mirror of
https://github.com/MariaDB/server.git
synced 2025-01-20 22:12:30 +01:00
780f80be16
* Fix BUG#15650: "DELETE with LEFT JOIN crashes server with innodb_locks_unsafe_for binlog" * Fix BUG#17134: "Partitions: uncommitted changes are visible" * Fix BUG#17992: "Partitions: InnoDB, somehow rotten table after UPDATE" row0ins.c: MySQL's partitioned table code does not set preduilt->sql_stat_start right if it does an insert in the same statement after doing a search first in the same partition table. We now write trx id always to the buffer, not just when flag sql_stat_start is on. This will waste CPU time very sightly. * Fix BUG#18077: "InnoDB uses full explicit table locks in stored FUNCTION" * Fix BUG#18238: "When locks exhaust the buffer pool, InnoDB does not roll back the trx" * Fix BUG#18252" "Disk space leak in updates of InnoDB BLOB rows in 5.0 and 5.1" * Fix BUG#18283: "When InnoDB returns error 'lock table full', MySQL can write to binlog too much" * Fix BUG#18350: "Use consistent read in CREATE ... SELECT ... if innodb_locks_unsafe_for_binlog" * Fix BUG#18384: "InnoDB memory leak on duplicate key errors in 5.0 if row has many columns" * Fix BUG#18934: "InnoDB crashes when table uses column names like DB_ROW_ID" Refuse tables that use reserved column names. * InnoDB's SQL parser: - Add support for UNSIGNED types, EXIT keyword, quoted identifiers, user-function callbacks for processing results of FETCH statements, bound literals, DATA_VARCHAR for bound literals. - Allow bound literals of type non-INTEGER to be of length 0. - Add make_flex.sh and update lexer/parser generation documentation. - Add comment clarifying the difference between 'alias' and 'indirection' fields in sym_node_t. - Remove never reached duplicate code in pars_set_dfield_type(). - Rewrite pars_info datatypes and APIs, add a few helper functions. - Since the functions definitions in pars_info_t are accessed after pars_sql() returns in the query graph execution stage, we can't free pars_info_t in pars_sql(). Instead, make pars_sql() transfer ownership of pars_info_t to the created query graph, and make que_graph_free() free it if needed. - Allow access to system columns like DB_ROW_ID. * Use bound literals in row_truncate_table_for_mysql, row_drop_table_for_mysql, row_discard_tablespace_for_mysql, and row_rename_table_for_mysql. * Setting an isolation level of the transaction to read committed weakens the locks for this session similarly like the option innodb_locks_unsafe_for binlog. This patch removes alnost all gap locking (used in next-key locking) and makes MySQL to release the row locks on the rows which does not belong to result set. Additionally, nonlocking selects on INSERT INTO SELECT, UPDATE ... (SELECT ...), and CREATE ... SELECT ... use a nonlocking consistent read. If a binlog is used, then binlog format should be set to row based binloging to make the execution of the complex SQL statements. * Disable the statistic variables btr_search_n_hash_fail and n_hash_succ, n_hash_fail, n_patt_succ, and n_searches of btr_search_t in builds without #ifdef UNIV_SEARCH_PERF_STAT. * Make innodb.test faster. Group all consistent read test cases to a one test case and wait their lock timeout after all have been send to the server. Decrease amount of rows inserted in a certain test - this has no effect on the effectiveness of the test and reduces the running time by ~10 sec. Remove temporary work-arounds from innodb.result now that ALTER TABLE DROP FOREIGN KEY works once again. * Make innodb_unsafe_binlog.test faster. Grout all consistent read test cases to a one test case amd wait their lock timeout after all have been sent to the server. Remove unnecessary option --loose_innodb_lock_wait_timeout. * Print dictionary memory size in SHOW INNODB STATUS. * Fix memory leaks in row_create_table_for_mysql() in rare corner cases. * Remove code related to clustered tables. They were never implemented, and the implementation would be challenging with ROW_FORMAT=COMPACT. Remove the table types DICT_TABLE_CLUSTER_MEMBER and DICT_TABLE_CLUSTER and all related tests and functions. dict_table_t: Remove mix_id, mix_len, mix_id_len, mix_id_buf, and cluster_name. plan_t: Remove mixed_index. dict_create_sys_tables_tuple(): Set MIX_ID=0, MIX_LEN=0, CLUSTER_NAME=NULL when inserting into SYS_TABLES. dict_tree_check_search_tuple(): Enclose in #ifdef UNIV_DEBUG. * Move calling of thr_local_free() from trx_free_for_mysql() to innobase_close_connection().
1379 lines
36 KiB
C
1379 lines
36 KiB
C
/******************************************************
|
|
Mutex, the basic synchronization primitive
|
|
|
|
(c) 1995 Innobase Oy
|
|
|
|
Created 9/5/1995 Heikki Tuuri
|
|
*******************************************************/
|
|
|
|
#include "sync0sync.h"
|
|
#ifdef UNIV_NONINL
|
|
#include "sync0sync.ic"
|
|
#endif
|
|
|
|
#include "sync0rw.h"
|
|
#include "buf0buf.h"
|
|
#include "srv0srv.h"
|
|
#include "buf0types.h"
|
|
|
|
/*
|
|
REASONS FOR IMPLEMENTING THE SPIN LOCK MUTEX
|
|
============================================
|
|
|
|
Semaphore operations in operating systems are slow: Solaris on a 1993 Sparc
|
|
takes 3 microseconds (us) for a lock-unlock pair and Windows NT on a 1995
|
|
Pentium takes 20 microseconds for a lock-unlock pair. Therefore, we have to
|
|
implement our own efficient spin lock mutex. Future operating systems may
|
|
provide efficient spin locks, but we cannot count on that.
|
|
|
|
Another reason for implementing a spin lock is that on multiprocessor systems
|
|
it can be more efficient for a processor to run a loop waiting for the
|
|
semaphore to be released than to switch to a different thread. A thread switch
|
|
takes 25 us on both platforms mentioned above. See Gray and Reuter's book
|
|
Transaction processing for background.
|
|
|
|
How long should the spin loop last before suspending the thread? On a
|
|
uniprocessor, spinning does not help at all, because if the thread owning the
|
|
mutex is not executing, it cannot be released. Spinning actually wastes
|
|
resources.
|
|
|
|
On a multiprocessor, we do not know if the thread owning the mutex is
|
|
executing or not. Thus it would make sense to spin as long as the operation
|
|
guarded by the mutex would typically last assuming that the thread is
|
|
executing. If the mutex is not released by that time, we may assume that the
|
|
thread owning the mutex is not executing and suspend the waiting thread.
|
|
|
|
A typical operation (where no i/o involved) guarded by a mutex or a read-write
|
|
lock may last 1 - 20 us on the current Pentium platform. The longest
|
|
operations are the binary searches on an index node.
