mirror of
https://github.com/MariaDB/server.git
synced 2025-01-22 14:54:20 +01:00
4e1116b2c6
Also, remove empty .ic files that were not removed by my MySQL commit. Problem: InnoDB used to support a compilation mode that allowed to choose whether the function definitions in .ic files are to be inlined or not. This stopped making sense when InnoDB moved to C++ in MySQL 5.6 (and ha_innodb.cc started to #include .ic files), and more so in MySQL 5.7 when inline methods and functions were introduced in .h files. Solution: Remove all references to UNIV_NONINL and UNIV_MUST_NOT_INLINE from all files, assuming that the symbols are never defined. Remove the files fut0fut.cc and ut0byte.cc which only mattered when UNIV_NONINL was defined.
1505 lines
41 KiB
C++
1505 lines
41 KiB
C++
/*****************************************************************************
|
|
|
|
Copyright (c) 1996, 2016, Oracle and/or its affiliates. All Rights Reserved.
|
|
|
|
This program is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free Software
|
|
Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
|
|
|
|
*****************************************************************************/
|
|
|
|
/**************************************************//**
|
|
@file row/row0row.cc
|
|
General row routines
|
|
|
|
Created 4/20/1996 Heikki Tuuri
|
|
*******************************************************/
|
|
|
|
#include "ha_prototypes.h"
|
|
|
|
#include "row0row.h"
|
|
#include "data0type.h"
|
|
#include "dict0dict.h"
|
|
#include "dict0boot.h"
|
|
#include "btr0btr.h"
|
|
#include "mach0data.h"
|
|
#include "trx0rseg.h"
|
|
#include "trx0trx.h"
|
|
#include "trx0roll.h"
|
|
#include "trx0undo.h"
|
|
#include "trx0purge.h"
|
|
#include "trx0rec.h"
|
|
#include "que0que.h"
|
|
#include "row0ext.h"
|
|
#include "row0upd.h"
|
|
#include "rem0cmp.h"
|
|
#include "read0read.h"
|
|
#include "ut0mem.h"
|
|
#include "gis0geo.h"
|
|
#include "row0mysql.h"
|
|
|
|
/*****************************************************************//**
|
|
When an insert or purge to a table is performed, this function builds
|
|
the entry to be inserted into or purged from an index on the table.
|
|
@return index entry which should be inserted or purged
|
|
@retval NULL if the externally stored columns in the clustered index record
|
|
are unavailable and ext != NULL, or row is missing some needed columns. */
|
|
dtuple_t*
|
|
row_build_index_entry_low(
|
|
/*======================*/
|
|
const dtuple_t* row, /*!< in: row which should be
|
|
inserted or purged */
|
|
const row_ext_t* ext, /*!< in: externally stored column
|
|
prefixes, or NULL */
|
|
dict_index_t* index, /*!< in: index on the table */
|
|
mem_heap_t* heap, /*!< in: memory heap from which
|
|
the memory for the index entry
|
|
is allocated */
|
|
ulint flag) /*!< in: ROW_BUILD_NORMAL,
|
|
ROW_BUILD_FOR_PURGE
|
|
or ROW_BUILD_FOR_UNDO */
|
|
{
|
|
dtuple_t* entry;
|
|
ulint entry_len;
|
|
ulint i;
|
|
ulint num_v = 0;
|
|
|
|
entry_len = dict_index_get_n_fields(index);
|
|
|
|
if (flag == ROW_BUILD_FOR_INSERT && dict_index_is_clust(index)) {
|
|
num_v = dict_table_get_n_v_cols(index->table);
|
|
entry = dtuple_create_with_vcol(heap, entry_len, num_v);
|
|
} else {
|
|
entry = dtuple_create(heap, entry_len);
|
|
}
|
|
|
|
if (dict_index_is_ibuf(index)) {
|
|
dtuple_set_n_fields_cmp(entry, entry_len);
|
|
/* There may only be externally stored columns
|
|
in a clustered index B-tree of a user table. */
|
|
ut_a(!ext);
|
|
} else {
|
|
dtuple_set_n_fields_cmp(
|
|
entry, dict_index_get_n_unique_in_tree(index));
|
|
}
|
|
|
|
for (i = 0; i < entry_len + num_v; i++) {
|
|
const dict_field_t* ind_field = NULL;
|
|
const dict_col_t* col;
|
|
ulint col_no = 0;
|
|
dfield_t* dfield;
|
|
dfield_t* dfield2;
|
|
ulint len;
|
|
|
|
if (i >= entry_len) {
|
|
/* This is to insert new rows to cluster index */
|
|
ut_ad(dict_index_is_clust(index)
|
|
&& flag == ROW_BUILD_FOR_INSERT);
|
|
dfield = dtuple_get_nth_v_field(entry, i - entry_len);
|
|
col = &dict_table_get_nth_v_col(
|
|
index->table, i - entry_len)->m_col;
|
|
|
|
} else {
|
|
ind_field = dict_index_get_nth_field(index, i);
|
|
col = ind_field->col;
|
|
col_no = dict_col_get_no(col);
|
|
dfield = dtuple_get_nth_field(entry, i);
|
|
}
|
|
#if DATA_MISSING != 0
|
|
# error "DATA_MISSING != 0"
|
|
#endif
|
|
|
|
if (dict_col_is_virtual(col)) {
|
|
const dict_v_col_t* v_col
|
|
= reinterpret_cast<const dict_v_col_t*>(col);
|
|
|
|
ut_ad(v_col->v_pos < dtuple_get_n_v_fields(row));
|
|
dfield2 = dtuple_get_nth_v_field(row, v_col->v_pos);
|
|
|
|
ut_ad(dfield_is_null(dfield2) ||
|
|
dfield_get_len(dfield2) == 0 || dfield2->data);
|
|
} else {
|
|
dfield2 = dtuple_get_nth_field(row, col_no);
|
|
ut_ad(dfield_get_type(dfield2)->mtype == DATA_MISSING
|
|
|| (!(dfield_get_type(dfield2)->prtype
|
|
& DATA_VIRTUAL)));
|
|
}
|
|
|
|
if (UNIV_UNLIKELY(dfield_get_type(dfield2)->mtype
|
|
== DATA_MISSING)) {
|
|
/* The field has not been initialized in the row.
