mariadb/storage/tokudb/ha_tokudb_update.cc
Rich Prohaska 185542015f refs #5726 upsert cleanup
git-svn-id: file:///svn/mysql/tokudb-engine/tokudb-engine@50486 c7de825b-a66e-492c-adef-691d508d4ae1
2013-04-17 00:02:16 -04:00

748 lines
26 KiB
C++

#if TOKU_INCLUDE_UPSERT
// Point updates and upserts
//
// Restrictions:
// No triggers
// No binary logging
// Primary key must be defined
// Simple and compound primary key
// Int, char and varchar primary key types
// No updates on fields that are part of any key
// No clustering keys
// Integer and char field updates
// Update expressions:
// x = constant
// x = x+constant
// x = x-constant
// x = if(x=0,0,x-1)
// Session variable enables fast updates and fast upserts
// Session variable disables slow updates and slow upserts
// Bugs:
// Does this work with hot indexing? Probably not.
// Future features:
// Support more primary key types
// Allow statement based binary logging
// Force statement logging for fast updates
// Support clustering keys using broadcast updates
// Support primary key ranges using multicast messages
// Support more complicated update expressions
// Replace field_offset
int tokudb_fast_update_debug = 0;
int tokudb_upsert_debug = 0;
// Debug function to dump an Item
static void dump_item(Item *item) {
fprintf(stderr, "%u", item->type());
switch (item->type()) {
case Item::FUNC_ITEM: {
Item_func *func = static_cast<Item_func*>(item);
uint n = func->argument_count();
Item **arguments = func->arguments();
fprintf(stderr, ":func=%u,%s,%u(", func->functype(), func->func_name(), n);
for (uint i = 0; i < n ; i++) {
dump_item(arguments[i]);
if (i < n-1)
fprintf(stderr,",");
}
fprintf(stderr, ")");
break;
}
case Item::INT_ITEM: {
Item_int *int_item = static_cast<Item_int*>(item);
fprintf(stderr, ":int=%lld", int_item->val_int());
break;
}
case Item::STRING_ITEM: {
Item_string *str_item = static_cast<Item_string*>(item);
fprintf(stderr, ":str=%s", str_item->val_str(NULL)->c_ptr());
break;
}
case Item::FIELD_ITEM: {
Item_field *field_item = static_cast<Item_field*>(item);
fprintf(stderr, ":field=%s.%s.%s", field_item->db_name, field_item->table_name, field_item->field_name);
break;
}
case Item::COND_ITEM: {
Item_cond *cond_item = static_cast<Item_cond*>(item);
fprintf(stderr, ":cond=%s(\n", cond_item->func_name());
List_iterator<Item> li(*cond_item->argument_list());
Item *list_item;
while ((list_item = li++)) {
dump_item(list_item);
fprintf(stderr, "\n");
}
fprintf(stderr, ")\n");
break;
}
default:
break;
}
}
// Debug function to dump an Item list
static void dump_item_list(const char *h, List<Item> &l) {
fprintf(stderr, "%s elements=%u\n", h, l.elements);
List_iterator<Item> li(l);
Item *item;
while ((item = li++) != NULL) {
dump_item(item);
fprintf(stderr, "\n");
}
}
// Find a Field by its Item name
static Field *find_field_by_name(TABLE *table, Item *item) {
if (item->type() != Item::FIELD_ITEM)
return NULL;
Item_field *field_item = static_cast<Item_field*>(item);
#if 0
if (strcmp(table->s->db.str, field_item->db_name) != 0 ||
strcmp(table->s->table_name.str, field_item->table_name) != 0)
return NULL;
// TODO: item->field may be a shortcut instead of this table lookup
Field *found_field = NULL;
for (uint i = 0; i < table->s->fields; i++) {
Field *test_field = table->s->field[i];
if (strcmp(field_item->field_name, test_field->field_name) == 0) {
found_field = test_field;
break;
}
}
return found_field;
#else
return field_item->field;
#endif
}
// Return the starting offset in the value for a particular index (selected by idx) of a
// particular field (selected by expand_field_num).
