mariadb/sql/opt_sum.cc
unknown 09a53f28a7 Fixed a lot of compiler warnings and errors detected by Forte C++ on Solaris
Faster thr_alarm()
Added 'Opened_files' status variable to track calls to my_open()
Don't give warnings when running mysql_install_db
Added option --source-install to mysql_install_db

I had to do the following renames() as used polymorphism didn't work with Forte compiler on 64 bit systems
index_read()      -> index_read_map()
index_read_idx()  -> index_read_idx_map()
index_read_last() -> index_read_last_map()


BUILD/compile-solaris-sparc-forte:
  Updated script to current Solaris installations
  Now we compile by default for 64 bits
client/mysql.cc:
  Declare functions sent to C code with extern "C" to avoid compiler warnings (on Forte)
client/mysql_upgrade.c:
  Fixed compiler warning (on Forte)
client/mysqladmin.cc:
  Declare functions sent to C code with extern "C" to avoid compiler warnings (on Forte)
client/mysqlcheck.c:
  Fixed compiler warning (on Forte)
client/mysqldump.c:
  Fixed compiler warning (on Forte)
client/mysqlslap.c:
  Fixed compiler warning (on Forte)
client/mysqltest.c:
  Fixed compiler warning (on Forte)
client/sql_string.cc:
  Avoid compiler warnings when using C function pointers in C++
configure.in:
  Added detection of mtmalloc and ieeefp.h
extra/replace.c:
  Fixed compiler warning (on Forte)
include/m_ctype.h:
  Added some typedef's to make it easy to use C function pointers in C++
include/my_sys.h:
  Added my_file_total_opened (counter for calls to my_open())
include/myisam.h:
  Fixed compiler warning (on Forte)
libmysql/libmysql.c:
  Fixed compiler warning (on Forte) by adding casts and change types
libmysql/manager.c:
  Fixed compiler warning (on Forte) by adding casts and change types
mysql-test/r/ctype_cp932_binlog_stm.result:
  Updated positions
  (Needed because we didn't before correctly restore collation_database after running stored procedure
mysys/my_fopen.c:
  Count number of opened files
mysys/my_open.c:
  Count number of opened files
mysys/my_static.c:
  Count number of opened files
mysys/thr_alarm.c:
  Optimization to do less alarm() and pthread_sigmask() calls.
  Idea is to remember time for next pending alarm and not reschedule a new alarm if it's after the current one.
  Before we only did this if there was other pending alarms.
  We don't have to use pthread_sigmask() in case of 'USE_ONE_SIGNAL_HAND' as the alarm()
  signal will be blocked for the calling thread anyway and no other thread will have the alarm() signal enabled to call process_alarm()
regex/regcomp.c:
  Fixed compiler warning (on Forte) by adding casts and change types
scripts/mysql_install_db.sh:
  Added option --source-install to allow one to create a mysql database from the source tree without installing MySQL
  Don't give (unnecessary) warnings
server-tools/instance-manager/angel.cc:
  Declare functions sent to C code with extern "C" to avoid compiler warnings (on Forte)
server-tools/instance-manager/thread_registry.cc:
  Declare functions sent to C code with extern "C" to avoid compiler warnings (on Forte)
sql/event_db_repository.cc:
  index_read() -> index_read_map()
sql/event_queue.cc:
  Declare functions sent to C code with extern "C" to avoid compiler warnings (on Forte)
sql/field.cc:
  Fixed compiler warnings about hidden fields
sql/ha_partition.cc:
  Fixed compiler warnings about hidden fields
  index_read() -> index_read_map()
sql/ha_partition.h:
  index_read() -> index_read_map()
sql/handler.cc:
  Added PAGE option to row types (to prepare for future)
  index_read() -> index_read_map()
sql/handler.h:
  Added ROW_TYPE_PAGE (for future)
  Added flag to signal if table was to be created transactionally
  I had to do the following renames() as used polymorphism didn't work with Forte compiler on 64 bit systems
  index_read()      -> index_read_map()
  index_read_idx()  -> index_read_idx_map()
  index_read_last() -> index_read_last_map()
sql/item.cc:
  Fixed indentation
  Renamed local variable to avoid hiding class variable
sql/item_cmpfunc.cc:
  Renamed local variable to avoid hiding class variable
sql/item_cmpfunc.h:
  Removed not used variable
sql/item_func.cc:
  Renamed local variable to avoid hiding class variable
sql/item_strfunc.cc:
  Moved functions from Item_strfunc.cc
sql/item_strfunc.h:
  Move functions to item_strfunc.cc
  Use C function pointer type to avoid compiler warnings (with Forte)
sql/item_subselect.cc:
  index_read() -> index_read_map()
sql/item_xmlfunc.cc:
  Renamed local variable to avoid hiding class variable
  Declare functions sent to C code with extern "C" to avoid compiler warnings (on Forte)
sql/key.cc:
  Fixed indentation
sql/log.cc:
  Renamed local variable to avoid hiding class variable
sql/log_event.cc:
  Removed call to my_time() when creating class instance of Log_event() as this may have static instances.
  (One can't call my_time() before my_init())
  index_read() -> index_read_map()
  Renamed local variable to avoid hiding class variable
sql/log_event_old.cc:
  Renamed local variable to avoid hiding class variable
sql/mysql_priv.h:
  Made all create_backup_ctx() declarations identical.
