mariadb/storage/ndb/test/tools/rep_latency.cpp
2007-04-23 20:27:43 +02:00

304 lines
8.9 KiB
C++

/* Copyright (C) 2003 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
* Update on master wait for update on slave
*
*/
#include <NdbApi.hpp>
#include <NdbSleep.h>
#include <sys/time.h>
#include <NdbOut.hpp>
#include <NDBT.hpp>
struct Xxx
{
Ndb *ndb;
const NdbDictionary::Table *table;
Uint32 pk_col;
Uint32 col;
};
struct XxxR
{
Uint32 pk_val;
Uint32 val;
struct timeval start_time;
Uint32 latency;
};
static int
prepare_master_or_slave(Ndb &myNdb,
const char* table,
const char* pk,
Uint32 pk_val,
const char* col,
struct Xxx &xxx,
struct XxxR &xxxr);
static void
run_master_update(struct Xxx &xxx, struct XxxR &xxxr);
static void
run_slave_wait(struct Xxx &xxx, struct XxxR &xxxr);
#define PRINT_ERROR(code,msg) \
g_err << "Error in " << __FILE__ << ", line: " << __LINE__ \
<< ", code: " << code \
<< ", msg: " << msg << ".\n"
#define APIERROR(error) { \
PRINT_ERROR((error).code, (error).message); \
exit(-1); }
int main(int argc, char** argv)
{
if (argc != 8)
{
ndbout << "Arguments are <connect_string cluster 1> <connect_string cluster 2> <database> <table name> <primary key> <value of primary key> <attribute to update>.\n";
exit(-1);
}
// ndb_init must be called first
ndb_init();
{
const char *opt_connectstring1 = argv[1];
const char *opt_connectstring2 = argv[2];
const char *opt_db = argv[3];
const char *opt_table = argv[4];
const char *opt_pk = argv[5];
const Uint32 opt_pk_val = atoi(argv[6]);
const char *opt_col = argv[7];
// Object representing the cluster 1
Ndb_cluster_connection cluster1_connection(opt_connectstring1);
// Object representing the cluster 2
Ndb_cluster_connection cluster2_connection(opt_connectstring2);
// connect cluster 1 and run application
// Connect to cluster 1 management server (ndb_mgmd)
if (cluster1_connection.connect(4 /* retries */,
5 /* delay between retries */,
1 /* verbose */))
{
g_err << "Cluster 1 management server was not ready within 30 secs.\n";
exit(-1);
}
// Optionally connect and wait for the storage nodes (ndbd's)
if (cluster1_connection.wait_until_ready(30,0) < 0)
{
g_err << "Cluster 1 was not ready within 30 secs.\n";
exit(-1);
}
// connect cluster 2 and run application
// Connect to cluster management server (ndb_mgmd)
if (cluster2_connection.connect(4 /* retries */,
5 /* delay between retries */,
1 /* verbose */))
{
g_err << "Cluster 2 management server was not ready within 30 secs.\n";
exit(-1);
}
// Optionally connect and wait for the storage nodes (ndbd's)
if (cluster2_connection.wait_until_ready(30,0) < 0)
{
g_err << "Cluster 2 was not ready within 30 secs.\n";
exit(-1);
}
// Object representing the database
Ndb myNdb1(&cluster1_connection, opt_db);
Ndb myNdb2(&cluster2_connection, opt_db);
//
struct Xxx xxx1;
struct Xxx xxx2;
struct XxxR xxxr;
prepare_master_or_slave(myNdb1, opt_table, opt_pk, opt_pk_val, opt_col,
xxx1, xxxr);
prepare_master_or_slave(myNdb2, opt_table, opt_pk, opt_pk_val, opt_col,
xxx2, xxxr);
while (1)
{
// run the application code
run_master_update(xxx1, xxxr);
run_slave_wait(xxx2, xxxr);
ndbout << "latency: " << xxxr.latency << endl;
}
}
// Note: all connections must have been destroyed before calling ndb_end()
ndb_end(0);
return 0;
}
static int
prepare_master_or_slave(Ndb &myNdb,
const char* table,
const char* pk,
Uint32 pk_val,
const char* col,
struct Xxx &xxx,
struct XxxR &xxxr)
{
if (myNdb.init())
APIERROR(myNdb.getNdbError());
const NdbDictionary::Dictionary* myDict = myNdb.getDictionary();
const NdbDictionary::Table *myTable = myDict->getTable(table);
