mariadb/innobase/include/hash0hash.h
unknown f41bba8c61 btr0sea.c, buf0lru.c, buf0buf.c, ha0ha.c, hash0hash.h, ha0ha.h, buf0buf.h:
Link adaptive hash index entries to the buffer page, so that we can remove them quickly without knowing the record structure on that page; this was requested by Marko for the compact InnoDB table format; note that the adaptive hash index memory overhead grows by 67 %, maybe we have to tune this later somehow


innobase/include/buf0buf.h:
  Link adaptive hash index entries to the buffer page, so that we can remove them quickly without knowing the record structure on that page; this was requested by Marko for the compact InnoDB table format; note that the adaptive hash index overhead grows by 67 %, maybe we have to tune this later somehow
innobase/include/ha0ha.h:
  Link adaptive hash index entries to the buffer page, so that we can remove them quickly without knowing the record structure on that page; this was requested by Marko for the compact InnoDB table format; note that the adaptive hash index overhead grows by 67 %, maybe we have to tune this later somehow
innobase/include/hash0hash.h:
  Link adaptive hash index entries to the buffer page, so that we can remove them quickly without knowing the record structure on that page; this was requested by Marko for the compact InnoDB table format; note that the adaptive hash index overhead grows by 67 %, maybe we have to tune this later somehow
innobase/ha/ha0ha.c:
  Link adaptive hash index entries to the buffer page, so that we can remove them quickly without knowing the record structure on that page; this was requested by Marko for the compact InnoDB table format; note that the adaptive hash index overhead grows by 67 %, maybe we have to tune this later somehow
innobase/buf/buf0buf.c:
  Link adaptive hash index entries to the buffer page, so that we can remove them quickly without knowing the record structure on that page; this was requested by Marko for the compact InnoDB table format; note that the adaptive hash index overhead grows by 67 %, maybe we have to tune this later somehow
innobase/buf/buf0lru.c:
  Link adaptive hash index entries to the buffer page, so that we can remove them quickly without knowing the record structure on that page; this was requested by Marko for the compact InnoDB table format; note that the adaptive hash index overhead grows by 67 %, maybe we have to tune this later somehow
innobase/btr/btr0sea.c:
  Link adaptive hash index entries to the buffer page, so that we can remove them quickly without knowing the record structure on that page; this was requested by Marko for the compact InnoDB table format; note that the adaptive hash index overhead grows by 67 %, maybe we have to tune this later somehow
2004-10-27 15:45:10 +03:00

342 lines
9.2 KiB
C

/******************************************************
The simple hash table utility
(c) 1997 Innobase Oy
Created 5/20/1997 Heikki Tuuri
*******************************************************/
#ifndef hash0hash_h
#define hash0hash_h
#include "univ.i"
#include "mem0mem.h"
#include "sync0sync.h"
typedef struct hash_table_struct hash_table_t;
typedef struct hash_cell_struct hash_cell_t;
typedef void* hash_node_t;
/*****************************************************************
Creates a hash table with >= n array cells. The actual number
of cells is chosen to be a prime number slightly bigger than n. */
hash_table_t*
hash_create(
/*========*/
/* out, own: created table */
ulint n); /* in: number of array cells */
/*****************************************************************
Creates a mutex array to protect a hash table. */
void
hash_create_mutexes(
/*================*/
hash_table_t* table, /* in: hash table */
ulint n_mutexes, /* in: number of mutexes */
ulint sync_level); /* in: latching order level of the
mutexes: used in the debug version */
/*****************************************************************
Frees a hash table. */
void
