mirror of
https://github.com/MariaDB/server.git
synced 2025-01-19 13:32:33 +01:00
1083 lines
29 KiB
C
1083 lines
29 KiB
C
/* ==== fd.c ============================================================
|
|
* Copyright (c) 1993, 1994 by Chris Provenzano, proven@mit.edu
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Chris Provenzano.
|
|
* 4. The name of Chris Provenzano may not be used to endorse or promote
|
|
* products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY CHRIS PROVENZANO ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL CHRIS PROVENZANO BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* Description : All the syscalls dealing with fds.
|
|
*
|
|
* 1.00 93/08/14 proven
|
|
* -Started coding this file.
|
|
*
|
|
* 1.01 93/11/13 proven
|
|
* -The functions readv() and writev() added.
|
|
*/
|
|
|
|
#ifndef lint
|
|
static const char rcsid[] = "$Id$";
|
|
#endif
|
|
|
|
#include "config.h"
|
|
#include <pthread.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/ioctl.h>
|
|
#ifdef HAVE_SYS_FILIO_H
|
|
#include <sys/filio.h> /* For ioctl */
|
|
#endif
|
|
#if __STDC__
|
|
#include <stdarg.h>
|
|
#else
|
|
#include <varargs.h>
|
|
#endif
|
|
#include <fcntl.h>
|
|
#include <errno.h>
|
|
#include <pthread/posix.h>
|
|
|
|
/*
|
|
* These first functions really should not be called by the user.
|
|
*
|
|
* I really should dynamically figure out what the table size is.
|
|
*/
|
|
static pthread_mutex_t fd_table_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
static const int dtablecount = 4096/sizeof(struct fd_table_entry);
|
|
int dtablesize;
|
|
|
|
static int fd_get_pthread_fd_from_kernel_fd( int );
|
|
|
|
/* ==========================================================================
|
|
* Allocate dtablecount entries at once and populate the fd_table.
|
|
*
|
|
* fd_init_entry()
|
|
*/
|
|
int fd_init_entry(int entry)
|
|
{
|
|
struct fd_table_entry *fd_entry;
|
|
int i, round;
|
|
|
|
if (fd_table[entry] == NULL) {
|
|
round = entry - entry % dtablecount;
|
|
|
|
if ((fd_entry = (struct fd_table_entry *)malloc(
|
|
sizeof(struct fd_table_entry) * dtablecount)) == NULL) {
|
|
return(NOTOK);
|
|
}
|
|
|
|
for (i = 0; i < dtablecount && round+i < dtablesize; i++) {
|
|
fd_table[round + i] = &fd_entry[i];
|
|
|
|
fd_table[round + i]->ops = NULL;
|
|
fd_table[round + i]->type = FD_NT;
|
|
fd_table[round + i]->fd.i = NOTOK;
|
|
fd_table[round + i]->flags = 0;
|
|
fd_table[round + i]->count = 0;
|
|
|
|
pthread_mutex_init(&(fd_table[round + i]->mutex), NULL);
|
|
pthread_queue_init(&(fd_table[round + i]->r_queue));
|
|
pthread_queue_init(&(fd_table[round + i]->w_queue));
|
|
fd_table[round + i]->r_owner = NULL;
|
|
fd_table[round + i]->w_owner = NULL;
|
|
fd_table[round + i]->r_lockcount= 0;
|
|
fd_table[round + i]->w_lockcount= 0;
|
|
|
|
fd_table[round + i]->next = NULL;
|
|
}
|
|
}
|
|
return(OK);
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* fd_check_entry()
|
|
*/
|
|
int fd_check_entry(unsigned int entry)
|
|
{
|
|
int ret = OK;
|
|
|
|
pthread_mutex_lock(&fd_table_mutex);
|
|
|
|
if (entry < dtablesize) {
|
|
if (fd_table[entry] == NULL) {
|
|
if (fd_init_entry(entry)) {
|
|
SET_ERRNO(EBADF);
|
|
ret = -EBADF;
|
|
}
|
|
}
|
|
} else {
|
|
SET_ERRNO(EBADF);
|
|
ret = -EBADF;
|
|
}
|
|
|
|
pthread_mutex_unlock(&fd_table_mutex);
|
|
return(ret);
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* fd_init()
|
|
*/
|
|
void fd_init(void)
|
|
{
|
|
int i;
|
|
|
|
if ((dtablesize = machdep_sys_getdtablesize()) < 0) {
|
|
/* Can't figure out the table size. */
|
|
PANIC();
|
|
}
|
|
|
|
/* select() can only handle FD_SETSIZE descriptors, so our inner loop will
|
|
* break if dtablesize is higher than that. This should be removed if and
|
|
* when the inner loop is rewritten to use poll(). */
|
|
if (dtablesize > FD_SETSIZE) {
|
|
dtablesize = FD_SETSIZE;
|
|
}
|
|
|
|
if (fd_table = (struct fd_table_entry **)malloc(
|
|
sizeof(struct fd_table_entry) * dtablesize)) {
|
|
memset(fd_table, 0, sizeof(struct fd_table_entry) * dtablesize);
|
|
if (fd_check_entry(0) == OK) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* There isn't enough memory to allocate a fd table at init time.
