mariadb/storage/maria/ma_rt_mbr.c
Michal Schorm 17b4f99928 Update FSF address
This commit is based on the work of Michal Schorm, rebased on the
earliest MariaDB version.

Th command line used to generate this diff was:

find ./ -type f \
  -exec sed -i -e 's/Foundation, Inc., 59 Temple Place, Suite 330, Boston, /Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, /g' {} \; \
  -exec sed -i -e 's/Foundation, Inc. 59 Temple Place.* Suite 330, Boston, /Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, /g' {} \; \
  -exec sed -i -e 's/MA.*.....-1307.*USA/MA 02110-1335 USA/g' {} \; \
  -exec sed -i -e 's/Foundation, Inc., 59 Temple/Foundation, Inc., 51 Franklin/g' {} \; \
  -exec sed -i -e 's/Place, Suite 330, Boston, MA.*02111-1307.*USA/Street, Fifth Floor, Boston, MA 02110-1335 USA/g' {} \; \
  -exec sed -i -e 's/MA.*.....-1307/MA 02110-1335/g' {} \;
2019-05-10 20:52:00 +03:00

818 lines
22 KiB
C

/* Copyright (C) 2006 MySQL AB & Ramil Kalimullin & MySQL Finland AB
& TCX DataKonsult AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
#include "maria_def.h"
#ifdef HAVE_RTREE_KEYS
#include "ma_rt_index.h"
#include "ma_rt_mbr.h"
#define INTERSECT_CMP(amin, amax, bmin, bmax) ((amin > bmax) || (bmin > amax))
#define CONTAIN_CMP(amin, amax, bmin, bmax) ((bmin > amin) || (bmax < amax))
#define WITHIN_CMP(amin, amax, bmin, bmax) ((amin > bmin) || (amax < bmax))
#define DISJOINT_CMP(amin, amax, bmin, bmax) ((amin <= bmax) && (bmin <= amax))
#define EQUAL_CMP(amin, amax, bmin, bmax) ((amin != bmin) || (amax != bmax))
#define FCMP(A, B) ((int)(A) - (int)(B))
#define p_inc(A, B, X) {A += X; B += X;}
#define RT_CMP(nextflag) \
if (nextflag & MBR_INTERSECT) \
{ \
if (INTERSECT_CMP(amin, amax, bmin, bmax)) \
return 1; \
} \
else if (nextflag & MBR_CONTAIN) \
{ \
if (CONTAIN_CMP(amin, amax, bmin, bmax)) \
return 1; \
} \
else if (nextflag & MBR_WITHIN) \
{ \
if (WITHIN_CMP(amin, amax, bmin, bmax)) \
return 1; \
} \
else if (nextflag & MBR_EQUAL) \
{ \
if (EQUAL_CMP(amin, amax, bmin, bmax)) \
return 1; \
} \
else if (nextflag & MBR_DISJOINT) \
{ \
if (DISJOINT_CMP(amin, amax, bmin, bmax)) \
return 1; \
}\
else /* if unknown comparison operator */ \
{ \
DBUG_ASSERT(0); \
}
#define RT_CMP_KORR(type, korr_func, len, nextflag) \
{ \
type amin, amax, bmin, bmax; \
amin= korr_func(a); \
bmin= korr_func(b); \
amax= korr_func(a+len); \
bmax= korr_func(b+len); \
RT_CMP(nextflag); \
}
#define RT_CMP_GET(type, get_func, len, nextflag) \
{ \
type amin, amax, bmin, bmax; \
get_func(amin, a); \
get_func(bmin, b); \
get_func(amax, a+len); \
get_func(bmax, b+len); \
RT_CMP(nextflag); \
}
/*
Compares two keys a and b depending on nextflag
nextflag can contain these flags:
MBR_INTERSECT(a,b) a overlaps b
MBR_CONTAIN(a,b) a contains b
MBR_DISJOINT(a,b) a disjoint b
MBR_WITHIN(a,b) a within b
MBR_EQUAL(a,b) All coordinates of MBRs are equal
MBR_DATA(a,b) Data reference is the same
Returns 0 on success.
