mirror of
https://github.com/MariaDB/server.git
synced 2025-01-18 13:02:28 +01:00
1051 lines
26 KiB
C
1051 lines
26 KiB
C
/*-
|
|
* See the file LICENSE for redistribution information.
|
|
*
|
|
* Copyright (c) 1999, 2000
|
|
* Sleepycat Software. All rights reserved.
|
|
*
|
|
* $Id: hash_verify.c,v 1.31 2000/11/30 00:58:37 ubell Exp $
|
|
*/
|
|
|
|
#include "db_config.h"
|
|
|
|
#ifndef lint
|
|
static const char revid[] = "$Id: hash_verify.c,v 1.31 2000/11/30 00:58:37 ubell Exp $";
|
|
#endif /* not lint */
|
|
|
|
#ifndef NO_SYSTEM_INCLUDES
|
|
#include <sys/types.h>
|
|
|
|
#include <string.h>
|
|
#endif
|
|
|
|
#include "db_int.h"
|
|
#include "db_page.h"
|
|
#include "db_verify.h"
|
|
#include "btree.h"
|
|
#include "hash.h"
|
|
|
|
static int __ham_dups_unsorted __P((DB *, u_int8_t *, u_int32_t));
|
|
static int __ham_vrfy_bucket __P((DB *, VRFY_DBINFO *, HMETA *, u_int32_t,
|
|
u_int32_t));
|
|
static int __ham_vrfy_item __P((DB *,
|
|
VRFY_DBINFO *, db_pgno_t, PAGE *, u_int32_t, u_int32_t));
|
|
|
|
/*
|
|
* __ham_vrfy_meta --
|
|
* Verify the hash-specific part of a metadata page.
|
|
*
|
|
* Note that unlike btree, we don't save things off, because we
|
|
* will need most everything again to verify each page and the
|
|
* amount of state here is significant.
|
|
*
|
|
* PUBLIC: int __ham_vrfy_meta __P((DB *, VRFY_DBINFO *, HMETA *,
|
|
* PUBLIC: db_pgno_t, u_int32_t));
|
|
*/
|
|
int
|
|
__ham_vrfy_meta(dbp, vdp, m, pgno, flags)
|
|
DB *dbp;
|
|
VRFY_DBINFO *vdp;
|
|
HMETA *m;
|
|
db_pgno_t pgno;
|
|
u_int32_t flags;
|
|
{
|
|
HASH *hashp;
|
|
VRFY_PAGEINFO *pip;
|
|
int i, ret, t_ret, isbad;
|
|
u_int32_t pwr, mbucket;
|
|
u_int32_t (*hfunc) __P((DB *, const void *, u_int32_t));
|
|
|
|
if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0)
|
|
return (ret);
|
|
isbad = 0;
|
|
|
|
hashp = dbp->h_internal;
|
|
|
|
if (hashp != NULL && hashp->h_hash != NULL)
|
|
hfunc = hashp->h_hash;
|
|
else
|
|
hfunc = __ham_func5;
|
|
|
|
/*
|
|
* If we haven't already checked the common fields in pagezero,
|
|
* check them.
|
|
*/
|
|
if (!F_ISSET(pip, VRFY_INCOMPLETE) &&
|
|
(ret = __db_vrfy_meta(dbp, vdp, &m->dbmeta, pgno, flags)) != 0) {
|
|
if (ret == DB_VERIFY_BAD)
|
|
isbad = 1;
|
|
else
|
|
goto err;
|
|
}
|
|
|
|
/* h_charkey */
|
|
if (!LF_ISSET(DB_NOORDERCHK))
|
|
if (m->h_charkey != hfunc(dbp, CHARKEY, sizeof(CHARKEY))) {
|
|
EPRINT((dbp->dbenv,
|
|
"Database has different custom hash function; reverify with DB_NOORDERCHK set"
|
|
));
|
|
/*
|
|
* Return immediately; this is probably a sign
|
|
* of user error rather than database corruption, so
|
|
* we want to avoid extraneous errors.
|
|
*/
|
|
isbad = 1;
|
|
goto err;
|
|
}
|
|
|
|
/* max_bucket must be less than the last pgno. */
|
|
if (m->max_bucket > vdp->last_pgno) {
|
|
EPRINT((dbp->dbenv,
|
|
"Impossible max_bucket %lu on meta page %lu",
|
|
m->max_bucket, pgno));
|
|
/*
|
|
* Most other fields depend somehow on max_bucket, so
|
|
* we just return--there will be lots of extraneous
|
|
* errors.
|
|
*/
|
|
isbad = 1;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* max_bucket, high_mask and low_mask: high_mask must be one
|
|
* less than the next power of two above max_bucket, and
|
|
* low_mask must be one less than the power of two below it.
|
|
*
|
|
*
|
|
*/
|
|
pwr = (m->max_bucket == 0) ? 1 : 1 << __db_log2(m->max_bucket + 1);
|
|
if (m->high_mask != pwr - 1) {
|
|
EPRINT((dbp->dbenv,
|
|
"Incorrect high_mask %lu on page %lu, should be %lu",
|
|
m->high_mask, pgno, pwr - 1));
|
|
isbad = 1;
|
|
}
|
|
pwr >>= 1;
|
|
if (m->low_mask != pwr - 1) {
|
|
EPRINT((dbp->dbenv,
|
|
"Incorrect low_mask %lu on page %lu, should be %lu",
|
|
m->low_mask, pgno, pwr - 1));
|
|
isbad = 1;
|
|
}
|
|
|
|
/* ffactor: no check possible. */
|
|
pip->h_ffactor = m->ffactor;
|
|
|
|
/*
|
|
* nelem: just make sure it's not astronomical for now. This is the
|
|
* same check that hash_upgrade does, since there was a bug in 2.X
|
|
* which could make nelem go "negative".