|
|
* This is a problem.
|
|
*/
|
|
PANIC();
|
|
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* fd_allocate()
|
|
*/
|
|
int fd_allocate()
|
|
{
|
|
pthread_mutex_t * mutex;
|
|
int i;
|
|
|
|
for (i = 0; i < dtablesize; i++) {
|
|
if (fd_check_entry(i) == OK) {
|
|
mutex = &(fd_table[i]->mutex);
|
|
if (pthread_mutex_trylock(mutex)) {
|
|
continue;
|
|
}
|
|
if (fd_table[i]->count || fd_table[i]->r_owner
|
|
|| fd_table[i]->w_owner) {
|
|
pthread_mutex_unlock(mutex);
|
|
continue;
|
|
}
|
|
if (fd_table[i]->type == FD_NT) {
|
|
/* Test to see if the kernel version is in use */
|
|
if ((machdep_sys_fcntl(i, F_GETFL, NULL)) >= OK) {
|
|
/* If so continue; */
|
|
pthread_mutex_unlock(mutex);
|
|
continue;
|
|
}
|
|
}
|
|
fd_table[i]->count++;
|
|
pthread_mutex_unlock(mutex);
|
|
return(i);
|
|
}
|
|
}
|
|
SET_ERRNO(ENFILE);
|
|
return(NOTOK);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------
|
|
* Function: fd_get_pthread_fd_from_kernel_fd
|
|
* Purpose: get the fd_table index of a kernel fd
|
|
* Args: fd = kernel fd to convert
|
|
* Returns: fd_table index, -1 if not found
|
|
* Notes:
|
|
*----------------------------------------------------------------------*/
|
|
static int
|
|
fd_get_pthread_fd_from_kernel_fd( int kfd )
|
|
{
|
|
int j;
|
|
|
|
/* This is *SICK*, but unless there is a faster way to
|
|
* turn a kernel fd into an fd_table index, this has to do.
|
|
*/
|
|
for( j=0; j < dtablesize; j++ ) {
|
|
if( fd_table[j] &&
|
|
fd_table[j]->type != FD_NT &&
|
|
fd_table[j]->type != FD_NIU &&
|
|
fd_table[j]->fd.i == kfd ) {
|
|
return j;
|
|
}
|
|
}
|
|
|
|
/* Not listed byfd, Check for kernel fd == pthread fd */
|
|
if( fd_table[kfd] == NULL || fd_table[kfd]->type == FD_NT ) {
|
|
/* Assume that the kernel fd is the same */
|
|
return kfd;
|
|
}
|
|
|
|
return NOTOK; /* Not found */
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* fd_basic_basic_unlock()
|
|
*
|
|
* The real work of unlock without the locking of fd_table[fd].lock.
|
|
*/
|
|
void fd_basic_basic_unlock(struct fd_table_entry * entry, int lock_type)
|
|
{
|
|
struct pthread *pthread;
|
|
|
|
if (entry->r_owner == pthread_run) {
|
|
if ((entry->type == FD_HALF_DUPLEX) ||
|
|
(entry->type == FD_TEST_HALF_DUPLEX) ||
|
|
(lock_type == FD_READ) || (lock_type == FD_RDWR)) {
|
|
if (entry->r_lockcount == 0) {
|
|
if (pthread = pthread_queue_deq(&entry->r_queue)) {
|
|
pthread_sched_prevent();
|
|
entry->r_owner = pthread;
|
|
if ((SET_PF_DONE_EVENT(pthread)) == OK) {
|
|
pthread_sched_other_resume(pthread);
|
|
} else {
|
|
pthread_sched_resume();
|
|
}
|
|
} else {
|
|
entry->r_owner = NULL;
|
|
}
|
|
} else {
|
|
entry->r_lockcount--;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (entry->w_owner == pthread_run) {
|
|
if ((entry->type != FD_HALF_DUPLEX) &&
|
|
(entry->type != FD_TEST_HALF_DUPLEX) &&
|
|
((lock_type == FD_WRITE) || (lock_type == FD_RDWR))) {
|
|
if (entry->w_lockcount == 0) {
|
|
if (pthread = pthread_queue_deq(&entry->w_queue)) {
|
|
pthread_sched_prevent();
|
|
entry->w_owner = pthread;
|
|
if ((SET_PF_DONE_EVENT(pthread)) == OK) {
|
|
pthread_sched_other_resume(pthread);
|
|
} else {
|
|
pthread_sched_resume();
|
|
}
|
|
} else {
|
|
entry->w_owner = NULL;
|
|
}
|
|
} else {
|
|
entry->w_lockcount--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* fd_basic_unlock()
|
|
*/
|
|
void fd_basic_unlock(int fd, int lock_type)
|
|
{
|
|
fd_basic_basic_unlock(fd_table[fd], lock_type);
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* fd_unlock()
|
|
*/
|
|
void fd_unlock(int fd, int lock_type)
|
|
{
|
|
pthread_mutex_t *mutex;
|
|
|
|
mutex = &(fd_table[fd]->mutex);
|
|
pthread_mutex_lock(mutex);
|
|
fd_basic_basic_unlock(fd_table[fd], lock_type);
|
|
pthread_mutex_unlock(mutex);
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* fd_basic_lock()
|
|
*
|
|
* The real work of lock without the locking of fd_table[fd].lock.
