mariadb/storage/innobase/dict/dict0boot.cc
2019-05-14 17:18:46 +03:00

561 lines
17 KiB
C++

/*****************************************************************************
Copyright (c) 1996, 2017, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2016, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file dict/dict0boot.cc
Data dictionary creation and booting
Created 4/18/1996 Heikki Tuuri
*******************************************************/
#include "dict0boot.h"
#include "dict0crea.h"
#include "btr0btr.h"
#include "dict0load.h"
#include "trx0trx.h"
#include "srv0srv.h"
#include "ibuf0ibuf.h"
#include "buf0flu.h"
#include "log0recv.h"
#include "os0file.h"
/**********************************************************************//**
Gets a pointer to the dictionary header and x-latches its page.
@return pointer to the dictionary header, page x-latched */
dict_hdr_t*
dict_hdr_get(
/*=========*/
mtr_t* mtr) /*!< in: mtr */
{
buf_block_t* block;
dict_hdr_t* header;
block = buf_page_get(page_id_t(DICT_HDR_SPACE, DICT_HDR_PAGE_NO),
univ_page_size, RW_X_LATCH, mtr);
header = DICT_HDR + buf_block_get_frame(block);
buf_block_dbg_add_level(block, SYNC_DICT_HEADER);
return(header);
}
/**********************************************************************//**
Returns a new table, index, or space id. */
void
dict_hdr_get_new_id(
/*================*/
table_id_t* table_id, /*!< out: table id
(not assigned if NULL) */
index_id_t* index_id, /*!< out: index id
(not assigned if NULL) */
ulint* space_id, /*!< out: space id
(not assigned if NULL) */
const dict_table_t* table, /*!< in: table */
bool disable_redo) /*!< in: if true and table
object is NULL
then disable-redo */
{
dict_hdr_t* dict_hdr;
ib_id_t id;
mtr_t mtr;
mtr_start(&mtr);
if (table) {
if (table->is_temporary()) {
mtr.set_log_mode(MTR_LOG_NO_REDO);
}
} else if (disable_redo) {
/* In non-read-only mode we need to ensure that space-id header
page is written to disk else if page is removed from buffer
cache and re-loaded it would assign temporary tablespace id
to another tablespace.
This is not a case with read-only mode as there is no new object
that is created except temporary tablespace. */
mtr.set_log_mode(srv_read_only_mode
? MTR_LOG_NONE : MTR_LOG_NO_REDO);
}
/* Server started and let's say space-id = x
- table created with file-per-table
- space-id = x + 1
- crash
Case 1: If it was redo logged then we know that it will be
restored to x + 1
Case 2: if not redo-logged
Header will have the old space-id = x
This is OK because on restart there is no object with
space id = x + 1
Case 3:
space-id = x (on start)
space-id = x+1 (temp-table allocation) - no redo logging
space-id = x+2 (non-temp-table allocation), this get's
redo logged.
If there is a crash there will be only 2 entries
x (original) and x+2 (new) and disk hdr will be updated
to reflect x + 2 entry.
We cannot allocate the same space id to different objects. */
dict_hdr = dict_hdr_get(&mtr);
if (table_id) {
id = mach_read_from_8(dict_hdr + DICT_HDR_TABLE_ID);
id++;
mlog_write_ull(dict_hdr + DICT_HDR_TABLE_ID, id, &mtr);
*table_id = id;
}
if (index_id) {
id = mach_read_from_8(dict_hdr + DICT_HDR_INDEX_ID);
id++;
mlog_write_ull(dict_hdr + DICT_HDR_INDEX_ID, id, &mtr);
*index_id = id;
}
if (space_id) {
*space_id = mtr_read_ulint(dict_hdr + DICT_HDR_MAX_SPACE_ID,
MLOG_4BYTES, &mtr);
if (fil_assign_new_space_id(space_id)) {
mlog_write_ulint(dict_hdr + DICT_HDR_MAX_SPACE_ID,
*space_id, MLOG_4BYTES, &mtr);
}
}
mtr_commit(&mtr);
}
/**********************************************************************//**
Writes the current value of the row id counter to the dictionary header file
page. */
void
dict_hdr_flush_row_id(void)
/*=======================*/
{
dict_hdr_t* dict_hdr;
row_id_t id;
mtr_t mtr;
ut_ad(mutex_own(&dict_sys->mutex));
id = dict_sys->row_id;
mtr_start(&mtr);
dict_hdr = dict_hdr_get(&mtr);
mlog_write_ull(dict_hdr + DICT_HDR_ROW_ID, id, &mtr);
mtr_commit(&mtr);
}
/*****************************************************************//**
Creates the file page for the dictionary header. This function is
called only at the database creation.