|
|
|
|
We conclude that the best choice is to set the spin time at 20 us. Then the
|
|
system should work well on a multiprocessor. On a uniprocessor we have to
|
|
make sure that thread swithches due to mutex collisions are not frequent,
|
|
i.e., they do not happen every 100 us or so, because that wastes too much
|
|
resources. If the thread switches are not frequent, the 20 us wasted in spin
|
|
loop is not too much.
|
|
|
|
Empirical studies on the effect of spin time should be done for different
|
|
platforms.
|
|
|
|
|
|
IMPLEMENTATION OF THE MUTEX
|
|
===========================
|
|
|
|
For background, see Curt Schimmel's book on Unix implementation on modern
|
|
architectures. The key points in the implementation are atomicity and
|
|
serialization of memory accesses. The test-and-set instruction (XCHG in
|
|
Pentium) must be atomic. As new processors may have weak memory models, also
|
|
serialization of memory references may be necessary. The successor of Pentium,
|
|
P6, has at least one mode where the memory model is weak. As far as we know,
|
|
in Pentium all memory accesses are serialized in the program order and we do
|
|
not have to worry about the memory model. On other processors there are
|
|
special machine instructions called a fence, memory barrier, or storage
|
|
barrier (STBAR in Sparc), which can be used to serialize the memory accesses
|
|
to happen in program order relative to the fence instruction.
|
|
|
|
Leslie Lamport has devised a "bakery algorithm" to implement a mutex without
|
|
the atomic test-and-set, but his algorithm should be modified for weak memory
|
|
models. We do not use Lamport's algorithm, because we guess it is slower than
|
|
the atomic test-and-set.
|
|
|
|
Our mutex implementation works as follows: After that we perform the atomic
|
|
test-and-set instruction on the memory word. If the test returns zero, we
|
|
know we got the lock first. If the test returns not zero, some other thread
|
|
was quicker and got the lock: then we spin in a loop reading the memory word,
|
|
waiting it to become zero. It is wise to just read the word in the loop, not
|
|
perform numerous test-and-set instructions, because they generate memory
|
|
traffic between the cache and the main memory. The read loop can just access
|
|
the cache, saving bus bandwidth.
|
|
|
|
If we cannot acquire the mutex lock in the specified time, we reserve a cell
|
|
in the wait array, set the waiters byte in the mutex to 1. To avoid a race
|
|
condition, after setting the waiters byte and before suspending the waiting
|
|
thread, we still have to check that the mutex is reserved, because it may
|
|
have happened that the thread which was holding the mutex has just released
|
|
it and did not see the waiters byte set to 1, a case which would lead the
|
|
other thread to an infinite wait.
|
|
|
|
LEMMA 1: After a thread resets the event of the cell it reserves for waiting
|
|
========
|
|
for a mutex, some thread will eventually call sync_array_signal_object with
|
|
the mutex as an argument. Thus no infinite wait is possible.
|
|
|
|
Proof: After making the reservation the thread sets the waiters field in the
|
|
mutex to 1. Then it checks that the mutex is still reserved by some thread,
|
|
or it reserves the mutex for itself. In any case, some thread (which may be
|
|
also some earlier thread, not necessarily the one currently holding the mutex)
|
|
will set the waiters field to 0 in mutex_exit, and then call
|
|
sync_array_signal_object with the mutex as an argument.
|
|
Q.E.D. */
|
|
|
|
ulint sync_dummy = 0;
|
|
|
|
/* The number of system calls made in this module. Intended for performance
|
|
monitoring. */
|
|
|
|
ulint mutex_system_call_count = 0;
|
|
|
|
/* Number of spin waits on mutexes: for performance monitoring */
|
|
|
|
ulint mutex_spin_round_count = 0;
|
|
ulint mutex_spin_wait_count = 0;
|
|
ulint mutex_os_wait_count = 0;
|
|
ulint mutex_exit_count = 0;
|
|
|
|
/* The global array of wait cells for implementation of the database's own
|
|
mutexes and read-write locks */
|
|
sync_array_t* sync_primary_wait_array;
|
|
|
|
/* This variable is set to TRUE when sync_init is called */
|
|
ibool sync_initialized = FALSE;
|
|
|
|
|
|
typedef struct sync_level_struct sync_level_t;
|
|
typedef struct sync_thread_struct sync_thread_t;
|
|
|
|
/* The latch levels currently owned by threads are stored in this data
|
|
structure; the size of this array is OS_THREAD_MAX_N */
|
|
|
|
sync_thread_t* sync_thread_level_arrays;
|
|
|
|
/* Mutex protecting sync_thread_level_arrays */
|
|
mutex_t sync_thread_mutex;
|
|
|
|
/* Global list of database mutexes (not OS mutexes) created. */
|
|
ut_list_base_node_t mutex_list;
|
|
|
|
/* Mutex protecting the mutex_list variable */
|
|
mutex_t mutex_list_mutex;
|
|
|
|
/* Latching order checks start when this is set TRUE */
|
|
ibool sync_order_checks_on = FALSE;
|
|
|
|
/* Dummy mutex used to implement mutex_fence */
|
|
mutex_t dummy_mutex_for_fence;
|
|
|
|
struct sync_thread_struct{
|
|
os_thread_id_t id; /* OS thread id */
|
|
sync_level_t* levels; /* level array for this thread; if this is NULL
|
|
this slot is unused */
|
|
};
|
|
|
|
/* Number of slots reserved for each OS thread in the sync level array */
|
|
#define SYNC_THREAD_N_LEVELS 10000
|
|
|
|
struct sync_level_struct{
|
|
void* latch; /* pointer to a mutex or an rw-lock; NULL means that
|
|
the slot is empty */
|
|
ulint level; /* level of the latch in the latching order */
|
|
};
|
|
|
|
/**********************************************************************
|
|
A noninlined function that reserves a mutex. In ha_innodb.cc we have disabled
|
|
inlining of InnoDB functions, and no inlined functions should be called from
|
|
there. That is why we need to duplicate the inlined function here. */
|
|
|
|
void
|
|
mutex_enter_noninline(
|
|
/*==================*/
|
|
mutex_t* mutex) /* in: mutex */
|
|
{
|
|
mutex_enter(mutex);
|
|
}
|
|
|
|
/**********************************************************************
|
|
Releases a mutex. */
|
|
|
|
void
|
|
mutex_exit_noninline(