  This lifted up a bug where wrong create_backup_ctx() was called in some cases.
  Declare functions sent to C code with extern "C" to avoid compiler warnings (on Forte)
sql/mysqld.cc:
  Declare functions sent to C code with extern "C" to avoid compiler warnings (on Forte)
  Fixed indentation
  Don't call end_thr_alarm() when calling unireg_abort() as unireg_abort() already calls end_thr_alarm()
  Added variable 'Opened_files' (number of calls to my_open() or my_fopen())
  Don't print 'loose' warnings when using --bootstrap (to avoid warnings when running mysql_install_db)
  Fixed compiler warnings
sql/opt_range.cc:
  index_read() -> index_read_map()
sql/opt_sum.cc:
  index_read() -> index_read_map()
sql/partition_info.cc:
  Renamed local variable to avoid hiding class variable
sql/rpl_filter.cc:
  Declare functions sent to C code with extern "C" to avoid compiler warnings (on Forte)
sql/set_var.cc:
  Renamed local variable to avoid hiding class variable
  Added 'process_key_cache_t' type to avoid compiler warning (on Forte)
sql/set_var.h:
  Added 'process_key_cache_t' type to avoid compiler warning (on Forte)
sql/sp.cc:
  More debugging
  index_read() -> index_read_map()
sql/sp_cache.cc:
  Declare functions sent to C code with extern "C" to avoid compiler warnings (on Forte)
sql/sp_head.cc:
  Declare functions sent to C code with extern "C" to avoid compiler warnings (on Forte)
  Moved 'saved_creation_ctx' higher up to be able to free objects allocated by create_backup_ctx()
sql/sql_acl.cc:
  index_read() -> index_read_map()
sql/sql_class.cc:
  Renamed local variable to avoid hiding class variable
  Declare functions sent to C code with extern "C" to avoid compiler warnings (on Forte)
sql/sql_class.h:
  Renamed local variable to avoid hiding class variable
sql/sql_db.cc:
  Declare functions sent to C code with extern "C" to avoid compiler warnings (on Forte)
sql/sql_delete.cc:
  Renamed local variable to avoid hiding class variable
sql/sql_handler.cc:
  index_read() -> index_read_map()
sql/sql_help.cc:
  index_read() -> index_read_map()
sql/sql_insert.cc:
  index_read() -> index_read_map()
  Renamed local variable to avoid hiding class variable
sql/sql_lex.cc:
  Renamed local variable to avoid hiding class variable
sql/sql_plugin.cc:
  Declare functions sent to C code with extern "C" to avoid compiler warnings (on Forte)
  index_read() -> index_read_map()
  Don't give warnings about not used plugins if we are using --warnings=0
sql/sql_select.cc:
  index_read() -> index_read_map()
sql-common/client.c:
  Fixed compiler warning (on Forte)
sql-common/my_time.c:
  Removed never accessed code
  Fixed compiler warning (on Forte)
sql/sql_servers.cc:
  index_read() -> index_read_map()
sql/sql_show.cc:
  Added TRANSACTIONAL to SHOW CREATE
  Fixed ROW_TYPE_PAGE
sql/sql_string.cc:
  Avoid compiler warnings when using C function pointers in C++
sql/sql_table.cc:
  Set create_info->transactional if we used TRANSACTIONAL=1
sql/sql_udf.cc:
  index_read() -> index_read_map()
sql/sql_yacc.yy:
  Added TRANSACTIONAL=0|1 to CREATE (for future)
  Added row type PAGE (was only partionally handled before)
sql/strfunc.cc:
  Avoid compiler warnings when using C function pointers in C++
sql/table.cc:
  More DBUG statements
  Declare all create_backup_ctx() functions identically
  Remember if table was created with TRANSACTIONAL flag or not (future safe)
  Renamed local variable to avoid hiding class variable
sql/table.h:
  Remember if table was created with TRANSACTIONAL=1
sql/tztime.cc:
  index_read() -> index_read_map()
sql-common/pack.c:
  Fixed compiler warning (on Forte)
storage/archive/archive_reader.c:
  Fixed compiler warning (on Forte)
storage/archive/azio.c:
  Fixed compiler warning (on Forte)
storage/blackhole/ha_blackhole.cc:
  index_read() -> index_read_map()
storage/blackhole/ha_blackhole.h:
  index_read() -> index_read_map()
storage/csv/ha_tina.cc:
  Declare functions sent to C code with extern "C" to avoid compiler warnings (on Forte)
storage/example/ha_example.cc:
  index_read() -> index_read_map()
storage/example/ha_example.h:
  index_read() -> index_read_map()
storage/heap/ha_heap.cc:
  index_read() -> index_read_map()
storage/heap/ha_heap.h:
  index_read() -> index_read_map()
storage/heap/hp_test1.c:
  Fixed compiler warning (on Forte)
storage/heap/hp_test2.c:
  Fixed compiler warning (on Forte)
storage/myisam/ft_boolean_search.c:
  Fixed compiler warning (on Forte)
storage/myisam/ft_nlq_search.c:
  Fixed compiler warning (on Forte)
storage/myisam/ft_parser.c:
  Fixed compiler warning (on Forte)
storage/myisam/ft_stopwords.c:
  Fixed compiler warning (on Forte)
storage/myisam/ha_myisam.cc:
  index_read() -> index_read_map()
storage/myisam/ha_myisam.h:
  index_read() -> index_read_map()
storage/myisam/mi_check.c:
  Fixed compiler warning (on Forte)