|
|
This should be from trx_undo_rec_get_partial_row(). */
|
|
return(NULL);
|
|
}
|
|
|
|
#ifdef UNIV_DEBUG
|
|
if (dfield_get_type(dfield2)->prtype & DATA_VIRTUAL
|
|
&& dict_index_is_clust(index)) {
|
|
ut_ad(flag == ROW_BUILD_FOR_INSERT);
|
|
}
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
/* Special handle spatial index, set the first field
|
|
which is for store MBR. */
|
|
if (dict_index_is_spatial(index) && i == 0) {
|
|
double* mbr;
|
|
|
|
dfield_copy(dfield, dfield2);
|
|
dfield->type.prtype |= DATA_GIS_MBR;
|
|
|
|
/* Allocate memory for mbr field */
|
|
ulint mbr_len = DATA_MBR_LEN;
|
|
mbr = static_cast<double*>(mem_heap_alloc(heap, mbr_len));
|
|
|
|
/* Set mbr field data. */
|
|
dfield_set_data(dfield, mbr, mbr_len);
|
|
|
|
if (dfield2->data) {
|
|
uchar* dptr = NULL;
|
|
ulint dlen = 0;
|
|
ulint flen = 0;
|
|
double tmp_mbr[SPDIMS * 2];
|
|
mem_heap_t* temp_heap = NULL;
|
|
|
|
if (dfield_is_ext(dfield2)) {
|
|
if (flag == ROW_BUILD_FOR_PURGE) {
|
|
byte* ptr = NULL;
|
|
|
|
spatial_status_t spatial_status;
|
|
spatial_status =
|
|
dfield_get_spatial_status(
|
|
dfield2);
|
|
|
|
switch (spatial_status) {
|
|
case SPATIAL_ONLY:
|
|
ptr = static_cast<byte*>(
|
|
dfield_get_data(
|
|
dfield2));
|
|
ut_ad(dfield_get_len(dfield2)
|
|
== DATA_MBR_LEN);
|
|
break;
|
|
|
|
case SPATIAL_MIXED:
|
|
ptr = static_cast<byte*>(
|
|
dfield_get_data(
|
|
dfield2))
|
|
+ dfield_get_len(
|
|
dfield2);
|
|
break;
|
|
|
|
case SPATIAL_NONE:
|
|
/* Undo record is logged before
|
|
spatial index is created.*/
|
|
return(NULL);
|
|
|
|
case SPATIAL_UNKNOWN:
|
|
ut_ad(0);
|
|
}
|
|
|
|
memcpy(mbr, ptr, DATA_MBR_LEN);
|
|
continue;
|
|
}
|
|
|
|
if (flag == ROW_BUILD_FOR_UNDO
|
|
&& dict_table_get_format(index->table)
|
|
>= UNIV_FORMAT_B) {
|
|
/* For build entry for undo, and
|
|
the table is Barrcuda, we need
|
|
to skip the prefix data. */
|
|
flen = BTR_EXTERN_FIELD_REF_SIZE;
|
|
ut_ad(dfield_get_len(dfield2) >=
|
|
BTR_EXTERN_FIELD_REF_SIZE);
|
|
dptr = static_cast<byte*>(
|
|
dfield_get_data(dfield2))
|
|
+ dfield_get_len(dfield2)
|
|
- BTR_EXTERN_FIELD_REF_SIZE;
|
|
} else {
|
|
flen = dfield_get_len(dfield2);
|
|
dptr = static_cast<byte*>(
|
|
dfield_get_data(dfield2));
|
|
}
|
|
|
|
temp_heap = mem_heap_create(1000);
|
|
|
|
const page_size_t page_size
|
|
= (ext != NULL)
|
|
? ext->page_size
|
|
: dict_table_page_size(
|
|
index->table);
|
|
|
|
dptr = btr_copy_externally_stored_field(
|
|
&dlen, dptr,
|
|
page_size,
|
|
flen,
|
|
temp_heap);
|
|
} else {
|
|
dptr = static_cast<uchar*>(
|
|
dfield_get_data(dfield2));
|
|
dlen = dfield_get_len(dfield2);
|
|
|
|
}
|
|
|
|
if (dlen <= GEO_DATA_HEADER_SIZE) {
|
|
for (uint i = 0; i < SPDIMS; ++i) {
|
|
tmp_mbr[i * 2] = DBL_MAX;
|
|
tmp_mbr[i * 2 + 1] = -DBL_MAX;
|
|
}
|
|
} else {
|
|
rtree_mbr_from_wkb(dptr + GEO_DATA_HEADER_SIZE,
|
|
static_cast<uint>(dlen
|
|
- GEO_DATA_HEADER_SIZE),
|
|
SPDIMS, tmp_mbr);
|
|
}
|
|
dfield_write_mbr(dfield, tmp_mbr);
|
|
if (temp_heap) {
|
|
mem_heap_free(temp_heap);
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
len = dfield_get_len(dfield2);
|
|
|
|
dfield_copy(dfield, dfield2);
|
|
|
|
if (dfield_is_null(dfield)) {
|
|
continue;
|
|
}
|
|
|
|
if ((!ind_field || ind_field->prefix_len == 0)
|
|
&& (!dfield_is_ext(dfield)
|
|
|| dict_index_is_clust(index))) {
|
|
/* The dfield_copy() above suffices for
|
|
columns that are stored in-page, or for
|
|
clustered index record columns that are not
|
|
part of a column prefix in the PRIMARY KEY,
|
|
or for virtaul columns in cluster index record. */
|
|
continue;
|
|
}
|
|
|
|
/* If the column is stored externally (off-page) in
|
|
the clustered index, it must be an ordering field in
|
|
the secondary index. In the Antelope format, only
|
|
prefix-indexed columns may be stored off-page in the
|
|
clustered index record. In the Barracuda format, also
|
|
fully indexed long CHAR or VARCHAR columns may be
|
|
stored off-page. */
|
|
ut_ad(col->ord_part);
|
|
|
|
if (ext) {
|
|
/* See if the column is stored externally. */
|
|
const byte* buf = row_ext_lookup(ext, col_no,
|
|
&len);
|
|
if (UNIV_LIKELY_NULL(buf)) {
|
|
if (UNIV_UNLIKELY(buf == field_ref_zero)) {
|
|
return(NULL);
|
|
}
|
|
dfield_set_data(dfield, buf, len);
|
|
}
|
|
|
|
if (ind_field->prefix_len == 0) {
|
|
/* In the Barracuda format
|
|
(ROW_FORMAT=DYNAMIC or
|
|
ROW_FORMAT=COMPRESSED), we can have a
|
|
secondary index on an entire column
|
|
that is stored off-page in the
|
|
clustered index. As this is not a
|
|
prefix index (prefix_len == 0),
|
|
include the entire off-page column in
|
|
the secondary index record. */
|
|
continue;
|
|
}
|
|
} else if (dfield_is_ext(dfield)) {
|
|
/* This table is either in Antelope format
|
|
(ROW_FORMAT=REDUNDANT or ROW_FORMAT=COMPACT)
|
|
or a purge record where the ordered part of
|
|
the field is not external.
|
|
In Antelope, the maximum column prefix
|
|
index length is 767 bytes, and the clustered
|
|
index record contains a 768-byte prefix of
|
|
each off-page column. */
|
|
ut_a(len >= BTR_EXTERN_FIELD_REF_SIZE);
|
|
len -= BTR_EXTERN_FIELD_REF_SIZE;
|
|
dfield_set_len(dfield, len);
|
|
}
|
|
|
|
/* If a column prefix index, take only the prefix. */
|
|
if (ind_field->prefix_len) {
|
|
len = dtype_get_at_most_n_mbchars(
|
|
col->prtype, col->mbminmaxlen,
|
|
ind_field->prefix_len, len,
|
|
static_cast<char*>(dfield_get_data(dfield)));
|
|
dfield_set_len(dfield, len);
|
|
}
|
|
}
|
|
|
|
return(entry);
|
|
}
|
|
|
|
/** An inverse function to row_build_index_entry. Builds a row from a
|
|
record in a clustered index, with possible indexing on ongoing
|
|
addition of new virtual columns.