|
|
/*=================*/
|
|
mutex_t* mutex) /* in: mutex */
|
|
{
|
|
mutex_exit(mutex);
|
|
}
|
|
|
|
/**********************************************************************
|
|
Creates, or rather, initializes a mutex object in a specified memory
|
|
location (which must be appropriately aligned). The mutex is initialized
|
|
in the reset state. Explicit freeing of the mutex with mutex_free is
|
|
necessary only if the memory block containing it is freed. */
|
|
|
|
void
|
|
mutex_create_func(
|
|
/*==============*/
|
|
mutex_t* mutex, /* in: pointer to memory */
|
|
const char* cfile_name, /* in: file name where created */
|
|
ulint cline, /* in: file line where created */
|
|
const char* cmutex_name) /* in: mutex name */
|
|
{
|
|
#if defined(_WIN32) && defined(UNIV_CAN_USE_X86_ASSEMBLER)
|
|
mutex_reset_lock_word(mutex);
|
|
#else
|
|
os_fast_mutex_init(&(mutex->os_fast_mutex));
|
|
mutex->lock_word = 0;
|
|
#endif
|
|
mutex_set_waiters(mutex, 0);
|
|
mutex->magic_n = MUTEX_MAGIC_N;
|
|
#ifdef UNIV_SYNC_DEBUG
|
|
mutex->line = 0;
|
|
mutex->file_name = "not yet reserved";
|
|
#endif /* UNIV_SYNC_DEBUG */
|
|
mutex->level = SYNC_LEVEL_NONE;
|
|
mutex->cfile_name = cfile_name;
|
|
mutex->cline = cline;
|
|
#ifndef UNIV_HOTBACKUP
|
|
mutex->cmutex_name= cmutex_name;
|
|
mutex->count_using= 0;
|
|
mutex->mutex_type= 0;
|
|
mutex->lspent_time= 0;
|
|
mutex->lmax_spent_time= 0;
|
|
mutex->count_spin_loop= 0;
|
|
mutex->count_spin_rounds= 0;
|
|
mutex->count_os_wait= 0;
|
|
mutex->count_os_yield= 0;
|
|
#endif /* !UNIV_HOTBACKUP */
|
|
|
|
/* Check that lock_word is aligned; this is important on Intel */
|
|
ut_ad(((ulint)(&(mutex->lock_word))) % 4 == 0);
|
|
|
|
/* NOTE! The very first mutexes are not put to the mutex list */
|
|
|
|
if ((mutex == &mutex_list_mutex) || (mutex == &sync_thread_mutex)) {
|
|
|
|
return;
|
|
}
|
|
|
|
mutex_enter(&mutex_list_mutex);
|
|
|
|
if (UT_LIST_GET_LEN(mutex_list) > 0) {
|
|
ut_a(UT_LIST_GET_FIRST(mutex_list)->magic_n == MUTEX_MAGIC_N);
|
|
}
|
|
|
|
UT_LIST_ADD_FIRST(list, mutex_list, mutex);
|
|
|
|
mutex_exit(&mutex_list_mutex);
|
|
}
|
|
|
|
/**********************************************************************
|
|
Calling this function is obligatory only if the memory buffer containing
|
|
the mutex is freed. Removes a mutex object from the mutex list. The mutex
|
|
is checked to be in the reset state. */
|
|
|
|
void
|
|
mutex_free(
|
|
/*=======*/
|
|
mutex_t* mutex) /* in: mutex */
|
|
{
|
|
#ifdef UNIV_DEBUG
|
|
ut_a(mutex_validate(mutex));
|
|
#endif /* UNIV_DEBUG */
|
|
ut_a(mutex_get_lock_word(mutex) == 0);
|
|
ut_a(mutex_get_waiters(mutex) == 0);
|
|
|
|
if (mutex != &mutex_list_mutex && mutex != &sync_thread_mutex) {
|
|
|
|
mutex_enter(&mutex_list_mutex);
|
|
|
|
if (UT_LIST_GET_PREV(list, mutex)) {
|
|
ut_a(UT_LIST_GET_PREV(list, mutex)->magic_n
|
|
== MUTEX_MAGIC_N);
|
|
}
|
|
if (UT_LIST_GET_NEXT(list, mutex)) {
|
|
ut_a(UT_LIST_GET_NEXT(list, mutex)->magic_n
|
|
== MUTEX_MAGIC_N);
|
|
}
|
|
|
|
UT_LIST_REMOVE(list, mutex_list, mutex);
|
|
|
|
mutex_exit(&mutex_list_mutex);
|
|
}
|
|
|
|
#if !defined(_WIN32) || !defined(UNIV_CAN_USE_X86_ASSEMBLER)
|
|
os_fast_mutex_free(&(mutex->os_fast_mutex));
|
|
#endif
|
|
/* If we free the mutex protecting the mutex list (freeing is
|
|
not necessary), we have to reset the magic number AFTER removing
|
|
it from the list. */
|
|
|
|
mutex->magic_n = 0;
|
|
}
|
|
|
|
/************************************************************************
|
|
Tries to lock the mutex for the current thread. If the lock is not acquired
|
|
immediately, returns with return value 1. */
|
|
|
|
ulint
|
|
mutex_enter_nowait(
|
|
/*===============*/
|
|
/* out: 0 if succeed, 1 if not */
|
|
mutex_t* mutex, /* in: pointer to mutex */
|
|
const char* file_name __attribute__((unused)),
|
|
/* in: file name where mutex
|
|
requested */
|
|
ulint line __attribute__((unused)))
|
|
/* in: line where requested */
|
|
{
|
|
ut_ad(mutex_validate(mutex));
|
|
|
|
if (!mutex_test_and_set(mutex)) {
|
|
|
|
#ifdef UNIV_SYNC_DEBUG
|
|
mutex_set_debug_info(mutex, file_name, line);
|
|
#endif
|
|
|
|
return(0); /* Succeeded! */
|
|
}
|
|
|
|
return(1);
|
|
}
|
|
|
|
/**********************************************************************
|
|
Checks that the mutex has been initialized. */
|
|
|
|
ibool
|
|
mutex_validate(
|
|
/*===========*/
|
|
mutex_t* mutex)
|
|
{
|
|
ut_a(mutex);
|
|
ut_a(mutex->magic_n == MUTEX_MAGIC_N);
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/**********************************************************************
|
|
Sets the waiters field in a mutex. */
|
|
|
|
void
|
|
mutex_set_waiters(
|
|
/*==============*/
|
|
mutex_t* mutex, /* in: mutex */
|
|
ulint n) /* in: value to set */
|
|
{
|
|
volatile ulint* ptr; /* declared volatile to ensure that
|
|
the value is stored to memory */
|
|
ut_ad(mutex);
|
|
|
|
ptr = &(mutex->waiters);
|
|
|
|
*ptr = n; /* Here we assume that the write of a single
|
|
word in memory is atomic */
|
|
}
|
|
|
|
/**********************************************************************
|
|
Reserves a mutex for the current thread. If the mutex is reserved, the
|
|
function spins a preset time (controlled by SYNC_SPIN_ROUNDS), waiting
|
|
for the mutex before suspending the thread. */
|
|
|
|
void
|
|
mutex_spin_wait(
|
|
/*============*/
|
|
mutex_t* mutex, /* in: pointer to mutex */
|
|
const char* file_name, /* in: file name where mutex
|
|
requested */
|
|
ulint line) /* in: line where requested */
|
|
{
|
|
ulint index; /* index of the reserved wait cell */
|
|
ulint i; /* spin round count */
|
|
#ifndef UNIV_HOTBACKUP
|
|
ib_longlong lstart_time = 0, lfinish_time; /* for timing os_wait */
|
|
ulint ltime_diff;
|
|
ulint sec;
|
|
ulint ms;
|
|
uint timer_started = 0;
|
|
#endif /* !UNIV_HOTBACKUP */
|
|
ut_ad(mutex);
|
|
|
|
mutex_loop:
|
|
|
|
i = 0;
|
|
|
|
/* Spin waiting for the lock word to become zero. Note that we do
|
|
not have to assume that the read access to the lock word is atomic,
|
|
as the actual locking is always committed with atomic test-and-set.