@return TRUE if succeed */
static
ibool
dict_hdr_create(
/*============*/
mtr_t* mtr) /*!< in: mtr */
{
buf_block_t* block;
dict_hdr_t* dict_header;
ulint root_page_no;
ut_ad(mtr);
compile_time_assert(DICT_HDR_SPACE == 0);
/* Create the dictionary header file block in a new, allocated file
segment in the system tablespace */
block = fseg_create(fil_system.sys_space, 0,
DICT_HDR + DICT_HDR_FSEG_HEADER, mtr);
ut_a(DICT_HDR_PAGE_NO == block->page.id.page_no());
dict_header = dict_hdr_get(mtr);
/* Start counting row, table, index, and tree ids from
DICT_HDR_FIRST_ID */
mlog_write_ull(dict_header + DICT_HDR_ROW_ID,
DICT_HDR_FIRST_ID, mtr);
mlog_write_ull(dict_header + DICT_HDR_TABLE_ID,
DICT_HDR_FIRST_ID, mtr);
mlog_write_ull(dict_header + DICT_HDR_INDEX_ID,
DICT_HDR_FIRST_ID, mtr);
mlog_write_ulint(dict_header + DICT_HDR_MAX_SPACE_ID,
0, MLOG_4BYTES, mtr);
/* Obsolete, but we must initialize it anyway. */
mlog_write_ulint(dict_header + DICT_HDR_MIX_ID_LOW,
DICT_HDR_FIRST_ID, MLOG_4BYTES, mtr);
/* Create the B-tree roots for the clustered indexes of the basic
system tables */
/*--------------------------*/
root_page_no = btr_create(DICT_CLUSTERED | DICT_UNIQUE,
fil_system.sys_space, DICT_TABLES_ID,
dict_ind_redundant, NULL, mtr);
if (root_page_no == FIL_NULL) {
return(FALSE);
}
mlog_write_ulint(dict_header + DICT_HDR_TABLES, root_page_no,
MLOG_4BYTES, mtr);
/*--------------------------*/
root_page_no = btr_create(DICT_UNIQUE,
fil_system.sys_space, DICT_TABLE_IDS_ID,
dict_ind_redundant, NULL, mtr);
if (root_page_no == FIL_NULL) {
return(FALSE);
}
mlog_write_ulint(dict_header + DICT_HDR_TABLE_IDS, root_page_no,
MLOG_4BYTES, mtr);
/*--------------------------*/
root_page_no = btr_create(DICT_CLUSTERED | DICT_UNIQUE,
fil_system.sys_space, DICT_COLUMNS_ID,
dict_ind_redundant, NULL, mtr);
if (root_page_no == FIL_NULL) {
return(FALSE);
}
mlog_write_ulint(dict_header + DICT_HDR_COLUMNS, root_page_no,
MLOG_4BYTES, mtr);
/*--------------------------*/
root_page_no = btr_create(DICT_CLUSTERED | DICT_UNIQUE,
fil_system.sys_space, DICT_INDEXES_ID,
dict_ind_redundant, NULL, mtr);
if (root_page_no == FIL_NULL) {
return(FALSE);
}
mlog_write_ulint(dict_header + DICT_HDR_INDEXES, root_page_no,
MLOG_4BYTES, mtr);
/*--------------------------*/
root_page_no = btr_create(DICT_CLUSTERED | DICT_UNIQUE,
fil_system.sys_space, DICT_FIELDS_ID,
dict_ind_redundant, NULL, mtr);
if (root_page_no == FIL_NULL) {
return(FALSE);
}
mlog_write_ulint(dict_header + DICT_HDR_FIELDS, root_page_no,
MLOG_4BYTES, mtr);
/*--------------------------*/
return(TRUE);
}
/*****************************************************************//**
Initializes the data dictionary memory structures when the database is
started. This function is also called when the data dictionary is created.