// This only works for fixed length fields
static uint32_t update_field_offset(uint32_t null_bytes, KEY_AND_COL_INFO *kc_info, int idx, int expand_field_num) {
uint32_t offset = null_bytes;
for (int i = 0; i < expand_field_num; i++) {
if (bitmap_is_set(&kc_info->key_filters[idx], i)) // skip key fields
continue;
offset += kc_info->field_lengths[i];
}
return offset;
}
// Determine if an update operation can be offloaded to the storage engine.
// The update operation consists of a list of update expressions (fields[i] = values[i]), and a list
// of where conditions (conds). The function returns true is the update is handled in the storage engine.
// Otherwise, false is returned.
int ha_tokudb::fast_update(THD *thd, List<Item> &fields, List<Item> &values, Item *conds) {
int error = 0;
if (tokudb_fast_update_debug) {
dump_item_list("fields", fields);
dump_item_list("values", values);
if (conds) {
fprintf(stderr, "conds\n"); dump_item(conds); fprintf(stderr, "\n");
}
}
if (fields.elements < 1 || fields.elements != values.elements)
return ENOTSUP; // something is fishy with the parameters
rw_rdlock(&share->num_DBs_lock);
if (share->num_DBs > table->s->keys + test(hidden_primary_key)) // hot index in progress
error = ENOTSUP; // run on the slow path
if (error == 0 && !check_fast_update(thd, fields, values, conds))
error = ENOTSUP;
if (error == 0)
error = send_update_message(fields, values, conds, transaction);
rw_unlock(&share->num_DBs_lock);
if (error != 0) {
if (get_disable_slow_update(thd))
error = HA_ERR_UNSUPPORTED;
if (error != ENOTSUP)
print_error(error, MYF(0));
}
return error;
}
// Return true if an expression is a simple int expression or a simple function of +- int expression.
static bool check_int_result(Item *item) {
Item::Type t = item->type();
if (t == Item::INT_ITEM)
return true;
else if (t == Item::FUNC_ITEM) {
Item_func *item_func = static_cast<Item_func*>(item);
if (strcmp(item_func->func_name(), "+") != 0 && strcmp(item_func->func_name(), "-") != 0)
return false;
if (item_func->argument_count() != 1)
return false;
Item **arguments = item_func->arguments();
if (arguments[0]->type() != Item::INT_ITEM)
return false;
return true;
} else
return false;
}
// Return true if an expression looks like field_name op constant.
static bool check_x_op_constant(const char *field_name, Item *item, const char *op, Item **item_constant) {
if (item->type() != Item::FUNC_ITEM)
return false;
Item_func *item_func = static_cast<Item_func*>(item);
if (strcmp(item_func->func_name(), op) != 0)
return false;
Item **arguments = item_func->arguments();
uint n = item_func->argument_count();
if (n != 2)
return false;
if (arguments[0]->type() != Item::FIELD_ITEM)
return false;
Item_field *arg0 = static_cast<Item_field*>(arguments[0]);
if (strcmp(field_name, arg0->field_name) != 0)
return false;
if (!check_int_result(arguments[1]))
return false;
*item_constant = arguments[1];
return true;
}
// Return true if an expression looks like field_name = constant
static bool check_x_equal_0(const char *field_name, Item *item) {
Item *item_constant;
if (!check_x_op_constant(field_name, item, "=", &item_constant))
return false;
if (item_constant->val_int() != 0)
return false;
return true;
}
// Return true if an expression looks like fieldname - 1
static bool check_x_minus_1(const char *field_name, Item *item) {
Item *item_constant;
if (!check_x_op_constant(field_name, item, "-", &item_constant))
return false;
if (item_constant->val_int() != 1)
return false;
return true;
}
// Return true if an expression looks like if(fieldname=0, 0, fieldname-1) and
// the field named by fieldname is an unsigned int.