|
|
In reality, however, all processors probably have an atomic read of
|
|
a memory word. */
|
|
|
|
spin_loop:
|
|
#ifndef UNIV_HOTBACKUP
|
|
mutex_spin_wait_count++;
|
|
mutex->count_spin_loop++;
|
|
#endif /* !UNIV_HOTBACKUP */
|
|
|
|
while (mutex_get_lock_word(mutex) != 0 && i < SYNC_SPIN_ROUNDS) {
|
|
if (srv_spin_wait_delay) {
|
|
ut_delay(ut_rnd_interval(0, srv_spin_wait_delay));
|
|
}
|
|
|
|
i++;
|
|
}
|
|
|
|
if (i == SYNC_SPIN_ROUNDS) {
|
|
#ifndef UNIV_HOTBACKUP
|
|
mutex->count_os_yield++;
|
|
if (timed_mutexes == 1 && timer_started==0) {
|
|
ut_usectime(&sec, &ms);
|
|
lstart_time= (ib_longlong)sec * 1000000 + ms;
|
|
timer_started = 1;
|
|
}
|
|
#endif /* !UNIV_HOTBACKUP */
|
|
os_thread_yield();
|
|
}
|
|
|
|
#ifdef UNIV_SRV_PRINT_LATCH_WAITS
|
|
fprintf(stderr,
|
|
"Thread %lu spin wait mutex at %p cfile %s cline %lu rnds %lu\n",
|
|
(ulong) os_thread_pf(os_thread_get_curr_id()), (void*) mutex,
|
|
mutex->cfile_name, (ulong) mutex->cline, (ulong) i);
|
|
#endif
|
|
|
|
mutex_spin_round_count += i;
|
|
|
|
#ifndef UNIV_HOTBACKUP
|
|
mutex->count_spin_rounds += i;
|
|
#endif /* !UNIV_HOTBACKUP */
|
|
|
|
if (mutex_test_and_set(mutex) == 0) {
|
|
/* Succeeded! */
|
|
|
|
#ifdef UNIV_SYNC_DEBUG
|
|
mutex_set_debug_info(mutex, file_name, line);
|
|
#endif
|
|
|
|
goto finish_timing;
|
|
}
|
|
|
|
/* We may end up with a situation where lock_word is 0 but the OS
|
|
fast mutex is still reserved. On FreeBSD the OS does not seem to
|
|
schedule a thread which is constantly calling pthread_mutex_trylock
|
|
(in mutex_test_and_set implementation). Then we could end up
|
|
spinning here indefinitely. The following 'i++' stops this infinite
|
|
spin. */
|
|
|
|
i++;
|
|
|
|
if (i < SYNC_SPIN_ROUNDS) {
|
|
goto spin_loop;
|
|
}
|
|
|
|
sync_array_reserve_cell(sync_primary_wait_array, mutex,
|
|
SYNC_MUTEX, file_name, line, &index);
|
|
|
|
mutex_system_call_count++;
|
|
|
|
/* The memory order of the array reservation and the change in the
|
|
waiters field is important: when we suspend a thread, we first
|
|
reserve the cell and then set waiters field to 1. When threads are
|
|
released in mutex_exit, the waiters field is first set to zero and
|
|
then the event is set to the signaled state. */
|
|
|
|
mutex_set_waiters(mutex, 1);
|
|
|
|
/* Try to reserve still a few times */
|
|
for (i = 0; i < 4; i++) {
|
|
if (mutex_test_and_set(mutex) == 0) {
|
|
/* Succeeded! Free the reserved wait cell */
|
|
|
|
sync_array_free_cell_protected(sync_primary_wait_array,
|
|
index);
|
|
|
|
#ifdef UNIV_SYNC_DEBUG
|
|
mutex_set_debug_info(mutex, file_name, line);
|
|
#endif
|
|
|
|
#ifdef UNIV_SRV_PRINT_LATCH_WAITS
|
|
fprintf(stderr, "Thread %lu spin wait succeeds at 2:"
|
|
" mutex at %p\n",
|
|
(ulong) os_thread_pf(os_thread_get_curr_id()),
|
|
(void*) mutex);
|
|
#endif
|
|
|
|
goto finish_timing;
|
|
|
|
/* Note that in this case we leave the waiters field
|
|
set to 1. We cannot reset it to zero, as we do not
|
|
know if there are other waiters. */
|
|
}
|
|
}
|
|
|
|
/* Now we know that there has been some thread holding the mutex
|
|
after the change in the wait array and the waiters field was made.