*/
int maria_rtree_key_cmp(HA_KEYSEG *keyseg, const uchar *b, const uchar *a,
uint key_length, uint32 nextflag)
{
for (; (int) key_length > 0; keyseg += 2 )
{
uint32 keyseg_length;
switch ((enum ha_base_keytype) keyseg->type) {
case HA_KEYTYPE_INT8:
RT_CMP_KORR(int8, mi_sint1korr, 1, nextflag);
break;
case HA_KEYTYPE_BINARY:
RT_CMP_KORR(uint8, mi_uint1korr, 1, nextflag);
break;
case HA_KEYTYPE_SHORT_INT:
RT_CMP_KORR(int16, mi_sint2korr, 2, nextflag);
break;
case HA_KEYTYPE_USHORT_INT:
RT_CMP_KORR(uint16, mi_uint2korr, 2, nextflag);
break;
case HA_KEYTYPE_INT24:
RT_CMP_KORR(int32, mi_sint3korr, 3, nextflag);
break;
case HA_KEYTYPE_UINT24:
RT_CMP_KORR(uint32, mi_uint3korr, 3, nextflag);
break;
case HA_KEYTYPE_LONG_INT:
RT_CMP_KORR(int32, mi_sint4korr, 4, nextflag);
break;
case HA_KEYTYPE_ULONG_INT:
RT_CMP_KORR(uint32, mi_uint4korr, 4, nextflag);
break;
#ifdef HAVE_LONG_LONG
case HA_KEYTYPE_LONGLONG:
RT_CMP_KORR(longlong, mi_sint8korr, 8, nextflag)
break;
case HA_KEYTYPE_ULONGLONG:
RT_CMP_KORR(ulonglong, mi_uint8korr, 8, nextflag)
break;
#endif
case HA_KEYTYPE_FLOAT:
/* The following should be safe, even if we compare doubles */
RT_CMP_GET(float, mi_float4get, 4, nextflag);
break;
case HA_KEYTYPE_DOUBLE:
RT_CMP_GET(double, mi_float8get, 8, nextflag);
break;
case HA_KEYTYPE_END:
goto end;
default:
return 1;
}
keyseg_length= keyseg->length * 2;
key_length-= keyseg_length;
a+= keyseg_length;
b+= keyseg_length;
}
end:
if (nextflag & MBR_DATA)
{
const uchar *end= a + keyseg->length;
do
{
if (*a++ != *b++)
return FCMP(a[-1], b[-1]);
} while (a != end);
}
return 0;
}
#define RT_VOL_KORR(type, korr_func, len, cast) \
{ \
type amin, amax; \
amin= korr_func(a); \
amax= korr_func(a+len); \
res *= (cast(amax) - cast(amin)); \
}
#define RT_VOL_GET(type, get_func, len, cast) \
{ \
type amin, amax; \
get_func(amin, a); \
get_func(amax, a+len); \
res *= (cast(amax) - cast(amin)); \
}
/*
Calculates rectangle volume
*/
double maria_rtree_rect_volume(HA_KEYSEG *keyseg, uchar *a, uint key_length)
{
double res= 1;
for (; (int)key_length > 0; keyseg += 2)
{
uint32 keyseg_length;
switch ((enum ha_base_keytype) keyseg->type) {
case HA_KEYTYPE_INT8:
RT_VOL_KORR(int8, mi_sint1korr, 1, (double));
break;
case HA_KEYTYPE_BINARY:
RT_VOL_KORR(uint8, mi_uint1korr, 1, (double));
break;
case HA_KEYTYPE_SHORT_INT:
RT_VOL_KORR(int16, mi_sint2korr, 2, (double));
break;
case HA_KEYTYPE_USHORT_INT:
RT_VOL_KORR(uint16, mi_uint2korr, 2, (double));
break;
case HA_KEYTYPE_INT24:
RT_VOL_KORR(int32, mi_sint3korr, 3, (double));
break;
case HA_KEYTYPE_UINT24:
RT_VOL_KORR(uint32, mi_uint3korr, 3, (double));
break;
case HA_KEYTYPE_LONG_INT:
RT_VOL_KORR(int32, mi_sint4korr, 4, (double));
break;
case HA_KEYTYPE_ULONG_INT:
RT_VOL_KORR(uint32, mi_uint4korr, 4, (double));
