mariadb/storage/bdb/crypto/rijndael/rijndael-api-fst.c
2005-07-20 15:48:22 -07:00

496 lines
12 KiB
C

/**
* rijndael-api-fst.c
*
* @version 2.9 (December 2000)
*
* Optimised ANSI C code for the Rijndael cipher (now AES)
*
* @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
* @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
* @author Paulo Barreto <paulo.barreto@terra.com.br>
*
* This code is hereby placed in the public domain.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Acknowledgements:
*
* We are deeply indebted to the following people for their bug reports,
* fixes, and improvement suggestions to this implementation. Though we
* tried to list all contributions, we apologise in advance for any
* missing reference.
*
* Andrew Bales <Andrew.Bales@Honeywell.com>
* Markus Friedl <markus.friedl@informatik.uni-erlangen.de>
* John Skodon <skodonj@webquill.com>
*/
#include "db_config.h"
#ifndef NO_SYSTEM_INCLUDES
#include <string.h>
#endif
#include "db_int.h"
#include "dbinc/crypto.h"
#include "crypto/rijndael/rijndael-alg-fst.h"
#include "crypto/rijndael/rijndael-api-fst.h"
/*
* __db_makeKey --
*
* PUBLIC: int __db_makeKey __P((keyInstance *, int, int, char *));
*/
int
__db_makeKey(key, direction, keyLen, keyMaterial)
keyInstance *key;
int direction;
int keyLen;
char *keyMaterial;
{
u8 cipherKey[MAXKB];
if (key == NULL) {
return BAD_KEY_INSTANCE;
}
if ((direction == DIR_ENCRYPT) || (direction == DIR_DECRYPT)) {
key->direction = direction;
} else {
return BAD_KEY_DIR;
}
if ((keyLen == 128) || (keyLen == 192) || (keyLen == 256)) {
key->keyLen = keyLen;
} else {
return BAD_KEY_MAT;
}
if (keyMaterial != NULL) {
memcpy(cipherKey, keyMaterial, key->keyLen/8);
}
if (direction == DIR_ENCRYPT) {
key->Nr = __db_rijndaelKeySetupEnc(key->rk, cipherKey, keyLen);
} else {
key->Nr = __db_rijndaelKeySetupDec(key->rk, cipherKey, keyLen);
}
__db_rijndaelKeySetupEnc(key->ek, cipherKey, keyLen);
return TRUE;
}
/*
* __db_cipherInit --
*
* PUBLIC: int __db_cipherInit __P((cipherInstance *, int, char *));
*/
int
__db_cipherInit(cipher, mode, IV)
cipherInstance *cipher;
int mode;
char *IV;
{
if ((mode == MODE_ECB) || (mode == MODE_CBC) || (mode == MODE_CFB1)) {
cipher->mode = mode;
} else {
return BAD_CIPHER_MODE;
}
if (IV != NULL) {
memcpy(cipher->IV, IV, MAX_IV_SIZE);
}
return TRUE;
}
/*
* __db_blockEncrypt --
*
* PUBLIC: int __db_blockEncrypt __P((cipherInstance *, keyInstance *, u_int8_t *,
* PUBLIC: size_t, u_int8_t *));
*/
int
__db_blockEncrypt(cipher, key, input, inputLen, outBuffer)
cipherInstance *cipher;
keyInstance *key;
u_int8_t *input;
size_t inputLen;
u_int8_t *outBuffer;
{
int i, k, t, numBlocks;
u8 block[16], *iv;
u32 tmpiv[4];
if (cipher == NULL ||
key == NULL ||
key->direction == DIR_DECRYPT) {
return BAD_CIPHER_STATE;
}
if (input == NULL || inputLen <= 0) {
return 0; /* nothing to do */
}
numBlocks = (int)(inputLen/128);
switch (cipher->mode) {
case MODE_ECB:
for (i = numBlocks; i > 0; i--) {
__db_rijndaelEncrypt(key->rk, key->Nr, input, outBuffer);
input += 16;
outBuffer += 16;
}
break;
case MODE_CBC:
iv = cipher->IV;
for (i = numBlocks; i > 0; i--) {
memcpy(tmpiv, iv, MAX_IV_SIZE);
((u32*)block)[0] = ((u32*)input)[0] ^ tmpiv[0];
((u32*)block)[1] = ((u32*)input)[1] ^ tmpiv[1];
((u32*)block)[2] = ((u32*)input)[2] ^ tmpiv[2];
((u32*)block)[3] = ((u32*)input)[3] ^ tmpiv[3];
__db_rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
iv = outBuffer;
input += 16;
outBuffer += 16;
}
break;
case MODE_CFB1:
iv = cipher->IV;
for (i = numBlocks; i > 0; i--) {
memcpy(outBuffer, input, 16);
for (k = 0; k < 128; k++) {
__db_rijndaelEncrypt(key->ek, key->Nr, iv, block);
outBuffer[k >> 3] ^= (block[0] & (u_int)0x80) >> (k & 7);
for (t = 0; t < 15; t++) {
iv[t] = (iv[t] << 1) | (iv[t + 1] >> 7);
}
iv[15] = (iv[15] << 1) | ((outBuffer[k >> 3] >> (7 - (k & 7))) & 1);
}
outBuffer += 16;
input += 16;
}
break;
default:
return BAD_CIPHER_STATE;
}
return 128*numBlocks;
}
/**
* Encrypt data partitioned in octets, using RFC 2040-like padding.