|
|
* Be sure to leave the lock the same way you found it. i.e. locked.
|
|
*/
|
|
int fd_basic_lock(unsigned int fd, int lock_type, pthread_mutex_t * mutex,
|
|
struct timespec * timeout)
|
|
{
|
|
semaphore *plock;
|
|
|
|
switch (fd_table[fd]->type) {
|
|
case FD_NIU:
|
|
/* If not in use return EBADF error */
|
|
SET_ERRNO(EBADF);
|
|
return(NOTOK);
|
|
break;
|
|
case FD_NT:
|
|
/*
|
|
* If not tested, test it and see if it is valid
|
|
* If not ok return EBADF error
|
|
*/
|
|
fd_kern_init(fd);
|
|
if (fd_table[fd]->type == FD_NIU) {
|
|
SET_ERRNO(EBADF);
|
|
return(NOTOK);
|
|
}
|
|
break;
|
|
case FD_TEST_HALF_DUPLEX:
|
|
case FD_TEST_FULL_DUPLEX:
|
|
/* If a parent process reset the fd to its proper state */
|
|
if (!fork_lock) {
|
|
/* It had better be a kernel fd */
|
|
fd_kern_reset(fd);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if ((fd_table[fd]->type == FD_HALF_DUPLEX) ||
|
|
(fd_table[fd]->type == FD_TEST_HALF_DUPLEX) ||
|
|
(lock_type == FD_READ) || (lock_type == FD_RDWR)) {
|
|
if (fd_table[fd]->r_owner) {
|
|
if (fd_table[fd]->r_owner != pthread_run) {
|
|
pthread_sched_prevent();
|
|
pthread_queue_enq(&fd_table[fd]->r_queue, pthread_run);
|
|
SET_PF_WAIT_EVENT(pthread_run);
|
|
pthread_mutex_unlock(mutex);
|
|
|
|
if (timeout) {
|
|
/* get current time */
|
|
struct timespec current_time;
|
|
machdep_gettimeofday(¤t_time);
|
|
sleep_schedule(¤t_time, timeout);
|
|
|
|
/* Reschedule will unlock pthread_run */
|
|
pthread_run->data.fd.fd = fd;
|
|
pthread_run->data.fd.branch = __LINE__;
|
|
pthread_resched_resume(PS_FDLR_WAIT);
|
|
pthread_mutex_lock(mutex);
|
|
|
|
/* If we're the owner then we have to cancel the sleep */
|
|
if (fd_table[fd]->r_owner != pthread_run) {
|
|
CLEAR_PF_DONE_EVENT(pthread_run);
|
|
SET_ERRNO(ETIMEDOUT);
|
|
return(NOTOK);
|
|
}
|
|
sleep_cancel(pthread_run);
|
|
} else {
|
|
/* Reschedule will unlock pthread_run */
|
|
pthread_run->data.fd.fd = fd;
|
|
pthread_run->data.fd.branch = __LINE__;
|
|
pthread_resched_resume(PS_FDLR_WAIT);
|
|
pthread_mutex_lock(mutex);
|
|
}
|
|
CLEAR_PF_DONE_EVENT(pthread_run);
|
|
} else {
|
|
fd_table[fd]->r_lockcount++;
|
|
}
|
|
}
|
|
fd_table[fd]->r_owner = pthread_run;
|
|
}
|
|
if ((fd_table[fd]->type != FD_HALF_DUPLEX) &&
|
|
(fd_table[fd]->type != FD_TEST_HALF_DUPLEX) &&
|
|
((lock_type == FD_WRITE) || (lock_type == FD_RDWR))) {
|
|
if (fd_table[fd]->w_owner) {
|
|
if (fd_table[fd]->w_owner != pthread_run) {
|
|
pthread_sched_prevent();
|
|
pthread_queue_enq(&fd_table[fd]->w_queue, pthread_run);
|
|
SET_PF_WAIT_EVENT(pthread_run);
|
|
pthread_mutex_unlock(mutex);
|
|
|
|
if (timeout) {
|
|
/* get current time */
|
|
struct timespec current_time;
|
|
machdep_gettimeofday(¤t_time);
|
|
sleep_schedule(¤t_time, timeout);
|
|
|
|
/* Reschedule will unlock pthread_run */
|
|
pthread_run->data.fd.fd = fd;
|
|
pthread_run->data.fd.branch = __LINE__;
|
|
pthread_resched_resume(PS_FDLR_WAIT);
|
|
pthread_mutex_lock(mutex);
|
|
|
|
/* If we're the owner then we have to cancel the sleep */
|
|
if (fd_table[fd]->w_owner != pthread_run) {
|
|
if (lock_type == FD_RDWR) {
|
|
/* Unlock current thread */
|
|
fd_basic_unlock(fd, FD_READ);
|
|
}
|
|
CLEAR_PF_DONE_EVENT(pthread_run);
|
|
SET_ERRNO(ETIMEDOUT);
|
|
return(NOTOK);
|
|
}
|
|
sleep_cancel(pthread_run);
|
|
} else {
|
|
/* Reschedule will unlock pthread_run */
|
|
pthread_run->data.fd.fd = fd;
|
|
pthread_run->data.fd.branch = __LINE__;
|
|
pthread_resched_resume(PS_FDLR_WAIT);
|
|