@return DB_SUCCESS or error code. */
dberr_t
dict_boot(void)
/*===========*/
{
dict_table_t* table;
dict_index_t* index;
dict_hdr_t* dict_hdr;
mem_heap_t* heap;
mtr_t mtr;
/* Be sure these constants do not ever change. To avoid bloat,
only check the *NUM_FIELDS* in each table */
ut_ad(DICT_NUM_COLS__SYS_TABLES == 8);
ut_ad(DICT_NUM_FIELDS__SYS_TABLES == 10);
ut_ad(DICT_NUM_FIELDS__SYS_TABLE_IDS == 2);
ut_ad(DICT_NUM_COLS__SYS_COLUMNS == 7);
ut_ad(DICT_NUM_FIELDS__SYS_COLUMNS == 9);
ut_ad(DICT_NUM_COLS__SYS_INDEXES == 8);
ut_ad(DICT_NUM_FIELDS__SYS_INDEXES == 10);
ut_ad(DICT_NUM_COLS__SYS_FIELDS == 3);
ut_ad(DICT_NUM_FIELDS__SYS_FIELDS == 5);
ut_ad(DICT_NUM_COLS__SYS_FOREIGN == 4);
ut_ad(DICT_NUM_FIELDS__SYS_FOREIGN == 6);
ut_ad(DICT_NUM_FIELDS__SYS_FOREIGN_FOR_NAME == 2);
ut_ad(DICT_NUM_COLS__SYS_FOREIGN_COLS == 4);
ut_ad(DICT_NUM_FIELDS__SYS_FOREIGN_COLS == 6);
mtr_start(&mtr);
/* Create the hash tables etc. */
dict_init();
heap = mem_heap_create(450);
mutex_enter(&dict_sys->mutex);
/* Get the dictionary header */
dict_hdr = dict_hdr_get(&mtr);
/* Because we only write new row ids to disk-based data structure
(dictionary header) when it is divisible by
DICT_HDR_ROW_ID_WRITE_MARGIN, in recovery we will not recover
the latest value of the row id counter. Therefore we advance
the counter at the database startup to avoid overlapping values.
Note that when a user after database startup first time asks for
a new row id, then because the counter is now divisible by
..._MARGIN, it will immediately be updated to the disk-based
header. */
dict_sys->row_id = DICT_HDR_ROW_ID_WRITE_MARGIN
+ ut_uint64_align_up(mach_read_from_8(dict_hdr + DICT_HDR_ROW_ID),
DICT_HDR_ROW_ID_WRITE_MARGIN);
/* Insert into the dictionary cache the descriptions of the basic
system tables */
/*-------------------------*/
table = dict_mem_table_create("SYS_TABLES", fil_system.sys_space,
8, 0, 0, 0);
dict_mem_table_add_col(table, heap, "NAME", DATA_BINARY, 0,
MAX_FULL_NAME_LEN);
dict_mem_table_add_col(table, heap, "ID", DATA_BINARY, 0, 8);
/* ROW_FORMAT = (N_COLS >> 31) ? COMPACT : REDUNDANT */
dict_mem_table_add_col(table, heap, "N_COLS", DATA_INT, 0, 4);
/* The low order bit of TYPE is always set to 1. If ROW_FORMAT
is not REDUNDANT or COMPACT, this field matches table->flags. */
dict_mem_table_add_col(table, heap, "TYPE", DATA_INT, 0, 4);
dict_mem_table_add_col(table, heap, "MIX_ID", DATA_BINARY, 0, 0);
/* MIX_LEN may contain additional table flags when
ROW_FORMAT!=REDUNDANT. */
dict_mem_table_add_col(table, heap, "MIX_LEN", DATA_INT, 0, 4);
dict_mem_table_add_col(table, heap, "CLUSTER_NAME", DATA_BINARY, 0, 0);
dict_mem_table_add_col(table, heap, "SPACE", DATA_INT, 0, 4);
table->id = DICT_TABLES_ID;
dict_table_add_system_columns(table, heap);
table->add_to_cache();