|
|
*/
|
|
if (m->nelem > 0x80000000) {
|
|
EPRINT((dbp->dbenv,
|
|
"Suspiciously high nelem of %lu on page %lu",
|
|
m->nelem, pgno));
|
|
isbad = 1;
|
|
pip->h_nelem = 0;
|
|
} else
|
|
pip->h_nelem = m->nelem;
|
|
|
|
/* flags */
|
|
if (F_ISSET(&m->dbmeta, DB_HASH_DUP))
|
|
F_SET(pip, VRFY_HAS_DUPS);
|
|
if (F_ISSET(&m->dbmeta, DB_HASH_DUPSORT))
|
|
F_SET(pip, VRFY_HAS_DUPSORT);
|
|
/* XXX: Why is the DB_HASH_SUBDB flag necessary? */
|
|
|
|
/* spares array */
|
|
for (i = 0; m->spares[i] != 0 && i < NCACHED; i++) {
|
|
/*
|
|
* We set mbucket to the maximum bucket that would use a given
|
|
* spares entry; we want to ensure that it's always less
|
|
* than last_pgno.
|
|
*/
|
|
mbucket = (1 << i) - 1;
|
|
if (BS_TO_PAGE(mbucket, m->spares) > vdp->last_pgno) {
|
|
EPRINT((dbp->dbenv,
|
|
"Spares array entry %lu, page %lu is invalid",
|
|
i, pgno));
|
|
isbad = 1;
|
|
}
|
|
}
|
|
|
|
err: if ((t_ret = __db_vrfy_putpageinfo(vdp, pip)) != 0 && ret == 0)
|
|
ret = t_ret;
|
|
return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret);
|
|
}
|
|
|
|
/*
|
|
* __ham_vrfy --
|
|
* Verify hash page.
|
|
*
|
|
* PUBLIC: int __ham_vrfy __P((DB *, VRFY_DBINFO *, PAGE *, db_pgno_t,
|
|
* PUBLIC: u_int32_t));
|
|
*/
|
|
int
|
|
__ham_vrfy(dbp, vdp, h, pgno, flags)
|
|
DB *dbp;
|
|
VRFY_DBINFO *vdp;
|
|
PAGE *h;
|
|
db_pgno_t pgno;
|
|
u_int32_t flags;
|
|
{
|
|
VRFY_PAGEINFO *pip;
|
|
u_int32_t ent, himark, inpend;
|
|
int isbad, ret, t_ret;
|
|
|
|
isbad = 0;
|
|
if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0)
|
|
return (ret);
|
|
|
|
/* Sanity check our flags and page type. */
|
|
if ((ret = __db_fchk(dbp->dbenv, "__ham_vrfy",
|
|
flags, DB_AGGRESSIVE | DB_NOORDERCHK | DB_SALVAGE)) != 0)
|
|
goto err;
|
|
|
|
if (TYPE(h) != P_HASH) {
|
|
TYPE_ERR_PRINT(dbp->dbenv, "__ham_vrfy", pgno, TYPE(h));
|
|
DB_ASSERT(0);
|
|
ret = EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
/* Verify and save off fields common to all PAGEs. */
|
|
if ((ret = __db_vrfy_datapage(dbp, vdp, h, pgno, flags)) != 0) {
|
|
if (ret == DB_VERIFY_BAD)
|
|
isbad = 1;
|
|
else
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Verify inp[]. Each offset from 0 to NUM_ENT(h) must be lower
|
|
* than the previous one, higher than the current end of the inp array,
|
|
* and lower than the page size.
|
|
*
|
|
* In any case, we return immediately if things are bad, as it would
|
|
* be unsafe to proceed.
|
|
*/
|
|
for (ent = 0, himark = dbp->pgsize,
|
|
inpend = (u_int8_t *)h->inp - (u_int8_t *)h;
|
|
ent < NUM_ENT(h); ent++)
|
|
if (h->inp[ent] >= himark) {
|
|
EPRINT((dbp->dbenv,
|
|
"Item %lu on page %lu out of order or nonsensical",
|
|
ent, pgno));
|
|
isbad = 1;
|
|
goto err;
|
|
} else if (inpend >= himark) {
|
|
EPRINT((dbp->dbenv,
|
|
"inp array collided with data on page %lu",
|
|
pgno));
|
|
isbad = 1;
|
|
goto err;
|
|
|
|
} else {
|
|
himark = h->inp[ent];
|
|
inpend += sizeof(db_indx_t);
|
|
if ((ret = __ham_vrfy_item(
|
|
dbp, vdp, pgno, h, ent, flags)) != 0)
|
|
goto err;
|
|
}
|
|
|
|
err: if ((t_ret = __db_vrfy_putpageinfo(vdp, pip)) != 0 && ret == 0)
|
|
ret = t_ret;
|
|
return (ret == 0 && isbad == 1 ? DB_VERIFY_BAD : ret);
|
|
}
|
|
|
|
/*
|
|
* __ham_vrfy_item --
|
|
* Given a hash page and an offset, sanity-check the item itself,
|
|
* and save off any overflow items or off-page dup children as necessary.