pthread_mutex_lock(mutex);
|
|
}
|
|
CLEAR_PF_DONE_EVENT(pthread_run);
|
|
} else {
|
|
fd_table[fd]->w_lockcount++;
|
|
}
|
|
}
|
|
fd_table[fd]->w_owner = pthread_run;
|
|
}
|
|
if (!fd_table[fd]->count) {
|
|
fd_basic_unlock(fd, lock_type);
|
|
return(NOTOK);
|
|
}
|
|
return(OK);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------
|
|
* Function: fd_unlock_for_cancel
|
|
* Purpose: Unlock all fd locks held prior to being cancelled
|
|
* Args: void
|
|
* Returns:
|
|
* OK or NOTOK
|
|
* Notes:
|
|
* Assumes the kernel is locked on entry
|
|
*----------------------------------------------------------------------*/
|
|
int
|
|
fd_unlock_for_cancel( void )
|
|
{
|
|
int i, fd;
|
|
struct pthread_select_data *data;
|
|
int rdlk, wrlk, lktype;
|
|
int found;
|
|
|
|
/* What we do depends on the previous state of the thread */
|
|
switch( pthread_run->old_state ) {
|
|
case PS_RUNNING:
|
|
case PS_JOIN:
|
|
case PS_SLEEP_WAIT:
|
|
case PS_WAIT_WAIT:
|
|
case PS_SIGWAIT:
|
|
case PS_FDLR_WAIT:
|
|
case PS_FDLW_WAIT:
|
|
case PS_DEAD:
|
|
case PS_UNALLOCED:
|
|
break; /* Nothing to do */
|
|
|
|
case PS_COND_WAIT:
|
|
CLEAR_PF_GROUP( pthread_run, PF_EVENT_GROUP );
|
|
/* Must reaquire the mutex according to the standard */
|
|
if( pthread_run->data.mutex == NULL ) {
|
|
PANIC();
|
|
}
|
|
pthread_mutex_lock( pthread_run->data.mutex );
|
|
break;
|
|
|
|
case PS_FDR_WAIT:
|
|
CLEAR_PF_GROUP( pthread_run, PF_EVENT_GROUP);
|
|
/* Free the lock on the fd being used */
|
|
fd = fd_get_pthread_fd_from_kernel_fd( pthread_run->data.fd.fd );
|
|
if( fd == NOTOK ) {
|
|
PANIC(); /* Can't find fd */
|
|
}
|
|
fd_unlock( fd, FD_READ );
|
|
break;
|
|
|
|
case PS_FDW_WAIT: /* Waiting on i/o */
|
|
CLEAR_PF_GROUP( pthread_run, PF_EVENT_GROUP);
|
|
/* Free the lock on the fd being used */
|
|
fd = fd_get_pthread_fd_from_kernel_fd( pthread_run->data.fd.fd );
|
|
if( fd == NOTOK ) {
|
|
PANIC(); /* Can't find fd */
|
|
}
|
|
fd_unlock( fd, FD_WRITE );
|
|
break;
|
|
|
|
case PS_SELECT_WAIT:
|
|
data = pthread_run->data.select_data;
|
|
|
|
CLEAR_PF_GROUP( pthread_run, PF_EVENT_GROUP);
|
|
|
|
for( i = 0; i < data->nfds; i++) {
|
|
rdlk =(FD_ISSET(i,&data->readfds)
|
|
|| FD_ISSET(i,&data->exceptfds));
|
|
wrlk = FD_ISSET(i, &data->writefds);
|
|
lktype = rdlk ? (wrlk ? FD_RDWR : FD_READ) : FD_WRITE;
|
|
|
|
if( ! (rdlk || wrlk) )
|
|
continue; /* No locks, no unlock */
|
|
|
|
if( (fd = fd_get_pthread_fd_from_kernel_fd( i )) == NOTOK ) {
|
|
PANIC(); /* Can't find fd */
|
|
}
|
|
|
|
fd_unlock( fd, lktype );
|
|
}
|
|
break;
|
|
|
|
case PS_MUTEX_WAIT:
|
|
PANIC(); /* Should never cancel a mutex wait */
|
|
|
|
default:
|
|
PANIC(); /* Unknown thread status */
|
|
}
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* fd_lock()
|
|
*/
|
|
#define pthread_mutex_lock_timedwait(a, b) pthread_mutex_lock(a)
|
|
|
|
int fd_lock(unsigned int fd, int lock_type, struct timespec * timeout)
|
|
{
|
|
struct timespec current_time;
|
|
pthread_mutex_t *mutex;
|
|
int error;
|
|
|
|
if ((error = fd_check_entry(fd)) == OK) {
|
|
mutex = &(fd_table[fd]->mutex);
|
|
if (pthread_mutex_lock_timedwait(mutex, timeout)) {
|
|
SET_ERRNO(ETIMEDOUT);
|
|
return(-ETIMEDOUT);
|
|
}
|
|
error = fd_basic_lock(fd, lock_type, mutex, timeout);
|
|
pthread_mutex_unlock(mutex);
|
|
}
|
|
return(error);
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* fd_free()
|
|
*
|
|
* Assumes fd is locked and owner by pthread_run
|
|
* Don't clear the queues, fd_unlock will do that.
