mariadb/sql/rpl_rli.h
unknown 9fae993024 MDEV-26: Global transaction ID.
Implement START SLAVE UNTIL master_gtid_pos = "<GTID position>".

Add test cases, including a test showing how to use this to promote
a new master among a set of slaves.
2013-05-15 19:52:21 +02:00

605 lines
18 KiB
C++

/* Copyright (c) 2005, 2012, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#ifndef RPL_RLI_H
#define RPL_RLI_H
#include "rpl_tblmap.h"
#include "rpl_reporting.h"
#include "rpl_utility.h"
#include "log.h" /* LOG_INFO, MYSQL_BIN_LOG */
#include "sql_class.h" /* THD */
#include "log_event.h"
struct RPL_TABLE_LIST;
class Master_info;
/****************************************************************************
Replication SQL Thread
Relay_log_info contains:
- the current relay log
- the current relay log offset
- master log name
- master log sequence corresponding to the last update
- misc information specific to the SQL thread
Relay_log_info is initialized from the slave.info file if such
exists. Otherwise, data members are intialized with defaults. The
initialization is done with init_relay_log_info() call.
The format of slave.info file:
relay_log_name
relay_log_pos
master_log_name
master_log_pos
To clean up, call end_relay_log_info()
*****************************************************************************/
class Relay_log_info : public Slave_reporting_capability
{
public:
/**
Flags for the state of the replication.
*/
enum enum_state_flag {
/** The replication thread is inside a statement */
IN_STMT,
/** Flag counter. Should always be last */
STATE_FLAGS_COUNT
};
/*
If flag set, then rli does not store its state in any info file.
This is the case only when we execute BINLOG SQL commands inside
a client, non-replication thread.
*/
bool no_storage;
/*
If true, events with the same server id should be replicated. This
field is set on creation of a relay log info structure by copying
the value of ::replicate_same_server_id and can be overridden if
necessary. For example of when this is done, check sql_binlog.cc,
where the BINLOG statement can be used to execute "raw" events.
*/
bool replicate_same_server_id;
/*** The following variables can only be read when protect by data lock ****/
/*
info_fd - file descriptor of the info file. set only during
initialization or clean up - safe to read anytime
cur_log_fd - file descriptor of the current read relay log
*/
File info_fd,cur_log_fd;
/*
Protected with internal locks.
Must get data_lock when resetting the logs.
*/
MYSQL_BIN_LOG relay_log;
LOG_INFO linfo;
/*
cur_log
Pointer that either points at relay_log.get_log_file() or
&rli->cache_buf, depending on whether the log is hot or there was
the need to open a cold relay_log.
cache_buf
IO_CACHE used when opening cold relay logs.
*/
IO_CACHE cache_buf,*cur_log;
/*
Keeps track of the number of transactions that commits
before fsyncing. The option --sync-relay-log-info determines
how many transactions should commit before fsyncing.
*/
uint sync_counter;
/*
Identifies when the recovery process is going on.
See sql/slave.cc:init_recovery for further details.
*/
bool is_relay_log_recovery;
/* The following variables are safe to read any time */
/* IO_CACHE of the info file - set only during init or end */
IO_CACHE info_file;
/*
When we restart slave thread we need to have access to the previously
created temporary tables. Modified only on init/end and by the SQL
thread, read only by SQL thread.
*/
TABLE *save_temporary_tables;
/*
standard lock acquisition order to avoid deadlocks:
run_lock, data_lock, relay_log.LOCK_log, relay_log.LOCK_index
*/
mysql_mutex_t data_lock, run_lock, sleep_lock;
/*
start_cond is broadcast when SQL thread is started
stop_cond - when stopped
data_cond - when data protected by data_lock changes
*/
mysql_cond_t start_cond, stop_cond, data_cond, sleep_cond;
/* parent Master_info structure */
Master_info *mi;
/*
Needed to deal properly with cur_log getting closed and re-opened with
a different log under our feet
*/
uint32 cur_log_old_open_count;
/*
Let's call a group (of events) :
- a transaction
or
- an autocommiting query + its associated events (INSERT_ID,
TIMESTAMP...)
We need these rli coordinates :
- relay log name and position of the beginning of the group we currently are
executing. Needed to know where we have to restart when replication has
stopped in the middle of a group (which has been rolled back by the slave).
- relay log name and position just after the event we have just
executed. This event is part of the current group.