static bool check_decr_floor_expression(Field *lhs_field, Item *item) {
if (item->type() != Item::FUNC_ITEM)
return false;
Item_func *item_func = static_cast<Item_func*>(item);
Item **arguments = item_func->arguments();
uint n = item_func->argument_count();
if (n != 3)
return false;
if (!check_x_equal_0(lhs_field->field_name, arguments[0]))
return false;
if (arguments[1]->type() != Item::INT_ITEM || arguments[1]->val_int() != 0)
return false;
if (!check_x_minus_1(lhs_field->field_name, arguments[2]))
return false;
if (!(lhs_field->flags & UNSIGNED_FLAG))
return false;
return true;
}
// Check if lhs = rhs expression is simple. Return true if it is.
static bool check_simple_update_expression(Item *lhs_item, Item *rhs_item, TABLE *table) {
Field *lhs_field = find_field_by_name(table, lhs_item);
if (lhs_field == NULL)
return false;
if (!lhs_field->part_of_key.is_clear_all())
return false;
enum_field_types lhs_type = lhs_field->type();
Item::Type rhs_type = rhs_item->type();
switch (lhs_type) {
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_INT24:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
if (check_int_result(rhs_item))
return true;
Item *item_constant;
if (check_x_op_constant(lhs_field->field_name, rhs_item, "+", &item_constant))
return true;
if (check_x_op_constant(lhs_field->field_name, rhs_item, "-", &item_constant))
return true;
if (check_decr_floor_expression(lhs_field, rhs_item))
return true;
break;
case MYSQL_TYPE_STRING:
if (rhs_type == Item::INT_ITEM || rhs_type == Item::STRING_ITEM)
return true;
break;
default:
break;
}
return false;
}
// Check that all update expressions are simple. Return true if they are.
static bool check_all_update_expressions(List<Item> &fields, List<Item> &values, TABLE *table) {
List_iterator<Item> lhs_i(fields);
List_iterator<Item> rhs_i(values);
while (1) {
Item *lhs_item = lhs_i++;
if (lhs_item == NULL)
break;
Item *rhs_item = rhs_i++;
if (rhs_item == NULL)
assert(0); // can not happen
if (!check_simple_update_expression(lhs_item, rhs_item, table))
return false;
}
return true;
}
#if 0
static bool field_name_in_primary_key(TABLE *table, const char *field_name) {
if (table->s->primary_key >= table->s->keys)
return false;
KEY *key = &table->s->key_info[table->s->primary_key];
if (key->key_parts != 1)
return false;
KEY_PART_INFO *key_part = &key->key_part[0];
if (key->key_length != key_part->store_length)
return false;
if (strcmp(field_name, key_part->field->field_name) != 0)
return false;
return true;
}
#endif
// Check that an expression looks like fieldname = constant, fieldname is part of the
// primary key, and the named field is an int, char or varchar type. Return true if it does.
static bool check_pk_field_equal_constant(Item *item, TABLE *table, MY_BITMAP &pk_fields) {
if (item->type() != Item::FUNC_ITEM)
return false;
Item_func *func = static_cast<Item_func*>(item);
if (strcmp(func->func_name(), "=") != 0)
return false;
uint n = func->argument_count();
if (n != 2)
return false;
Item **arguments = func->arguments();
Field *field = find_field_by_name(table, arguments[0]);
if (field == NULL)
return false;
if (!bitmap_test_and_clear(&pk_fields, field->field_index))
return false;
switch (field->type()) {
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_INT24:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
case MYSQL_TYPE_STRING:
case MYSQL_TYPE_VARCHAR:
return arguments[1]->type() == Item::INT_ITEM || arguments[1]->type() == Item::STRING_ITEM;
default:
return false;
}
}
// Check that the where condition covers all of the primary key components with fieldname = constant
// expressions. Return true if it does.