|
|
*/
|
|
struct fd_table_entry * fd_free(int fd)
|
|
{
|
|
struct fd_table_entry *fd_valid;
|
|
|
|
fd_valid = NULL;
|
|
fd_table[fd]->r_lockcount = 0;
|
|
fd_table[fd]->w_lockcount = 0;
|
|
if (--fd_table[fd]->count) {
|
|
fd_valid = fd_table[fd];
|
|
fd_table[fd] = fd_table[fd]->next;
|
|
fd_valid->next = fd_table[fd]->next;
|
|
/* Don't touch queues of fd_valid */
|
|
}
|
|
|
|
fd_table[fd]->type = FD_NIU;
|
|
fd_table[fd]->fd.i = NOTOK;
|
|
fd_table[fd]->next = NULL;
|
|
fd_table[fd]->flags = 0;
|
|
fd_table[fd]->count = 0;
|
|
return(fd_valid);
|
|
}
|
|
|
|
|
|
/* ==========================================================================
|
|
* ======================================================================= */
|
|
|
|
/* ==========================================================================
|
|
* read_timedwait()
|
|
*/
|
|
ssize_t read_timedwait(int fd, void *buf, size_t nbytes,
|
|
struct timespec * timeout)
|
|
{
|
|
int ret;
|
|
|
|
if ((ret = fd_lock(fd, FD_READ, NULL)) == OK) {
|
|
ret = fd_table[fd]->ops->read(fd_table[fd]->fd,
|
|
fd_table[fd]->flags, buf, nbytes, timeout);
|
|
fd_unlock(fd, FD_READ);
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* read()
|
|
*/
|
|
ssize_t read(int fd, void *buf, size_t nbytes)
|
|
{
|
|
return(read_timedwait(fd, buf, nbytes, NULL));
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* readv_timedwait()
|
|
*/
|
|
int readv_timedwait(int fd, const struct iovec *iov, int iovcnt,
|
|
struct timespec * timeout)
|
|
{
|
|
int ret;
|
|
|
|
if ((ret = fd_lock(fd, FD_READ, NULL)) == OK) {
|
|
ret = fd_table[fd]->ops->readv(fd_table[fd]->fd,
|
|
fd_table[fd]->flags, iov, iovcnt, timeout);
|
|
fd_unlock(fd, FD_READ);
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* readv()
|
|
*/
|
|
ssize_t readv(int fd, const struct iovec *iov, int iovcnt)
|
|
{
|
|
return(readv_timedwait(fd, iov, iovcnt, NULL));
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* write()
|
|
*/
|
|
ssize_t write_timedwait(int fd, const void *buf, size_t nbytes,
|
|
struct timespec * timeout)
|
|
{
|
|
int ret;
|
|
|
|
if ((ret = fd_lock(fd, FD_WRITE, NULL)) == OK)
|
|
{
|
|
ret = fd_table[fd]->ops->write(fd_table[fd]->fd,
|
|
fd_table[fd]->flags, buf, nbytes,
|
|
timeout);
|
|
fd_unlock(fd, FD_WRITE);
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* write()
|
|
*/
|
|
ssize_t write(int fd, const void * buf, size_t nbytes)
|
|
{
|
|
return(write_timedwait(fd, buf, nbytes, NULL));
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* writev_timedwait()
|
|
*/
|
|
int writev_timedwait(int fd, const struct iovec *iov, int iovcnt,
|
|
struct timespec * timeout)
|
|
{
|
|
int ret;
|
|
|
|
if ((ret = fd_lock(fd, FD_WRITE, NULL)) == OK) {
|
|
ret = fd_table[fd]->ops->writev(fd_table[fd]->fd,
|
|
fd_table[fd]->flags, iov, iovcnt, timeout);
|
|
fd_unlock(fd, FD_WRITE);
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* writev()
|
|
*/
|
|
ssize_t writev(int fd, const struct iovec *iov, int iovcnt)
|
|
{
|
|
return(writev_timedwait(fd, iov, iovcnt, NULL));
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* lseek()
|
|
*/
|
|
off_t lseek(int fd, off_t offset, int whence)
|
|
{
|
|
off_t ret;
|
|
|
|
if ((ret = fd_lock(fd, FD_RDWR, NULL)) == OK) {
|
|
ret = fd_table[fd]->ops->seek(fd_table[fd]->fd,
|
|
fd_table[fd]->flags, offset, whence);
|
|
fd_unlock(fd, FD_RDWR);
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* close()
|
|
*
|
|
* The whole close procedure is a bit odd and needs a bit of a rethink.