|
|
*/
|
|
static int
|
|
__ham_vrfy_item(dbp, vdp, pgno, h, i, flags)
|
|
DB *dbp;
|
|
VRFY_DBINFO *vdp;
|
|
db_pgno_t pgno;
|
|
PAGE *h;
|
|
u_int32_t i, flags;
|
|
{
|
|
HOFFPAGE hop;
|
|
HOFFDUP hod;
|
|
VRFY_CHILDINFO child;
|
|
VRFY_PAGEINFO *pip;
|
|
db_indx_t offset, len, dlen, elen;
|
|
int ret, t_ret;
|
|
u_int8_t *databuf;
|
|
|
|
if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0)
|
|
return (ret);
|
|
|
|
switch (HPAGE_TYPE(h, i)) {
|
|
case H_KEYDATA:
|
|
/* Nothing to do here--everything but the type field is data */
|
|
break;
|
|
case H_DUPLICATE:
|
|
/* Are we a datum or a key? Better be the former. */
|
|
if (i % 2 == 0) {
|
|
EPRINT((dbp->dbenv,
|
|
"Hash key stored as duplicate at page %lu item %lu",
|
|
pip->pgno, i));
|
|
}
|
|
/*
|
|
* Dups are encoded as a series within a single HKEYDATA,
|
|
* in which each dup is surrounded by a copy of its length
|
|
* on either side (so that the series can be walked in either
|
|
* direction. We loop through this series and make sure
|
|
* each dup is reasonable.
|
|
*
|
|
* Note that at this point, we've verified item i-1, so
|
|
* it's safe to use LEN_HKEYDATA (which looks at inp[i-1]).
|
|
*/
|
|
len = LEN_HKEYDATA(h, dbp->pgsize, i);
|
|
databuf = HKEYDATA_DATA(P_ENTRY(h, i));
|
|
for (offset = 0; offset < len; offset += DUP_SIZE(dlen)) {
|
|
memcpy(&dlen, databuf + offset, sizeof(db_indx_t));
|
|
|
|
/* Make sure the length is plausible. */
|
|
if (offset + DUP_SIZE(dlen) > len) {
|
|
EPRINT((dbp->dbenv,
|
|
"Duplicate item %lu, page %lu has bad length",
|
|
i, pip->pgno));
|
|
ret = DB_VERIFY_BAD;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Make sure the second copy of the length is the
|
|
* same as the first.
|
|
*/
|
|
memcpy(&elen,
|
|
databuf + offset + dlen + sizeof(db_indx_t),
|
|
sizeof(db_indx_t));
|
|
if (elen != dlen) {
|
|
EPRINT((dbp->dbenv,
|
|
"Duplicate item %lu, page %lu has two different lengths",
|
|
i, pip->pgno));
|
|
ret = DB_VERIFY_BAD;
|
|
goto err;
|
|
}
|
|
}
|
|
F_SET(pip, VRFY_HAS_DUPS);
|
|
if (!LF_ISSET(DB_NOORDERCHK) &&
|
|
__ham_dups_unsorted(dbp, databuf, len))
|
|
F_SET(pip, VRFY_DUPS_UNSORTED);
|
|
break;
|
|
case H_OFFPAGE:
|
|
/* Offpage item. Make sure pgno is sane, save off. */
|
|
memcpy(&hop, P_ENTRY(h, i), HOFFPAGE_SIZE);
|
|
if (!IS_VALID_PGNO(hop.pgno) || hop.pgno == pip->pgno ||
|
|
hop.pgno == PGNO_INVALID) {
|
|
EPRINT((dbp->dbenv,
|
|
"Offpage item %lu, page %lu has bad page number",
|
|
i, pip->pgno));
|
|
ret = DB_VERIFY_BAD;
|
|
goto err;
|
|
}
|
|
memset(&child, 0, sizeof(VRFY_CHILDINFO));
|
|
child.pgno = hop.pgno;
|
|
child.type = V_OVERFLOW;
|
|
child.tlen = hop.tlen; /* This will get checked later. */
|
|
if ((ret = __db_vrfy_childput(vdp, pip->pgno, &child)) != 0)
|
|
goto err;
|
|
break;
|
|
case H_OFFDUP:
|
|
/* Offpage duplicate item. Same drill. */
|
|
memcpy(&hod, P_ENTRY(h, i), HOFFDUP_SIZE);
|
|
if (!IS_VALID_PGNO(hod.pgno) || hod.pgno == pip->pgno ||
|
|
hod.pgno == PGNO_INVALID) {
|
|
EPRINT((dbp->dbenv,
|
|
"Offpage item %lu, page %lu has bad page number",
|
|
i, pip->pgno));
|
|
ret = DB_VERIFY_BAD;
|
|
goto err;
|
|
}
|
|
memset(&child, 0, sizeof(VRFY_CHILDINFO));
|
|
child.pgno = hod.pgno;
|
|
child.type = V_DUPLICATE;
|
|
if ((ret = __db_vrfy_childput(vdp, pip->pgno, &child)) != 0)
|
|
goto err;
|
|
F_SET(pip, VRFY_HAS_DUPS);
|
|
break;
|
|
default:
|
|
EPRINT((dbp->dbenv,
|
|
"Item %i, page %lu has bad type", i, pip->pgno));
|
|
ret = DB_VERIFY_BAD;
|
|
break;
|
|
}
|
|
|
|
err: if ((t_ret = __db_vrfy_putpageinfo(vdp, pip)) != 0 && ret == 0)
|
|
ret = t_ret;
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* __ham_vrfy_structure --
|
|
* Verify the structure of a hash database.
