
}
return 1;
}
static void toku_recover_fheader (LSN UU(lsn), TXNID UU(txnid),FILENUM filenum,LOGGEDBRTHEADER header) {
struct cf_pair *pair = NULL;
int r = find_cachefile(filenum, &pair);
assert(r==0);
struct brt_header *MALLOC(h);
assert(h);
h->dirty=0;
h->flags = header.flags;
h->nodesize = header.nodesize;
h->freelist = header.freelist;
h->unused_memory = header.unused_memory;
h->n_named_roots = header.n_named_roots;
if ((signed)header.n_named_roots==-1) {
h->unnamed_root = header.u.one.root;
} else {
assert(0);
}
toku_cachetable_put(pair->cf, 0, h, 0, toku_brtheader_flush_callback, toku_brtheader_fetch_callback, 0);
if (pair->brt) {
free(pair->brt->h);
} else {
MALLOC(pair->brt);
pair->brt->cf = pair->cf;
pair->brt->database_name = 0; // Special case, we don't know or care what the database name is for recovery.
list_init(&pair->brt->cursors);
pair->brt->compare_fun = 0;
pair->brt->dup_compare = 0;
pair->brt->db = 0;
pair->brt->skey = pair->brt->sval = 0;
}
pair->brt->h = h;
pair->brt->nodesize = h->nodesize;
pair->brt->flags = h->nodesize;
r = toku_unpin_brt_header(pair->brt);
assert(r==0);
}
void toku_recover_newbrtnode (LSN lsn, FILENUM filenum,DISKOFF diskoff,u_int32_t height,u_int32_t nodesize,u_int8_t is_dup_sort,u_int32_t rand4fingerprint) {
int r;
struct cf_pair *pair = NULL;
r = find_cachefile(filenum, &pair);
assert(r==0);
TAGMALLOC(BRTNODE, n);
n->nodesize = nodesize;
n->thisnodename = diskoff;
n->log_lsn = n->disk_lsn = lsn;
//printf("%s:%d %p->disk_lsn=%"PRId64"\n", __FILE__, __LINE__, n, n->disk_lsn.lsn);
n->layout_version = 3;
n->height = height;
n->rand4fingerprint = rand4fingerprint;
n->flags = is_dup_sort ? TOKU_DB_DUPSORT : 0; // Don't have TOKU_DB_DUP ???
n->local_fingerprint = 0; // nothing there yet
n->dirty = 1;
if (height==0) {
r=toku_gpma_create(&n->u.l.buffer, 0);
assert(r==0);
n->u.l.n_bytes_in_buffer=0;
{
u_int32_t mpsize = n->nodesize + n->nodesize/4;
void *mp = toku_malloc(mpsize);
assert(mp);
toku_mempool_init(&n->u.l.buffer_mempool, mp, mpsize);
}
} else {
n->u.n.n_children = 0;
n->u.n.totalchildkeylens = 0;
n->u.n.n_bytes_in_buffers = 0;
MALLOC_N(3,n->u.n.childinfos);
MALLOC_N(2,n->u.n.childkeys);
}
// Now put it in the cachetable
toku_cachetable_put(pair->cf, diskoff, n, toku_serialize_brtnode_size(n), toku_brtnode_flush_callback, toku_brtnode_fetch_callback, 0);
VERIFY_COUNTS(n);
n->log_lsn = lsn;
r = toku_cachetable_unpin(pair->cf, diskoff, 1, toku_serialize_brtnode_size(n));
assert(r==0);
}
static void recover_setup_node (FILENUM filenum, DISKOFF diskoff, CACHEFILE *cf, BRTNODE *resultnode) {
struct cf_pair *pair = NULL;
int r = find_cachefile(filenum, &pair);
assert(r==0);
assert(pair->brt);
void *node_v;
r = toku_cachetable_get_and_pin(pair->cf, diskoff, &node_v, NULL, toku_brtnode_flush_callback, toku_brtnode_fetch_callback, pair->brt);
assert(r==0);
BRTNODE node = node_v;
*resultnode = node;
*cf = pair->cf;