|
|
@param[in] type ROW_COPY_POINTERS or ROW_COPY_DATA;
|
|
@param[in] index clustered index
|
|
@param[in] rec record in the clustered index
|
|
@param[in] offsets rec_get_offsets(rec,index) or NULL
|
|
@param[in] col_table table, to check which
|
|
externally stored columns
|
|
occur in the ordering columns
|
|
of an index, or NULL if
|
|
index->table should be
|
|
consulted instead
|
|
@param[in] add_cols default values of added columns, or NULL
|
|
@param[in] add_v new virtual columns added
|
|
along with new indexes
|
|
@param[in] col_map mapping of old column
|
|
numbers to new ones, or NULL
|
|
@param[in] ext cache of externally stored column
|
|
prefixes, or NULL
|
|
@param[in] heap memory heap from which
|
|
the memory needed is allocated
|
|
@return own: row built; */
|
|
static inline
|
|
dtuple_t*
|
|
row_build_low(
|
|
ulint type,
|
|
const dict_index_t* index,
|
|
const rec_t* rec,
|
|
const ulint* offsets,
|
|
const dict_table_t* col_table,
|
|
const dtuple_t* add_cols,
|
|
const dict_add_v_col_t* add_v,
|
|
const ulint* col_map,
|
|
row_ext_t** ext,
|
|
mem_heap_t* heap)
|
|
{
|
|
const byte* copy;
|
|
dtuple_t* row;
|
|
ulint n_ext_cols;
|
|
ulint* ext_cols = NULL; /* remove warning */
|
|
ulint len;
|
|
byte* buf;
|
|
ulint j;
|
|
mem_heap_t* tmp_heap = NULL;
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
rec_offs_init(offsets_);
|
|
|
|
ut_ad(index != NULL);
|
|
ut_ad(rec != NULL);
|
|
ut_ad(heap != NULL);
|
|
ut_ad(dict_index_is_clust(index));
|
|
ut_ad(!trx_sys_mutex_own());
|
|
ut_ad(!col_map || col_table);
|
|
|
|
if (!offsets) {
|
|
offsets = rec_get_offsets(rec, index, offsets_,
|
|
ULINT_UNDEFINED, &tmp_heap);
|
|
} else {
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
|
}
|
|
|
|
#if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG
|
|
/* Some blob refs can be NULL during crash recovery before
|
|
trx_rollback_active() has completed execution, or when a concurrently
|
|
executing insert or update has committed the B-tree mini-transaction
|
|
but has not yet managed to restore the cursor position for writing
|
|
the big_rec. Note that the mini-transaction can be committed multiple
|
|
times, and the cursor restore can happen multiple times for single
|
|
insert or update statement. */
|
|
ut_a(!rec_offs_any_null_extern(rec, offsets)
|
|
|| trx_rw_is_active(row_get_rec_trx_id(rec, index, offsets),
|
|
NULL, false));
|
|
#endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */
|
|
|
|
if (type != ROW_COPY_POINTERS) {
|
|
/* Take a copy of rec to heap */
|
|
buf = static_cast<byte*>(
|
|
mem_heap_alloc(heap, rec_offs_size(offsets)));
|
|
|
|
copy = rec_copy(buf, rec, offsets);
|
|
} else {
|
|
copy = rec;
|
|
}
|
|
|
|
n_ext_cols = rec_offs_n_extern(offsets);
|
|
if (n_ext_cols) {
|
|
ext_cols = static_cast<ulint*>(
|
|
mem_heap_alloc(heap, n_ext_cols * sizeof *ext_cols));
|
|
}
|
|
|
|
/* Avoid a debug assertion in rec_offs_validate(). */
|
|
rec_offs_make_valid(copy, index, const_cast<ulint*>(offsets));
|
|
|
|
if (!col_table) {
|
|
ut_ad(!col_map);
|
|
ut_ad(!add_cols);
|
|
col_table = index->table;
|
|
}
|
|
|
|
if (add_cols) {
|
|
ut_ad(col_map);
|
|
row = dtuple_copy(add_cols, heap);
|
|
/* dict_table_copy_types() would set the fields to NULL */
|
|
for (ulint i = 0; i < dict_table_get_n_cols(col_table); i++) {
|
|
dict_col_copy_type(
|
|
dict_table_get_nth_col(col_table, i),
|
|
dfield_get_type(dtuple_get_nth_field(row, i)));
|
|
}
|
|
} else if (add_v != NULL) {
|
|
row = dtuple_create_with_vcol(
|
|
heap, dict_table_get_n_cols(col_table),
|
|
dict_table_get_n_v_cols(col_table) + add_v->n_v_col);
|
|
dict_table_copy_types(row, col_table);
|
|
|
|
for (ulint i = 0; i < add_v->n_v_col; i++) {
|
|
dict_col_copy_type(
|
|
&add_v->v_col[i].m_col,
|
|
dfield_get_type(dtuple_get_nth_v_field(
|
|
row, i + col_table->n_v_def)));
|
|
}
|
|
} else {
|
|
row = dtuple_create_with_vcol(
|
|
heap, dict_table_get_n_cols(col_table),
|
|
dict_table_get_n_v_cols(col_table));
|
|
dict_table_copy_types(row, col_table);
|
|
}
|
|
|
|
dtuple_set_info_bits(row, rec_get_info_bits(
|
|
copy, rec_offs_comp(offsets)));
|
|
|
|
j = 0;
|
|
|
|
for (ulint i = 0; i < rec_offs_n_fields(offsets); i++) {
|
|
const dict_field_t* ind_field
|
|
= dict_index_get_nth_field(index, i);
|
|
|
|
if (ind_field->prefix_len) {
|
|
/* Column prefixes can only occur in key
|
|
fields, which cannot be stored externally. For
|
|
a column prefix, there should also be the full
|
|
field in the clustered index tuple. The row
|
|
tuple comprises full fields, not prefixes. */
|
|
ut_ad(!rec_offs_nth_extern(offsets, i));
|
|
continue;
|
|
}
|
|
|
|
const dict_col_t* col
|
|
= dict_field_get_col(ind_field);
|
|
ulint col_no
|
|
= dict_col_get_no(col);
|
|
|
|
if (col_map) {
|
|
col_no = col_map[col_no];
|
|
|
|
if (col_no == ULINT_UNDEFINED) {
|
|
/* dropped column */
|
|
continue;
|
|
}
|
|
}
|
|
|
|
dfield_t* dfield = dtuple_get_nth_field(row, col_no);
|
|
|
|
const byte* field = rec_get_nth_field(
|
|
copy, offsets, i, &len);
|
|
|
|
dfield_set_data(dfield, field, len);
|
|
|
|
if (rec_offs_nth_extern(offsets, i)) {
|
|
dfield_set_ext(dfield);
|
|
|
|
col = dict_table_get_nth_col(col_table, col_no);
|
|
|
|
if (col->ord_part) {
|
|
/* We will have to fetch prefixes of
|
|
externally stored columns that are
|
|
referenced by column prefixes. */
|
|
ext_cols[j++] = col_no;
|
|
}
|
|
}
|
|
}
|
|
|
|
rec_offs_make_valid(rec, index, const_cast<ulint*>(offsets));
|
|
|
|
ut_ad(dtuple_check_typed(row));
|
|
|
|
if (!ext) {
|
|
/* REDUNDANT and COMPACT formats store a local
|
|
768-byte prefix of each externally stored
|
|
column. No cache is needed.