|
|
*
|
|
* PUBLIC: int __ham_vrfy_structure __P((DB *, VRFY_DBINFO *, db_pgno_t,
|
|
* PUBLIC: u_int32_t));
|
|
*/
|
|
int
|
|
__ham_vrfy_structure(dbp, vdp, meta_pgno, flags)
|
|
DB *dbp;
|
|
VRFY_DBINFO *vdp;
|
|
db_pgno_t meta_pgno;
|
|
u_int32_t flags;
|
|
{
|
|
DB *pgset;
|
|
HMETA *m;
|
|
PAGE *h;
|
|
VRFY_PAGEINFO *pip;
|
|
int isbad, p, ret, t_ret;
|
|
db_pgno_t pgno;
|
|
u_int32_t bucket;
|
|
|
|
ret = isbad = 0;
|
|
h = NULL;
|
|
pgset = vdp->pgset;
|
|
|
|
if ((ret = __db_vrfy_pgset_get(pgset, meta_pgno, &p)) != 0)
|
|
return (ret);
|
|
if (p != 0) {
|
|
EPRINT((dbp->dbenv,
|
|
"Hash meta page %lu referenced twice", meta_pgno));
|
|
return (DB_VERIFY_BAD);
|
|
}
|
|
if ((ret = __db_vrfy_pgset_inc(pgset, meta_pgno)) != 0)
|
|
return (ret);
|
|
|
|
/* Get the meta page; we'll need it frequently. */
|
|
if ((ret = memp_fget(dbp->mpf, &meta_pgno, 0, &m)) != 0)
|
|
return (ret);
|
|
|
|
/* Loop through bucket by bucket. */
|
|
for (bucket = 0; bucket <= m->max_bucket; bucket++)
|
|
if ((ret =
|
|
__ham_vrfy_bucket(dbp, vdp, m, bucket, flags)) != 0) {
|
|
if (ret == DB_VERIFY_BAD)
|
|
isbad = 1;
|
|
else
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* There may be unused hash pages corresponding to buckets
|
|
* that have been allocated but not yet used. These may be
|
|
* part of the current doubling above max_bucket, or they may
|
|
* correspond to buckets that were used in a transaction
|
|
* that then aborted.
|
|
*
|
|
* Loop through them, as far as the spares array defines them,
|
|
* and make sure they're all empty.
|
|
*
|
|
* Note that this should be safe, since we've already verified
|
|
* that the spares array is sane.
|
|
*/
|
|
for (bucket = m->max_bucket + 1;
|
|
m->spares[__db_log2(bucket + 1)] != 0; bucket++) {
|
|
pgno = BS_TO_PAGE(bucket, m->spares);
|
|
if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0)
|
|
goto err;
|
|
|
|
/* It's okay if these pages are totally zeroed; unmark it. */
|
|
F_CLR(pip, VRFY_IS_ALLZEROES);
|
|
|
|
if (pip->type != P_HASH) {
|
|
EPRINT((dbp->dbenv,
|
|
"Hash bucket %lu maps to non-hash page %lu",
|
|
bucket, pgno));
|
|
isbad = 1;
|
|
} else if (pip->entries != 0) {
|
|
EPRINT((dbp->dbenv,
|
|
"Non-empty page %lu in unused hash bucket %lu",
|
|
pgno, bucket));
|
|
isbad = 1;
|
|
} else {
|
|
if ((ret = __db_vrfy_pgset_get(pgset, pgno, &p)) != 0)
|
|
goto err;
|
|
if (p != 0) {
|
|
EPRINT((dbp->dbenv,
|
|
"Hash page %lu above max_bucket referenced",
|
|
pgno));
|
|
isbad = 1;
|
|
} else {
|
|
if ((ret =
|
|
__db_vrfy_pgset_inc(pgset, pgno)) != 0)
|
|
goto err;
|
|
if ((ret =
|
|
__db_vrfy_putpageinfo(vdp, pip)) != 0)
|
|
goto err;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* If we got here, it's an error. */
|
|
(void)__db_vrfy_putpageinfo(vdp, pip);
|
|
goto err;
|
|
}
|
|
|
|
err: if ((t_ret = memp_fput(dbp->mpf, m, 0)) != 0)
|
|
return (t_ret);
|
|
if (h != NULL && (t_ret = memp_fput(dbp->mpf, h, 0)) != 0)
|
|
return (t_ret);
|
|
return ((isbad == 1 && ret == 0) ? DB_VERIFY_BAD: ret);
|
|
}
|
|
|
|
/*
|
|
* __ham_vrfy_bucket --
|
|
* Verify a given bucket.