}
void toku_recover_brtdeq (LSN lsn, FILENUM filenum, DISKOFF diskoff, u_int32_t childnum, TXNID xid, u_int32_t typ, BYTESTRING key, BYTESTRING data, u_int32_t oldfingerprint, u_int32_t newfingerprint) {
CACHEFILE cf;
BRTNODE node;
int r;
recover_setup_node(filenum, diskoff, &cf, &node);
assert(node->height>0);
//printf("deq: %lld expected_old_fingerprint=%08x actual=%08x new=%08x\n", diskoff, oldfingerprint, node->local_fingerprint, newfingerprint);
assert(node->local_fingerprint==oldfingerprint);
bytevec actual_key, actual_data;
ITEMLEN actual_keylen, actual_datalen;
u_int32_t actual_type;
TXNID actual_xid;
assert(childnum<(u_int32_t)node->u.n.n_children);
r = toku_fifo_peek(BNC_BUFFER(node, childnum), &actual_key, &actual_keylen, &actual_data, &actual_datalen, &actual_type, &actual_xid);
assert(r==0);
assert(actual_keylen==(ITEMLEN)key.len);
assert(memcmp(actual_key, key.data, actual_keylen)==0);
assert(actual_datalen=data.len);
assert(memcmp(actual_data, data.data, actual_datalen)==0);
assert(actual_type==typ);
assert(actual_xid==xid);
u_int32_t sizediff = key.len + data.len + KEY_VALUE_OVERHEAD + BRT_CMD_OVERHEAD;
node->local_fingerprint = newfingerprint;
node->log_lsn = lsn;
node->u.n.n_bytes_in_buffers -= sizediff;
BNC_NBYTESINBUF(node, childnum) -= sizediff;
r = toku_fifo_deq(BNC_BUFFER(node, childnum)); // don't deq till were' done looking at the data.
r = toku_cachetable_unpin(cf, diskoff, 1, toku_serialize_brtnode_size(node));
assert(r==0);
toku_free(key.data);
toku_free(data.data);
}
void toku_recover_brtenq (LSN lsn, FILENUM filenum, DISKOFF diskoff, u_int32_t childnum, TXNID xid, u_int32_t typ, BYTESTRING key, BYTESTRING data, u_int32_t oldfingerprint, u_int32_t newfingerprint) {
CACHEFILE cf;
BRTNODE node;
int r;
recover_setup_node(filenum, diskoff, &cf, &node);
assert(node->height>0);
//printf("enq: %lld expected_old_fingerprint=%08x actual=%08x new=%08x\n", diskoff, oldfingerprint, node->local_fingerprint, newfingerprint);
assert(node->local_fingerprint==oldfingerprint);
r = toku_fifo_enq(BNC_BUFFER(node, childnum), key.data, key.len, data.data, data.len, typ, xid);
assert(r==0);
node->local_fingerprint = newfingerprint;
node->log_lsn = lsn;
u_int32_t sizediff = key.len + data.len + KEY_VALUE_OVERHEAD + BRT_CMD_OVERHEAD;
r = toku_cachetable_unpin(cf, diskoff, 1, toku_serialize_brtnode_size(node));
assert(r==0);
node->u.n.n_bytes_in_buffers += sizediff;
BNC_NBYTESINBUF(node, childnum) += sizediff;
toku_free(key.data);
toku_free(data.data);
}
void toku_recover_addchild (LSN lsn, FILENUM filenum, DISKOFF diskoff, u_int32_t childnum, DISKOFF child, u_int32_t childfingerprint) {
CACHEFILE cf;
BRTNODE node;
recover_setup_node(filenum, diskoff, &cf, &node);
assert(node->height>0);
assert(childnum <= (unsigned)node->u.n.n_children);
unsigned int i;
REALLOC_N(node->u.n.n_children+1, node->u.n.childinfos);
REALLOC_N(node->u.n.n_children, node->u.n.childkeys);