|
|
|
|
During online table rebuild,
|
|
row_log_table_apply_delete_low()
|
|
may use a cache that was set up by
|
|
row_log_table_delete(). */
|
|
|
|
} else if (j) {
|
|
*ext = row_ext_create(j, ext_cols, index->table->flags, row,
|
|
heap);
|
|
} else {
|
|
*ext = NULL;
|
|
}
|
|
|
|
if (tmp_heap) {
|
|
mem_heap_free(tmp_heap);
|
|
}
|
|
|
|
return(row);
|
|
}
|
|
|
|
|
|
/*******************************************************************//**
|
|
An inverse function to row_build_index_entry. Builds a row from a
|
|
record in a clustered index.
|
|
@return own: row built; see the NOTE below! */
|
|
dtuple_t*
|
|
row_build(
|
|
/*======*/
|
|
ulint type, /*!< in: ROW_COPY_POINTERS or
|
|
ROW_COPY_DATA; the latter
|
|
copies also the data fields to
|
|
heap while the first only
|
|
places pointers to data fields
|
|
on the index page, and thus is
|
|
more efficient */
|
|
const dict_index_t* index, /*!< in: clustered index */
|
|
const rec_t* rec, /*!< in: record in the clustered
|
|
index; NOTE: in the case
|
|
ROW_COPY_POINTERS the data
|
|
fields in the row will point
|
|
directly into this record,
|
|
therefore, the buffer page of
|
|
this record must be at least
|
|
s-latched and the latch held
|
|
as long as the row dtuple is used! */
|
|
const ulint* offsets,/*!< in: rec_get_offsets(rec,index)
|
|
or NULL, in which case this function
|
|
will invoke rec_get_offsets() */
|
|
const dict_table_t* col_table,
|
|
/*!< in: table, to check which
|
|
externally stored columns
|
|
occur in the ordering columns
|
|
of an index, or NULL if
|
|
index->table should be
|
|
consulted instead */
|
|
const dtuple_t* add_cols,
|
|
/*!< in: default values of
|
|
added columns, or NULL */
|
|
const ulint* col_map,/*!< in: mapping of old column
|
|
numbers to new ones, or NULL */
|
|
row_ext_t** ext, /*!< out, own: cache of
|
|
externally stored column
|
|
prefixes, or NULL */
|
|
mem_heap_t* heap) /*!< in: memory heap from which
|
|
the memory needed is allocated */
|
|
{
|
|
return(row_build_low(type, index, rec, offsets, col_table,
|
|
add_cols, NULL, col_map, ext, heap));
|
|
}
|
|
|
|
/** An inverse function to row_build_index_entry. Builds a row from a
|
|
record in a clustered index, with possible indexing on ongoing
|
|
addition of new virtual columns.
|
|
@param[in] type ROW_COPY_POINTERS or ROW_COPY_DATA;
|
|
@param[in] index clustered index
|
|
@param[in] rec record in the clustered index
|
|
@param[in] offsets rec_get_offsets(rec,index) or NULL
|
|
@param[in] col_table table, to check which
|
|
externally stored columns
|
|
occur in the ordering columns
|
|
of an index, or NULL if
|
|
index->table should be
|
|
consulted instead
|
|
@param[in] add_cols default values of added columns, or NULL
|
|
@param[in] add_v new virtual columns added
|
|
along with new indexes
|
|
@param[in] col_map mapping of old column
|
|
numbers to new ones, or NULL
|
|
@param[in] ext cache of externally stored column
|
|
prefixes, or NULL
|
|
@param[in] heap memory heap from which
|
|
the memory needed is allocated
|
|
@return own: row built; */
|
|
dtuple_t*
|
|
row_build_w_add_vcol(
|
|
ulint type,
|
|
const dict_index_t* index,
|
|
const rec_t* rec,
|
|
const ulint* offsets,
|
|
const dict_table_t* col_table,
|
|
const dtuple_t* add_cols,
|
|
const dict_add_v_col_t* add_v,
|
|
const ulint* col_map,
|
|
row_ext_t** ext,
|
|
mem_heap_t* heap)
|
|
{
|
|
return(row_build_low(type, index, rec, offsets, col_table,
|
|
add_cols, add_v, col_map, ext, heap));
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Converts an index record to a typed data tuple.
|
|
@return index entry built; does not set info_bits, and the data fields
|
|
in the entry will point directly to rec */
|
|
dtuple_t*
|
|
row_rec_to_index_entry_low(
|
|
/*=======================*/
|
|
const rec_t* rec, /*!< in: record in the index */
|
|
const dict_index_t* index, /*!< in: index */
|
|
const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */
|
|
ulint* n_ext, /*!< out: number of externally
|
|
stored columns */
|
|
mem_heap_t* heap) /*!< in: memory heap from which
|
|
the memory needed is allocated */
|
|
{
|
|
dtuple_t* entry;
|
|
dfield_t* dfield;
|
|
ulint i;
|
|
const byte* field;
|
|
ulint len;
|
|
ulint rec_len;
|
|
|
|
ut_ad(rec != NULL);
|
|
ut_ad(heap != NULL);
|
|
ut_ad(index != NULL);
|
|
|
|
/* Because this function may be invoked by row0merge.cc
|
|
on a record whose header is in different format, the check
|
|
rec_offs_validate(rec, index, offsets) must be avoided here. */
|
|
ut_ad(n_ext);
|
|
*n_ext = 0;
|
|
|
|
rec_len = rec_offs_n_fields(offsets);
|
|
|
|
entry = dtuple_create(heap, rec_len);
|
|
|
|
dtuple_set_n_fields_cmp(entry,
|
|
dict_index_get_n_unique_in_tree(index));
|
|
ut_ad(rec_len == dict_index_get_n_fields(index)
|
|
/* a record for older SYS_INDEXES table
|
|
(missing merge_threshold column) is acceptable. */
|
|
|| (index->table->id == DICT_INDEXES_ID
|
|
&& rec_len == dict_index_get_n_fields(index) - 1));
|
|
|
|
dict_index_copy_types(entry, index, rec_len);
|
|
|
|
for (i = 0; i < rec_len; i++) {
|
|
|
|
dfield = dtuple_get_nth_field(entry, i);
|
|
field = rec_get_nth_field(rec, offsets, i, &len);
|
|
|
|
dfield_set_data(dfield, field, len);
|
|
|
|
if (rec_offs_nth_extern(offsets, i)) {
|
|
dfield_set_ext(dfield);
|
|
(*n_ext)++;
|
|
}
|
|
}
|
|
|
|
ut_ad(dtuple_check_typed(entry));
|
|
|
|
return(entry);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Converts an index record to a typed data tuple. NOTE that externally
|
|
stored (often big) fields are NOT copied to heap.