|
|
* For now close() locks the fd, calls fd_free() which checks to see if
|
|
* there are any other fd values poinging to the same real fd. If so
|
|
* It breaks the wait queue into two sections those that are waiting on fd
|
|
* and those waiting on other fd's. Those that are waiting on fd are connected
|
|
* to the fd_table[fd] queue, and the count is set to zero, (BUT THE LOCK IS NOT
|
|
* RELEASED). close() then calls fd_unlock which give the fd to the next queued
|
|
* element which determins that the fd is closed and then calls fd_unlock etc...
|
|
*
|
|
* XXX close() is even uglier now. You may assume that the kernel fd is the
|
|
* same as fd if fd_table[fd] == NULL or if fd_table[fd]->type == FD_NT.
|
|
* This is true because before any fd_table[fd] is allocated the corresponding
|
|
* kernel fd must be checks to see if it's valid.
|
|
*/
|
|
int close(int fd)
|
|
{
|
|
struct fd_table_entry * entry;
|
|
pthread_mutex_t *mutex;
|
|
union fd_data realfd;
|
|
int ret, flags;
|
|
|
|
if(fd < 0 || fd >= dtablesize)
|
|
{
|
|
SET_ERRNO(EBADF);
|
|
return -1;
|
|
}
|
|
/* Need to lock the newfd by hand */
|
|
pthread_mutex_lock(&fd_table_mutex);
|
|
if (fd_table[fd]) {
|
|
pthread_mutex_unlock(&fd_table_mutex);
|
|
mutex = &(fd_table[fd]->mutex);
|
|
pthread_mutex_lock(mutex);
|
|
|
|
/*
|
|
* XXX Gross hack ... because of fork(), any fd closed by the
|
|
* parent should not change the fd of the child, unless it owns it.
|
|
*/
|
|
switch(fd_table[fd]->type) {
|
|
case FD_NIU:
|
|
pthread_mutex_unlock(mutex);
|
|
ret = -EBADF;
|
|
break;
|
|
case FD_NT:
|
|
/*
|
|
* If it's not tested then the only valid possibility is it's
|
|
* kernel fd.
|
|
*/
|
|
ret = machdep_sys_close(fd);
|
|
fd_table[fd]->type = FD_NIU;
|
|
pthread_mutex_unlock(mutex);
|
|
break;
|
|
case FD_TEST_FULL_DUPLEX:
|
|
case FD_TEST_HALF_DUPLEX:
|
|
realfd = fd_table[fd]->fd;
|
|
flags = fd_table[fd]->flags;
|
|
if ((entry = fd_free(fd)) == NULL) {
|
|
ret = fd_table[fd]->ops->close(realfd, flags);
|
|
} else {
|
|
/* There can't be any others waiting for fd. */
|
|
pthread_mutex_unlock(&entry->mutex);
|
|
/* Note: entry->mutex = mutex */
|
|
mutex = &(fd_table[fd]->mutex);
|
|
}
|
|
pthread_mutex_unlock(mutex);
|
|
break;
|
|
default:
|
|
ret = fd_basic_lock(fd, FD_RDWR, mutex, NULL);
|
|
if (ret == OK) {
|
|
realfd = fd_table[fd]->fd;
|
|
flags = fd_table[fd]->flags;
|
|
pthread_mutex_unlock(mutex);
|
|
if ((entry = fd_free(fd)) == NULL) {
|
|
ret = fd_table[fd]->ops->close(realfd, flags);
|
|
} else {
|
|
fd_basic_basic_unlock(entry, FD_RDWR);
|
|
pthread_mutex_unlock(&entry->mutex);
|
|
/* Note: entry->mutex = mutex */
|
|
}
|
|
fd_unlock(fd, FD_RDWR);
|
|
} else {
|
|
pthread_mutex_unlock(mutex);
|
|
}
|
|
break;
|
|
}
|
|
} else {
|
|
/* Don't bother creating a table entry */
|
|
pthread_mutex_unlock(&fd_table_mutex);
|
|
ret = machdep_sys_close(fd);
|
|
}
|
|
if( ret < 0) {
|
|
SET_ERRNO(-ret);
|
|
ret = -1;
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* fd_basic_dup()
|
|
*
|
|
*
|
|
* This is a MAJOR guess!! I don't know if the mutext unlock is valid
|
|
* in the BIG picture. But it seems to be needed to avoid deadlocking
|
|
* with ourselves when we try to close the duped file descriptor.