for (i=node->u.n.n_children; i>childnum; i--) {
node->u.n.childinfos[i]=node->u.n.childinfos[i-1];
BNC_NBYTESINBUF(node,i) = BNC_NBYTESINBUF(node,i-1);
assert(i>=2);
node->u.n.childkeys [i-1] = node->u.n.childkeys [i-2];
}
if (childnum>0) {
node->u.n.childkeys [childnum-1] = 0;
}
BNC_DISKOFF(node, childnum) = child;
BNC_SUBTREE_FINGERPRINT(node, childnum) = childfingerprint;
int r= toku_fifo_create(&BNC_BUFFER(node, childnum)); assert(r==0);
BNC_NBYTESINBUF(node, childnum) = 0;
node->u.n.n_children++;
node->log_lsn = lsn;
r = toku_cachetable_unpin(cf, diskoff, 1, toku_serialize_brtnode_size(node));
assert(r==0);
}
void toku_recover_delchild (LSN lsn, FILENUM filenum, DISKOFF diskoff, u_int32_t childnum, DISKOFF child, u_int32_t childfingerprint, BYTESTRING pivotkey) {
struct cf_pair *pair = NULL;
int r = find_cachefile(filenum, &pair);
assert(r==0);
void *node_v;
assert(pair->brt);
r = toku_cachetable_get_and_pin(pair->cf, diskoff, &node_v, NULL, toku_brtnode_flush_callback, toku_brtnode_fetch_callback, pair->brt);
assert(r==0);
BRTNODE node = node_v;
assert(node->height>0);
assert(childnum < (unsigned)node->u.n.n_children);
assert(node->u.n.childinfos[childnum].subtree_fingerprint == childfingerprint);
assert(BNC_DISKOFF(node, childnum)==child);
assert(toku_fifo_n_entries(BNC_BUFFER(node,childnum))==0);
assert(BNC_NBYTESINBUF(node,childnum)==0);
assert(node->u.n.n_children>2); // Must be at least two children.
u_int32_t i;
assert(childnum>0);
node->u.n.totalchildkeylens -= toku_brt_pivot_key_len(pair->brt, node->u.n.childkeys[childnum-1]);
toku_free((void*)node->u.n.childkeys[childnum-1]);
toku_fifo_free(&BNC_BUFFER(node,childnum));
for (i=childnum+1; i<(unsigned)node->u.n.n_children; i++) {
node->u.n.childinfos[i-1] = node->u.n.childinfos[i];
BNC_NBYTESINBUF(node,i-1) = BNC_NBYTESINBUF(node,i);
node->u.n.childkeys[i-2] = node->u.n.childkeys[i-1];
}
node->u.n.n_children--;
node->log_lsn = lsn;
r = toku_cachetable_unpin(pair->cf, diskoff, 1, toku_serialize_brtnode_size(node));
assert(r==0);
toku_free(pivotkey.data);
}
void toku_recover_setchild (LSN lsn, FILENUM filenum, DISKOFF diskoff, u_int32_t childnum, DISKOFF UU(oldchild), DISKOFF newchild) {
struct cf_pair *pair = NULL;
int r = find_cachefile(filenum, &pair);
assert(r==0);
void *node_v;
assert(pair->brt);
r = toku_cachetable_get_and_pin(pair->cf, diskoff, &node_v, NULL, toku_brtnode_flush_callback, toku_brtnode_fetch_callback, pair->brt);
assert(r==0);
BRTNODE node = node_v;
assert(node->height>0);
assert(childnum < (unsigned)node->u.n.n_children);
BNC_DISKOFF(node, childnum) = newchild;
node->log_lsn = lsn;
r = toku_cachetable_unpin(pair->cf, diskoff, 1, toku_serialize_brtnode_size(node));
assert(r==0);
}
void toku_recover_setpivot (LSN lsn, FILENUM filenum, DISKOFF diskoff, u_int32_t childnum, BYTESTRING pivotkey) {
struct cf_pair *pair = NULL;
int r = find_cachefile(filenum, &pair);