|
|
@return own: index entry built */
|
|
dtuple_t*
|
|
row_rec_to_index_entry(
|
|
/*===================*/
|
|
const rec_t* rec, /*!< in: record in the index */
|
|
const dict_index_t* index, /*!< in: index */
|
|
const ulint* offsets,/*!< in: rec_get_offsets(rec) */
|
|
ulint* n_ext, /*!< out: number of externally
|
|
stored columns */
|
|
mem_heap_t* heap) /*!< in: memory heap from which
|
|
the memory needed is allocated */
|
|
{
|
|
dtuple_t* entry;
|
|
byte* buf;
|
|
const rec_t* copy_rec;
|
|
|
|
ut_ad(rec != NULL);
|
|
ut_ad(heap != NULL);
|
|
ut_ad(index != NULL);
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
|
|
|
/* Take a copy of rec to heap */
|
|
buf = static_cast<byte*>(
|
|
mem_heap_alloc(heap, rec_offs_size(offsets)));
|
|
|
|
copy_rec = rec_copy(buf, rec, offsets);
|
|
|
|
rec_offs_make_valid(copy_rec, index, const_cast<ulint*>(offsets));
|
|
entry = row_rec_to_index_entry_low(
|
|
copy_rec, index, offsets, n_ext, heap);
|
|
rec_offs_make_valid(rec, index, const_cast<ulint*>(offsets));
|
|
|
|
dtuple_set_info_bits(entry,
|
|
rec_get_info_bits(rec, rec_offs_comp(offsets)));
|
|
|
|
return(entry);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Builds from a secondary index record a row reference with which we can
|
|
search the clustered index record.
|
|
@return own: row reference built; see the NOTE below! */
|
|
dtuple_t*
|
|
row_build_row_ref(
|
|
/*==============*/
|
|
ulint type, /*!< in: ROW_COPY_DATA, or ROW_COPY_POINTERS:
|
|
the former copies also the data fields to
|
|
heap, whereas the latter only places pointers
|
|
to data fields on the index page */
|
|
dict_index_t* index, /*!< in: secondary index */
|
|
const rec_t* rec, /*!< in: record in the index;
|
|
NOTE: in the case ROW_COPY_POINTERS
|
|
the data fields in the row will point
|
|
directly into this record, therefore,
|
|
the buffer page of this record must be
|
|
at least s-latched and the latch held
|
|
as long as the row reference is used! */
|
|
mem_heap_t* heap) /*!< in: memory heap from which the memory
|
|
needed is allocated */
|
|
{
|
|
dict_table_t* table;
|
|
dict_index_t* clust_index;
|
|
dfield_t* dfield;
|
|
dtuple_t* ref;
|
|
const byte* field;
|
|
ulint len;
|
|
ulint ref_len;
|
|
ulint pos;
|
|
byte* buf;
|
|
ulint clust_col_prefix_len;
|
|
ulint i;
|
|
mem_heap_t* tmp_heap = NULL;
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint* offsets = offsets_;
|
|
rec_offs_init(offsets_);
|
|
|
|
ut_ad(index != NULL);
|
|
ut_ad(rec != NULL);
|
|
ut_ad(heap != NULL);
|
|
ut_ad(!dict_index_is_clust(index));
|
|
|
|
offsets = rec_get_offsets(rec, index, offsets,
|
|
ULINT_UNDEFINED, &tmp_heap);
|
|
/* Secondary indexes must not contain externally stored columns. */
|
|
ut_ad(!rec_offs_any_extern(offsets));
|
|
|
|
if (type == ROW_COPY_DATA) {
|
|
/* Take a copy of rec to heap */
|
|
|
|
buf = static_cast<byte*>(
|
|
mem_heap_alloc(heap, rec_offs_size(offsets)));
|
|
|
|
rec = rec_copy(buf, rec, offsets);
|
|
/* Avoid a debug assertion in rec_offs_validate(). */
|
|
rec_offs_make_valid(rec, index, offsets);
|
|
}
|
|
|
|
table = index->table;
|
|
|
|
clust_index = dict_table_get_first_index(table);
|
|
|
|
ref_len = dict_index_get_n_unique(clust_index);
|
|
|
|
ref = dtuple_create(heap, ref_len);
|
|
|
|
dict_index_copy_types(ref, clust_index, ref_len);
|
|
|
|
for (i = 0; i < ref_len; i++) {
|
|
dfield = dtuple_get_nth_field(ref, i);
|
|
|
|
pos = dict_index_get_nth_field_pos(index, clust_index, i);
|
|
|
|
ut_a(pos != ULINT_UNDEFINED);
|
|
|
|
field = rec_get_nth_field(rec, offsets, pos, &len);
|
|
|
|
dfield_set_data(dfield, field, len);
|
|
|
|
/* If the primary key contains a column prefix, then the
|
|
secondary index may contain a longer prefix of the same
|
|
column, or the full column, and we must adjust the length
|
|
accordingly. */
|
|
|
|
clust_col_prefix_len = dict_index_get_nth_field(
|
|
clust_index, i)->prefix_len;
|
|
|
|
if (clust_col_prefix_len > 0) {
|
|
if (len != UNIV_SQL_NULL) {
|
|
|
|
const dtype_t* dtype
|
|
= dfield_get_type(dfield);
|
|
|
|
dfield_set_len(dfield,
|
|
dtype_get_at_most_n_mbchars(
|
|
dtype->prtype,
|
|
dtype->mbminmaxlen,
|
|
clust_col_prefix_len,
|
|
len, (char*) field));
|
|
}
|
|
}
|
|
}
|
|
|
|
ut_ad(dtuple_check_typed(ref));
|
|
if (tmp_heap) {
|
|
mem_heap_free(tmp_heap);
|
|
}
|
|
|
|
return(ref);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Builds from a secondary index record a row reference with which we can
|
|
search the clustered index record. */
|
|
void
|
|
row_build_row_ref_in_tuple(
|
|
/*=======================*/
|
|
dtuple_t* ref, /*!< in/out: row reference built;
|
|
see the NOTE below! */
|
|
const rec_t* rec, /*!< in: record in the index;
|
|
NOTE: the data fields in ref
|
|
will point directly into this
|
|
record, therefore, the buffer
|
|
page of this record must be at
|
|
least s-latched and the latch
|
|
held as long as the row
|
|
reference is used! */
|
|
const dict_index_t* index, /*!< in: secondary index */
|
|
ulint* offsets,/*!< in: rec_get_offsets(rec, index)
|
|
or NULL */
|
|
trx_t* trx) /*!< in: transaction */
|
|
{
|
|
const dict_index_t* clust_index;
|
|
dfield_t* dfield;
|
|
const byte* field;
|
|
ulint len;
|
|
ulint ref_len;
|
|
ulint pos;
|
|
ulint clust_col_prefix_len;
|
|
ulint i;
|
|
mem_heap_t* heap = NULL;
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
rec_offs_init(offsets_);
|
|
|
|
ut_a(ref);
|
|
ut_a(index);
|
|
ut_a(rec);
|
|
ut_ad(!dict_index_is_clust(index));
|
|
ut_a(index->table);
|
|
|
|