Formerly we only had the immediately above coordinates, plus a 'pending'
variable, but this dealt wrong with the case of a transaction starting on a
relay log and finishing (commiting) on another relay log. Case which can
happen when, for example, the relay log gets rotated because of
max_binlog_size.
*/
char group_relay_log_name[FN_REFLEN];
ulonglong group_relay_log_pos;
char event_relay_log_name[FN_REFLEN];
ulonglong event_relay_log_pos;
ulonglong future_event_relay_log_pos;
#ifdef HAVE_valgrind
bool is_fake; /* Mark that this is a fake relay log info structure */
#endif
/*
Original log name and position of the group we're currently executing
(whose coordinates are group_relay_log_name/pos in the relay log)
in the master's binlog. These concern the *group*, because in the master's
binlog the log_pos that comes with each event is the position of the
beginning of the group.
*/
char group_master_log_name[FN_REFLEN];
volatile my_off_t group_master_log_pos;
/*
Handling of the relay_log_space_limit optional constraint.
ignore_log_space_limit is used to resolve a deadlock between I/O and SQL
threads, the SQL thread sets it to unblock the I/O thread and make it
temporarily forget about the constraint.
*/
ulonglong log_space_limit,log_space_total;
bool ignore_log_space_limit;
/*
Used by the SQL thread to instructs the IO thread to rotate
the logs when the SQL thread needs to purge to release some
disk space.
*/
bool sql_force_rotate_relay;
/*
When it commits, InnoDB internally stores the master log position it has
processed so far; the position to store is the one of the end of the
committing event (the COMMIT query event, or the event if in autocommit
mode).
*/
#if MYSQL_VERSION_ID < 40100
ulonglong future_master_log_pos;
#else
ulonglong future_group_master_log_pos;
#endif
time_t last_master_timestamp;
void clear_until_condition();
/*
Needed for problems when slave stops and we want to restart it
skipping one or more events in the master log that have caused
errors, and have been manually applied by DBA already.
Must be ulong as it's refered to from set_var.cc
*/
volatile ulong slave_skip_counter;
volatile ulong abort_pos_wait; /* Incremented on change master */
volatile ulong slave_run_id; /* Incremented on slave start */
ulong max_relay_log_size;
mysql_mutex_t log_space_lock;
mysql_cond_t log_space_cond;
THD * sql_thd;
#ifndef DBUG_OFF
int events_till_abort;
#endif
/*
inited changes its value within LOCK_active_mi-guarded critical
sections at times of start_slave_threads() (0->1) and end_slave() (1->0).
Readers may not acquire the mutex while they realize potential concurrency
issue.
If not set, the value of other members of the structure are undefined.
*/
volatile bool inited;
volatile bool abort_slave;
volatile uint slave_running;
/*
Condition and its parameters from START SLAVE UNTIL clause.
UNTIL condition is tested with is_until_satisfied() method that is
called by exec_relay_log_event(). is_until_satisfied() caches the result
of the comparison of log names because log names don't change very often;
this cache is invalidated by parts of code which change log names with
notify_*_log_name_updated() methods. (They need to be called only if SQL
thread is running).
*/
enum {
UNTIL_NONE= 0, UNTIL_MASTER_POS, UNTIL_RELAY_POS, UNTIL_GTID
} until_condition;
char until_log_name[FN_REFLEN];
ulonglong until_log_pos;
/* extension extracted from log_name and converted to int */
ulong until_log_name_extension;
/*
Cached result of comparison of until_log_name and current log name
-2 means unitialised, -1,0,1 are comarison results
*/
enum
{
UNTIL_LOG_NAMES_CMP_UNKNOWN= -2, UNTIL_LOG_NAMES_CMP_LESS= -1,
UNTIL_LOG_NAMES_CMP_EQUAL= 0, UNTIL_LOG_NAMES_CMP_GREATER= 1
} until_log_names_cmp_result;
/* Condition for UNTIL master_gtid_pos. */
slave_connection_state until_gtid_pos;
char cached_charset[6];
/*
trans_retries varies between 0 to slave_transaction_retries and counts how
many times the slave has retried the present transaction; gets reset to 0
when the transaction finally succeeds. retried_trans is a cumulative
counter: how many times the slave has retried a transaction (any) since
slave started.