|
|
Now there is no risk of infinite wait on the event. */
|
|
|
|
#ifdef UNIV_SRV_PRINT_LATCH_WAITS
|
|
fprintf(stderr,
|
|
"Thread %lu OS wait mutex at %p cfile %s cline %lu rnds %lu\n",
|
|
(ulong) os_thread_pf(os_thread_get_curr_id()), (void*) mutex,
|
|
mutex->cfile_name, (ulong) mutex->cline, (ulong) i);
|
|
#endif
|
|
|
|
mutex_system_call_count++;
|
|
mutex_os_wait_count++;
|
|
|
|
#ifndef UNIV_HOTBACKUP
|
|
mutex->count_os_wait++;
|
|
/* !!!!! Sometimes os_wait can be called without os_thread_yield */
|
|
|
|
if (timed_mutexes == 1 && timer_started==0) {
|
|
ut_usectime(&sec, &ms);
|
|
lstart_time= (ib_longlong)sec * 1000000 + ms;
|
|
timer_started = 1;
|
|
}
|
|
#endif /* !UNIV_HOTBACKUP */
|
|
|
|
sync_array_wait_event(sync_primary_wait_array, index);
|
|
goto mutex_loop;
|
|
|
|
finish_timing:
|
|
#ifndef UNIV_HOTBACKUP
|
|
if (timed_mutexes == 1 && timer_started==1) {
|
|
ut_usectime(&sec, &ms);
|
|
lfinish_time= (ib_longlong)sec * 1000000 + ms;
|
|
|
|
ltime_diff= (ulint) (lfinish_time - lstart_time);
|
|
mutex->lspent_time += ltime_diff;
|
|
|
|
if (mutex->lmax_spent_time < ltime_diff) {
|
|
mutex->lmax_spent_time= ltime_diff;
|
|
}
|
|
}
|
|
#endif /* !UNIV_HOTBACKUP */
|
|
return;
|
|
}
|
|
|
|
/**********************************************************************
|
|
Releases the threads waiting in the primary wait array for this mutex. */
|
|
|
|
void
|
|
mutex_signal_object(
|
|
/*================*/
|
|
mutex_t* mutex) /* in: mutex */
|
|
{
|
|
mutex_set_waiters(mutex, 0);
|
|
|
|
/* The memory order of resetting the waiters field and
|
|
signaling the object is important. See LEMMA 1 above. */
|
|
|
|
sync_array_signal_object(sync_primary_wait_array, mutex);
|
|
}
|
|
|
|
#ifdef UNIV_SYNC_DEBUG
|
|
/**********************************************************************
|
|
Sets the debug information for a reserved mutex. */
|
|
|
|
void
|
|
mutex_set_debug_info(
|
|
/*=================*/
|
|
mutex_t* mutex, /* in: mutex */
|
|
const char* file_name, /* in: file where requested */
|
|
ulint line) /* in: line where requested */
|
|
{
|
|
ut_ad(mutex);
|
|
ut_ad(file_name);
|
|
|
|
sync_thread_add_level(mutex, mutex->level);
|
|
|
|
mutex->file_name = file_name;
|
|
mutex->line = line;
|
|
mutex->thread_id = os_thread_get_curr_id();
|
|
}
|
|
|
|
/**********************************************************************
|
|
Gets the debug information for a reserved mutex. */
|
|
|
|
void
|
|
mutex_get_debug_info(
|
|
/*=================*/
|
|
mutex_t* mutex, /* in: mutex */
|
|
const char** file_name, /* out: file where requested */
|
|
ulint* line, /* out: line where requested */
|
|
os_thread_id_t* thread_id) /* out: id of the thread which owns
|
|
the mutex */
|
|
{
|
|
ut_ad(mutex);
|
|
|
|
*file_name = mutex->file_name;
|
|
*line = mutex->line;
|
|
*thread_id = mutex->thread_id;
|
|
}
|
|
#endif /* UNIV_SYNC_DEBUG */
|
|
|
|
/**********************************************************************
|
|
Sets the mutex latching level field. */
|
|
|
|
void
|
|
mutex_set_level(
|
|
/*============*/
|
|
mutex_t* mutex, /* in: mutex */
|
|
ulint level) /* in: level */
|
|
{
|
|
mutex->level = level;
|
|
}
|
|
|
|
|
|
#ifdef UNIV_SYNC_DEBUG
|
|
/**********************************************************************
|
|
Checks that the current thread owns the mutex. Works only in the debug
|
|
version. */
|
|
|
|
ibool
|
|
mutex_own(
|
|
/*======*/
|
|
/* out: TRUE if owns */
|
|
mutex_t* mutex) /* in: mutex */
|
|
{
|
|
ut_a(mutex_validate(mutex));
|
|
|
|
if (mutex_get_lock_word(mutex) != 1) {
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
if (!os_thread_eq(mutex->thread_id, os_thread_get_curr_id())) {
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/**********************************************************************
|
|
Prints debug info of currently reserved mutexes. */
|
|
|
|
void
|
|
mutex_list_print_info(void)
|
|
/*=======================*/
|
|
{
|
|
mutex_t* mutex;
|
|
const char* file_name;
|
|
ulint line;
|
|
os_thread_id_t thread_id;
|
|
ulint count = 0;
|
|
|
|
fputs("----------\n"
|
|
"MUTEX INFO\n"
|
|
"----------\n", stderr);
|
|
|
|
mutex_enter(&mutex_list_mutex);
|
|
|
|
mutex = UT_LIST_GET_FIRST(mutex_list);
|
|
|
|
while (mutex != NULL) {
|
|
count++;
|
|
|
|
if (mutex_get_lock_word(mutex) != 0) {
|
|
mutex_get_debug_info(mutex, &file_name, &line,
|
|
&thread_id);
|
|
fprintf(stderr,
|
|
"Locked mutex: addr %p thread %ld file %s line %ld\n",
|
|
(void*) mutex, os_thread_pf(thread_id),
|
|
file_name, line);
|
|
}
|
|
|
|
mutex = UT_LIST_GET_NEXT(list, mutex);
|
|
}
|
|
|
|
fprintf(stderr, "Total number of mutexes %ld\n", count);
|
|
|
|
mutex_exit(&mutex_list_mutex);
|
|
}
|
|
|
|
/**********************************************************************
|
|
Counts currently reserved mutexes. Works only in the debug version. */
|
|
|
|
ulint
|
|
mutex_n_reserved(void)
|
|
/*==================*/
|
|
{
|
|
mutex_t* mutex;
|
|
ulint count = 0;
|
|
|
|
mutex_enter(&mutex_list_mutex);
|
|
|
|
mutex = UT_LIST_GET_FIRST(mutex_list);
|
|
|
|
while (mutex != NULL) {
|
|
if (mutex_get_lock_word(mutex) != 0) {
|
|
|
|
count++;
|
|
}
|
|
|
|
mutex = UT_LIST_GET_NEXT(list, mutex);
|
|
}
|
|
|
|
mutex_exit(&mutex_list_mutex);
|
|
|
|
ut_a(count >= 1);
|
|
|
|