assert(r==0);
void *node_v;
assert(pair->brt);
r = toku_cachetable_get_and_pin(pair->cf, diskoff, &node_v, NULL, toku_brtnode_flush_callback, toku_brtnode_fetch_callback, pair->brt);
assert(r==0);
BRTNODE node = node_v;
assert(node->height>0);
struct kv_pair *new_pivot = kv_pair_malloc(pivotkey.data, pivotkey.len, 0, 0);
node->u.n.childkeys[childnum] = new_pivot;
node->u.n.totalchildkeylens += toku_brt_pivot_key_len(pair->brt, node->u.n.childkeys[childnum]);
node->log_lsn = lsn;
r = toku_cachetable_unpin(pair->cf, diskoff, 1, toku_serialize_brtnode_size(node));
assert(r==0);
toku_free(pivotkey.data);
}
void toku_recover_changechildfingerprint (LSN lsn, FILENUM filenum, DISKOFF diskoff, u_int32_t childnum, u_int32_t UU(oldfingerprint), u_int32_t newfingerprint) {
struct cf_pair *pair = NULL;
int r = find_cachefile(filenum, &pair);
assert(r==0);
void *node_v;
assert(pair->brt);
r = toku_cachetable_get_and_pin(pair->cf, diskoff, &node_v, NULL, toku_brtnode_flush_callback, toku_brtnode_fetch_callback, pair->brt);
assert(r==0);
BRTNODE node = node_v;
assert(node->height>0);
assert((signed)childnum <= node->u.n.n_children); // we allow the childnum to be one too large.
BNC_SUBTREE_FINGERPRINT(node, childnum) = newfingerprint;
node->log_lsn = lsn;
r = toku_cachetable_unpin(pair->cf, diskoff, 1, toku_serialize_brtnode_size(node));
assert(r==0);
}
void toku_recover_fopen (LSN UU(lsn), TXNID UU(txnid), BYTESTRING fname, FILENUM filenum) {
char *fixedfname = fixup_fname(&fname);
CACHEFILE cf;
int fd = open(fixedfname, O_RDWR, 0);
assert(fd>=0);
BRT MALLOC(brt);
assert(errno==0 && brt!=0);
brt->database_name = fixedfname;
brt->h=0;
list_init(&brt->cursors);
brt->compare_fun = 0;
brt->dup_compare = 0;
brt->db = 0;
int r = toku_cachetable_openfd(&cf, ct, fd, brt);
assert(r==0);
brt->skey = brt->sval = 0;
brt->cf=cf;
toku_recover_note_cachefile(filenum, cf, brt);
toku_free_BYTESTRING(fname);
}
void toku_recover_insertinleaf (LSN lsn, TXNID UU(txnid), FILENUM filenum, DISKOFF diskoff, u_int32_t pmaidx, BYTESTRING keybs, BYTESTRING databs) {
struct cf_pair *pair = NULL;
int r = find_cachefile(filenum, &pair);
assert(r==0);
void *node_v;
assert(pair->brt);
r = toku_cachetable_get_and_pin(pair->cf, diskoff, &node_v, NULL, toku_brtnode_flush_callback, toku_brtnode_fetch_callback, pair->brt);
assert(r==0);
BRTNODE node = node_v;
assert(node->height==0);
VERIFY_COUNTS(node);
struct kv_pair *kvp = brtnode_malloc_kv_pair(node->u.l.buffer, &node->u.l.buffer_mempool, keybs.data, keybs.len, databs.data, databs.len);
assert(pair);
toku_gpma_set_at_index(node->u.l.buffer, pmaidx, kv_pair_size(kvp), kvp);
node->local_fingerprint += node->rand4fingerprint*toku_calccrc32_kvpair(keybs.data, keybs.len, databs.data, databs.len);
// printf("%s:%d local_fingerprint=%08x (this=%08x)\n", __FILE__, __LINE__, node->local_fingerprint, toku_calccrc32_kvpair(keybs.data, keybs.len, databs.data, databs.len));