|
|
*/
|
|
static int
|
|
__ham_vrfy_bucket(dbp, vdp, m, bucket, flags)
|
|
DB *dbp;
|
|
VRFY_DBINFO *vdp;
|
|
HMETA *m;
|
|
u_int32_t bucket, flags;
|
|
{
|
|
HASH *hashp;
|
|
VRFY_CHILDINFO *child;
|
|
VRFY_PAGEINFO *mip, *pip;
|
|
int ret, t_ret, isbad, p;
|
|
db_pgno_t pgno, next_pgno;
|
|
DBC *cc;
|
|
u_int32_t (*hfunc) __P((DB *, const void *, u_int32_t));
|
|
|
|
isbad = 0;
|
|
pip = NULL;
|
|
cc = NULL;
|
|
|
|
hashp = dbp->h_internal;
|
|
if (hashp != NULL && hashp->h_hash != NULL)
|
|
hfunc = hashp->h_hash;
|
|
else
|
|
hfunc = __ham_func5;
|
|
|
|
if ((ret = __db_vrfy_getpageinfo(vdp, PGNO(m), &mip)) != 0)
|
|
return (ret);
|
|
|
|
/* Calculate the first pgno for this bucket. */
|
|
pgno = BS_TO_PAGE(bucket, m->spares);
|
|
|
|
if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0)
|
|
goto err;
|
|
|
|
/* Make sure we got a plausible page number. */
|
|
if (pgno > vdp->last_pgno || pip->type != P_HASH) {
|
|
EPRINT((dbp->dbenv, "Bucket %lu has impossible first page %lu",
|
|
bucket, pgno));
|
|
/* Unsafe to continue. */
|
|
isbad = 1;
|
|
goto err;
|
|
}
|
|
|
|
if (pip->prev_pgno != PGNO_INVALID) {
|
|
EPRINT((dbp->dbenv,
|
|
"First hash page %lu in bucket %lu has a prev_pgno", pgno));
|
|
isbad = 1;
|
|
}
|
|
|
|
/*
|
|
* Set flags for dups and sorted dups.
|
|
*/
|
|
flags |= F_ISSET(mip, VRFY_HAS_DUPS) ? ST_DUPOK : 0;
|
|
flags |= F_ISSET(mip, VRFY_HAS_DUPSORT) ? ST_DUPSORT : 0;
|
|
|
|
/* Loop until we find a fatal bug, or until we run out of pages. */
|
|
for (;;) {
|
|
/* Provide feedback on our progress to the application. */
|
|
if (!LF_ISSET(DB_SALVAGE))
|
|
__db_vrfy_struct_feedback(dbp, vdp);
|
|
|
|
if ((ret = __db_vrfy_pgset_get(vdp->pgset, pgno, &p)) != 0)
|
|
goto err;
|
|
if (p != 0) {
|
|
EPRINT((dbp->dbenv,
|
|
"Hash page %lu referenced twice", pgno));
|
|
isbad = 1;
|
|
/* Unsafe to continue. */
|
|
goto err;
|
|
} else if ((ret = __db_vrfy_pgset_inc(vdp->pgset, pgno)) != 0)
|
|
goto err;
|
|
|
|
/*
|
|
* Hash pages that nothing has ever hashed to may never
|
|
* have actually come into existence, and may appear to be
|
|
* entirely zeroed. This is acceptable, and since there's
|
|
* no real way for us to know whether this has actually
|
|
* occurred, we clear the "wholly zeroed" flag on every
|
|
* hash page. A wholly zeroed page, by nature, will appear
|
|
* to have no flags set and zero entries, so should
|
|
* otherwise verify correctly.
|
|
*/
|
|
F_CLR(pip, VRFY_IS_ALLZEROES);
|
|
|
|
/* If we have dups, our meta page had better know about it. */
|
|
if (F_ISSET(pip, VRFY_HAS_DUPS)
|
|
&& !F_ISSET(mip, VRFY_HAS_DUPS)) {
|
|
EPRINT((dbp->dbenv,
|
|
"Duplicates present in non-duplicate database, page %lu",
|
|
pgno));
|
|
isbad = 1;
|
|
}
|
|
|
|
/*
|
|
* If the database has sorted dups, this page had better
|
|
* not have unsorted ones.
|
|
*/
|
|
if (F_ISSET(mip, VRFY_HAS_DUPSORT) &&
|
|
F_ISSET(pip, VRFY_DUPS_UNSORTED)) {
|
|
EPRINT((dbp->dbenv,
|
|
"Unsorted dups in sorted-dup database, page %lu",
|
|
pgno));
|
|
isbad = 1;
|
|
}
|
|
|
|
/* Walk overflow chains and offpage dup trees. */
|
|
if ((ret = __db_vrfy_childcursor(vdp, &cc)) != 0)
|
|
goto err;
|
|
for (ret = __db_vrfy_ccset(cc, pip->pgno, &child); ret == 0;
|
|
ret = __db_vrfy_ccnext(cc, &child))
|
|
if (child->type == V_OVERFLOW) {
|
|
if ((ret = __db_vrfy_ovfl_structure(dbp, vdp,
|
|
child->pgno, child->tlen, flags)) != 0) {
|
|
if (ret == DB_VERIFY_BAD)
|
|
isbad = 1;
|
|
else
|
|
goto err;
|
|
}
|
|
} else if (child->type == V_DUPLICATE) {
|
|
if ((ret = __db_vrfy_duptype(dbp,
|
|
vdp, child->pgno, flags)) != 0) {
|
|
isbad = 1;
|
|
continue;
|
|
}
|
|
if ((ret = __bam_vrfy_subtree(dbp, vdp,
|
|
child->pgno, NULL, NULL,
|
|
flags | ST_RECNUM | ST_DUPSET, NULL,
|
|
NULL, NULL)) != 0) {
|
|
if (ret == DB_VERIFY_BAD)
|
|
isbad = 1;
|
|
else
|
|
goto err;
|
|
}
|
|
}
|
|
if ((ret = __db_vrfy_ccclose(cc)) != 0)
|
|
goto err;
|
|
cc = NULL;
|
|
|
|
/* If it's safe to check that things hash properly, do so. */
|
|
if (isbad == 0 && !LF_ISSET(DB_NOORDERCHK) &&
|
|