return(count - 1); /* Subtract one, because this function itself
|
|
was holding one mutex (mutex_list_mutex) */
|
|
}
|
|
|
|
/**********************************************************************
|
|
Returns TRUE if no mutex or rw-lock is currently locked. Works only in
|
|
the debug version. */
|
|
|
|
ibool
|
|
sync_all_freed(void)
|
|
/*================*/
|
|
{
|
|
return(mutex_n_reserved() + rw_lock_n_locked() == 0);
|
|
}
|
|
#endif /* UNIV_SYNC_DEBUG */
|
|
|
|
/**********************************************************************
|
|
Gets the value in the nth slot in the thread level arrays. */
|
|
static
|
|
sync_thread_t*
|
|
sync_thread_level_arrays_get_nth(
|
|
/*=============================*/
|
|
/* out: pointer to thread slot */
|
|
ulint n) /* in: slot number */
|
|
{
|
|
ut_ad(n < OS_THREAD_MAX_N);
|
|
|
|
return(sync_thread_level_arrays + n);
|
|
}
|
|
|
|
/**********************************************************************
|
|
Looks for the thread slot for the calling thread. */
|
|
static
|
|
sync_thread_t*
|
|
sync_thread_level_arrays_find_slot(void)
|
|
/*====================================*/
|
|
/* out: pointer to thread slot, NULL if not found */
|
|
|
|
{
|
|
sync_thread_t* slot;
|
|
os_thread_id_t id;
|
|
ulint i;
|
|
|
|
id = os_thread_get_curr_id();
|
|
|
|
for (i = 0; i < OS_THREAD_MAX_N; i++) {
|
|
|
|
slot = sync_thread_level_arrays_get_nth(i);
|
|
|
|
if (slot->levels && os_thread_eq(slot->id, id)) {
|
|
|
|
return(slot);
|
|
}
|
|
}
|
|
|
|
return(NULL);
|
|
}
|
|
|
|
/**********************************************************************
|
|
Looks for an unused thread slot. */
|
|
static
|
|
sync_thread_t*
|
|
sync_thread_level_arrays_find_free(void)
|
|
/*====================================*/
|
|
/* out: pointer to thread slot */
|
|
|
|
{
|
|
sync_thread_t* slot;
|
|
ulint i;
|
|
|
|
for (i = 0; i < OS_THREAD_MAX_N; i++) {
|
|
|
|
slot = sync_thread_level_arrays_get_nth(i);
|
|
|
|
if (slot->levels == NULL) {
|
|
|
|
return(slot);
|
|
}
|
|
}
|
|
|
|
return(NULL);
|
|
}
|
|
|
|
/**********************************************************************
|
|
Gets the value in the nth slot in the thread level array. */
|
|
static
|
|
sync_level_t*
|
|
sync_thread_levels_get_nth(
|
|
/*=======================*/
|
|
/* out: pointer to level slot */
|
|
sync_level_t* arr, /* in: pointer to level array for an OS
|
|
thread */
|
|
ulint n) /* in: slot number */
|
|
{
|
|
ut_ad(n < SYNC_THREAD_N_LEVELS);
|
|
|
|
return(arr + n);
|
|
}
|
|
|
|
/**********************************************************************
|
|
Checks if all the level values stored in the level array are greater than
|
|
the given limit. */
|
|
static
|
|
ibool
|
|
sync_thread_levels_g(
|
|
/*=================*/
|
|
/* out: TRUE if all greater */
|
|
sync_level_t* arr, /* in: pointer to level array for an OS
|
|
thread */
|
|
ulint limit) /* in: level limit */
|
|
{
|
|
sync_level_t* slot;
|
|
rw_lock_t* lock;
|
|
mutex_t* mutex;
|
|
ulint i;
|
|
|
|
for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {
|
|
|
|
slot = sync_thread_levels_get_nth(arr, i);
|
|
|
|
if (slot->latch != NULL) {
|
|
if (slot->level <= limit) {
|
|
|
|
lock = slot->latch;
|
|
mutex = slot->latch;
|
|
|
|
fprintf(stderr,
|
|
"InnoDB error: sync levels should be > %lu but a level is %lu\n",
|
|
(ulong) limit, (ulong) slot->level);
|
|
|
|
if (mutex->magic_n == MUTEX_MAGIC_N) {
|
|
fprintf(stderr,
|
|
"Mutex created at %s %lu\n",
|
|
mutex->cfile_name,
|
|
(ulong) mutex->cline);
|
|
|
|
if (mutex_get_lock_word(mutex) != 0) {
|
|
#ifdef UNIV_SYNC_DEBUG
|
|
const char* file_name;
|
|
ulint line;
|
|
os_thread_id_t thread_id;
|
|
|
|
mutex_get_debug_info(mutex,
|
|
&file_name, &line, &thread_id);
|
|
|
|
fprintf(stderr,
|
|
"InnoDB: Locked mutex: addr %p thread %ld file %s line %ld\n",
|
|
(void*) mutex, os_thread_pf(thread_id), file_name, (ulong) line);
|
|
#else /* UNIV_SYNC_DEBUG */
|
|
fprintf(stderr,
|
|
"InnoDB: Locked mutex: addr %p\n", (void*) mutex);
|
|
#endif /* UNIV_SYNC_DEBUG */
|
|
} else {
|
|
fputs("Not locked\n", stderr);
|
|
}
|
|
} else {
|
|
#ifdef UNIV_SYNC_DEBUG
|
|
rw_lock_print(lock);
|
|
#endif /* UNIV_SYNC_DEBUG */
|
|
}
|
|
|
|
return(FALSE);
|
|
}
|
|
}
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/**********************************************************************
|
|
Checks if the level value is stored in the level array. */
|
|
static
|
|
ibool
|
|
sync_thread_levels_contain(
|
|
/*=======================*/
|
|
/* out: TRUE if stored */
|
|
sync_level_t* arr, /* in: pointer to level array for an OS
|
|
thread */
|
|
ulint level) /* in: level */
|
|
{
|
|
sync_level_t* slot;
|
|
ulint i;
|
|
|
|
for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {
|
|
|
|
slot = sync_thread_levels_get_nth(arr, i);
|
|
|
|
if (slot->latch != NULL) {
|
|
if (slot->level == level) {
|
|
|
|
return(TRUE);
|
|
}
|
|
}
|
|
}
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
/**********************************************************************
|
|
Checks that the level array for the current thread is empty. */
|
|
|
|
ibool
|
|
sync_thread_levels_empty_gen(
|
|
/*=========================*/
|
|
/* out: TRUE if empty except the
|
|
exceptions specified below */
|
|
ibool dict_mutex_allowed) /* in: TRUE if dictionary mutex is