storage/myisam/mi_delete.c:
  Fixed compiler warning (on Forte)
storage/myisam/mi_dynrec.c:
  Fixed compiler warning (on Forte)
storage/myisam/mi_extra.c:
  Fixed compiler warning (on Forte)
storage/myisam/mi_key.c:
  Fixed compiler warning (on Forte)
storage/myisam/mi_keycache.c:
  Fixed compiler warning (on Forte)
storage/myisam/mi_locking.c:
  Fixed compiler warning (on Forte)
storage/myisam/mi_log.c:
  Fixed compiler warning (on Forte)
storage/myisam/mi_open.c:
  Fixed compiler warning (on Forte)
storage/myisam/mi_packrec.c:
  Fixed compiler warning (on Forte)
storage/myisam/mi_page.c:
  Fixed compiler warning (on Forte)
storage/myisam/mi_rkey.c:
  Added comment
storage/myisam/mi_search.c:
  Fixed compiler warning (on Forte)
storage/myisam/mi_statrec.c:
  Fixed compiler warning (on Forte)
storage/myisam/mi_test1.c:
  Fixed compiler warning (on Forte)
storage/myisam/mi_test2.c:
  Fixed compiler warning (on Forte)
storage/myisam/mi_test3.c:
  Fixed compiler warning (on Forte)
storage/myisam/mi_update.c:
  Fixed compiler warning (on Forte)
storage/myisam/mi_write.c:
  Fixed compiler warning (on Forte)
storage/myisam/myisamdef.h:
  Fixed that file_read/file_write returns type size_t
  Changed some functions to use uchar * as argument/return value instead of char*
  This fixed some compiler warnings on Forte
storage/myisam/myisamlog.c:
  Fixed compiler warning (on Forte)
storage/myisam/myisampack.c:
  Fixed compiler warning (on Forte)
storage/myisam/rt_test.c:
  Fixed compiler warning (on Forte)
storage/myisam/sort.c:
  Fixed compiler warning (on Forte) by adding casts or changing variables to uchar*
storage/myisam/sp_test.c:
  Fixed compiler warning (on Forte) by adding casts or changing variables to uchar*
storage/myisammrg/ha_myisammrg.cc:
  index_read() -> index_read_map()
storage/myisammrg/ha_myisammrg.h:
  index_read() -> index_read_map()
storage/myisammrg/myrg_create.c:
  Fixed compiler warning (on Forte) by adding casts or changing variable types
storage/ndb/src/kernel/blocks/dbtup/DbtupExecQuery.cpp:
  Tdummy -> align  (as in other part of cluster code)
storage/ndb/src/kernel/vm/DynArr256.cpp:
  Removed not used variable
storage/ndb/src/ndbapi/Ndb.cpp:
  Removed not used variable
strings/strtod.c:
  Include ieeefp.h to avoid compiler warning
tests/bug25714.c:
  Fixed compiler warning
tests/mysql_client_test.c:
  Remove not used variable
  Fixed indentation
  Removed never reached code
  Fixed compiler warning (on Forte) by adding casts or changing variable types
vio/viosocket.c:
  Fixed compiler warning (on Forte) by adding casts or changing variable types
2007-08-13 16:11:25 +03:00

977 lines
32 KiB
C++

/* Copyright (C) 2000-2003 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
Optimising of MIN(), MAX() and COUNT(*) queries without 'group by' clause
by replacing the aggregate expression with a constant.
Given a table with a compound key on columns (a,b,c), the following
types of queries are optimised (assuming the table handler supports
the required methods)
SELECT COUNT(*) FROM t1[,t2,t3,...]
SELECT MIN(b) FROM t1 WHERE a=const
SELECT MAX(c) FROM t1 WHERE a=const AND b=const
SELECT MAX(b) FROM t1 WHERE a=const AND b<const
SELECT MIN(b) FROM t1 WHERE a=const AND b>const
SELECT MIN(b) FROM t1 WHERE a=const AND b BETWEEN const AND const
SELECT MAX(b) FROM t1 WHERE a=const AND b BETWEEN const AND const
Instead of '<' one can use '<=', '>', '>=' and '=' as well.
Instead of 'a=const' the condition 'a IS NULL' can be used.
If all selected fields are replaced then we will also remove all
involved tables and return the answer without any join. Thus, the
following query will be replaced with a row of two constants:
SELECT MAX(b), MIN(d) FROM t1,t2
WHERE a=const AND b<const AND d>const
(assuming a index for column d of table t2 is defined)
*/
#include "mysql_priv.h"
#include "sql_select.h"
static bool find_key_for_maxmin(bool max_fl, TABLE_REF *ref, Field* field,
COND *cond, uint *range_fl,
uint *key_prefix_length);
static int reckey_in_range(bool max_fl, TABLE_REF *ref, Field* field,
COND *cond, uint range_fl, uint prefix_len);
static int maxmin_in_range(bool max_fl, Field* field, COND *cond);
/*
Get exact count of rows in all tables
SYNOPSIS
get_exact_records()
tables List of tables
NOTES
When this is called, we know all table handlers supports HA_HAS_RECORDS
or HA_STATS_RECORDS_IS_EXACT
RETURN
ULONGLONG_MAX Error: Could not calculate number of rows
# Multiplication of number of rows in all tables
*/
static ulonglong get_exact_record_count(TABLE_LIST *tables)
{
ulonglong count= 1;
for (TABLE_LIST *tl= tables; tl; tl= tl->next_leaf)
{
ha_rows tmp= tl->table->file->records();
if ((tmp == HA_POS_ERROR))
return ULONGLONG_MAX;
count*= tmp;
}
return count;
}
/*
Substitutes constants for some COUNT(), MIN() and MAX() functions.