(ret = __ham_vrfy_hashing(dbp, pip->entries,
|
|
m, bucket, pgno, flags, hfunc)) != 0) {
|
|
if (ret == DB_VERIFY_BAD)
|
|
isbad = 1;
|
|
else
|
|
goto err;
|
|
}
|
|
|
|
next_pgno = pip->next_pgno;
|
|
ret = __db_vrfy_putpageinfo(vdp, pip);
|
|
|
|
pip = NULL;
|
|
if (ret != 0)
|
|
goto err;
|
|
|
|
if (next_pgno == PGNO_INVALID)
|
|
break; /* End of the bucket. */
|
|
|
|
/* We already checked this, but just in case... */
|
|
if (!IS_VALID_PGNO(next_pgno)) {
|
|
DB_ASSERT(0);
|
|
EPRINT((dbp->dbenv,
|
|
"Hash page %lu has bad next_pgno", pgno));
|
|
isbad = 1;
|
|
goto err;
|
|
}
|
|
|
|
if ((ret = __db_vrfy_getpageinfo(vdp, next_pgno, &pip)) != 0)
|
|
goto err;
|
|
|
|
if (pip->prev_pgno != pgno) {
|
|
EPRINT((dbp->dbenv, "Hash page %lu has bad prev_pgno",
|
|
next_pgno));
|
|
isbad = 1;
|
|
}
|
|
pgno = next_pgno;
|
|
}
|
|
|
|
err: if (cc != NULL && ((t_ret = __db_vrfy_ccclose(cc)) != 0) && ret == 0)
|
|
ret = t_ret;
|
|
if (mip != NULL && ((t_ret = __db_vrfy_putpageinfo(vdp, mip)) != 0) &&
|
|
ret == 0)
|
|
ret = t_ret;
|
|
if (pip != NULL && ((t_ret = __db_vrfy_putpageinfo(vdp, pip)) != 0) &&
|
|
ret == 0)
|
|
ret = t_ret;
|
|
return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret);
|
|
}
|
|
|
|
/*
|
|
* __ham_vrfy_hashing --
|
|
* Verify that all items on a given hash page hash correctly.
|
|
*
|
|
* PUBLIC: int __ham_vrfy_hashing __P((DB *,
|
|
* PUBLIC: u_int32_t, HMETA *, u_int32_t, db_pgno_t, u_int32_t,
|
|
* PUBLIC: u_int32_t (*) __P((DB *, const void *, u_int32_t))));
|
|
*/
|
|
int
|
|
__ham_vrfy_hashing(dbp, nentries, m, thisbucket, pgno, flags, hfunc)
|
|
DB *dbp;
|
|
u_int32_t nentries;
|
|
HMETA *m;
|
|
u_int32_t thisbucket;
|
|
db_pgno_t pgno;
|
|
u_int32_t flags;
|
|
u_int32_t (*hfunc) __P((DB *, const void *, u_int32_t));
|
|
{
|
|
DBT dbt;
|
|
PAGE *h;
|
|
db_indx_t i;
|
|
int ret, t_ret, isbad;
|
|
u_int32_t hval, bucket;
|
|
|
|
ret = isbad = 0;
|
|
memset(&dbt, 0, sizeof(DBT));
|
|
F_SET(&dbt, DB_DBT_REALLOC);
|
|
|
|
if ((ret = memp_fget(dbp->mpf, &pgno, 0, &h)) != 0)
|
|
return (ret);
|
|
|
|
for (i = 0; i < nentries; i += 2) {
|
|
/*
|
|
* We've already verified the page integrity and that of any
|
|
* overflow chains linked off it; it is therefore safe to use
|
|
* __db_ret. It's also not all that much slower, since we have
|
|
* to copy every hash item to deal with alignment anyway; we
|
|
* can tweak this a bit if this proves to be a bottleneck,
|
|
* but for now, take the easy route.
|
|
*/
|
|
if ((ret = __db_ret(dbp, h, i, &dbt, NULL, NULL)) != 0)
|
|
goto err;
|
|
hval = hfunc(dbp, dbt.data, dbt.size);
|
|
|
|
bucket = hval & m->high_mask;
|
|
if (bucket > m->max_bucket)
|
|
bucket = bucket & m->low_mask;
|
|
|
|
if (bucket != thisbucket) {
|
|
EPRINT((dbp->dbenv,
|
|
"Item %lu on page %lu hashes incorrectly",
|
|
i, pgno));
|
|
isbad = 1;
|
|
}
|
|
}
|
|
|
|
err: if (dbt.data != NULL)
|
|
__os_free(dbt.data, 0);
|
|
if ((t_ret = memp_fput(dbp->mpf, h, 0)) != 0)
|
|
return (t_ret);
|
|
|
|
return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret);
|
|
}
|
|
|
|
/*
|
|
* __ham_salvage --
|
|
* Safely dump out anything that looks like a key on an alleged
|
|
* hash page.
|
|
*
|
|
* PUBLIC: int __ham_salvage __P((DB *, VRFY_DBINFO *, db_pgno_t, PAGE *,
|
|
* PUBLIC: void *, int (*)(void *, const void *), u_int32_t));
|
|
*/
|
|
int
|
|
__ham_salvage(dbp, vdp, pgno, h, handle, callback, flags)
|
|
DB *dbp;
|
|
VRFY_DBINFO *vdp;
|
|
db_pgno_t pgno;
|
|
PAGE *h;
|
|
void *handle;
|
|
int (*callback) __P((void *, const void *));
|
|
u_int32_t flags;
|
|
{
|
|
DBT dbt, unkdbt;
|
|
db_pgno_t dpgno;
|
|
int ret, err_ret, t_ret;
|
|
u_int32_t himark, tlen;
|
|
u_int8_t *hk;
|
|
void *buf;
|
|
u_int32_t dlen, len, i;
|
|
|
|
memset(&dbt, 0, sizeof(DBT));
|
|
dbt.flags = DB_DBT_REALLOC;
|
|
|
|
memset(&unkdbt, 0, sizeof(DBT));
|
|
unkdbt.size = strlen("UNKNOWN") + 1;
|
|
unkdbt.data = "UNKNOWN";
|
|
|
|
err_ret = 0;
|
|
|
|
/*
|
|
* Allocate a buffer for overflow items. Start at one page;
|
|
* __db_safe_goff will realloc as needed.