clust_index = dict_table_get_first_index(index->table);
|
|
ut_ad(clust_index);
|
|
|
|
if (!offsets) {
|
|
offsets = rec_get_offsets(rec, index, offsets_,
|
|
ULINT_UNDEFINED, &heap);
|
|
} else {
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
|
}
|
|
|
|
/* Secondary indexes must not contain externally stored columns. */
|
|
ut_ad(!rec_offs_any_extern(offsets));
|
|
ref_len = dict_index_get_n_unique(clust_index);
|
|
|
|
ut_ad(ref_len == dtuple_get_n_fields(ref));
|
|
|
|
dict_index_copy_types(ref, clust_index, ref_len);
|
|
|
|
for (i = 0; i < ref_len; i++) {
|
|
dfield = dtuple_get_nth_field(ref, i);
|
|
|
|
pos = dict_index_get_nth_field_pos(index, clust_index, i);
|
|
|
|
ut_a(pos != ULINT_UNDEFINED);
|
|
|
|
field = rec_get_nth_field(rec, offsets, pos, &len);
|
|
|
|
dfield_set_data(dfield, field, len);
|
|
|
|
/* If the primary key contains a column prefix, then the
|
|
secondary index may contain a longer prefix of the same
|
|
column, or the full column, and we must adjust the length
|
|
accordingly. */
|
|
|
|
clust_col_prefix_len = dict_index_get_nth_field(
|
|
clust_index, i)->prefix_len;
|
|
|
|
if (clust_col_prefix_len > 0) {
|
|
if (len != UNIV_SQL_NULL) {
|
|
|
|
const dtype_t* dtype
|
|
= dfield_get_type(dfield);
|
|
|
|
dfield_set_len(dfield,
|
|
dtype_get_at_most_n_mbchars(
|
|
dtype->prtype,
|
|
dtype->mbminmaxlen,
|
|
clust_col_prefix_len,
|
|
len, (char*) field));
|
|
}
|
|
}
|
|
}
|
|
|
|
ut_ad(dtuple_check_typed(ref));
|
|
if (UNIV_LIKELY_NULL(heap)) {
|
|
mem_heap_free(heap);
|
|
}
|
|
}
|
|
|
|
/***************************************************************//**
|
|
Searches the clustered index record for a row, if we have the row reference.
|
|
@return TRUE if found */
|
|
ibool
|
|
row_search_on_row_ref(
|
|
/*==================*/
|
|
btr_pcur_t* pcur, /*!< out: persistent cursor, which must
|
|
be closed by the caller */
|
|
ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */
|
|
const dict_table_t* table, /*!< in: table */
|
|
const dtuple_t* ref, /*!< in: row reference */
|
|
mtr_t* mtr) /*!< in/out: mtr */
|
|
{
|
|
ulint low_match;
|
|
rec_t* rec;
|
|
dict_index_t* index;
|
|
|
|
ut_ad(dtuple_check_typed(ref));
|
|
|
|
index = dict_table_get_first_index(table);
|
|
|
|
ut_a(dtuple_get_n_fields(ref) == dict_index_get_n_unique(index));
|
|
|
|
btr_pcur_open(index, ref, PAGE_CUR_LE, mode, pcur, mtr);
|
|
|
|
low_match = btr_pcur_get_low_match(pcur);
|
|
|
|
rec = btr_pcur_get_rec(pcur);
|
|
|
|
if (page_rec_is_infimum(rec)) {
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
if (low_match != dtuple_get_n_fields(ref)) {
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Fetches the clustered index record for a secondary index record. The latches
|
|
on the secondary index record are preserved.
|
|
@return record or NULL, if no record found */
|
|
rec_t*
|
|
row_get_clust_rec(
|
|
/*==============*/
|
|
ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */
|
|
const rec_t* rec, /*!< in: record in a secondary index */
|
|
dict_index_t* index, /*!< in: secondary index */
|
|
dict_index_t** clust_index,/*!< out: clustered index */
|
|
mtr_t* mtr) /*!< in: mtr */
|
|
{
|
|
mem_heap_t* heap;
|
|
dtuple_t* ref;
|
|
dict_table_t* table;
|
|
btr_pcur_t pcur;
|
|
ibool found;
|
|
rec_t* clust_rec;
|
|
|
|
ut_ad(!dict_index_is_clust(index));
|
|
|
|
table = index->table;
|
|
|
|
heap = mem_heap_create(256);
|
|
|
|
ref = row_build_row_ref(ROW_COPY_POINTERS, index, rec, heap);
|
|
|
|
found = row_search_on_row_ref(&pcur, mode, table, ref, mtr);
|
|
|
|
clust_rec = found ? btr_pcur_get_rec(&pcur) : NULL;
|
|
|
|
mem_heap_free(heap);
|
|
|
|
btr_pcur_close(&pcur);
|
|
|
|
*clust_index = dict_table_get_first_index(table);
|
|
|
|
return(clust_rec);
|
|
}
|
|
|
|
/***************************************************************//**
|
|
Searches an index record.
|
|
@return whether the record was found or buffered */
|
|
enum row_search_result
|
|
row_search_index_entry(
|
|
/*===================*/
|
|
dict_index_t* index, /*!< in: index */
|
|
const dtuple_t* entry, /*!< in: index entry */
|
|
ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */
|
|
btr_pcur_t* pcur, /*!< in/out: persistent cursor, which must
|
|
be closed by the caller */
|
|
mtr_t* mtr) /*!< in: mtr */
|
|
{
|
|
ulint n_fields;
|
|
ulint low_match;
|
|
rec_t* rec;
|
|
|
|
ut_ad(dtuple_check_typed(entry));
|
|
|
|
if (dict_index_is_spatial(index)) {
|
|
ut_ad(mode & BTR_MODIFY_LEAF || mode & BTR_MODIFY_TREE);
|
|
rtr_pcur_open(index, entry, PAGE_CUR_RTREE_LOCATE,
|
|
mode, pcur, mtr);
|
|
} else {
|
|
btr_pcur_open(index, entry, PAGE_CUR_LE, mode, pcur, mtr);
|
|
}
|
|
|
|
switch (btr_pcur_get_btr_cur(pcur)->flag) {
|
|
case BTR_CUR_DELETE_REF:
|
|
ut_a(mode & BTR_DELETE && !dict_index_is_spatial(index));
|
|
return(ROW_NOT_DELETED_REF);
|
|
|
|
case BTR_CUR_DEL_MARK_IBUF:
|
|
case BTR_CUR_DELETE_IBUF:
|
|
case BTR_CUR_INSERT_TO_IBUF:
|
|
return(ROW_BUFFERED);
|
|
|
|
case BTR_CUR_HASH:
|
|
case BTR_CUR_HASH_FAIL:
|
|
case BTR_CUR_BINARY:
|
|
break;
|
|
}
|
|
|
|
low_match = btr_pcur_get_low_match(pcur);
|
|
|
|
rec = btr_pcur_get_rec(pcur);
|
|
|
|
n_fields = dtuple_get_n_fields(entry);
|
|
|
|
if (page_rec_is_infimum(rec)) {
|
|
|
|
return(ROW_NOT_FOUND);
|
|
} else if (low_match != n_fields) {
|
|
|
|
return(ROW_NOT_FOUND);
|
|
}
|
|
|
|
return(ROW_FOUND);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Formats the raw data in "data" (in InnoDB on-disk format) that is of
|
|
type DATA_INT using "prtype" and writes the result to "buf".