|
|
*/
|
|
static inline void fd_basic_dup(int fd, int newfd)
|
|
{
|
|
fd_table[newfd]->next = fd_table[fd]->next;
|
|
fd_table[fd]->next = fd_table[newfd];
|
|
fd_table[newfd] = fd_table[fd];
|
|
fd_table[fd]->count++;
|
|
pthread_mutex_unlock(&fd_table[newfd]->next->mutex);
|
|
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* dup2()
|
|
*
|
|
* Note: Always lock the lower number fd first to avoid deadlocks.
|
|
* Note: Leave the newfd locked. It will be unlocked at close() time.
|
|
* Note: newfd must be locked by hand so it can be closed if it is open,
|
|
* or it won't be opened while dup is in progress.
|
|
*/
|
|
int dup2(fd, newfd)
|
|
{
|
|
struct fd_table_entry * entry;
|
|
pthread_mutex_t *mutex;
|
|
union fd_data realfd;
|
|
int ret, flags;
|
|
|
|
if ((ret = fd_check_entry(newfd)) != OK)
|
|
return ret;
|
|
|
|
if (newfd < dtablesize) {
|
|
if (fd < newfd) {
|
|
if ((ret = fd_lock(fd, FD_RDWR, NULL)) == OK) {
|
|
/* Need to lock the newfd by hand */
|
|
mutex = &(fd_table[newfd]->mutex);
|
|
pthread_mutex_lock(mutex);
|
|
|
|
/* Is it inuse */
|
|
if (fd_basic_lock(newfd, FD_RDWR, mutex, NULL) == OK) {
|
|
realfd = fd_table[newfd]->fd;
|
|
flags = fd_table[newfd]->flags;
|
|
/* free it and check close status */
|
|
if ((entry = fd_free(newfd)) == NULL) {
|
|
entry = fd_table[newfd];
|
|
entry->ops->close(realfd, flags);
|
|
if (entry->r_queue.q_next) {
|
|
if (fd_table[fd]->next) {
|
|
fd_table[fd]->r_queue.q_last->next =
|
|
entry->r_queue.q_next;
|
|
} else {
|
|
fd_table[fd]->r_queue.q_next =
|
|
entry->r_queue.q_next;
|
|
}
|
|
fd_table[fd]->r_queue.q_last =
|
|
entry->r_queue.q_last;
|
|
}
|
|
if (entry->w_queue.q_next) {
|
|
if (fd_table[fd]->next) {
|
|
fd_table[fd]->w_queue.q_last->next =
|
|
entry->w_queue.q_next;
|
|
} else {
|
|
fd_table[fd]->w_queue.q_next =
|
|
entry->w_queue.q_next;
|
|
}
|
|
fd_table[fd]->w_queue.q_last =
|
|
entry->w_queue.q_last;
|
|
}
|
|
entry->r_queue.q_next = NULL;
|
|
entry->w_queue.q_next = NULL;
|
|
entry->r_queue.q_last = NULL;
|
|
entry->w_queue.q_last = NULL;
|
|
entry->r_owner = NULL;
|
|
entry->w_owner = NULL;
|
|
ret = OK;
|
|
} else {
|
|
fd_basic_basic_unlock(entry, FD_RDWR);
|
|
pthread_mutex_unlock(&entry->mutex);
|
|
/* Note: entry->mutex = mutex */
|
|
}
|
|
}
|
|
fd_basic_dup(fd, newfd);
|
|
}
|
|
fd_unlock(fd, FD_RDWR);
|
|
} else {
|
|
/* Need to lock the newfd by hand */
|
|
mutex = &(fd_table[newfd]->mutex);
|
|
pthread_mutex_lock(mutex);
|
|
|
|
if ((ret = fd_lock(fd, FD_RDWR, NULL)) == OK) {
|
|
/* Is newfd inuse */
|
|
if ((ret = fd_basic_lock(newfd, FD_RDWR, mutex, NULL)) == OK) {
|
|
realfd = fd_table[newfd]->fd;
|
|
flags = fd_table[newfd]->flags;
|
|
/* free it and check close status */
|
|
if ((entry = fd_free(newfd)) == NULL) {
|
|
entry = fd_table[newfd];
|
|
entry->ops->close(realfd, flags);
|
|
if (entry->r_queue.q_next) {
|
|
if (fd_table[fd]->next) {
|
|
fd_table[fd]->r_queue.q_last->next =
|
|
entry->r_queue.q_next;
|
|
} else {
|
|
fd_table[fd]->r_queue.q_next =
|
|
entry->r_queue.q_next;
|
|
}
|
|
fd_table[fd]->r_queue.q_last =
|
|
entry->r_queue.q_last;
|
|
}
|
|
if (entry->w_queue.q_next) {
|
|
if (fd_table[fd]->next) {
|
|
fd_table[fd]->w_queue.q_last->next =
|
|
entry->w_queue.q_next;
|
|
} else {
|
|
fd_table[fd]->w_queue.q_next =
|
|
entry->w_queue.q_next;
|
|
}
|
|
fd_table[fd]->w_queue.q_last =
|
|
entry->w_queue.q_last;
|
|
}
|
|
entry->r_queue.q_next = NULL;
|
|
entry->w_queue.q_next = NULL;
|
|
entry->r_queue.q_last = NULL;
|
|
entry->w_queue.q_last = NULL;
|
|
entry->r_owner = NULL;
|
|
entry->w_owner = NULL;
|
|
ret = OK;
|
|
} else {
|
|
fd_basic_basic_unlock(entry, FD_RDWR);
|
|
pthread_mutex_unlock(&entry->mutex);
|
|
/* Note: entry->mutex = mutex */
|
|
}
|
|
fd_basic_dup(fd, newfd);
|
|
}
|
|
fd_unlock(fd, FD_RDWR);
|
|
}
|
|
}
|
|
} else {
|
|
ret = NOTOK;
|
|
}
|
|
return(ret);
|
|
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* dup()
|
|
*/
|
|
int dup(int fd)
|
|
{
|
|
int ret;
|
|
|
|
if ((ret = fd_lock(fd, FD_RDWR, NULL)) == OK) {
|
|
ret = fd_allocate();
|
|
fd_basic_dup(fd, ret);
|
|
fd_unlock(fd, FD_RDWR);
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* fcntl()
|
|
*/
|
|
int fcntl(int fd, int cmd, ...)