SYNOPSIS
opt_sum_query()
tables list of leaves of join table tree
all_fields All fields to be returned
conds WHERE clause
NOTE:
This function is only called for queries with sum functions and no
GROUP BY part.
RETURN VALUES
0 no errors
1 if all items were resolved
HA_ERR_KEY_NOT_FOUND on impossible conditions
OR an error number from my_base.h HA_ERR_... if a deadlock or a lock
wait timeout happens, for example
*/
int opt_sum_query(TABLE_LIST *tables, List<Item> &all_fields,COND *conds)
{
List_iterator_fast<Item> it(all_fields);
int const_result= 1;
bool recalc_const_item= 0;
ulonglong count= 1;
bool is_exact_count= TRUE, maybe_exact_count= TRUE;
table_map removed_tables= 0, outer_tables= 0, used_tables= 0;
table_map where_tables= 0;
Item *item;
int error;
if (conds)
where_tables= conds->used_tables();
/*
Analyze outer join dependencies, and, if possible, compute the number
of returned rows.
*/
for (TABLE_LIST *tl= tables; tl; tl= tl->next_leaf)
{
TABLE_LIST *embedded;
for (embedded= tl ; embedded; embedded= embedded->embedding)
{
if (embedded->on_expr)
break;
}
if (embedded)
/* Don't replace expression on a table that is part of an outer join */
{
outer_tables|= tl->table->map;
/*
We can't optimise LEFT JOIN in cases where the WHERE condition
restricts the table that is used, like in:
SELECT MAX(t1.a) FROM t1 LEFT JOIN t2 join-condition
WHERE t2.field IS NULL;
*/
if (tl->table->map & where_tables)
return 0;
}
else
used_tables|= tl->table->map;
/*
If the storage manager of 'tl' gives exact row count as part of
statistics (cheap), compute the total number of rows. If there are
no outer table dependencies, this count may be used as the real count.
Schema tables are filled after this function is invoked, so we can't
get row count
*/
if (!(tl->table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT) ||
tl->schema_table)
{
maybe_exact_count&= test(!tl->schema_table &&
(tl->table->file->ha_table_flags() &
HA_HAS_RECORDS));
is_exact_count= FALSE;
count= 1; // ensure count != 0
}
else
{
error= tl->table->file->info(HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK);
if(error)
{
tl->table->file->print_error(error, MYF(0));
return error;
}
count*= tl->table->file->stats.records;
}
}
/*
Iterate through all items in the SELECT clause and replace
COUNT(), MIN() and MAX() with constants (if possible).
*/
while ((item= it++))
{
if (item->type() == Item::SUM_FUNC_ITEM)
{
Item_sum *item_sum= (((Item_sum*) item));
switch (item_sum->sum_func()) {
case Item_sum::COUNT_FUNC:
/*
If the expr in COUNT(expr) can never be null we can change this
to the number of rows in the tables if this number is exact and
there are no outer joins.
*/
if (!conds && !((Item_sum_count*) item)->args[0]->maybe_null &&
!outer_tables && maybe_exact_count)
{
if (!is_exact_count)
{
if ((count= get_exact_record_count(tables)) == ULONGLONG_MAX)
{
/* Error from handler in counting rows. Don't optimize count() */
const_result= 0;
continue;
}
is_exact_count= 1; // count is now exact
}
((Item_sum_count*) item)->make_const((longlong) count);
recalc_const_item= 1;
}
else
const_result= 0;
break;
case Item_sum::MIN_FUNC:
{
/*
If MIN(expr) is the first part of a key or if all previous
parts of the key is found in the COND, then we can use
indexes to find the key.
*/
Item *expr=item_sum->args[0];
if (expr->real_item()->type() == Item::FIELD_ITEM)
{
uchar key_buff[MAX_KEY_LENGTH];
TABLE_REF ref;
uint range_fl, prefix_len;
ref.key_buff= key_buff;
Item_field *item_field= (Item_field*) (expr->real_item());
TABLE *table= item_field->field->table;
/*
Look for a partial key that can be used for optimization.
If we succeed, ref.key_length will contain the length of
this key, while prefix_len will contain the length of
the beginning of this key without field used in MIN().
Type of range for the key part for this field will be
returned in range_fl.
*/
if (table->file->inited || (outer_tables & table->map) ||
!find_key_for_maxmin(0, &ref, item_field->field, conds,
&range_fl, &prefix_len))
{
const_result= 0;
break;
}
error= table->file->ha_index_init((uint) ref.key, 1);
if (!ref.key_length)
error= table->file->index_first(table->record[0]);
else
{
/*
Use index to replace MIN/MAX functions with their values
according to the following rules:
1) Insert the minimum non-null values where the WHERE clause still
matches, or
2) a NULL value if there are only NULL values for key_part_k.