break;
#ifdef HAVE_LONG_LONG
case HA_KEYTYPE_LONGLONG:
RT_VOL_KORR(longlong, mi_sint8korr, 8, (double));
break;
case HA_KEYTYPE_ULONGLONG:
RT_VOL_KORR(longlong, mi_sint8korr, 8, ulonglong2double);
break;
#endif
case HA_KEYTYPE_FLOAT:
RT_VOL_GET(float, mi_float4get, 4, (double));
break;
case HA_KEYTYPE_DOUBLE:
RT_VOL_GET(double, mi_float8get, 8, (double));
break;
case HA_KEYTYPE_END:
key_length= 0;
break;
default:
return -1;
}
keyseg_length= keyseg->length * 2;
key_length-= keyseg_length;
a+= keyseg_length;
}
return res;
}
#define RT_D_MBR_KORR(type, korr_func, len, cast) \
{ \
type amin, amax; \
amin= korr_func(a); \
amax= korr_func(a+len); \
*res++= cast(amin); \
*res++= cast(amax); \
}
#define RT_D_MBR_GET(type, get_func, len, cast) \
{ \
type amin, amax; \
get_func(amin, a); \
get_func(amax, a+len); \
*res++= cast(amin); \
*res++= cast(amax); \
}
/*
Creates an MBR as an array of doubles.
Fills *res.
*/
int maria_rtree_d_mbr(const HA_KEYSEG *keyseg, const uchar *a,
uint key_length, double *res)
{
for (; (int)key_length > 0; keyseg += 2)
{
uint32 keyseg_length;
switch ((enum ha_base_keytype) keyseg->type) {
case HA_KEYTYPE_INT8:
RT_D_MBR_KORR(int8, mi_sint1korr, 1, (double));
break;
case HA_KEYTYPE_BINARY:
RT_D_MBR_KORR(uint8, mi_uint1korr, 1, (double));
break;
case HA_KEYTYPE_SHORT_INT:
RT_D_MBR_KORR(int16, mi_sint2korr, 2, (double));
break;
case HA_KEYTYPE_USHORT_INT:
RT_D_MBR_KORR(uint16, mi_uint2korr, 2, (double));
break;
case HA_KEYTYPE_INT24:
RT_D_MBR_KORR(int32, mi_sint3korr, 3, (double));
break;
case HA_KEYTYPE_UINT24:
RT_D_MBR_KORR(uint32, mi_uint3korr, 3, (double));
break;
case HA_KEYTYPE_LONG_INT:
RT_D_MBR_KORR(int32, mi_sint4korr, 4, (double));
break;
case HA_KEYTYPE_ULONG_INT:
RT_D_MBR_KORR(uint32, mi_uint4korr, 4, (double));
break;
#ifdef HAVE_LONG_LONG
case HA_KEYTYPE_LONGLONG:
RT_D_MBR_KORR(longlong, mi_sint8korr, 8, (double));
break;
case HA_KEYTYPE_ULONGLONG:
RT_D_MBR_KORR(longlong, mi_sint8korr, 8, ulonglong2double);
break;
#endif
case HA_KEYTYPE_FLOAT:
RT_D_MBR_GET(float, mi_float4get, 4, (double));
break;
case HA_KEYTYPE_DOUBLE:
RT_D_MBR_GET(double, mi_float8get, 8, (double));
break;
case HA_KEYTYPE_END:
key_length= 0;
break;
default:
return 1;
}
keyseg_length= keyseg->length * 2;
key_length-= keyseg_length;
a+= keyseg_length;
}
return 0;
}
#define RT_COMB_KORR(type, korr_func, store_func, len) \
{ \
type amin, amax, bmin, bmax; \
amin= korr_func(a); \
bmin= korr_func(b); \
amax= korr_func(a+len); \
bmax= korr_func(b+len); \
amin= min(amin, bmin); \
amax= max(amax, bmax); \
store_func(c, amin); \
store_func(c+len, amax); \
}
#define RT_COMB_GET(type, get_func, store_func, len) \
{ \
type amin, amax, bmin, bmax; \
get_func(amin, a); \
get_func(bmin, b); \