hash_table_free(
/*============*/
hash_table_t* table); /* in, own: hash table */
/******************************************************************
Calculates the hash value from a folded value. */
UNIV_INLINE
ulint
hash_calc_hash(
/*===========*/
/* out: hashed value */
ulint fold, /* in: folded value */
hash_table_t* table); /* in: hash table */
/************************************************************************
Assert that the mutex for the table in a hash operation is owned. */
#ifdef UNIV_SYNC_DEBUG
# define HASH_ASSERT_OWNED(TABLE, FOLD) \
ut_ad(!(TABLE)->mutexes || mutex_own(hash_get_mutex(TABLE, FOLD)));
#else
# define HASH_ASSERT_OWNED(TABLE, FOLD)
#endif
/***********************************************************************
Inserts a struct to a hash table. */
#define HASH_INSERT(TYPE, NAME, TABLE, FOLD, DATA)\
do {\
hash_cell_t* cell3333;\
TYPE* struct3333;\
\
HASH_ASSERT_OWNED(TABLE, FOLD)\
\
(DATA)->NAME = NULL;\
\
cell3333 = hash_get_nth_cell(TABLE, hash_calc_hash(FOLD, TABLE));\
\
if (cell3333->node == NULL) {\
cell3333->node = DATA;\
} else {\
struct3333 = cell3333->node;\
\
while (struct3333->NAME != NULL) {\
\
struct3333 = struct3333->NAME;\
}\
\
struct3333->NAME = DATA;\
}\
} while (0)
/***********************************************************************
Deletes a struct from a hash table. */
#define HASH_DELETE(TYPE, NAME, TABLE, FOLD, DATA)\
do {\
hash_cell_t* cell3333;\
TYPE* struct3333;\
\
HASH_ASSERT_OWNED(TABLE, FOLD)\
\
cell3333 = hash_get_nth_cell(TABLE, hash_calc_hash(FOLD, TABLE));\
\
if (cell3333->node == DATA) {\
cell3333->node = DATA->NAME;\
} else {\
struct3333 = cell3333->node;\
\
while (struct3333->NAME != DATA) {\
\
ut_a(struct3333);\
struct3333 = struct3333->NAME;\
}\
\
struct3333->NAME = DATA->NAME;\
}\
} while (0)
/***********************************************************************
Gets the first struct in a hash chain, NULL if none. */
#define HASH_GET_FIRST(TABLE, HASH_VAL)\
(hash_get_nth_cell(TABLE, HASH_VAL)->node)
/***********************************************************************
Gets the next struct in a hash chain, NULL if none. */
#define HASH_GET_NEXT(NAME, DATA) ((DATA)->NAME)
/************************************************************************
Looks for a struct in a hash table. */
#define HASH_SEARCH(NAME, TABLE, FOLD, DATA, TEST)\
{\
\
HASH_ASSERT_OWNED(TABLE, FOLD)\
\
(DATA) = HASH_GET_FIRST(TABLE, hash_calc_hash(FOLD, TABLE));\
\
while ((DATA) != NULL) {\
if (TEST) {\
break;\
} else {\
(DATA) = HASH_GET_NEXT(NAME, DATA);\
}\
}\
}
/****************************************************************
Gets the nth cell in a hash table. */
UNIV_INLINE
hash_cell_t*
hash_get_nth_cell(
/*==============*/
/* out: pointer to cell */
hash_table_t* table, /* in: hash table */
ulint n); /* in: cell index */
/*****************************************************************
Returns the number of cells in a hash table. */
UNIV_INLINE
ulint
hash_get_n_cells(
/*=============*/
/* out: number of cells */
hash_table_t* table); /* in: table */
/***********************************************************************
Deletes a struct which is stored in the heap of the hash table, and compacts
the heap. The fold value must be stored in the struct NODE in a field named
'fold'. This macro is only used for the adaptive hash index. */
#define HASH_DELETE_AND_COMPACT(TYPE, NAME, TABLE, NODE)\
do {\
TYPE* node111;\
TYPE* top_node111;\
hash_cell_t* cell111;\
ulint fold111;\
\
fold111 = (NODE)->fold;\
\
HASH_DELETE(TYPE, NAME, TABLE, fold111, NODE);\
\
top_node111 = (TYPE*)mem_heap_get_top(\
hash_get_heap(TABLE, fold111),\
sizeof(TYPE));\
\
/* If the node to remove is not the top node in the heap, compact the\
heap of nodes by moving the top node in the place of NODE. */\
\
if (NODE != top_node111) {\
\
/* Copy the top node in place of NODE */\
\
*(NODE) = *top_node111;\
\
/* Update the adaptive hash list of the buffer block that\