dict_sys->sys_tables = table;
mem_heap_empty(heap);
index = dict_mem_index_create(table, "CLUST_IND",
DICT_UNIQUE | DICT_CLUSTERED, 1);
dict_mem_index_add_field(index, "NAME", 0);
index->id = DICT_TABLES_ID;
index = dict_index_add_to_cache(
index, mach_read_from_4(dict_hdr + DICT_HDR_TABLES));
ut_a(index);
ut_ad(!table->is_instant());
table->indexes.start->n_core_null_bytes = UT_BITS_IN_BYTES(
unsigned(table->indexes.start->n_nullable));
/*-------------------------*/
index = dict_mem_index_create(table, "ID_IND", DICT_UNIQUE, 1);
dict_mem_index_add_field(index, "ID", 0);
index->id = DICT_TABLE_IDS_ID;
index = dict_index_add_to_cache(
index, mach_read_from_4(dict_hdr + DICT_HDR_TABLE_IDS));
ut_a(index);
/*-------------------------*/
table = dict_mem_table_create("SYS_COLUMNS", fil_system.sys_space,
7, 0, 0, 0);
dict_mem_table_add_col(table, heap, "TABLE_ID", DATA_BINARY, 0, 8);
dict_mem_table_add_col(table, heap, "POS", DATA_INT, 0, 4);
dict_mem_table_add_col(table, heap, "NAME", DATA_BINARY, 0, 0);
dict_mem_table_add_col(table, heap, "MTYPE", DATA_INT, 0, 4);
dict_mem_table_add_col(table, heap, "PRTYPE", DATA_INT, 0, 4);
dict_mem_table_add_col(table, heap, "LEN", DATA_INT, 0, 4);
dict_mem_table_add_col(table, heap, "PREC", DATA_INT, 0, 4);
table->id = DICT_COLUMNS_ID;
dict_table_add_system_columns(table, heap);
table->add_to_cache();
dict_sys->sys_columns = table;
mem_heap_empty(heap);
index = dict_mem_index_create(table, "CLUST_IND",
DICT_UNIQUE | DICT_CLUSTERED, 2);
dict_mem_index_add_field(index, "TABLE_ID", 0);
dict_mem_index_add_field(index, "POS", 0);
index->id = DICT_COLUMNS_ID;
index = dict_index_add_to_cache(
index, mach_read_from_4(dict_hdr + DICT_HDR_COLUMNS));
ut_a(index);
ut_ad(!table->is_instant());
table->indexes.start->n_core_null_bytes = UT_BITS_IN_BYTES(
unsigned(table->indexes.start->n_nullable));
/*-------------------------*/
table = dict_mem_table_create("SYS_INDEXES", fil_system.sys_space,
DICT_NUM_COLS__SYS_INDEXES, 0, 0, 0);
dict_mem_table_add_col(table, heap, "TABLE_ID", DATA_BINARY, 0, 8);
dict_mem_table_add_col(table, heap, "ID", DATA_BINARY, 0, 8);
dict_mem_table_add_col(table, heap, "NAME", DATA_BINARY, 0, 0);
dict_mem_table_add_col(table, heap, "N_FIELDS", DATA_INT, 0, 4);
dict_mem_table_add_col(table, heap, "TYPE", DATA_INT, 0, 4);
/* SYS_INDEXES.SPACE is redundant and not being read;
SYS_TABLES.SPACE is being used instead. */
dict_mem_table_add_col(table, heap, "SPACE", DATA_INT, 0, 4);
dict_mem_table_add_col(table, heap, "PAGE_NO", DATA_INT, 0, 4);
dict_mem_table_add_col(table, heap, "MERGE_THRESHOLD", DATA_INT, 0, 4);
table->id = DICT_INDEXES_ID;
dict_table_add_system_columns(table, heap);
/* The column SYS_INDEXES.MERGE_THRESHOLD was "instantly"
added in MySQL 5.7 and MariaDB 10.2.2. Assign it DEFAULT NULL.