get_func(amax, a+len); \
get_func(bmax, b+len); \
amin= min(amin, bmin); \
amax= max(amax, bmax); \
store_func(c, amin); \
store_func(c+len, amax); \
}
/*
Creates common minimal bounding rectungle
for two input rectagnles a and b
Result is written to c
*/
int maria_rtree_combine_rect(const HA_KEYSEG *keyseg, const uchar* a,
const uchar* b, uchar* c,
uint key_length)
{
for ( ; (int) key_length > 0 ; keyseg += 2)
{
uint32 keyseg_length;
switch ((enum ha_base_keytype) keyseg->type) {
case HA_KEYTYPE_INT8:
RT_COMB_KORR(int8, mi_sint1korr, mi_int1store, 1);
break;
case HA_KEYTYPE_BINARY:
RT_COMB_KORR(uint8, mi_uint1korr, mi_int1store, 1);
break;
case HA_KEYTYPE_SHORT_INT:
RT_COMB_KORR(int16, mi_sint2korr, mi_int2store, 2);
break;
case HA_KEYTYPE_USHORT_INT:
RT_COMB_KORR(uint16, mi_uint2korr, mi_int2store, 2);
break;
case HA_KEYTYPE_INT24:
RT_COMB_KORR(int32, mi_sint3korr, mi_int3store, 3);
break;
case HA_KEYTYPE_UINT24:
RT_COMB_KORR(uint32, mi_uint3korr, mi_int3store, 3);
break;
case HA_KEYTYPE_LONG_INT:
RT_COMB_KORR(int32, mi_sint4korr, mi_int4store, 4);
break;
case HA_KEYTYPE_ULONG_INT:
RT_COMB_KORR(uint32, mi_uint4korr, mi_int4store, 4);
break;
#ifdef HAVE_LONG_LONG
case HA_KEYTYPE_LONGLONG:
RT_COMB_KORR(longlong, mi_sint8korr, mi_int8store, 8);
break;
case HA_KEYTYPE_ULONGLONG:
RT_COMB_KORR(ulonglong, mi_uint8korr, mi_int8store, 8);
break;
#endif
case HA_KEYTYPE_FLOAT:
RT_COMB_GET(float, mi_float4get, mi_float4store, 4);
break;
case HA_KEYTYPE_DOUBLE:
RT_COMB_GET(double, mi_float8get, mi_float8store, 8);
break;
case HA_KEYTYPE_END:
return 0;
default:
return 1;
}
keyseg_length= keyseg->length * 2;
key_length-= keyseg_length;
a+= keyseg_length;
b+= keyseg_length;
c+= keyseg_length;
}
return 0;
}
#define RT_OVL_AREA_KORR(type, korr_func, len) \
{ \
type amin, amax, bmin, bmax; \
amin= korr_func(a); \
bmin= korr_func(b); \
amax= korr_func(a+len); \
bmax= korr_func(b+len); \
amin= max(amin, bmin); \
amax= min(amax, bmax); \
if (amin >= amax) \
return 0; \
res *= amax - amin; \
}
#define RT_OVL_AREA_GET(type, get_func, len) \
{ \
type amin, amax, bmin, bmax; \
get_func(amin, a); \
get_func(bmin, b); \
get_func(amax, a+len); \
get_func(bmax, b+len); \
amin= max(amin, bmin); \
amax= min(amax, bmax); \
if (amin >= amax) \
return 0; \
res *= amax - amin; \
}
/*
Calculates overlapping area of two MBRs a & b
*/
double maria_rtree_overlapping_area(HA_KEYSEG *keyseg, uchar* a, uchar* b,
uint key_length)
{
double res= 1;
for (; (int) key_length > 0 ; keyseg += 2)
{
uint32 keyseg_length;
switch ((enum ha_base_keytype) keyseg->type) {
case HA_KEYTYPE_INT8:
RT_OVL_AREA_KORR(int8, mi_sint1korr, 1);
break;
case HA_KEYTYPE_BINARY:
RT_OVL_AREA_KORR(uint8, mi_uint1korr, 1);
break;
case HA_KEYTYPE_SHORT_INT:
RT_OVL_AREA_KORR(int16, mi_sint2korr, 2);
break;
case HA_KEYTYPE_USHORT_INT:
RT_OVL_AREA_KORR(uint16, mi_uint2korr, 2);
break;
case HA_KEYTYPE_INT24:
RT_OVL_AREA_KORR(int32, mi_sint3korr, 3);
break;
case HA_KEYTYPE_UINT24:
RT_OVL_AREA_KORR(uint32, mi_uint3korr, 3);
break;
case HA_KEYTYPE_LONG_INT:
RT_OVL_AREA_KORR(int32, mi_sint4korr, 4);
break;
case HA_KEYTYPE_ULONG_INT:
RT_OVL_AREA_KORR(uint32, mi_uint4korr, 4);
break;
#ifdef HAVE_LONG_LONG
case HA_KEYTYPE_LONGLONG:
RT_OVL_AREA_KORR(longlong, mi_sint8korr, 8);
break;
case HA_KEYTYPE_ULONGLONG:
RT_OVL_AREA_KORR(longlong, mi_sint8korr, 8);
break;
#endif
case HA_KEYTYPE_FLOAT:
RT_OVL_AREA_GET(float, mi_float4get, 4);
break;
case HA_KEYTYPE_DOUBLE:
RT_OVL_AREA_GET(double, mi_float8get, 8);
break;
case HA_KEYTYPE_END:
return res;
default:
return -1;
}
keyseg_length= keyseg->length * 2;
key_length-= keyseg_length;
a+= keyseg_length;
b+= keyseg_length;
}
return res;
}
#define RT_AREA_INC_KORR(type, korr_func, len) \
{ \
type amin, amax, bmin, bmax; \
amin= korr_func(a); \
bmin= korr_func(b); \
amax= korr_func(a+len); \
bmax= korr_func(b+len); \
a_area *= (((double)amax) - ((double)amin)); \
loc_ab_area *= ((double)max(amax, bmax) - (double)min(amin, bmin)); \
}
#define RT_AREA_INC_GET(type, get_func, len)\
{\
type amin, amax, bmin, bmax; \
get_func(amin, a); \
get_func(bmin, b); \
get_func(amax, a+len); \
get_func(bmax, b+len); \
a_area *= (((double)amax) - ((double)amin)); \
loc_ab_area *= ((double)max(amax, bmax) - (double)min(amin, bmin)); \
}
/*
Calculates MBR_AREA(a+b) - MBR_AREA(a)
Fills *ab_area.
Note: when 'a' and 'b' objects are far from each other,
the area increase can be really big, so this function
can return 'inf' as a result.
*/
double maria_rtree_area_increase(const HA_KEYSEG *keyseg, const uchar *a,
const uchar *b,
uint key_length, double *ab_area)
{
double a_area= 1.0;
double loc_ab_area= 1.0;
*ab_area= 1.0;
for (; (int)key_length > 0; keyseg += 2)
{
uint32 keyseg_length;
if (keyseg->null_bit) /* Handle NULL part */
return -1;
switch ((enum ha_base_keytype) keyseg->type) {
case HA_KEYTYPE_INT8:
RT_AREA_INC_KORR(int8, mi_sint1korr, 1);
break;
case HA_KEYTYPE_BINARY:
RT_AREA_INC_KORR(uint8, mi_uint1korr, 1);
break;
case HA_KEYTYPE_SHORT_INT:
RT_AREA_INC_KORR(int16, mi_sint2korr, 2);
break;
case HA_KEYTYPE_USHORT_INT:
RT_AREA_INC_KORR(uint16, mi_uint2korr, 2);
break;
case HA_KEYTYPE_INT24:
RT_AREA_INC_KORR(int32, mi_sint3korr, 3);
break;
case HA_KEYTYPE_UINT24:
RT_AREA_INC_KORR(int32, mi_uint3korr, 3);
break;
case HA_KEYTYPE_LONG_INT:
RT_AREA_INC_KORR(int32, mi_sint4korr, 4);
break;
case HA_KEYTYPE_ULONG_INT:
RT_AREA_INC_KORR(uint32, mi_uint4korr, 4);
break;
#ifdef HAVE_LONG_LONG
case HA_KEYTYPE_LONGLONG:
RT_AREA_INC_KORR(longlong, mi_sint8korr, 8);