|
|
allowed to be owned by the thread,
|
|
also purge_is_running mutex is
|
|
allowed */
|
|
{
|
|
sync_level_t* arr;
|
|
sync_thread_t* thread_slot;
|
|
sync_level_t* slot;
|
|
ulint i;
|
|
|
|
if (!sync_order_checks_on) {
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
mutex_enter(&sync_thread_mutex);
|
|
|
|
thread_slot = sync_thread_level_arrays_find_slot();
|
|
|
|
if (thread_slot == NULL) {
|
|
|
|
mutex_exit(&sync_thread_mutex);
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
arr = thread_slot->levels;
|
|
|
|
for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {
|
|
|
|
slot = sync_thread_levels_get_nth(arr, i);
|
|
|
|
if (slot->latch != NULL && (!dict_mutex_allowed ||
|
|
(slot->level != SYNC_DICT
|
|
&& slot->level != SYNC_DICT_OPERATION))) {
|
|
|
|
mutex_exit(&sync_thread_mutex);
|
|
ut_error;
|
|
|
|
return(FALSE);
|
|
}
|
|
}
|
|
|
|
mutex_exit(&sync_thread_mutex);
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/**********************************************************************
|
|
Checks that the level array for the current thread is empty. */
|
|
|
|
ibool
|
|
sync_thread_levels_empty(void)
|
|
/*==========================*/
|
|
/* out: TRUE if empty */
|
|
{
|
|
return(sync_thread_levels_empty_gen(FALSE));
|
|
}
|
|
|
|
/**********************************************************************
|
|
Adds a latch and its level in the thread level array. Allocates the memory
|
|
for the array if called first time for this OS thread. Makes the checks
|
|
against other latch levels stored in the array for this thread. */
|
|
|
|
void
|
|
sync_thread_add_level(
|
|
/*==================*/
|
|
void* latch, /* in: pointer to a mutex or an rw-lock */
|
|
ulint level) /* in: level in the latching order; if SYNC_LEVEL_NONE,
|
|
nothing is done */
|
|
{
|
|
sync_level_t* array;
|
|
sync_level_t* slot;
|
|
sync_thread_t* thread_slot;
|
|
ulint i;
|
|
|
|
if (!sync_order_checks_on) {
|
|
|
|
return;
|
|
}
|
|
|
|
if ((latch == (void*)&sync_thread_mutex)
|
|
|| (latch == (void*)&mutex_list_mutex)
|
|
#ifdef UNIV_SYNC_DEBUG
|
|
|| (latch == (void*)&rw_lock_debug_mutex)
|
|
#endif /* UNIV_SYNC_DEBUG */
|
|
|| (latch == (void*)&rw_lock_list_mutex)) {
|
|
|
|
return;
|
|
}
|
|
|
|
if (level == SYNC_LEVEL_NONE) {
|
|
|
|
return;
|
|
}
|
|
|
|
mutex_enter(&sync_thread_mutex);
|
|
|
|
thread_slot = sync_thread_level_arrays_find_slot();
|
|
|
|
if (thread_slot == NULL) {
|
|
/* We have to allocate the level array for a new thread */
|
|
array = ut_malloc(sizeof(sync_level_t) * SYNC_THREAD_N_LEVELS);
|
|
|
|
thread_slot = sync_thread_level_arrays_find_free();
|
|
|
|
thread_slot->id = os_thread_get_curr_id();
|
|
thread_slot->levels = array;
|
|
|
|
for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {
|
|
|
|
slot = sync_thread_levels_get_nth(array, i);
|
|
|
|
slot->latch = NULL;
|
|
}
|
|
}
|
|
|
|
array = thread_slot->levels;
|
|
|
|
/* NOTE that there is a problem with _NODE and _LEAF levels: if the
|
|
B-tree height changes, then a leaf can change to an internal node
|
|
or the other way around. We do not know at present if this can cause
|
|
unnecessary assertion failures below. */
|
|
|
|
switch (level) {
|
|
case SYNC_NO_ORDER_CHECK:
|
|
case SYNC_EXTERN_STORAGE:
|
|
case SYNC_TREE_NODE_FROM_HASH:
|
|
/* Do no order checking */
|
|
break;
|
|
case SYNC_MEM_POOL:
|
|
ut_a(sync_thread_levels_g(array, SYNC_MEM_POOL));
|
|
break;
|
|
case SYNC_MEM_HASH:
|
|
ut_a(sync_thread_levels_g(array, SYNC_MEM_HASH));
|
|
break;
|
|
case SYNC_RECV:
|
|
ut_a(sync_thread_levels_g(array, SYNC_RECV));
|
|
break;
|
|
case SYNC_LOG:
|
|
ut_a(sync_thread_levels_g(array, SYNC_LOG));
|
|
break;
|
|
case SYNC_THR_LOCAL:
|
|
ut_a(sync_thread_levels_g(array, SYNC_THR_LOCAL));
|
|
break;
|
|
case SYNC_ANY_LATCH:
|
|
ut_a(sync_thread_levels_g(array, SYNC_ANY_LATCH));
|
|
break;
|
|
case SYNC_TRX_SYS_HEADER:
|
|
ut_a(sync_thread_levels_g(array, SYNC_TRX_SYS_HEADER));
|
|
break;
|
|
case SYNC_DOUBLEWRITE:
|
|
ut_a(sync_thread_levels_g(array, SYNC_DOUBLEWRITE));
|
|
break;
|
|
case SYNC_BUF_BLOCK:
|
|
ut_a((sync_thread_levels_contain(array, SYNC_BUF_POOL)
|
|
&& sync_thread_levels_g(array, SYNC_BUF_BLOCK - 1))
|
|
|| sync_thread_levels_g(array, SYNC_BUF_BLOCK));
|
|
break;
|
|
case SYNC_BUF_POOL:
|
|
ut_a(sync_thread_levels_g(array, SYNC_BUF_POOL));
|
|
break;
|
|
case SYNC_SEARCH_SYS:
|
|
ut_a(sync_thread_levels_g(array, SYNC_SEARCH_SYS));
|
|
break;
|
|
case SYNC_TRX_LOCK_HEAP:
|
|
ut_a(sync_thread_levels_g(array, SYNC_TRX_LOCK_HEAP));
|
|
break;
|
|
case SYNC_REC_LOCK:
|
|
ut_a((sync_thread_levels_contain(array, SYNC_KERNEL)
|
|
&& sync_thread_levels_g(array, SYNC_REC_LOCK - 1))
|
|
|| sync_thread_levels_g(array, SYNC_REC_LOCK));
|
|
break;
|
|
case SYNC_KERNEL:
|
|
ut_a(sync_thread_levels_g(array, SYNC_KERNEL));
|
|
break;
|
|
case SYNC_IBUF_BITMAP:
|
|
ut_a((sync_thread_levels_contain(array, SYNC_IBUF_BITMAP_MUTEX)
|
|
&& sync_thread_levels_g(array, SYNC_IBUF_BITMAP - 1))
|
|
|| sync_thread_levels_g(array, SYNC_IBUF_BITMAP));
|
|
break;
|
|
case SYNC_IBUF_BITMAP_MUTEX:
|
|
ut_a(sync_thread_levels_g(array, SYNC_IBUF_BITMAP_MUTEX));
|
|
break;
|
|
case SYNC_FSP_PAGE:
|
|
ut_a(sync_thread_levels_contain(array, SYNC_FSP));
|
|
break;
|
|
case SYNC_FSP:
|
|
ut_a(sync_thread_levels_contain(array, SYNC_FSP)