*
* @param input data to be encrypted (octet sequence)
* @param inputOctets input length in octets (not bits)
* @param outBuffer encrypted output data
*
* @return length in octets (not bits) of the encrypted output buffer.
*/
/*
* __db_padEncrypt --
*
* PUBLIC: int __db_padEncrypt __P((cipherInstance *, keyInstance *, u_int8_t *,
* PUBLIC: int, u_int8_t *));
*/
int
__db_padEncrypt(cipher, key, input, inputOctets, outBuffer)
cipherInstance *cipher;
keyInstance *key;
u_int8_t *input;
int inputOctets;
u_int8_t *outBuffer;
{
int i, numBlocks, padLen;
u8 block[16], *iv;
u32 tmpiv[4];
if (cipher == NULL ||
key == NULL ||
key->direction == DIR_DECRYPT) {
return BAD_CIPHER_STATE;
}
if (input == NULL || inputOctets <= 0) {
return 0; /* nothing to do */
}
numBlocks = inputOctets/16;
switch (cipher->mode) {
case MODE_ECB:
for (i = numBlocks; i > 0; i--) {
__db_rijndaelEncrypt(key->rk, key->Nr, input, outBuffer);
input += 16;
outBuffer += 16;
}
padLen = 16 - (inputOctets - 16*numBlocks);
DB_ASSERT(padLen > 0 && padLen <= 16);
memcpy(block, input, 16 - padLen);
memset(block + 16 - padLen, padLen, padLen);
__db_rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
break;
case MODE_CBC:
iv = cipher->IV;
for (i = numBlocks; i > 0; i--) {
memcpy(tmpiv, iv, MAX_IV_SIZE);
((u32*)block)[0] = ((u32*)input)[0] ^ tmpiv[0];
((u32*)block)[1] = ((u32*)input)[1] ^ tmpiv[1];
((u32*)block)[2] = ((u32*)input)[2] ^ tmpiv[2];
((u32*)block)[3] = ((u32*)input)[3] ^ tmpiv[3];
__db_rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
iv = outBuffer;
input += 16;
outBuffer += 16;
}
padLen = 16 - (inputOctets - 16*numBlocks);
DB_ASSERT(padLen > 0 && padLen <= 16);
for (i = 0; i < 16 - padLen; i++) {
block[i] = input[i] ^ iv[i];
}
for (i = 16 - padLen; i < 16; i++) {
block[i] = (u_int8_t)padLen ^ iv[i];
}
__db_rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
break;
default:
return BAD_CIPHER_STATE;
}
return 16*(numBlocks + 1);
}
/*
* __db_blockDecrypt --
*
* PUBLIC: int __db_blockDecrypt __P((cipherInstance *, keyInstance *, u_int8_t *,
* PUBLIC: size_t, u_int8_t *));
*/
int
__db_blockDecrypt(cipher, key, input, inputLen, outBuffer)
cipherInstance *cipher;
keyInstance *key;
u_int8_t *input;
size_t inputLen;
u_int8_t *outBuffer;
{
int i, k, t, numBlocks;
u8 block[16], *iv;
u32 tmpiv[4];
if (cipher == NULL ||
key == NULL ||
(cipher->mode != MODE_CFB1 && key->direction == DIR_ENCRYPT)) {
return BAD_CIPHER_STATE;
}
if (input == NULL || inputLen <= 0) {
return 0; /* nothing to do */
}
numBlocks = (int)(inputLen/128);
switch (cipher->mode) {
case MODE_ECB:
for (i = numBlocks; i > 0; i--) {
__db_rijndaelDecrypt(key->rk, key->Nr, input, outBuffer);
input += 16;
outBuffer += 16;
}
break;
case MODE_CBC:
memcpy(tmpiv, cipher->IV, MAX_IV_SIZE);
for (i = numBlocks; i > 0; i--) {
__db_rijndaelDecrypt(key->rk, key->Nr, input, block);
((u32*)block)[0] ^= tmpiv[0];
((u32*)block)[1] ^= tmpiv[1];
((u32*)block)[2] ^= tmpiv[2];
((u32*)block)[3] ^= tmpiv[3];
memcpy(tmpiv, input, 16);
memcpy(outBuffer, block, 16);
input += 16;
outBuffer += 16;
}
break;
case MODE_CFB1:
iv = cipher->IV;
for (i = numBlocks; i > 0; i--) {
memcpy(outBuffer, input, 16);
for (k = 0; k < 128; k++) {
__db_rijndaelEncrypt(key->ek, key->Nr, iv, block);
for (t = 0; t < 15; t++) {