3) Fail, producing a row of nulls
Implementation: Read the smallest value using the search key. If
the interval is open, read the next value after the search
key. If read fails, and we're looking for a MIN() value for a
nullable column, test if there is an exact match for the key.
*/
if (!(range_fl & NEAR_MIN))
/*
Closed interval: Either The MIN argument is non-nullable, or
we have a >= predicate for the MIN argument.
*/
error= table->file->index_read_map(table->record[0],
ref.key_buff,
make_prev_keypart_map(ref.key_parts),
HA_READ_KEY_OR_NEXT);
else
{
/*
Open interval: There are two cases:
1) We have only MIN() and the argument column is nullable, or
2) there is a > predicate on it, nullability is irrelevant.
We need to scan the next bigger record first.
*/
error= table->file->index_read_map(table->record[0],
ref.key_buff,
make_prev_keypart_map(ref.key_parts),
HA_READ_AFTER_KEY);
/*
If the found record is outside the group formed by the search
prefix, or there is no such record at all, check if all
records in that group have NULL in the MIN argument
column. If that is the case return that NULL.
Check if case 1 from above holds. If it does, we should read
the skipped tuple.
*/
if (ref.key_buff[prefix_len] == 1 &&
/*
Last keypart (i.e. the argument to MIN) is set to NULL by
find_key_for_maxmin only if all other keyparts are bound
to constants in a conjunction of equalities. Hence, we
can detect this by checking only if the last keypart is
NULL.
*/
(error == HA_ERR_KEY_NOT_FOUND ||
key_cmp_if_same(table, ref.key_buff, ref.key, prefix_len)))
{
DBUG_ASSERT(item_field->field->real_maybe_null());
error= table->file->index_read_map(table->record[0],
ref.key_buff,
make_prev_keypart_map(ref.key_parts),
HA_READ_KEY_EXACT);
}
}
}
/* Verify that the read tuple indeed matches the search key */
if (!error && reckey_in_range(0, &ref, item_field->field,
conds, range_fl, prefix_len))
error= HA_ERR_KEY_NOT_FOUND;
if (table->key_read)
{
table->key_read= 0;
table->file->extra(HA_EXTRA_NO_KEYREAD);
}
table->file->ha_index_end();
if (error)
{
if (error == HA_ERR_KEY_NOT_FOUND || error == HA_ERR_END_OF_FILE)
return HA_ERR_KEY_NOT_FOUND; // No rows matching WHERE
/* HA_ERR_LOCK_DEADLOCK or some other error */
table->file->print_error(error, MYF(0));
return(error);
}
removed_tables|= table->map;
}
else if (!expr->const_item() || !is_exact_count)
{
/*
The optimization is not applicable in both cases:
(a) 'expr' is a non-constant expression. Then we can't
replace 'expr' by a constant.
(b) 'expr' is a costant. According to ANSI, MIN/MAX must return
NULL if the query does not return any rows. Thus, if we are not
able to determine if the query returns any rows, we can't apply
the optimization and replace MIN/MAX with a constant.
*/
const_result= 0;
break;
}
if (!count)
{
/* If count == 0, then we know that is_exact_count == TRUE. */
((Item_sum_min*) item_sum)->clear(); /* Set to NULL. */
}
else
((Item_sum_min*) item_sum)->reset(); /* Set to the constant value. */
((Item_sum_min*) item_sum)->make_const();
recalc_const_item= 1;
break;
}
case Item_sum::MAX_FUNC:
{
/*
If MAX(expr) is the first part of a key or if all previous
parts of the key is found in the COND, then we can use
indexes to find the key.
*/
Item *expr=item_sum->args[0];
if (expr->real_item()->type() == Item::FIELD_ITEM)
{
uchar key_buff[MAX_KEY_LENGTH];
TABLE_REF ref;
uint range_fl, prefix_len;
ref.key_buff= key_buff;
Item_field *item_field= (Item_field*) (expr->real_item());
TABLE *table= item_field->field->table;
/*
Look for a partial key that can be used for optimization.
If we succeed, ref.key_length will contain the length of
this key, while prefix_len will contain the length of
the beginning of this key without field used in MAX().
Type of range for the key part for this field will be
returned in range_fl.
*/
if (table->file->inited || (outer_tables & table->map) ||
!find_key_for_maxmin(1, &ref, item_field->field, conds,
&range_fl, &prefix_len))
{
const_result= 0;
break;
}
error= table->file->ha_index_init((uint) ref.key, 1);
if (!ref.key_length)
error= table->file->index_last(table->record[0]);
else
error= table->file->index_read_map(table->record[0], key_buff,
make_prev_keypart_map(ref.key_parts),
range_fl & NEAR_MAX ?
HA_READ_BEFORE_KEY :
HA_READ_PREFIX_LAST_OR_PREV);
if (!error && reckey_in_range(1, &ref, item_field->field,
conds, range_fl, prefix_len))
error= HA_ERR_KEY_NOT_FOUND;
if (table->key_read)
{
table->key_read=0;
table->file->extra(HA_EXTRA_NO_KEYREAD);
}
table->file->ha_index_end();
if (error)
{
if (error == HA_ERR_KEY_NOT_FOUND || error == HA_ERR_END_OF_FILE)
return HA_ERR_KEY_NOT_FOUND; // No rows matching WHERE
/* HA_ERR_LOCK_DEADLOCK or some other error */
table->file->print_error(error, MYF(0));
return(error);
}
removed_tables|= table->map;
}
else if (!expr->const_item() || !is_exact_count)
{
/*
The optimization is not applicable in both cases:
(a) 'expr' is a non-constant expression. Then we can't
replace 'expr' by a constant.