|
|
*/
|
|
if ((ret = __os_malloc(dbp->dbenv, dbp->pgsize, NULL, &buf)) != 0)
|
|
return (ret);
|
|
|
|
himark = dbp->pgsize;
|
|
for (i = 0;; i++) {
|
|
/* If we're not aggressive, break when we hit NUM_ENT(h). */
|
|
if (!LF_ISSET(DB_AGGRESSIVE) && i >= NUM_ENT(h))
|
|
break;
|
|
|
|
/* Verify the current item. */
|
|
ret = __db_vrfy_inpitem(dbp,
|
|
h, pgno, i, 0, flags, &himark, NULL);
|
|
/* If this returned a fatality, it's time to break. */
|
|
if (ret == DB_VERIFY_FATAL)
|
|
break;
|
|
|
|
if (ret == 0) {
|
|
hk = P_ENTRY(h, i);
|
|
len = LEN_HKEYDATA(h, dbp->pgsize, i);
|
|
if ((u_int32_t)(hk + len - (u_int8_t *)h) >
|
|
dbp->pgsize) {
|
|
/*
|
|
* Item is unsafely large; either continue
|
|
* or set it to the whole page, depending on
|
|
* aggressiveness.
|
|
*/
|
|
if (!LF_ISSET(DB_AGGRESSIVE))
|
|
continue;
|
|
len = dbp->pgsize -
|
|
(u_int32_t)(hk - (u_int8_t *)h);
|
|
err_ret = DB_VERIFY_BAD;
|
|
}
|
|
switch (HPAGE_PTYPE(hk)) {
|
|
default:
|
|
if (!LF_ISSET(DB_AGGRESSIVE))
|
|
break;
|
|
err_ret = DB_VERIFY_BAD;
|
|
/* FALLTHROUGH */
|
|
case H_KEYDATA:
|
|
keydata: memcpy(buf, HKEYDATA_DATA(hk), len);
|
|
dbt.size = len;
|
|
dbt.data = buf;
|
|
if ((ret = __db_prdbt(&dbt,
|
|
0, " ", handle, callback, 0, NULL)) != 0)
|
|
err_ret = ret;
|
|
break;
|
|
case H_OFFPAGE:
|
|
if (len < HOFFPAGE_SIZE) {
|
|
err_ret = DB_VERIFY_BAD;
|
|
continue;
|
|
}
|
|
memcpy(&dpgno,
|
|
HOFFPAGE_PGNO(hk), sizeof(dpgno));
|
|
if ((ret = __db_safe_goff(dbp, vdp,
|
|
dpgno, &dbt, &buf, flags)) != 0) {
|
|
err_ret = ret;
|
|
(void)__db_prdbt(&unkdbt, 0, " ",
|
|
handle, callback, 0, NULL);
|
|
break;
|
|
}
|
|
if ((ret = __db_prdbt(&dbt,
|
|
0, " ", handle, callback, 0, NULL)) != 0)
|
|
err_ret = ret;
|
|
break;
|
|
case H_OFFDUP:
|
|
if (len < HOFFPAGE_SIZE) {
|
|
err_ret = DB_VERIFY_BAD;
|
|
continue;
|
|
}
|
|
memcpy(&dpgno,
|
|
HOFFPAGE_PGNO(hk), sizeof(dpgno));
|
|
/* UNKNOWN iff pgno is bad or we're a key. */
|
|
if (!IS_VALID_PGNO(dpgno) || (i % 2 == 0)) {
|
|
if ((ret = __db_prdbt(&unkdbt, 0, " ",
|
|
handle, callback, 0, NULL)) != 0)
|
|
err_ret = ret;
|
|
} else if ((ret = __db_salvage_duptree(dbp,
|
|
vdp, dpgno, &dbt, handle, callback,
|
|
flags | SA_SKIPFIRSTKEY)) != 0)
|
|
err_ret = ret;
|
|
break;
|
|
case H_DUPLICATE:
|
|
/*
|
|
* We're a key; printing dups will seriously
|
|
* foul the output. If we're being aggressive,
|
|
* pretend this is a key and let the app.
|
|
* programmer sort out the mess.
|
|
*/
|
|
if (i % 2 == 0) {
|
|
err_ret = ret;
|
|
if (LF_ISSET(DB_AGGRESSIVE))
|
|
goto keydata;
|
|
break;
|
|
}
|
|
|
|
/* Too small to have any data. */
|
|
if (len <
|
|
HKEYDATA_SIZE(2 * sizeof(db_indx_t))) {
|
|
err_ret = DB_VERIFY_BAD;
|
|
continue;
|
|
}
|
|
|
|
/* Loop until we hit the total length. */
|
|
for (tlen = 0; tlen + sizeof(db_indx_t) < len;
|
|
tlen += dlen) {
|
|
tlen += sizeof(db_indx_t);
|
|
memcpy(&dlen, hk, sizeof(db_indx_t));
|
|
/*
|
|
* If dlen is too long, print all the
|
|
* rest of the dup set in a chunk.