Because of file format compatibility, we must treat SYS_INDEXES
as a special case, relaxing some debug assertions
for DICT_INDEXES_ID. */
dict_table_get_nth_col(table, DICT_COL__SYS_INDEXES__MERGE_THRESHOLD)
->def_val.len = UNIV_SQL_NULL;
table->add_to_cache();
dict_sys->sys_indexes = table;
mem_heap_empty(heap);
index = dict_mem_index_create(table, "CLUST_IND",
DICT_UNIQUE | DICT_CLUSTERED, 2);
dict_mem_index_add_field(index, "TABLE_ID", 0);
dict_mem_index_add_field(index, "ID", 0);
index->id = DICT_INDEXES_ID;
index = dict_index_add_to_cache(
index, mach_read_from_4(dict_hdr + DICT_HDR_INDEXES));
ut_a(index);
ut_ad(!table->is_instant());
table->indexes.start->n_core_null_bytes = UT_BITS_IN_BYTES(
unsigned(table->indexes.start->n_nullable));
/*-------------------------*/
table = dict_mem_table_create("SYS_FIELDS", fil_system.sys_space,
3, 0, 0, 0);
dict_mem_table_add_col(table, heap, "INDEX_ID", DATA_BINARY, 0, 8);
dict_mem_table_add_col(table, heap, "POS", DATA_INT, 0, 4);
dict_mem_table_add_col(table, heap, "COL_NAME", DATA_BINARY, 0, 0);
table->id = DICT_FIELDS_ID;
dict_table_add_system_columns(table, heap);
table->add_to_cache();
dict_sys->sys_fields = table;
mem_heap_free(heap);
index = dict_mem_index_create(table, "CLUST_IND",
DICT_UNIQUE | DICT_CLUSTERED, 2);
dict_mem_index_add_field(index, "INDEX_ID", 0);
dict_mem_index_add_field(index, "POS", 0);
index->id = DICT_FIELDS_ID;
index = dict_index_add_to_cache(
index, mach_read_from_4(dict_hdr + DICT_HDR_FIELDS));
ut_a(index);
ut_ad(!table->is_instant());
table->indexes.start->n_core_null_bytes = UT_BITS_IN_BYTES(
unsigned(table->indexes.start->n_nullable));
mtr_commit(&mtr);
/*-------------------------*/
/* Initialize the insert buffer table and index for each tablespace */
dberr_t err = DB_SUCCESS;
err = ibuf_init_at_db_start();
if (err == DB_SUCCESS) {
if (srv_read_only_mode
&& srv_force_recovery != SRV_FORCE_NO_LOG_REDO
&& !ibuf_is_empty()) {
if (srv_force_recovery < SRV_FORCE_NO_IBUF_MERGE) {
ib::error() << "Change buffer must be empty when"
" --innodb-read-only is set!"
"You can try to recover the database with innodb_force_recovery=5";
err = DB_ERROR;
} else {
ib::warn() << "Change buffer not empty when --innodb-read-only "
"is set! but srv_force_recovery = " << srv_force_recovery
<< " , ignoring.";
}
}
if (err == DB_SUCCESS) {
/* Load definitions of other indexes on system tables */
dict_load_sys_table(dict_sys->sys_tables);
dict_load_sys_table(dict_sys->sys_columns);
dict_load_sys_table(dict_sys->sys_indexes);
dict_load_sys_table(dict_sys->sys_fields);
}
}
mutex_exit(&dict_sys->mutex);
return(err);
}
/*****************************************************************//**
Inserts the basic system table data into themselves in the database
creation. */
static
void
dict_insert_initial_data(void)
/*==========================*/
{
/* Does nothing yet */
}
/*****************************************************************//**
Creates and initializes the data dictionary at the server bootstrap.
@return DB_SUCCESS or error code. */
dberr_t
dict_create(void)
/*=============*/
{
mtr_t mtr;
mtr_start(&mtr);
dict_hdr_create(&mtr);
mtr_commit(&mtr);
dberr_t err = dict_boot();
if (err == DB_SUCCESS) {
dict_insert_initial_data();
}
return(err);
}