static bool check_point_update(Item *conds, TABLE *table) {
bool result = false;
if (conds == NULL)
return false; // no where condition on the update
if (table->s->primary_key >= table->s->keys)
return false; // no primary key defined
// use a bitmap of the primary key fields to keep track of those fields that are covered
// by the where conditions
MY_BITMAP pk_fields;
if (bitmap_init(&pk_fields, NULL, table->s->fields, FALSE)) // 1 -> failure
return false;
KEY *key = &table->s->key_info[table->s->primary_key];
for (uint i = 0; i < key->key_parts; i++)
bitmap_set_bit(&pk_fields, key->key_part[i].field->field_index);
switch (conds->type()) {
case Item::FUNC_ITEM:
result = check_pk_field_equal_constant(conds, table, pk_fields);
break;
case Item::COND_ITEM: {
Item_cond *cond_item = static_cast<Item_cond*>(conds);
if (strcmp(cond_item->func_name(), "and") != 0)
break;
List_iterator<Item> li(*cond_item->argument_list());
Item *list_item;
result = true;
while (result == true && (list_item = li++)) {
result = check_pk_field_equal_constant(list_item, table, pk_fields);
}
break;
}
default:
break;
}
if (!bitmap_is_clear_all(&pk_fields))
result = false;
bitmap_free(&pk_fields);
return result;
}
// Return true if there are any clustering keys (except the primary).
// Precompute this when the table is opened.
static bool clustering_keys_exist(TABLE *table) {
for (uint i = 0; i < table->s->keys; i++)
if (i != table->s->primary_key && (table->s->key_info[i].flags & HA_CLUSTERING))
return true;
return false;
}
#include <binlog.h>
// Check if an update operation can be handled by this storage engine. Return true if it can.
bool ha_tokudb::check_fast_update(THD *thd, List<Item> &fields, List<Item> &values, Item *conds) {
// fast upserts disabled
if (!get_enable_fast_update(thd))
return false;
if (!transaction)
return false;
// avoid strict mode arithmetic overflow issues
if (thd->is_strict_mode())
return false;
// no triggers
if (table->triggers)
return false;
// no binlog
if (mysql_bin_log.is_open())
return false;
// no clustering keys (need to broadcast an increment into the clustering keys since we are selecting with the primary key)
if (clustering_keys_exist(table))
return false;
// fast updates enabled with session variable
if (!get_enable_fast_update(thd))
return false;
if (!check_all_update_expressions(fields, values, table))
return false;
if (!check_point_update(conds, table))
return false;
return true;
}
// Marshall a simple row descriptor to a buffer.
static void marshall_simple_descriptor(tokudb::buffer &b, TABLE *table, KEY_AND_COL_INFO &kc_info, uint key_num) {
Simple_row_descriptor sd;
sd.m_fixed_field_offset = table->s->null_bytes;
sd.m_var_field_offset = sd.m_fixed_field_offset + kc_info.mcp_info[key_num].fixed_field_size;
sd.m_var_offset_bytes = kc_info.mcp_info[key_num].len_of_offsets;
sd.m_num_var_fields = sd.m_var_offset_bytes == 0 ? 0 : kc_info.mcp_info[key_num].len_of_offsets / sd.m_var_offset_bytes;
sd.append(b);
}
static inline uint32_t get_null_bit_position(uint32_t null_bit);
// Marshall update operatins to a buffer.
static void marshall_simple_update(tokudb::buffer &b, Item *lhs_item, Item *rhs_item, TABLE *table, TOKUDB_SHARE *share) {
// figure out the update operation type (again)
Field *lhs_field = find_field_by_name(table, lhs_item);
assert(lhs_field); // we found it before, so this should work
// compute the update info
uint32_t field_type;
uint32_t field_num = lhs_field->field_index;
uint32_t field_null_num = 0;
if (lhs_field->real_maybe_null())
field_null_num = (1<<31) + (field_num/8)*8 + get_null_bit_position(lhs_field->null_bit);
uint32_t offset = update_field_offset(table->s->null_bytes, &share->kc_info, table->s->primary_key, lhs_field->field_index);
void *v_ptr = NULL;
uint32_t v_length;
uint32_t update_operation;
longlong v_ll;
String v_str;
switch (lhs_field->type()) {
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_INT24:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG: {
Field_num *lhs_num = static_cast<Field_num*>(lhs_field);
field_type = lhs_num->unsigned_flag ? UPDATE_TYPE_UINT : UPDATE_TYPE_INT;
switch (rhs_item->type()) {
case Item::INT_ITEM: {
update_operation = '=';
v_ll = rhs_item->val_int();
v_length = lhs_field->pack_length();
v_ptr = &v_ll;
break;
}
case Item::FUNC_ITEM: {
Item_func *rhs_func = static_cast<Item_func*>(rhs_item);
Item **arguments = rhs_func->arguments();
if (strcmp(rhs_func->func_name(), "if") == 0) {
update_operation = '-'; // we only support one if function for now, and it is a descrement with floor.