*/
ulong trans_retries, retried_trans;
ulong executed_entries; /* For SLAVE STATUS */
/*
If the end of the hot relay log is made of master's events ignored by the
slave I/O thread, these two keep track of the coords (in the master's
binlog) of the last of these events seen by the slave I/O thread. If not,
ign_master_log_name_end[0] == 0.
As they are like a Rotate event read/written from/to the relay log, they
are both protected by rli->relay_log.LOCK_log.
*/
char ign_master_log_name_end[FN_REFLEN];
ulonglong ign_master_log_pos_end;
/*
Indentifies where the SQL Thread should create temporary files for the
LOAD DATA INFILE. This is used for security reasons.
*/
char slave_patternload_file[FN_REFLEN];
size_t slave_patternload_file_size;
/*
Current GTID being processed.
The sub_id gives the binlog order within one domain_id. A zero sub_id
means that there is no active GTID.
*/
uint64 gtid_sub_id;
rpl_gtid current_gtid;
Relay_log_info(bool is_slave_recovery);
~Relay_log_info();
/*
Invalidate cached until_log_name and group_relay_log_name comparison
result. Should be called after any update of group_realy_log_name if
there chances that sql_thread is running.
*/
inline void notify_group_relay_log_name_update()
{
if (until_condition==UNTIL_RELAY_POS)
until_log_names_cmp_result= UNTIL_LOG_NAMES_CMP_UNKNOWN;
}
/*
The same as previous but for group_master_log_name.
*/
inline void notify_group_master_log_name_update()
{
if (until_condition==UNTIL_MASTER_POS)
until_log_names_cmp_result= UNTIL_LOG_NAMES_CMP_UNKNOWN;
}
inline void inc_event_relay_log_pos()
{
event_relay_log_pos= future_event_relay_log_pos;
}
void inc_group_relay_log_pos(ulonglong log_pos,
bool skip_lock=0);
int wait_for_pos(THD* thd, String* log_name, longlong log_pos,
longlong timeout);
void close_temporary_tables();
/* Check if UNTIL condition is satisfied. See slave.cc for more. */
bool is_until_satisfied(THD *thd, Log_event *ev);
inline ulonglong until_pos()
{
DBUG_ASSERT(until_condition == UNTIL_MASTER_POS ||
until_condition == UNTIL_RELAY_POS);
return ((until_condition == UNTIL_MASTER_POS) ? group_master_log_pos :
group_relay_log_pos);
}
RPL_TABLE_LIST *tables_to_lock; /* RBR: Tables to lock */
uint tables_to_lock_count; /* RBR: Count of tables to lock */
table_mapping m_table_map; /* RBR: Mapping table-id to table */
bool get_table_data(TABLE *table_arg, table_def **tabledef_var, TABLE **conv_table_var) const
{
DBUG_ASSERT(tabledef_var && conv_table_var);
for (TABLE_LIST *ptr= tables_to_lock ; ptr != NULL ; ptr= ptr->next_global)
if (ptr->table == table_arg)
{
*tabledef_var= &static_cast<RPL_TABLE_LIST*>(ptr)->m_tabledef;
*conv_table_var= static_cast<RPL_TABLE_LIST*>(ptr)->m_conv_table;
DBUG_PRINT("debug", ("Fetching table data for table %s.%s:"
" tabledef: %p, conv_table: %p",
table_arg->s->db.str, table_arg->s->table_name.str,
*tabledef_var, *conv_table_var));
return true;
}
return false;
}
/*
Last charset (6 bytes) seen by slave SQL thread is cached here; it helps
the thread save 3 get_charset() per Query_log_event if the charset is not
changing from event to event (common situation).
When the 6 bytes are equal to 0 is used to mean "cache is invalidated".
*/
void cached_charset_invalidate();
bool cached_charset_compare(char *charset) const;
void cleanup_context(THD *, bool);
void slave_close_thread_tables(THD *);
void clear_tables_to_lock();
/*
Used to defer stopping the SQL thread to give it a chance
to finish up the current group of events.
The timestamp is set and reset in @c sql_slave_killed().
*/
time_t last_event_start_time;
/*
A container to hold on Intvar-, Rand-, Uservar- log-events in case
the slave is configured with table filtering rules.
The withhold events are executed when their parent Query destiny is
determined for execution as well.
*/
Deferred_log_events *deferred_events;
/*
State of the container: true stands for IRU events gathering,
false does for execution, either deferred or direct.