|
|
{
|
|
int ret, realfd, flags;
|
|
struct flock *flock;
|
|
semaphore *plock;
|
|
va_list ap;
|
|
|
|
flags = 0;
|
|
if ((ret = fd_lock(fd, FD_RDWR, NULL)) == OK) {
|
|
va_start(ap, cmd);
|
|
switch(cmd) {
|
|
case F_DUPFD:
|
|
ret = fd_allocate();
|
|
fd_basic_dup(va_arg(ap, int), ret);
|
|
break;
|
|
case F_SETFD:
|
|
break;
|
|
case F_GETFD:
|
|
break;
|
|
case F_GETFL:
|
|
ret = fd_table[fd]->flags;
|
|
break;
|
|
case F_SETFL:
|
|
flags = va_arg(ap, int);
|
|
if ((ret = fd_table[fd]->ops->fcntl(fd_table[fd]->fd,
|
|
fd_table[fd]->flags, cmd, flags | __FD_NONBLOCK)) == OK) {
|
|
fd_table[fd]->flags = flags;
|
|
}
|
|
break;
|
|
/* case F_SETLKW: */
|
|
/*
|
|
* Do the same as SETLK but if it fails with EACCES or EAGAIN
|
|
* block the thread and try again later, not implemented yet
|
|
*/
|
|
/* case F_SETLK: */
|
|
/* case F_GETLK:
|
|
flock = va_arg(ap, struct flock*);
|
|
ret = fd_table[fd]->ops->fcntl(fd_table[fd]->fd,
|
|
fd_table[fd]->flags, cmd, flock);
|
|
break; */
|
|
default:
|
|
/* Might want to make va_arg use a union */
|
|
ret = fd_table[fd]->ops->fcntl(fd_table[fd]->fd,
|
|
fd_table[fd]->flags, cmd, va_arg(ap, void*));
|
|
break;
|
|
}
|
|
va_end(ap);
|
|
fd_unlock(fd, FD_RDWR);
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* getdtablesize()
|
|
*/
|
|
int getdtablesize()
|
|
{
|
|
return dtablesize;
|
|
}
|
|
|
|
/* ==========================================================================
|
|
* ioctl()
|
|
*
|
|
* Really want to do a real implementation of this that parses the args ala
|
|
* fcntl(), above, but it will have to be a totally platform-specific,
|
|
* nightmare-on-elm-st-style sort of thing. Might even deserve its own file
|
|
* ala select()... --SNL
|
|
*/
|
|
#ifndef ioctl_request_type
|
|
#define ioctl_request_type unsigned long /* Dummy patch by Monty */
|
|
#endif
|
|
|
|
int
|
|
ioctl(int fd, ioctl_request_type request, ...)
|
|
{
|
|
int ret;
|
|
pthread_va_list ap;
|
|
caddr_t arg;
|
|
|
|
va_start( ap, request ); /* Get the arg */
|
|
arg = va_arg(ap,caddr_t);
|
|
va_end( ap );
|
|
|
|
if (fd < 0 || fd >= dtablesize)
|
|
ret = NOTOK;
|
|
else if (fd_table[fd]->fd.i == NOTOK)
|
|
ret = machdep_sys_ioctl(fd, request, arg);
|
|
else if ((ret = fd_lock(fd, FD_RDWR, NULL)) == OK) {
|
|
ret = machdep_sys_ioctl(fd_table[fd]->fd.i, request, arg);
|
|
if( ret == 0 && request == FIONBIO ) {
|
|
/* Properly set NONBLOCK flag */
|
|
int v = *(int *)arg;
|
|
if( v )
|
|
fd_table[fd]->flags |= __FD_NONBLOCK;
|
|
else
|
|
fd_table[fd]->flags &= ~__FD_NONBLOCK;
|
|
}
|
|
fd_unlock(fd, FD_RDWR);
|
|
}
|
|
return ret;
|
|
}
|
|
|