v_ll = 1;
} else if (rhs_func->argument_count() == 1) {
update_operation = '=';
v_ll = rhs_func->val_int();
} else {
update_operation = rhs_func->func_name()[0];
v_ll = arguments[1]->val_int();
}
v_length = lhs_field->pack_length();
v_ptr = &v_ll;
break;
}
default:
assert(0);
}
break;
}
case MYSQL_TYPE_STRING: {
update_operation = '=';
field_type = lhs_field->binary() ? UPDATE_TYPE_BINARY : UPDATE_TYPE_CHAR;
v_str = *rhs_item->val_str(&v_str);
v_length = v_str.length();
if (v_length >= lhs_field->pack_length()) {
v_length = lhs_field->pack_length();
v_str.length(v_length); // truncate
} else {
v_length = lhs_field->pack_length();
uchar pad_char = lhs_field->binary() ? 0 : lhs_field->charset()->pad_char;
v_str.fill(lhs_field->pack_length(), pad_char); // pad
}
v_ptr = v_str.c_ptr();
break;
}
default:
assert(0);
}
// marshall the update fields into the buffer
b.append(&update_operation, sizeof update_operation);
b.append(&field_type, sizeof field_type);
b.append(&field_num, sizeof field_num);
b.append(&field_null_num, sizeof field_null_num);
b.append(&offset, sizeof offset);
b.append(&v_length, sizeof v_length);
b.append(v_ptr, v_length);
}
// Save an item's value into the appropriate field. Return 0 if successful.
static int save_in_field(Item *item, TABLE *table) {
assert(item->type() == Item::FUNC_ITEM);
Item_func *func = static_cast<Item_func*>(item);
assert(strcmp(func->func_name(), "=") == 0);
uint n = func->argument_count();
assert(n == 2);
Item **arguments = func->arguments();
assert(arguments[0]->type() == Item::FIELD_ITEM);
Item_field *field_item = static_cast<Item_field*>(arguments[0]);
my_bitmap_map *old_map = dbug_tmp_use_all_columns(table, table->write_set);
int error = arguments[1]->save_in_field(field_item->field, 0);
dbug_tmp_restore_column_map(table->write_set, old_map);
return error;
}
// Generate an update message for an update operation and send it into the primary tree. Return 0 if successful.
int ha_tokudb::send_update_message(List<Item> &fields, List<Item> &values, Item *conds, DB_TXN *txn) {
int error;
// Save the primary key from the where conditions
Item::Type t = conds->type();
if (t == Item::FUNC_ITEM) {
error = save_in_field(conds, table);
} else if (t == Item::COND_ITEM) {
Item_cond *cond_item = static_cast<Item_cond*>(conds);
List_iterator<Item> li(*cond_item->argument_list());
Item *list_item;
for (error = 0; error == 0 && (list_item = li++); ) {
error = save_in_field(list_item, table);
}
} else
assert(0);
if (error)
return error;
// put the primary key into key_buff and wrap it with key_dbt
DBT key_dbt;
bool has_null;
create_dbt_key_from_table(&key_dbt, primary_key, key_buff, table->record[0], &has_null);
// construct the update message
tokudb::buffer update_message;
uchar operation = UPDATE_OP_SIMPLE_UPDATE;
update_message.append(&operation, sizeof operation);
uint32_t update_mode = 0;
update_message.append(&update_mode, sizeof update_mode);
// append the descriptor
marshall_simple_descriptor(update_message, table, share->kc_info, primary_key);
// append the updates
List_iterator<Item> lhs_i(fields);
List_iterator<Item> rhs_i(values);
while (error == 0) {
Item *lhs_item = lhs_i++;
if (lhs_item == NULL)
break;
Item *rhs_item = rhs_i++;
if (rhs_item == NULL)
assert(0); // can not happen
marshall_simple_update(update_message, lhs_item, rhs_item, table, share);
}
// send the message
DBT update_dbt; memset(&update_dbt, 0, sizeof update_dbt);
update_dbt.data = update_message.data();
update_dbt.size = update_message.size();
error = share->key_file[primary_key]->update(share->key_file[primary_key], txn, &key_dbt, &update_dbt, 0);
return error;
}
// Determine if an upsert operation can be offloaded to the storage engine.