|
|
If the data is in unknown format, then nothing is written to "buf",
|
|
0 is returned and "format_in_hex" is set to TRUE, otherwise
|
|
"format_in_hex" is left untouched.
|
|
Not more than "buf_size" bytes are written to "buf".
|
|
The result is always '\0'-terminated (provided buf_size > 0) and the
|
|
number of bytes that were written to "buf" is returned (including the
|
|
terminating '\0').
|
|
@return number of bytes that were written */
|
|
static
|
|
ulint
|
|
row_raw_format_int(
|
|
/*===============*/
|
|
const char* data, /*!< in: raw data */
|
|
ulint data_len, /*!< in: raw data length
|
|
in bytes */
|
|
ulint prtype, /*!< in: precise type */
|
|
char* buf, /*!< out: output buffer */
|
|
ulint buf_size, /*!< in: output buffer size
|
|
in bytes */
|
|
ibool* format_in_hex) /*!< out: should the data be
|
|
formated in hex */
|
|
{
|
|
ulint ret;
|
|
|
|
if (data_len <= sizeof(ib_uint64_t)) {
|
|
|
|
ib_uint64_t value;
|
|
ibool unsigned_type = prtype & DATA_UNSIGNED;
|
|
|
|
value = mach_read_int_type(
|
|
(const byte*) data, data_len, unsigned_type);
|
|
|
|
ret = ut_snprintf(
|
|
buf, buf_size,
|
|
unsigned_type ? "%llu" : "%lld", (longlong) value)+1;
|
|
} else {
|
|
|
|
*format_in_hex = TRUE;
|
|
ret = 0;
|
|
}
|
|
|
|
return(ut_min(ret, buf_size));
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Formats the raw data in "data" (in InnoDB on-disk format) that is of
|
|
type DATA_(CHAR|VARCHAR|MYSQL|VARMYSQL) using "prtype" and writes the
|
|
result to "buf".
|
|
If the data is in binary format, then nothing is written to "buf",
|
|
0 is returned and "format_in_hex" is set to TRUE, otherwise
|
|
"format_in_hex" is left untouched.
|
|
Not more than "buf_size" bytes are written to "buf".
|
|
The result is always '\0'-terminated (provided buf_size > 0) and the
|
|
number of bytes that were written to "buf" is returned (including the
|
|
terminating '\0').
|
|
@return number of bytes that were written */
|
|
static
|
|
ulint
|
|
row_raw_format_str(
|
|
/*===============*/
|
|
const char* data, /*!< in: raw data */
|
|
ulint data_len, /*!< in: raw data length
|
|
in bytes */
|
|
ulint prtype, /*!< in: precise type */
|
|
char* buf, /*!< out: output buffer */
|
|
ulint buf_size, /*!< in: output buffer size
|
|
in bytes */
|
|
ibool* format_in_hex) /*!< out: should the data be
|
|
formated in hex */
|
|
{
|
|
ulint charset_coll;
|
|
|
|
if (buf_size == 0) {
|
|
|
|
return(0);
|
|
}
|
|
|
|
/* we assume system_charset_info is UTF-8 */
|
|
|
|
charset_coll = dtype_get_charset_coll(prtype);
|
|
|
|
if (UNIV_LIKELY(dtype_is_utf8(prtype))) {
|
|
|
|
return(ut_str_sql_format(data, data_len, buf, buf_size));
|
|
}
|
|
/* else */
|
|
|
|
if (charset_coll == DATA_MYSQL_BINARY_CHARSET_COLL) {
|
|
|
|
*format_in_hex = TRUE;
|
|
return(0);
|
|
}
|
|
/* else */
|
|
|
|
return(innobase_raw_format(data, data_len, charset_coll,
|
|
buf, buf_size));
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Formats the raw data in "data" (in InnoDB on-disk format) using
|
|
"dict_field" and writes the result to "buf".
|
|
Not more than "buf_size" bytes are written to "buf".
|
|
The result is always NUL-terminated (provided buf_size is positive) and the
|
|
number of bytes that were written to "buf" is returned (including the
|
|
terminating NUL).
|
|
@return number of bytes that were written */
|
|
ulint
|
|
row_raw_format(
|
|
/*===========*/
|
|
const char* data, /*!< in: raw data */
|
|
ulint data_len, /*!< in: raw data length
|
|
in bytes */
|
|
const dict_field_t* dict_field, /*!< in: index field */
|
|
char* buf, /*!< out: output buffer */
|
|
ulint buf_size) /*!< in: output buffer size
|
|
in bytes */
|
|
{
|
|
ulint mtype;
|
|
ulint prtype;
|
|
ulint ret;
|
|
ibool format_in_hex;
|
|
|
|
if (buf_size == 0) {
|
|
|
|
return(0);
|
|
}
|
|
|
|
if (data_len == UNIV_SQL_NULL) {
|
|
|
|
ret = ut_snprintf((char*) buf, buf_size, "NULL") + 1;
|
|
|
|
return(ut_min(ret, buf_size));
|
|
}
|
|
|
|
mtype = dict_field->col->mtype;
|
|
prtype = dict_field->col->prtype;
|
|
|
|
format_in_hex = FALSE;
|
|
|
|
switch (mtype) {
|
|
case DATA_INT:
|
|
|
|
ret = row_raw_format_int(data, data_len, prtype,
|
|
buf, buf_size, &format_in_hex);
|
|
if (format_in_hex) {
|
|
|
|
goto format_in_hex;
|
|
}
|
|
break;
|
|
case DATA_CHAR:
|
|
case DATA_VARCHAR:
|
|
case DATA_MYSQL:
|
|
case DATA_VARMYSQL:
|
|
|
|
ret = row_raw_format_str(data, data_len, prtype,
|
|
buf, buf_size, &format_in_hex);
|
|
if (format_in_hex) {
|
|
|
|
goto format_in_hex;
|
|
}
|
|
|
|
break;
|
|
/* XXX support more data types */
|
|
default:
|
|
format_in_hex:
|
|
|
|
if (UNIV_LIKELY(buf_size > 2)) {
|
|
|
|
memcpy(buf, "0x", 2);
|
|
buf += 2;
|
|
buf_size -= 2;
|
|
ret = 2 + ut_raw_to_hex(data, data_len,
|
|
buf, buf_size);
|
|
} else {
|
|
|
|
buf[0] = '\0';
|
|
ret = 1;
|
|
}
|
|
}
|
|
|
|
return(ret);
|
|
}
|
|
|
|
#ifdef UNIV_ENABLE_UNIT_TEST_ROW_RAW_FORMAT_INT
|
|
|
|
#ifdef HAVE_UT_CHRONO_T
|
|
|
|
void
|
|
test_row_raw_format_int()
|
|
{
|
|
ulint ret;
|
|
char buf[128];
|
|
ibool format_in_hex;
|
|
ulint i;
|
|
|
|
#define CALL_AND_TEST(data, data_len, prtype, buf, buf_size,\
|
|
ret_expected, buf_expected, format_in_hex_expected)\
|
|
do {\
|
|
ibool ok = TRUE;\
|
|
ulint i;\
|
|
memset(buf, 'x', 10);\
|
|
buf[10] = '\0';\
|
|
format_in_hex = FALSE;\
|
|
fprintf(stderr, "TESTING \"\\x");\
|
|
for (i = 0; i < data_len; i++) {\
|
|
fprintf(stderr, "%02hhX", data[i]);\
|
|
}\
|
|
fprintf(stderr, "\", %lu, %lu, %lu\n",\
|
|
(ulint) data_len, (ulint) prtype,\
|
|
(ulint) buf_size);\
|
|
ret = row_raw_format_int(data, data_len, prtype,\