node->u.l.n_bytes_in_buffer += PMA_ITEM_OVERHEAD + KEY_VALUE_OVERHEAD + keybs.len + databs.len;
// PMA_ITERATE_IDX(node->u.l.buffer, idx, skey, keylen __attribute__((__unused__)), sdata, datalen __attribute__((__unused__)),
// printf("%d: %s %s\n", idx, (char*)skey, (char*)sdata));
VERIFY_COUNTS(node);
node->log_lsn = lsn;
r = toku_cachetable_unpin(pair->cf, diskoff, 1, toku_serialize_brtnode_size(node));
assert(r==0);
toku_free_BYTESTRING(keybs);
toku_free_BYTESTRING(databs);
}
void toku_recover_deleteinleaf (LSN lsn, TXNID UU(txnid), FILENUM filenum, DISKOFF diskoff, u_int32_t pmaidx, BYTESTRING keybs, BYTESTRING databs) {
struct cf_pair *pair = NULL;
int r = find_cachefile(filenum, &pair);
assert(r==0);
void *node_v;
assert(pair->brt);
r = toku_cachetable_get_and_pin(pair->cf, diskoff, &node_v, NULL, toku_brtnode_flush_callback, toku_brtnode_fetch_callback, pair->brt);
assert(r==0);
BRTNODE node = node_v;
assert(node->height==0);
VERIFY_COUNTS(node);
{
u_int32_t len;
void *data;
r = toku_gpma_get_from_index(node->u.l.buffer, pmaidx, &len, &data);
if (r==0) {
toku_mempool_mfree(&node->u.l.buffer_mempool, data, len);
}
}
toku_gpma_clear_at_index(node->u.l.buffer, pmaidx);
node->local_fingerprint -= node->rand4fingerprint*toku_calccrc32_kvpair(keybs.data, keybs.len, databs.data, databs.len);
node->u.l.n_bytes_in_buffer -= PMA_ITEM_OVERHEAD + KEY_VALUE_OVERHEAD + keybs.len + databs.len;
VERIFY_COUNTS(node);
node->log_lsn = lsn;
r = toku_cachetable_unpin(pair->cf, diskoff, 1, toku_serialize_brtnode_size(node));
assert(r==0);
toku_free_BYTESTRING(keybs);
toku_free_BYTESTRING(databs);
}
// a newbrtnode should have been done before this
void toku_recover_resizepma (LSN lsn, FILENUM filenum, DISKOFF diskoff, u_int32_t oldsize __attribute__((__unused__)), u_int32_t newsize) {
struct cf_pair *pair = NULL;
int r = find_cachefile(filenum, &pair);
assert(r==0);
void *node_v;
assert(pair->brt);
r = toku_cachetable_get_and_pin (pair->cf, diskoff, &node_v, NULL, toku_brtnode_flush_callback, toku_brtnode_fetch_callback, pair->brt);
assert(r==0);
BRTNODE node = node_v;
assert(node->height==0);
r = toku_resize_gpma_exactly (node->u.l.buffer, newsize);
assert(r==0);
VERIFY_COUNTS(node);
node->log_lsn = lsn;
r = toku_cachetable_unpin(pair->cf, diskoff, 1, toku_serialize_brtnode_size(node));
assert(r==0);
}
int move_indices (GPMA from, struct mempool *from_mempool,
GPMA to, struct mempool *to_mempool,
INTPAIRARRAY fromto,
u_int32_t a_rand, u_int32_t *a_fp,
u_int32_t b_rand, u_int32_t *b_fp,
u_int32_t *a_nbytes, u_int32_t *b_nbytes,
u_int32_t new_N) {
toku_verify_gpma(from);
toku_verify_gpma(to);
struct gitem *MALLOC_N(fromto.size, items);
if (items==0) return errno;
u_int32_t i;
u_int32_t fp=0;
u_int32_t sizediff=0;
for (i=0; i<fromto.size; i++) {
int idx = fromto.array[i].a;
struct gitem item = from->items[idx];
items[i]=item;
from->items[idx].data = 0;