(b) 'expr' is a costant. According to ANSI, MIN/MAX must return
NULL if the query does not return any rows. Thus, if we are not
able to determine if the query returns any rows, we can't apply
the optimization and replace MIN/MAX with a constant.
*/
const_result= 0;
break;
}
if (!count)
{
/* If count != 1, then we know that is_exact_count == TRUE. */
((Item_sum_max*) item_sum)->clear(); /* Set to NULL. */
}
else
((Item_sum_max*) item_sum)->reset(); /* Set to the constant value. */
((Item_sum_max*) item_sum)->make_const();
recalc_const_item= 1;
break;
}
default:
const_result= 0;
break;
}
}
else if (const_result)
{
if (recalc_const_item)
item->update_used_tables();
if (!item->const_item())
const_result= 0;
}
}
/*
If we have a where clause, we can only ignore searching in the
tables if MIN/MAX optimisation replaced all used tables
We do not use replaced values in case of:
SELECT MIN(key) FROM table_1, empty_table
removed_tables is != 0 if we have used MIN() or MAX().
*/
if (removed_tables && used_tables != removed_tables)
const_result= 0; // We didn't remove all tables
return const_result;
}
/*
Test if the predicate compares a field with constants
SYNOPSIS
simple_pred()
func_item Predicate item
args out: Here we store the field followed by constants
inv_order out: Is set to 1 if the predicate is of the form
'const op field'
RETURN
0 func_item is a simple predicate: a field is compared with
constants
1 Otherwise
*/
bool simple_pred(Item_func *func_item, Item **args, bool *inv_order)
{
Item *item;
*inv_order= 0;
switch (func_item->argument_count()) {
case 0:
/* MULT_EQUAL_FUNC */
{
Item_equal *item_equal= (Item_equal *) func_item;
Item_equal_iterator it(*item_equal);
args[0]= it++;
if (it++)
return 0;
if (!(args[1]= item_equal->get_const()))
return 0;
}
break;
case 1:
/* field IS NULL */
item= func_item->arguments()[0];
if (item->type() != Item::FIELD_ITEM)
return 0;
args[0]= item;
break;
case 2:
/* 'field op const' or 'const op field' */
item= func_item->arguments()[0];
if (item->type() == Item::FIELD_ITEM)
{
args[0]= item;
item= func_item->arguments()[1];
if (!item->const_item())
return 0;
args[1]= item;
}
else if (item->const_item())
{
args[1]= item;
item= func_item->arguments()[1];
if (item->type() != Item::FIELD_ITEM)
return 0;
args[0]= item;
*inv_order= 1;
}
else
return 0;
break;
case 3:
/* field BETWEEN const AND const */
item= func_item->arguments()[0];
if (item->type() == Item::FIELD_ITEM)
{
args[0]= item;
for (int i= 1 ; i <= 2; i++)
{
item= func_item->arguments()[i];
if (!item->const_item())
return 0;
args[i]= item;
}
}
else
return 0;
}
return 1;
}
/*
Check whether a condition matches a key to get {MAX|MIN}(field):
SYNOPSIS
matching_cond()
max_fl in: Set to 1 if we are optimising MAX()
ref in/out: Reference to the structure we store the key value
keyinfo in Reference to the key info
field_part in: Pointer to the key part for the field
cond in WHERE condition
key_part_used in/out: Map of matchings parts
range_fl in/out: Says whether including key will be used
prefix_len out: Length of common key part for the range
where MAX/MIN is searched for
DESCRIPTION
For the index specified by the keyinfo parameter, index that
contains field as its component (field_part), the function
checks whether the condition cond is a conjunction and all its
conjuncts referring to the columns of the same table as column
field are one of the following forms:
- f_i= const_i or const_i= f_i or f_i is null,
where f_i is part of the index
- field {<|<=|>=|>|=} const or const {<|<=|>=|>|=} field
- field between const1 and const2
RETURN
0 Index can't be used.
1 We can use index to get MIN/MAX value
*/
static bool matching_cond(bool max_fl, TABLE_REF *ref, KEY *keyinfo,
KEY_PART_INFO *field_part, COND *cond,
key_part_map *key_part_used, uint *range_fl,
uint *prefix_len)
{
if (!cond)
return 1;
Field *field= field_part->field;
if (!(cond->used_tables() & field->table->map))
{
/* Condition doesn't restrict the used table */
return 1;
}
if (cond->type() == Item::COND_ITEM)
{
if (((Item_cond*) cond)->functype() == Item_func::COND_OR_FUNC)
return 0;
/* AND */
List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item= li++))
{
if (!matching_cond(max_fl, ref, keyinfo, field_part, item,
key_part_used, range_fl, prefix_len))
return 0;
}
return 1;
}
if (cond->type() != Item::FUNC_ITEM)
return 0; // Not operator, can't optimize
bool eq_type= 0; // =, <=> or IS NULL
bool noeq_type= 0; // < or >
bool less_fl= 0; // < or <=
bool is_null= 0;
bool between= 0;
switch (((Item_func*) cond)->functype()) {
case Item_func::ISNULL_FUNC:
is_null= 1; /* fall through */
case Item_func::EQ_FUNC:
case Item_func::EQUAL_FUNC:
eq_type= 1;
break;
case Item_func::LT_FUNC:
noeq_type= 1; /* fall through */
case Item_func::LE_FUNC:
less_fl= 1;
break;
case Item_func::GT_FUNC:
noeq_type= 1; /* fall through */
case Item_func::GE_FUNC:
break;
case Item_func::BETWEEN:
between= 1;
break;
case Item_func::MULT_EQUAL_FUNC:
eq_type= 1;
break;
default:
return 0; // Can't optimize function
}
Item *args[3];
bool inv;
/* Test if this is a comparison of a field and constant */
if (!simple_pred((Item_func*) cond, args, &inv))
return 0;
if (inv && !eq_type)
less_fl= 1-less_fl; // Convert '<' -> '>' (etc)
/* Check if field is part of the tested partial key */
uchar *key_ptr= ref->key_buff;
KEY_PART_INFO *part;
for (part= keyinfo->key_part; ; key_ptr+= part++->store_length)
{
if (part > field_part)
return 0; // Field is beyond the tested parts
if (part->field->eq(((Item_field*) args[0])->field))
break; // Found a part of the key for the field
}
bool is_field_part= part == field_part;
if (!(is_field_part || eq_type))
return 0;
key_part_map org_key_part_used= *key_part_used;
if (eq_type || between || max_fl == less_fl)
{
uint length= (key_ptr-ref->key_buff)+part->store_length;
if (ref->key_length < length)
{
/* Ultimately ref->key_length will contain the length of the search key */
ref->key_length= length;
ref->key_parts= (part - keyinfo->key_part) + 1;
}
if (!*prefix_len && part+1 == field_part)
*prefix_len= length;
if (is_field_part && eq_type)
*prefix_len= ref->key_length;
*key_part_used|= (key_part_map) 1 << (part - keyinfo->key_part);
}
if (org_key_part_used != *key_part_used ||
(is_field_part &&
(between || eq_type || max_fl == less_fl) && !cond->val_int()))
{
/*
It's the first predicate for this part or a predicate of the
following form that moves upper/lower bounds for max/min values:
- field BETWEEN const AND const
- field = const
- field {<|<=} const, when searching for MAX
- field {>|>=} const, when searching for MIN
*/
if (is_null)
{
part->field->set_null();
*key_ptr= (uchar) 1;
}
else
{
store_val_in_field(part->field, args[between && max_fl ? 2 : 1],
CHECK_FIELD_IGNORE);
if (part->null_bit)
*key_ptr++= (uchar) test(part->field->is_null());
part->field->get_key_image(key_ptr, part->length, Field::itRAW);
}
if (is_field_part)
{
if (between || eq_type)
*range_fl&= ~(NO_MAX_RANGE | NO_MIN_RANGE);
else
{
*range_fl&= ~(max_fl ? NO_MAX_RANGE : NO_MIN_RANGE);
if (noeq_type)
*range_fl|= (max_fl ? NEAR_MAX : NEAR_MIN);
else
*range_fl&= ~(max_fl ? NEAR_MAX : NEAR_MIN);
}
}
}
else if (eq_type)
{
if (!is_null && !cond->val_int() ||
is_null && !test(part->field->is_null()))
return 0; // Impossible test
}
else if (is_field_part)
*range_fl&= ~(max_fl ? NO_MIN_RANGE : NO_MAX_RANGE);
return 1;
}
/*
Check whether we can get value for {max|min}(field) by using a key.
SYNOPSIS
find_key_for_maxmin()
max_fl in: 0 for MIN(field) / 1 for MAX(field)
ref in/out Reference to the structure we store the key value
field in: Field used inside MIN() / MAX()
cond in: WHERE condition
range_fl out: Bit flags for how to search if key is ok
prefix_len out: Length of prefix for the search range
DESCRIPTION
If where condition is not a conjunction of 0 or more conjuct the
function returns false, otherwise it checks whether there is an
index including field as its k-th component/part such that:
1. for each previous component f_i there is one and only one conjunct
of the form: f_i= const_i or const_i= f_i or f_i is null
2. references to field occur only in conjucts of the form:
field {<|<=|>=|>|=} const or const {<|<=|>=|>|=} field or
field BETWEEN const1 AND const2
3. all references to the columns from the same table as column field
occur only in conjucts mentioned above.
4. each of k first components the index is not partial, i.e. is not
defined on a fixed length proper prefix of the field.
If such an index exists the function through the ref parameter
returns the key value to find max/min for the field using the index,
the length of first (k-1) components of the key and flags saying
how to apply the key for the search max/min value.