break;
case HA_KEYTYPE_ULONGLONG:
RT_AREA_INC_KORR(longlong, mi_sint8korr, 8);
break;
#endif
case HA_KEYTYPE_FLOAT:
RT_AREA_INC_GET(float, mi_float4get, 4);
break;
case HA_KEYTYPE_DOUBLE:
RT_AREA_INC_GET(double, mi_float8get, 8);
break;
case HA_KEYTYPE_END:
goto safe_end;
default:
return -1;
}
keyseg_length= keyseg->length * 2;
key_length-= keyseg_length;
a+= keyseg_length;
b+= keyseg_length;
}
safe_end:
*ab_area= loc_ab_area;
return loc_ab_area - a_area;
}
#define RT_PERIM_INC_KORR(type, korr_func, len) \
{ \
type amin, amax, bmin, bmax; \
amin= korr_func(a); \
bmin= korr_func(b); \
amax= korr_func(a+len); \
bmax= korr_func(b+len); \
a_perim+= (((double)amax) - ((double)amin)); \
*ab_perim+= ((double)max(amax, bmax) - (double)min(amin, bmin)); \
}
#define RT_PERIM_INC_GET(type, get_func, len)\
{\
type amin, amax, bmin, bmax; \
get_func(amin, a); \
get_func(bmin, b); \
get_func(amax, a+len); \
get_func(bmax, b+len); \
a_perim+= (((double)amax) - ((double)amin)); \
*ab_perim+= ((double)max(amax, bmax) - (double)min(amin, bmin)); \
}
/*
Calculates MBR_PERIMETER(a+b) - MBR_PERIMETER(a)
*/
double maria_rtree_perimeter_increase(HA_KEYSEG *keyseg, uchar* a, uchar* b,
uint key_length, double *ab_perim)
{
double a_perim= 0.0;
*ab_perim= 0.0;
for (; (int)key_length > 0; keyseg += 2)
{
uint32 keyseg_length;
if (keyseg->null_bit) /* Handle NULL part */
return -1;
switch ((enum ha_base_keytype) keyseg->type) {
case HA_KEYTYPE_INT8:
RT_PERIM_INC_KORR(int8, mi_sint1korr, 1);
break;
case HA_KEYTYPE_BINARY:
RT_PERIM_INC_KORR(uint8, mi_uint1korr, 1);
break;
case HA_KEYTYPE_SHORT_INT:
RT_PERIM_INC_KORR(int16, mi_sint2korr, 2);
break;
case HA_KEYTYPE_USHORT_INT:
RT_PERIM_INC_KORR(uint16, mi_uint2korr, 2);
break;
case HA_KEYTYPE_INT24:
RT_PERIM_INC_KORR(int32, mi_sint3korr, 3);
break;
case HA_KEYTYPE_UINT24:
RT_PERIM_INC_KORR(int32, mi_uint3korr, 3);
break;
case HA_KEYTYPE_LONG_INT:
RT_PERIM_INC_KORR(int32, mi_sint4korr, 4);
break;
case HA_KEYTYPE_ULONG_INT:
RT_PERIM_INC_KORR(uint32, mi_uint4korr, 4);
break;
#ifdef HAVE_LONG_LONG
case HA_KEYTYPE_LONGLONG:
RT_PERIM_INC_KORR(longlong, mi_sint8korr, 8);
break;
case HA_KEYTYPE_ULONGLONG:
RT_PERIM_INC_KORR(longlong, mi_sint8korr, 8);
break;
#endif
case HA_KEYTYPE_FLOAT:
RT_PERIM_INC_GET(float, mi_float4get, 4);
break;
case HA_KEYTYPE_DOUBLE:
RT_PERIM_INC_GET(double, mi_float8get, 8);
break;
case HA_KEYTYPE_END:
return *ab_perim - a_perim;
default:
return -1;
}
keyseg_length= keyseg->length * 2;
key_length-= keyseg_length;
a+= keyseg_length;
b+= keyseg_length;
}
return *ab_perim - a_perim;
}
#define RT_PAGE_MBR_KORR(share, type, korr_func, store_func, len, to) \
{ \
type amin, amax, bmin, bmax; \
amin= korr_func(k + inc); \
amax= korr_func(k + inc + len); \