fp += toku_calccrc32_kvpair_struct(item.data);
sizediff += PMA_ITEM_OVERHEAD + item.len;
assert(kv_pair_size(item.data)==item.len);
}
from->n_items_present -= fromto.size;
if (new_N!=toku_gpma_index_limit(to)) {
int r = toku_resize_gpma_exactly(to, new_N);
assert(r==0);
}
for (i=0; i<fromto.size; i++) {
int to_idx = fromto.array[i].b;
assert(to->items[to_idx].data==0);
if (from==to) {
to->items[to_idx] = items[i];
} else {
void *new_data = mempool_malloc_from_gpma(to, to_mempool, items[i].len);
memcpy(new_data, items[i].data, items[i].len);
to->items[to_idx] = (struct gitem){items[i].len, new_data};
toku_mempool_mfree(from_mempool, items[i].data, items[i].len);
}
assert(kv_pair_size(to->items[to_idx].data)==to->items[to_idx].len);
}
to->n_items_present += fromto.size;
*a_fp -= a_rand * fp;
*b_fp += b_rand * fp;
*a_nbytes -= sizediff;
*b_nbytes += sizediff;
toku_free(items);
toku_verify_gpma(from);
toku_verify_gpma(to);
return 0;
}
void toku_recover_pmadistribute (LSN lsn, FILENUM filenum, DISKOFF old_diskoff, DISKOFF new_diskoff, INTPAIRARRAY fromto, u_int32_t old_N __attribute__((__unused__)), u_int32_t new_N) {
struct cf_pair *pair = NULL;
int r = find_cachefile(filenum, &pair);
assert(r==0);
void *node_va, *node_vb;
assert(pair->brt);
r = toku_cachetable_get_and_pin(pair->cf, old_diskoff, &node_va, NULL, toku_brtnode_flush_callback, toku_brtnode_fetch_callback, pair->brt);
assert(r==0);
r = toku_cachetable_get_and_pin(pair->cf, new_diskoff, &node_vb, NULL, toku_brtnode_flush_callback, toku_brtnode_fetch_callback, pair->brt);
assert(r==0);
BRTNODE nodea = node_va; assert(nodea->height==0);
BRTNODE nodeb = node_vb; assert(nodeb->height==0);
{
unsigned int i;
//printf("{");
for (i=0; i<fromto.size; i++) {
//printf(" {%d %d}", fromto.array[i].a, fromto.array[i].b);
assert(fromto.array[i].a < toku_gpma_index_limit(nodea->u.l.buffer));
assert(fromto.array[i].b < new_N);
}
//printf("}\n");
}
VERIFY_COUNTS(nodea);
r = move_indices (nodea->u.l.buffer, &nodea->u.l.buffer_mempool,
nodeb->u.l.buffer, &nodeb->u.l.buffer_mempool,
fromto,
nodea->rand4fingerprint, &nodea->local_fingerprint,
nodeb->rand4fingerprint, &nodeb->local_fingerprint,
&nodea->u.l.n_bytes_in_buffer, &nodeb->u.l.n_bytes_in_buffer,
new_N
);
// The bytes in buffer and fingerprint shouldn't change
// PMA_ITERATE_IDX(nodeb->u.l.buffer, idx, key, keylen __attribute__((__unused__)), data, datalen __attribute__((__unused__)),
// printf("%d: %s %s\n", idx, (char*)key, (char*)data));
VERIFY_COUNTS(nodea);
VERIFY_COUNTS(nodeb);
nodea->log_lsn = lsn;
nodeb->log_lsn = lsn;
r = toku_cachetable_unpin(pair->cf, old_diskoff, 1, toku_serialize_brtnode_size(nodea));
assert(r==0);
r = toku_cachetable_unpin(pair->cf, new_diskoff, 1, toku_serialize_brtnode_size(nodeb));
assert(r==0);
toku_free_INTPAIRARRAY(fromto);
}
void toku_recover_changeunnamedroot (LSN UU(lsn), FILENUM filenum, DISKOFF UU(oldroot), DISKOFF newroot) {