iv[t] = (iv[t] << 1) | (iv[t + 1] >> 7);
}
iv[15] = (iv[15] << 1) | ((input[k >> 3] >> (7 - (k & 7))) & 1);
outBuffer[k >> 3] ^= (block[0] & (u_int)0x80) >> (k & 7);
}
outBuffer += 16;
input += 16;
}
break;
default:
return BAD_CIPHER_STATE;
}
return 128*numBlocks;
}
/*
* __db_padDecrypt --
*
* PUBLIC: int __db_padDecrypt __P((cipherInstance *, keyInstance *, u_int8_t *,
* PUBLIC: int, u_int8_t *));
*/
int
__db_padDecrypt(cipher, key, input, inputOctets, outBuffer)
cipherInstance *cipher;
keyInstance *key;
u_int8_t *input;
int inputOctets;
u_int8_t *outBuffer;
{
int i, numBlocks, padLen;
u8 block[16];
u32 tmpiv[4];
if (cipher == NULL ||
key == NULL ||
key->direction == DIR_ENCRYPT) {
return BAD_CIPHER_STATE;
}
if (input == NULL || inputOctets <= 0) {
return 0; /* nothing to do */
}
if (inputOctets % 16 != 0) {
return BAD_DATA;
}
numBlocks = inputOctets/16;
switch (cipher->mode) {
case MODE_ECB:
/* all blocks but last */
for (i = numBlocks - 1; i > 0; i--) {
__db_rijndaelDecrypt(key->rk, key->Nr, input, outBuffer);
input += 16;
outBuffer += 16;
}
/* last block */
__db_rijndaelDecrypt(key->rk, key->Nr, input, block);
padLen = block[15];
if (padLen >= 16) {
return BAD_DATA;
}
for (i = 16 - padLen; i < 16; i++) {
if (block[i] != padLen) {
return BAD_DATA;
}
}
memcpy(outBuffer, block, 16 - padLen);
break;
case MODE_CBC:
/* all blocks but last */
memcpy(tmpiv, cipher->IV, MAX_IV_SIZE);
for (i = numBlocks - 1; i > 0; i--) {
__db_rijndaelDecrypt(key->rk, key->Nr, input, block);
((u32*)block)[0] ^= tmpiv[0];
((u32*)block)[1] ^= tmpiv[1];
((u32*)block)[2] ^= tmpiv[2];
((u32*)block)[3] ^= tmpiv[3];
memcpy(tmpiv, input, 16);
memcpy(outBuffer, block, 16);
input += 16;
outBuffer += 16;
}
/* last block */
__db_rijndaelDecrypt(key->rk, key->Nr, input, block);
((u32*)block)[0] ^= tmpiv[0];
((u32*)block)[1] ^= tmpiv[1];
((u32*)block)[2] ^= tmpiv[2];
((u32*)block)[3] ^= tmpiv[3];
padLen = block[15];
if (padLen <= 0 || padLen > 16) {
return BAD_DATA;
}
for (i = 16 - padLen; i < 16; i++) {
if (block[i] != padLen) {
return BAD_DATA;
}
}
memcpy(outBuffer, block, 16 - padLen);
break;
default:
return BAD_CIPHER_STATE;
}
return 16*numBlocks - padLen;
}
#ifdef INTERMEDIATE_VALUE_KAT
/**
* cipherUpdateRounds:
*
* Encrypts/Decrypts exactly one full block a specified number of rounds.
* Only used in the Intermediate Value Known Answer Test.
*
* Returns:
* TRUE - on success
* BAD_CIPHER_STATE - cipher in bad state (e.g., not initialized)
*/
/*
* __db_cipherUpdateRounds --
*
* PUBLIC: int __db_cipherUpdateRounds __P((cipherInstance *, keyInstance *,
* PUBLIC: u_int8_t *, int, u_int8_t *, int));
*/
int
__db_cipherUpdateRounds(cipher, key, input, inputLen, outBuffer, rounds)
cipherInstance *cipher;
keyInstance *key;
u_int8_t *input;
size_t inputLen;
u_int8_t *outBuffer;
int rounds;
{
u8 block[16];
if (cipher == NULL || key == NULL) {
return BAD_CIPHER_STATE;
}
memcpy(block, input, 16);
switch (key->direction) {
case DIR_ENCRYPT:
__db_rijndaelEncryptRound(key->rk, key->Nr, block, rounds);
break;
case DIR_DECRYPT:
__db_rijndaelDecryptRound(key->rk, key->Nr, block, rounds);
break;
default:
return BAD_KEY_DIR;
}
memcpy(outBuffer, block, 16);
return TRUE;
}
#endif /* INTERMEDIATE_VALUE_KAT */