(if we have a condition field = const, prefix_len contains the length
of the whole search key)
NOTE
This function may set table->key_read to 1, which must be reset after
index is used! (This can only happen when function returns 1)
RETURN
0 Index can not be used to optimize MIN(field)/MAX(field)
1 Can use key to optimize MIN()/MAX()
In this case ref, range_fl and prefix_len are updated
*/
static bool find_key_for_maxmin(bool max_fl, TABLE_REF *ref,
Field* field, COND *cond,
uint *range_fl, uint *prefix_len)
{
if (!(field->flags & PART_KEY_FLAG))
return 0; // Not key field
TABLE *table= field->table;
uint idx= 0;
KEY *keyinfo,*keyinfo_end;
for (keyinfo= table->key_info, keyinfo_end= keyinfo+table->s->keys ;
keyinfo != keyinfo_end;
keyinfo++,idx++)
{
KEY_PART_INFO *part,*part_end;
key_part_map key_part_to_use= 0;
/*
Perform a check if index is not disabled by ALTER TABLE
or IGNORE INDEX.
*/
if (!table->keys_in_use_for_query.is_set(idx))
continue;
uint jdx= 0;
*prefix_len= 0;
for (part= keyinfo->key_part, part_end= part+keyinfo->key_parts ;
part != part_end ;
part++, jdx++, key_part_to_use= (key_part_to_use << 1) | 1)
{
if (!(table->file->index_flags(idx, jdx, 0) & HA_READ_ORDER))
return 0;
/* Check whether the index component is partial */
Field *part_field= table->field[part->fieldnr-1];
if ((part_field->flags & BLOB_FLAG) ||
part->length < part_field->key_length())
break;
if (field->eq(part->field))
{
ref->key= idx;
ref->key_length= 0;
ref->key_parts= 0;
key_part_map key_part_used= 0;
*range_fl= NO_MIN_RANGE | NO_MAX_RANGE;
if (matching_cond(max_fl, ref, keyinfo, part, cond,
&key_part_used, range_fl, prefix_len) &&
!(key_part_to_use & ~key_part_used))
{
if (!max_fl && key_part_used == key_part_to_use && part->null_bit)
{
/*
The query is on this form:
SELECT MIN(key_part_k)
FROM t1
WHERE key_part_1 = const and ... and key_part_k-1 = const
If key_part_k is nullable, we want to find the first matching row
where key_part_k is not null. The key buffer is now {const, ...,
NULL}. This will be passed to the handler along with a flag
indicating open interval. If a tuple is read that does not match
these search criteria, an attempt will be made to read an exact
match for the key buffer.
*/
/* Set the first byte of key_part_k to 1, that means NULL */
ref->key_buff[ref->key_length]= 1;
ref->key_length+= part->store_length;
ref->key_parts++;
DBUG_ASSERT(ref->key_parts == jdx+1);
*range_fl&= ~NO_MIN_RANGE;
*range_fl|= NEAR_MIN; // Open interval
}
/*
The following test is false when the key in the key tree is
converted (for example to upper case)
*/
if (field->part_of_key.is_set(idx))
{
table->key_read= 1;
table->file->extra(HA_EXTRA_KEYREAD);
}
return 1;
}
}
}
}
return 0;
}
/*
Check whether found key is in range specified by conditions
SYNOPSIS
reckey_in_range()
max_fl in: 0 for MIN(field) / 1 for MAX(field)
ref in: Reference to the key value and info
field in: Field used the MIN/MAX expression
cond in: WHERE condition
range_fl in: Says whether there is a condition to to be checked
prefix_len in: Length of the constant part of the key
RETURN
0 ok
1 WHERE was not true for the found row
*/
static int reckey_in_range(bool max_fl, TABLE_REF *ref, Field* field,
COND *cond, uint range_fl, uint prefix_len)
{
if (key_cmp_if_same(field->table, ref->key_buff, ref->key, prefix_len))
return 1;
if (!cond || (range_fl & (max_fl ? NO_MIN_RANGE : NO_MAX_RANGE)))
return 0;
return maxmin_in_range(max_fl, field, cond);
}
/*
Check whether {MAX|MIN}(field) is in range specified by conditions
SYNOPSIS
maxmin_in_range()
max_fl in: 0 for MIN(field) / 1 for MAX(field)
field in: Field used the MIN/MAX expression
cond in: WHERE condition
RETURN
0 ok
1 WHERE was not true for the found row
*/
static int maxmin_in_range(bool max_fl, Field* field, COND *cond)
{
/* If AND/OR condition */
if (cond->type() == Item::COND_ITEM)
{
List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item= li++))
{
if (maxmin_in_range(max_fl, field, item))
return 1;
}
return 0;
}
if (cond->used_tables() != field->table->map)
return 0;
bool less_fl= 0;
switch (((Item_func*) cond)->functype()) {
case Item_func::BETWEEN:
return cond->val_int() == 0; // Return 1 if WHERE is false
case Item_func::LT_FUNC:
case Item_func::LE_FUNC:
less_fl= 1;
case Item_func::GT_FUNC:
case Item_func::GE_FUNC:
{
Item *item= ((Item_func*) cond)->arguments()[1];
/* In case of 'const op item' we have to swap the operator */
if (!item->const_item())
less_fl= 1-less_fl;
/*
We only have to check the expression if we are using an expression like
SELECT MAX(b) FROM t1 WHERE a=const AND b>const
not for
SELECT MAX(b) FROM t1 WHERE a=const AND b<const
*/
if (max_fl != less_fl)
return cond->val_int() == 0; // Return 1 if WHERE is false
return 0;
}
case Item_func::EQ_FUNC:
case Item_func::EQUAL_FUNC:
break;
default: // Keep compiler happy
DBUG_ASSERT(1); // Impossible
break;
}
return 0;
}