k= rt_PAGE_NEXT_KEY(share, k, k_len, nod_flag); \
for (; k < last; k= rt_PAGE_NEXT_KEY(share, k, k_len, nod_flag)) \
{ \
bmin= korr_func(k + inc); \
bmax= korr_func(k + inc + len); \
if (amin > bmin) \
amin= bmin; \
if (amax < bmax) \
amax= bmax; \
} \
store_func(to, amin); \
to+= len; \
store_func(to, amax); \
to += len; \
inc += 2 * len; \
}
#define RT_PAGE_MBR_GET(share, type, get_func, store_func, len, to) \
{ \
type amin, amax, bmin, bmax; \
get_func(amin, k + inc); \
get_func(amax, k + inc + len); \
k= rt_PAGE_NEXT_KEY(share, k, k_len, nod_flag); \
for (; k < last; k= rt_PAGE_NEXT_KEY(share, k, k_len, nod_flag)) \
{ \
get_func(bmin, k + inc); \
get_func(bmax, k + inc + len); \
if (amin > bmin) \
amin= bmin; \
if (amax < bmax) \
amax= bmax; \
} \
store_func(to, amin); \
to+= len; \
store_func(to, amax); \
to+= len; \
inc += 2 * len; \
}
/*
Calculates key page total MBR= MBR(key1) + MBR(key2) + ...
Stores into *to.
*/
int maria_rtree_page_mbr(const HA_KEYSEG *keyseg,
MARIA_PAGE *page,
uchar *to, uint key_length)
{
MARIA_HA *info= page->info;
MARIA_SHARE *share= info->s;
uint inc= 0;
uint k_len= key_length;
uint nod_flag= page->node;
const uchar *k;
const uchar *last= rt_PAGE_END(page);
for (; (int)key_length > 0; keyseg += 2)
{
key_length -= keyseg->length * 2;
/* Handle NULL part */
if (keyseg->null_bit)
{
return 1;
}
k= rt_PAGE_FIRST_KEY(share, page->buff, nod_flag);
switch ((enum ha_base_keytype) keyseg->type) {
case HA_KEYTYPE_INT8:
RT_PAGE_MBR_KORR(share, int8, mi_sint1korr, mi_int1store, 1, to);
break;
case HA_KEYTYPE_BINARY:
RT_PAGE_MBR_KORR(share, uint8, mi_uint1korr, mi_int1store, 1, to);
break;
case HA_KEYTYPE_SHORT_INT:
RT_PAGE_MBR_KORR(share, int16, mi_sint2korr, mi_int2store, 2, to);
break;
case HA_KEYTYPE_USHORT_INT:
RT_PAGE_MBR_KORR(share, uint16, mi_uint2korr, mi_int2store, 2, to);
break;
case HA_KEYTYPE_INT24:
RT_PAGE_MBR_KORR(share, int32, mi_sint3korr, mi_int3store, 3, to);
break;
case HA_KEYTYPE_UINT24:
RT_PAGE_MBR_KORR(share, uint32, mi_uint3korr, mi_int3store, 3, to);
break;
case HA_KEYTYPE_LONG_INT:
RT_PAGE_MBR_KORR(share, int32, mi_sint4korr, mi_int4store, 4, to);
break;
case HA_KEYTYPE_ULONG_INT:
RT_PAGE_MBR_KORR(share, uint32, mi_uint4korr, mi_int4store, 4, to);
break;
#ifdef HAVE_LONG_LONG
case HA_KEYTYPE_LONGLONG:
RT_PAGE_MBR_KORR(share, longlong, mi_sint8korr, mi_int8store, 8, to);
break;
case HA_KEYTYPE_ULONGLONG:
RT_PAGE_MBR_KORR(share, ulonglong, mi_uint8korr, mi_int8store, 8, to);
break;
#endif
case HA_KEYTYPE_FLOAT:
RT_PAGE_MBR_GET(share, float, mi_float4get, mi_float4store, 4, to);
break;
case HA_KEYTYPE_DOUBLE:
RT_PAGE_MBR_GET(share, double, mi_float8get, mi_float8store, 8, to);
break;
case HA_KEYTYPE_END:
return 0;
default:
return 1;
}
}
return 0;
}
#endif /*HAVE_RTREE_KEYS*/