if (myTable == NULL)
APIERROR(myDict->getNdbError());
const NdbDictionary::Column *myPkCol = myTable->getColumn(pk);
if (myPkCol == NULL)
APIERROR(myDict->getNdbError());
if (myPkCol->getType() != NdbDictionary::Column::Unsigned)
{
PRINT_ERROR(0, "Primary key column not of type unsigned");
exit(-1);
}
const NdbDictionary::Column *myCol = myTable->getColumn(col);
if (myCol == NULL)
APIERROR(myDict->getNdbError());
if (myCol->getType() != NdbDictionary::Column::Unsigned)
{
PRINT_ERROR(0, "Update column not of type unsigned");
exit(-1);
}
xxx.ndb = &myNdb;
xxx.table = myTable;
xxx.pk_col = myPkCol->getColumnNo();
xxx.col = myCol->getColumnNo();
xxxr.pk_val = pk_val;
return 0;
}
static void run_master_update(struct Xxx &xxx, struct XxxR &xxxr)
{
Ndb *ndb = xxx.ndb;
const NdbDictionary::Table *myTable = xxx.table;
int retry_sleep= 10; /* 10 milliseconds */
int retries= 100;
while (1)
{
Uint32 val;
NdbTransaction *trans = ndb->startTransaction();
if (trans == NULL)
goto err;
{
NdbOperation *op = trans->getNdbOperation(myTable);
if (op == NULL)
APIERROR(trans->getNdbError());
op->readTupleExclusive();
op->equal(xxx.pk_col, xxxr.pk_val);
op->getValue(xxx.col, (char *)&val);
}
if (trans->execute(NdbTransaction::NoCommit))
goto err;
//fprintf(stderr, "read %u\n", val);
xxxr.val = val + 1;
{
NdbOperation *op = trans->getNdbOperation(myTable);
if (op == NULL)
APIERROR(trans->getNdbError());
op->updateTuple();
op->equal(xxx.pk_col, xxxr.pk_val);
op->setValue(xxx.col, xxxr.val);
}
if (trans->execute(NdbTransaction::Commit))
goto err;
ndb->closeTransaction(trans);
//fprintf(stderr, "updated to %u\n", xxxr.val);
break;
err:
const NdbError this_error= trans ?
trans->getNdbError() : ndb->getNdbError();
if (this_error.status == NdbError::TemporaryError)
{
if (retries--)
{
if (trans)
ndb->closeTransaction(trans);
NdbSleep_MilliSleep(retry_sleep);
continue; // retry
}
}
if (trans)
ndb->closeTransaction(trans);
APIERROR(this_error);
}
/* update done start timer */
gettimeofday(&xxxr.start_time, 0);
}
static void run_slave_wait(struct Xxx &xxx, struct XxxR &xxxr)
{
struct timeval old_end_time = xxxr.start_time, end_time;
Ndb *ndb = xxx.ndb;
const NdbDictionary::Table *myTable = xxx.table;
int retry_sleep= 10; /* 10 milliseconds */
int retries= 100;
while (1)
{
Uint32 val;
NdbTransaction *trans = ndb->startTransaction();
if (trans == NULL)
goto err;
{
NdbOperation *op = trans->getNdbOperation(myTable);
if (op == NULL)
APIERROR(trans->getNdbError());
op->readTuple();
op->equal(xxx.pk_col, xxxr.pk_val);
op->getValue(xxx.col, (char *)&val);
if (trans->execute(NdbTransaction::Commit))
goto err;
}
/* read done, check time of read */
gettimeofday(&end_time, 0);
ndb->closeTransaction(trans);
//fprintf(stderr, "read %u waiting for %u\n", val, xxxr.val);
if (xxxr.val != val)
{
/* expected value not received yet */
retries = 100;
NdbSleep_MilliSleep(retry_sleep);
old_end_time = end_time;
continue;
}
break;
err:
const NdbError this_error= trans ?
trans->getNdbError() : ndb->getNdbError();
if (this_error.status == NdbError::TemporaryError)
{
if (retries--)
{
if (trans)
ndb->closeTransaction(trans);
NdbSleep_MilliSleep(retry_sleep);
continue; // retry
}
}
if (trans)
ndb->closeTransaction(trans);
APIERROR(this_error);
}
Int64 elapsed_usec1 =
((Int64)end_time.tv_sec - (Int64)xxxr.start_time.tv_sec)*1000*1000 +
((Int64)end_time.tv_usec - (Int64)xxxr.start_time.tv_usec);
Int64 elapsed_usec2 =
((Int64)end_time.tv_sec - (Int64)old_end_time.tv_sec)*1000*1000 +
((Int64)end_time.tv_usec - (Int64)old_end_time.tv_usec);
xxxr.latency =
((elapsed_usec1 - elapsed_usec2/2)+999)/1000;
}