*/
bool deferred_events_collecting;
/*
Returns true if the argument event resides in the containter;
more specifically, the checking is done against the last added event.
*/
bool is_deferred_event(Log_event * ev)
{
return deferred_events_collecting ? deferred_events->is_last(ev) : false;
};
/* The general cleanup that slave applier may need at the end of query. */
inline void cleanup_after_query()
{
if (deferred_events)
deferred_events->rewind();
};
/* The general cleanup that slave applier may need at the end of session. */
void cleanup_after_session()
{
if (deferred_events)
delete deferred_events;
};
/**
Helper function to do after statement completion.
This function is called from an event to complete the group by
either stepping the group position, if the "statement" is not
inside a transaction; or increase the event position, if the
"statement" is inside a transaction.
@param event_log_pos
Master log position of the event. The position is recorded in the
relay log info and used to produce information for <code>SHOW
SLAVE STATUS</code>.
@param event_creation_time
Timestamp for the creation of the event on the master side. The
time stamp is recorded in the relay log info and used to compute
the <code>Seconds_behind_master</code> field.
*/
void stmt_done(my_off_t event_log_pos,
time_t event_creation_time, THD *thd);
/**
Set the value of a replication state flag.
@param flag Flag to set
*/
void set_flag(enum_state_flag flag)
{
m_flags |= (1UL << flag);
}
/**
Get the value of a replication state flag.
@param flag Flag to get value of
@return @c true if the flag was set, @c false otherwise.
*/
bool get_flag(enum_state_flag flag)
{
return m_flags & (1UL << flag);
}
/**
Clear the value of a replication state flag.
@param flag Flag to clear
*/
void clear_flag(enum_state_flag flag)
{
m_flags &= ~(1UL << flag);
}
/**
Is the replication inside a group?
Replication is inside a group if either:
- The OPTION_BEGIN flag is set, meaning we're inside a transaction
- The RLI_IN_STMT flag is set, meaning we're inside a statement
@retval true Replication thread is currently inside a group
@retval false Replication thread is currently not inside a group
*/
bool is_in_group() const {
return (sql_thd->variables.option_bits & OPTION_BEGIN) ||
(m_flags & (1UL << IN_STMT));
}
/**
Save pointer to Annotate_rows event and switch on the
binlog_annotate_row_events for this sql thread.
To be called when sql thread recieves an Annotate_rows event.
*/
inline void set_annotate_event(Annotate_rows_log_event *event)
{
free_annotate_event();
m_annotate_event= event;
sql_thd->variables.binlog_annotate_row_events= 1;
}
/**
Returns pointer to the saved Annotate_rows event or NULL if there is
no saved event.
*/
inline Annotate_rows_log_event* get_annotate_event()
{
return m_annotate_event;
}
/**
Delete saved Annotate_rows event (if any) and switch off the
binlog_annotate_row_events for this sql thread.
To be called when sql thread has applied the last (i.e. with
STMT_END_F flag) rbr event.
*/
inline void free_annotate_event()
{
if (m_annotate_event)
{
sql_thd->variables.binlog_annotate_row_events= 0;
delete m_annotate_event;
m_annotate_event= 0;
}
}
time_t get_row_stmt_start_timestamp()
{
return row_stmt_start_timestamp;
}
time_t set_row_stmt_start_timestamp()
{
if (row_stmt_start_timestamp == 0)
row_stmt_start_timestamp= my_time(0);
return row_stmt_start_timestamp;
}
void reset_row_stmt_start_timestamp()
{
row_stmt_start_timestamp= 0;
}
void set_long_find_row_note_printed()
{
long_find_row_note_printed= true;
}
void unset_long_find_row_note_printed()
{
long_find_row_note_printed= false;
}
bool is_long_find_row_note_printed()
{
return long_find_row_note_printed;
}
private:
uint32 m_flags;
/*
Runtime state for printing a note when slave is taking
too long while processing a row event.
*/
time_t row_stmt_start_timestamp;
bool long_find_row_note_printed;
Annotate_rows_log_event *m_annotate_event;
};
// Defined in rpl_rli.cc
int init_relay_log_info(Relay_log_info* rli, const char* info_fname);
extern struct rpl_slave_state rpl_global_gtid_slave_state;
int rpl_load_gtid_slave_state(THD *thd);
#endif /* RPL_RLI_H */