corresponds to the top node */\
if (top_node111->next_for_block != NULL) {\
(top_node111->next_for_block)->prev_for_block = NODE;\
}\
\
if (top_node111->prev_for_block != NULL) {\
(top_node111->prev_for_block)->next_for_block = NODE;\
} else {\
buf_block_align(top_node111->data)->hash_nodes = NODE;\
}\
\
/* Look for the hash pointer to the top node, to update it */\
\
cell111 = hash_get_nth_cell(TABLE,\
hash_calc_hash(top_node111->fold, TABLE));\
\
if (cell111->node == top_node111) {\
/* The top node is the first in the chain */\
\
cell111->node = NODE;\
} else {\
/* We have to look for the predecessor of the top\
node */\
node111 = cell111->node;\
\
while (top_node111 != HASH_GET_NEXT(NAME, node111)) {\
\
node111 = HASH_GET_NEXT(NAME, node111);\
}\
\
/* Now we have the predecessor node */\
\
node111->NAME = NODE;\
}\
}\
\
/* Free the space occupied by the top node */\
\
mem_heap_free_top(hash_get_heap(TABLE, fold111), sizeof(TYPE));\
} while (0)
/****************************************************************
Gets the mutex index for a fold value in a hash table. */
UNIV_INLINE
ulint
hash_get_mutex_no(
/*==============*/
/* out: mutex number */
hash_table_t* table, /* in: hash table */
ulint fold); /* in: fold */
/****************************************************************
Gets the nth heap in a hash table. */
UNIV_INLINE
mem_heap_t*
hash_get_nth_heap(
/*==============*/
/* out: mem heap */
hash_table_t* table, /* in: hash table */
ulint i); /* in: index of the heap */
/****************************************************************
Gets the heap for a fold value in a hash table. */
UNIV_INLINE
mem_heap_t*
hash_get_heap(
/*==========*/
/* out: mem heap */
hash_table_t* table, /* in: hash table */
ulint fold); /* in: fold */
/****************************************************************
Gets the nth mutex in a hash table. */
UNIV_INLINE
mutex_t*
hash_get_nth_mutex(
/*===============*/
/* out: mutex */
hash_table_t* table, /* in: hash table */
ulint i); /* in: index of the mutex */
/****************************************************************
Gets the mutex for a fold value in a hash table. */
UNIV_INLINE
mutex_t*
hash_get_mutex(
/*===========*/
/* out: mutex */
hash_table_t* table, /* in: hash table */
ulint fold); /* in: fold */
/****************************************************************
Reserves the mutex for a fold value in a hash table. */
void
hash_mutex_enter(
/*=============*/
hash_table_t* table, /* in: hash table */
ulint fold); /* in: fold */
/****************************************************************
Releases the mutex for a fold value in a hash table. */
void
hash_mutex_exit(
/*============*/
hash_table_t* table, /* in: hash table */
ulint fold); /* in: fold */
/****************************************************************
Reserves all the mutexes of a hash table, in an ascending order. */
void
hash_mutex_enter_all(
/*=================*/
hash_table_t* table); /* in: hash table */
/****************************************************************
Releases all the mutexes of a hash table. */
void
hash_mutex_exit_all(
/*================*/
hash_table_t* table); /* in: hash table */
struct hash_cell_struct{
void* node; /* hash chain node, NULL if none */
};
/* The hash table structure */
struct hash_table_struct {
ibool adaptive;/* TRUE if this is the hash table of the
adaptive hash index */
ulint n_cells;/* number of cells in the hash table */
hash_cell_t* array; /* pointer to cell array */
ulint n_mutexes;/* if mutexes != NULL, then the number of
mutexes, must be a power of 2 */
mutex_t* mutexes;/* NULL, or an array of mutexes used to
protect segments of the hash table */
mem_heap_t** heaps; /* if this is non-NULL, hash chain nodes for
external chaining can be allocated from these
memory heaps; there are then n_mutexes many of
these heaps */
mem_heap_t* heap;
ulint magic_n;
};
#define HASH_TABLE_MAGIC_N 76561114
#ifndef UNIV_NONINL
#include "hash0hash.ic"
#endif
#endif