struct cf_pair *pair = NULL;
int r = find_cachefile(filenum, &pair);
assert(r==0);
assert(pair->brt);
r = toku_read_and_pin_brt_header(pair->cf, &pair->brt->h);
assert(r==0);
pair->brt->h->unnamed_root = newroot;
r = toku_unpin_brt_header(pair->brt);
}
void toku_recover_changenamedroot (LSN UU(lsn), FILENUM UU(filenum), BYTESTRING UU(name), DISKOFF UU(oldroot), DISKOFF UU(newroot)) { assert(0); }
void toku_recover_changeunusedmemory (LSN UU(lsn), FILENUM filenum, DISKOFF UU(oldunused), DISKOFF newunused) {
struct cf_pair *pair = NULL;
int r = find_cachefile(filenum, &pair);
assert(r==0);
assert(pair->brt);
r = toku_read_and_pin_brt_header(pair->cf, &pair->brt->h);
assert(r==0);
pair->brt->h->unused_memory = newunused;
r = toku_unpin_brt_header(pair->brt);
}
static int toku_recover_checkpoint (LSN UU(lsn)) {
return 0;
}
static int toku_recover_xbegin (LSN UU(lsn), TXNID UU(parent)) {
return 0;
}
int tokudb_recover(const char *data_dir, const char *log_dir) {
int r;
int entrycount=0;
char **logfiles;
int lockfd;
{
int namelen=strlen(data_dir);
char lockfname[namelen+20];
snprintf(lockfname, sizeof(lockfname), "%s/__recoverylock_dont_delete_me", data_dir);
lockfd = open(lockfname, O_RDWR|O_CREAT, S_IRUSR | S_IWUSR);
if (lockfd<0) {
printf("Couldn't open %s\n", lockfname);
return errno;
}
r=flock(lockfd, LOCK_EX | LOCK_NB);
if (r!=0) {
printf("Couldn't run recovery because some other process holds the recovery lock %s\n", lockfname);
return errno;
}
}
r = toku_logger_find_logfiles(log_dir, &logfiles);
if (r!=0) return r;
int i;
toku_recover_init();
char org_wd[1000];
{
char *wd=getcwd(org_wd, sizeof(org_wd));
assert(wd!=0);
//printf("%s:%d org_wd=\"%s\"\n", __FILE__, __LINE__, org_wd);
}
char data_wd[1000];
{
r=chdir(data_dir); assert(r==0);
char *wd=getcwd(data_wd, sizeof(data_wd));
assert(wd!=0);
//printf("%s:%d data_wd=\"%s\"\n", __FILE__, __LINE__, data_wd);
}
for (i=0; logfiles[i]; i++) {
//fprintf(stderr, "Opening %s\n", logfiles[i]);
r=chdir(org_wd);
assert(r==0);
FILE *f = fopen(logfiles[i], "r");
struct log_entry le;
u_int32_t version;
//printf("Reading file %s\n", logfiles[i]);
r=toku_read_and_print_logmagic(f, &version);
assert(r==0 && version==0);
r=chdir(data_wd);
assert(r==0);
while ((r = toku_log_fread(f, &le))==0) {
//printf("%lld: Got cmd %c\n", (long long)le.u.commit.lsn.lsn, le.cmd);
logtype_dispatch_args(&le, toku_recover_);
entrycount++;
}
if (r!=EOF) {
if (r==DB_BADFORMAT) {
fprintf(stderr, "Bad log format at record %d\n", entrycount);
return r;
} else {
fprintf(stderr, "Huh? %s\n", strerror(r));
return r;
}
}
fclose(f);
}
toku_recover_cleanup();
for (i=0; logfiles[i]; i++) {
toku_free(logfiles[i]);
}
toku_free(logfiles);
r=flock(lockfd, LOCK_UN);
if (r!=0) return errno;
r=chdir(org_wd);
if (r!=0) return errno;
//printf("%s:%d recovery successful! ls -l says\n", __FILE__, __LINE__);
//system("ls -l");
return 0;
}