|
|
*/
|
|
if (dlen + tlen > len)
|
|
dlen = len - tlen;
|
|
memcpy(buf, hk + tlen, dlen);
|
|
dbt.size = dlen;
|
|
dbt.data = buf;
|
|
if ((ret = __db_prdbt(&dbt, 0, " ",
|
|
handle, callback, 0, NULL)) != 0)
|
|
err_ret = ret;
|
|
tlen += sizeof(db_indx_t);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
__os_free(buf, 0);
|
|
if ((t_ret = __db_salvage_markdone(vdp, pgno)) != 0)
|
|
return (t_ret);
|
|
return ((ret == 0 && err_ret != 0) ? err_ret : ret);
|
|
}
|
|
|
|
/*
|
|
* __ham_meta2pgset --
|
|
* Return the set of hash pages corresponding to the given
|
|
* known-good meta page.
|
|
*
|
|
* PUBLIC: int __ham_meta2pgset __P((DB *, VRFY_DBINFO *, HMETA *, u_int32_t,
|
|
* PUBLIC: DB *));
|
|
*/
|
|
int __ham_meta2pgset(dbp, vdp, hmeta, flags, pgset)
|
|
DB *dbp;
|
|
VRFY_DBINFO *vdp;
|
|
HMETA *hmeta;
|
|
u_int32_t flags;
|
|
DB *pgset;
|
|
{
|
|
PAGE *h;
|
|
db_pgno_t pgno;
|
|
u_int32_t bucket, totpgs;
|
|
int ret, val;
|
|
|
|
/*
|
|
* We don't really need flags, but leave them for consistency with
|
|
* __bam_meta2pgset.
|
|
*/
|
|
COMPQUIET(flags, 0);
|
|
|
|
DB_ASSERT(pgset != NULL);
|
|
|
|
totpgs = 0;
|
|
|
|
/*
|
|
* Loop through all the buckets, pushing onto pgset the corresponding
|
|
* page(s) for each one.
|
|
*/
|
|
for (bucket = 0; bucket <= hmeta->max_bucket; bucket++) {
|
|
pgno = BS_TO_PAGE(bucket, hmeta->spares);
|
|
|
|
/*
|
|
* We know the initial pgno is safe because the spares array has
|
|
* been verified.
|
|
*
|
|
* Safely walk the list of pages in this bucket.
|
|
*/
|
|
for (;;) {
|
|
if ((ret = memp_fget(dbp->mpf, &pgno, 0, &h)) != 0)
|
|
return (ret);
|
|
if (TYPE(h) == P_HASH) {
|
|
|
|
/*
|
|
* Make sure we don't go past the end of
|
|
* pgset.
|
|
*/
|
|
if (++totpgs > vdp->last_pgno) {
|
|
(void)memp_fput(dbp->mpf, h, 0);
|
|
return (DB_VERIFY_BAD);
|
|
}
|
|
if ((ret =
|
|
__db_vrfy_pgset_inc(pgset, pgno)) != 0)
|
|
return (ret);
|
|
|
|
pgno = NEXT_PGNO(h);
|
|
} else
|
|
pgno = PGNO_INVALID;
|
|
|
|
if ((ret = memp_fput(dbp->mpf, h, 0)) != 0)
|
|
return (ret);
|
|
|
|
/* If the new pgno is wonky, go onto the next bucket. */
|
|
if (!IS_VALID_PGNO(pgno) ||
|
|
pgno == PGNO_INVALID)
|
|
goto nextbucket;
|
|
|
|
/*
|
|
* If we've touched this page before, we have a cycle;
|
|
* go on to the next bucket.
|
|
*/
|
|
if ((ret = __db_vrfy_pgset_get(pgset, pgno, &val)) != 0)
|
|
return (ret);
|
|
if (val != 0)
|
|
goto nextbucket;
|
|
}
|
|
nextbucket: ;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* __ham_dups_unsorted --
|
|
* Takes a known-safe hash duplicate set and its total length.
|
|
* Returns 1 if there are out-of-order duplicates in this set,
|
|
* 0 if there are not.
|
|
*/
|
|
static int
|
|
__ham_dups_unsorted(dbp, buf, len)
|
|
DB *dbp;
|
|
u_int8_t *buf;
|
|
u_int32_t len;
|
|
{
|
|
DBT a, b;
|
|
db_indx_t offset, dlen;
|
|
int (*func) __P((DB *, const DBT *, const DBT *));
|
|
|
|
memset(&a, 0, sizeof(DBT));
|
|
memset(&b, 0, sizeof(DBT));
|
|
|
|
func = (dbp->dup_compare == NULL) ? __bam_defcmp : dbp->dup_compare;
|
|
|
|
/*
|
|
* Loop through the dup set until we hit the end or we find
|
|
* a pair of dups that's out of order. b is always the current
|
|
* dup, a the one before it.
|
|
*/
|
|
for (offset = 0; offset < len; offset += DUP_SIZE(dlen)) {
|
|
memcpy(&dlen, buf + offset, sizeof(db_indx_t));
|
|
b.data = buf + offset + sizeof(db_indx_t);
|
|
b.size = dlen;
|
|
|
|
if (a.data != NULL && func(dbp, &a, &b) > 0)
|
|
return (1);
|
|
|
|
a.data = b.data;
|
|
a.size = b.size;
|
|
}
|
|
|
|
return (0);
|
|
}
|