|
|
buf, buf_size, &format_in_hex);\
|
|
if (ret != ret_expected) {\
|
|
fprintf(stderr, "expected ret %lu, got %lu\n",\
|
|
(ulint) ret_expected, ret);\
|
|
ok = FALSE;\
|
|
}\
|
|
if (strcmp((char*) buf, buf_expected) != 0) {\
|
|
fprintf(stderr, "expected buf \"%s\", got \"%s\"\n",\
|
|
buf_expected, buf);\
|
|
ok = FALSE;\
|
|
}\
|
|
if (format_in_hex != format_in_hex_expected) {\
|
|
fprintf(stderr, "expected format_in_hex %d, got %d\n",\
|
|
(int) format_in_hex_expected,\
|
|
(int) format_in_hex);\
|
|
ok = FALSE;\
|
|
}\
|
|
if (ok) {\
|
|
fprintf(stderr, "OK: %lu, \"%s\" %d\n\n",\
|
|
(ulint) ret, buf, (int) format_in_hex);\
|
|
} else {\
|
|
return;\
|
|
}\
|
|
} while (0)
|
|
|
|
#if 1
|
|
/* min values for signed 1-8 byte integers */
|
|
|
|
CALL_AND_TEST("\x00", 1, 0,
|
|
buf, sizeof(buf), 5, "-128", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00", 2, 0,
|
|
buf, sizeof(buf), 7, "-32768", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00", 3, 0,
|
|
buf, sizeof(buf), 9, "-8388608", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00", 4, 0,
|
|
buf, sizeof(buf), 12, "-2147483648", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, 0,
|
|
buf, sizeof(buf), 14, "-549755813888", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, 0,
|
|
buf, sizeof(buf), 17, "-140737488355328", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, 0,
|
|
buf, sizeof(buf), 19, "-36028797018963968", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, 0,
|
|
buf, sizeof(buf), 21, "-9223372036854775808", 0);
|
|
|
|
/* min values for unsigned 1-8 byte integers */
|
|
|
|
CALL_AND_TEST("\x00", 1, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 2, "0", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00", 2, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 2, "0", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00", 3, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 2, "0", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00", 4, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 2, "0", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 2, "0", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 2, "0", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 2, "0", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 2, "0", 0);
|
|
|
|
/* max values for signed 1-8 byte integers */
|
|
|
|
CALL_AND_TEST("\xFF", 1, 0,
|
|
buf, sizeof(buf), 4, "127", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF", 2, 0,
|
|
buf, sizeof(buf), 6, "32767", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF", 3, 0,
|
|
buf, sizeof(buf), 8, "8388607", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, 0,
|
|
buf, sizeof(buf), 11, "2147483647", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, 0,
|
|
buf, sizeof(buf), 13, "549755813887", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, 0,
|
|
buf, sizeof(buf), 16, "140737488355327", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, 0,
|
|
buf, sizeof(buf), 18, "36028797018963967", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, 0,
|
|
buf, sizeof(buf), 20, "9223372036854775807", 0);
|
|
|
|
/* max values for unsigned 1-8 byte integers */
|
|
|
|
CALL_AND_TEST("\xFF", 1, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 4, "255", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF", 2, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 6, "65535", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF", 3, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 9, "16777215", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 11, "4294967295", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 14, "1099511627775", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 16, "281474976710655", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 18, "72057594037927935", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 21, "18446744073709551615", 0);
|
|
|
|
/* some random values */
|
|
|
|
CALL_AND_TEST("\x52", 1, 0,
|
|
buf, sizeof(buf), 4, "-46", 0);
|
|
|
|
CALL_AND_TEST("\x0E", 1, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 3, "14", 0);
|
|
|
|
CALL_AND_TEST("\x62\xCE", 2, 0,
|
|
buf, sizeof(buf), 6, "-7474", 0);
|
|
|
|
CALL_AND_TEST("\x29\xD6", 2, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 6, "10710", 0);
|
|
|
|
CALL_AND_TEST("\x7F\xFF\x90", 3, 0,
|
|
buf, sizeof(buf), 5, "-112", 0);
|
|
|
|
CALL_AND_TEST("\x00\xA1\x16", 3, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 6, "41238", 0);
|
|
|
|
CALL_AND_TEST("\x7F\xFF\xFF\xF7", 4, 0,
|
|
buf, sizeof(buf), 3, "-9", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x5C", 4, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 3, "92", 0);
|
|
|
|
CALL_AND_TEST("\x7F\xFF\xFF\xFF\xFF\xFF\xDC\x63", 8, 0,
|
|
buf, sizeof(buf), 6, "-9117", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x01\x64\x62", 8, DATA_UNSIGNED,
|
|
buf, sizeof(buf), 6, "91234", 0);
|
|
#endif
|
|
|
|
/* speed test */
|
|
|
|
ut_chrono_t ch(__func__);
|
|
|
|
for (i = 0; i < 1000000; i++) {
|
|
row_raw_format_int("\x23", 1,
|
|
0, buf, sizeof(buf),
|
|
&format_in_hex);
|
|
row_raw_format_int("\x23", 1,
|
|
DATA_UNSIGNED, buf, sizeof(buf),
|
|
&format_in_hex);
|
|
|
|
row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8,
|
|
0, buf, sizeof(buf),
|
|
&format_in_hex);
|
|
row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8,
|
|
DATA_UNSIGNED, buf, sizeof(buf),
|
|
&format_in_hex);
|
|
}
|
|
}
|
|
|
|
#endif /* HAVE_UT_CHRONO_T */
|
|
|
|
#endif /* UNIV_ENABLE_UNIT_TEST_ROW_RAW_FORMAT_INT */
|