// An upsert consists of a row and a list of update expressions (update_fields[i] = update_values[i]).
// The function returns true is the upsert is handled in the storage engine. Otherwise, false is returned.
int ha_tokudb::upsert(THD *thd, uchar *record, List<Item> &update_fields, List<Item> &update_values) {
int error = 0;
if (tokudb_upsert_debug) {
fprintf(stderr, "upsert\n");
dump_item_list("update_fields", update_fields);
dump_item_list("update_values", update_values);
}
if (update_fields.elements < 1 || update_fields.elements != update_values.elements)
return ENOTSUP; // not an upsert or something is fishy with the parameters
rw_rdlock(&share->num_DBs_lock);
if (share->num_DBs > table->s->keys + test(hidden_primary_key)) // hot index in progress
error = ENOTSUP; // run on the slow path
if (error == 0 && !check_upsert(thd, update_fields, update_values))
error = ENOTSUP;
if (error == 0)
error = send_upsert_message(thd, record, update_fields, update_values, transaction);
rw_unlock(&share->num_DBs_lock);
if (error != 0) {
if (get_disable_slow_upsert(thd))
error = HA_ERR_UNSUPPORTED;
if (error != ENOTSUP)
print_error(error, MYF(0));
}
return error;
}
// Check if an upsert can be handled by this storage engine. Return trus if it can.
bool ha_tokudb::check_upsert(THD *thd, List<Item> &update_fields, List<Item> &update_values) {
// fast upserts disabled
if (!get_enable_fast_upsert(thd))
return false;
if (!transaction)
return false;
// avoid strict mode arithmetic overflow issues
if (thd->is_strict_mode())
return false;
// no triggers
if (table->triggers)
return false;
// no binlog
if (mysql_bin_log.is_open())
return false;
// primary key must exist
if (table->s->primary_key >= table->s->keys)
return false;
// no clustering keys (need to broadcast an increment into the clustering keys since we are selecting with the primary key)
if (clustering_keys_exist(table))
return false;
if (!check_all_update_expressions(update_fields, update_values, table))
return false;
return true;
}
// Generate an upsert message and send it into the primary tree. Return 0 if successful.
int ha_tokudb::send_upsert_message(THD *thd, uchar *record, List<Item> &update_fields, List<Item> &update_values, DB_TXN *txn) {
int error = 0;
// generate primary key
DBT key_dbt;
bool has_null;
create_dbt_key_from_table(&key_dbt, primary_key, primary_key_buff, record, &has_null);
// generate packed row
DBT row;
error = pack_row(&row, (const uchar *) record, primary_key);
if (error)
return error;
tokudb::buffer update_message;
// append the operation
uchar operation = UPDATE_OP_SIMPLE_UPSERT;
update_message.append(&operation, sizeof operation);
uint32_t update_mode = 0;
update_message.append(&update_mode, sizeof update_mode);
// append the row
uint32_t row_length = row.size;
update_message.append(&row_length, sizeof row_length);
update_message.append(row.data, row_length);
// append the descriptor
marshall_simple_descriptor(update_message, table, share->kc_info, primary_key);
// append the update expressions
List_iterator<Item> lhs_i(update_fields);
List_iterator<Item> rhs_i(update_values);
while (1) {
Item *lhs_item = lhs_i++;
if (lhs_item == NULL)
break;
Item *rhs_item = rhs_i++;
if (rhs_item == NULL)
assert(0); // can not happen
marshall_simple_update(update_message, lhs_item, rhs_item, table, share);
}
// send the upsert message
DBT update_dbt; memset(&update_dbt, 0, sizeof update_dbt);
update_dbt.data = update_message.data();
update_dbt.size = update_message.size();
error = share->key_file[primary_key]->update(share->key_file[primary_key], txn, &key_dbt, &update_dbt, 0);
return error;
}
#endif