|
|
|| sync_thread_levels_g(array, SYNC_FSP));
|
|
break;
|
|
case SYNC_TRX_UNDO_PAGE:
|
|
ut_a(sync_thread_levels_contain(array, SYNC_TRX_UNDO)
|
|
|| sync_thread_levels_contain(array, SYNC_RSEG)
|
|
|| sync_thread_levels_contain(array, SYNC_PURGE_SYS)
|
|
|| sync_thread_levels_g(array, SYNC_TRX_UNDO_PAGE));
|
|
break;
|
|
case SYNC_RSEG_HEADER:
|
|
ut_a(sync_thread_levels_contain(array, SYNC_RSEG));
|
|
break;
|
|
case SYNC_RSEG_HEADER_NEW:
|
|
ut_a(sync_thread_levels_contain(array, SYNC_KERNEL)
|
|
&& sync_thread_levels_contain(array, SYNC_FSP_PAGE));
|
|
break;
|
|
case SYNC_RSEG:
|
|
ut_a(sync_thread_levels_g(array, SYNC_RSEG));
|
|
break;
|
|
case SYNC_TRX_UNDO:
|
|
ut_a(sync_thread_levels_g(array, SYNC_TRX_UNDO));
|
|
break;
|
|
case SYNC_PURGE_LATCH:
|
|
ut_a(sync_thread_levels_g(array, SYNC_PURGE_LATCH));
|
|
break;
|
|
case SYNC_PURGE_SYS:
|
|
ut_a(sync_thread_levels_g(array, SYNC_PURGE_SYS));
|
|
break;
|
|
case SYNC_TREE_NODE:
|
|
ut_a(sync_thread_levels_contain(array, SYNC_INDEX_TREE)
|
|
|| sync_thread_levels_g(array, SYNC_TREE_NODE - 1));
|
|
break;
|
|
case SYNC_TREE_NODE_NEW:
|
|
ut_a(sync_thread_levels_contain(array, SYNC_FSP_PAGE)
|
|
|| sync_thread_levels_contain(array, SYNC_IBUF_MUTEX));
|
|
break;
|
|
case SYNC_INDEX_TREE:
|
|
ut_a((sync_thread_levels_contain(array, SYNC_IBUF_MUTEX)
|
|
&& sync_thread_levels_contain(array, SYNC_FSP)
|
|
&& sync_thread_levels_g(array, SYNC_FSP_PAGE - 1))
|
|
|| sync_thread_levels_g(array, SYNC_TREE_NODE - 1));
|
|
break;
|
|
case SYNC_IBUF_MUTEX:
|
|
ut_a(sync_thread_levels_g(array, SYNC_FSP_PAGE - 1));
|
|
break;
|
|
case SYNC_IBUF_PESS_INSERT_MUTEX:
|
|
ut_a(sync_thread_levels_g(array, SYNC_FSP - 1)
|
|
&& !sync_thread_levels_contain(array, SYNC_IBUF_MUTEX));
|
|
break;
|
|
case SYNC_IBUF_HEADER:
|
|
ut_a(sync_thread_levels_g(array, SYNC_FSP - 1)
|
|
&& !sync_thread_levels_contain(array, SYNC_IBUF_MUTEX)
|
|
&& !sync_thread_levels_contain(array,
|
|
SYNC_IBUF_PESS_INSERT_MUTEX));
|
|
break;
|
|
case SYNC_DICT_AUTOINC_MUTEX:
|
|
ut_a(sync_thread_levels_g(array, SYNC_DICT_AUTOINC_MUTEX));
|
|
break;
|
|
case SYNC_DICT_OPERATION:
|
|
ut_a(sync_thread_levels_g(array, SYNC_DICT_OPERATION));
|
|
break;
|
|
case SYNC_DICT_HEADER:
|
|
ut_a(sync_thread_levels_g(array, SYNC_DICT_HEADER));
|
|
break;
|
|
case SYNC_DICT:
|
|
#ifdef UNIV_DEBUG
|
|
ut_a(buf_debug_prints
|
|
|| sync_thread_levels_g(array, SYNC_DICT));
|
|
#else /* UNIV_DEBUG */
|
|
ut_a(sync_thread_levels_g(array, SYNC_DICT));
|
|
#endif /* UNIV_DEBUG */
|
|
break;
|
|
default:
|
|
ut_error;
|
|
}
|
|
|
|
for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {
|
|
|
|
slot = sync_thread_levels_get_nth(array, i);
|
|
|
|
if (slot->latch == NULL) {
|
|
slot->latch = latch;
|
|
slot->level = level;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
ut_a(i < SYNC_THREAD_N_LEVELS);
|
|
|
|
mutex_exit(&sync_thread_mutex);
|
|
}
|
|
|
|
/**********************************************************************
|
|
Removes a latch from the thread level array if it is found there. */
|
|
|
|
ibool
|
|
sync_thread_reset_level(
|
|
/*====================*/
|
|
/* out: TRUE if found from the array; it is an error
|
|
if the latch is not found */
|
|
void* latch) /* in: pointer to a mutex or an rw-lock */
|
|
{
|
|
sync_level_t* array;
|
|
sync_level_t* slot;
|
|
sync_thread_t* thread_slot;
|
|
ulint i;
|
|
|
|
if (!sync_order_checks_on) {
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
if ((latch == (void*)&sync_thread_mutex)
|
|
|| (latch == (void*)&mutex_list_mutex)
|
|
#ifdef UNIV_SYNC_DEBUG
|
|
|| (latch == (void*)&rw_lock_debug_mutex)
|
|
#endif /* UNIV_SYNC_DEBUG */
|
|
|| (latch == (void*)&rw_lock_list_mutex)) {
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
mutex_enter(&sync_thread_mutex);
|
|
|
|
thread_slot = sync_thread_level_arrays_find_slot();
|
|
|
|
if (thread_slot == NULL) {
|
|
|
|
ut_error;
|
|
|
|
mutex_exit(&sync_thread_mutex);
|
|
return(FALSE);
|
|
}
|
|
|
|
array = thread_slot->levels;
|
|
|
|
for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {
|
|
|
|
slot = sync_thread_levels_get_nth(array, i);
|
|
|
|
if (slot->latch == latch) {
|
|
slot->latch = NULL;
|
|
|
|
mutex_exit(&sync_thread_mutex);
|
|
|
|
return(TRUE);
|
|
}
|
|
}
|
|
|
|
ut_error;
|
|
|
|
mutex_exit(&sync_thread_mutex);
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
/**********************************************************************
|
|
Initializes the synchronization data structures. */
|
|
|
|
void
|
|
sync_init(void)
|
|
/*===========*/
|
|
{
|
|
sync_thread_t* thread_slot;
|
|
ulint i;
|
|
|
|
ut_a(sync_initialized == FALSE);
|
|
|
|
sync_initialized = TRUE;
|
|
|
|
/* Create the primary system wait array which is protected by an OS
|
|
mutex */
|
|
|
|
sync_primary_wait_array = sync_array_create(OS_THREAD_MAX_N,
|
|
SYNC_ARRAY_OS_MUTEX);
|
|
|
|
/* Create the thread latch level array where the latch levels
|
|
are stored for each OS thread */
|
|
|
|
sync_thread_level_arrays = ut_malloc(OS_THREAD_MAX_N
|
|
* sizeof(sync_thread_t));
|
|
for (i = 0; i < OS_THREAD_MAX_N; i++) {
|
|
|
|
thread_slot = sync_thread_level_arrays_get_nth(i);
|
|
thread_slot->levels = NULL;
|
|
}
|
|
|
|
/* Init the mutex list and create the mutex to protect it. */
|
|
|
|
UT_LIST_INIT(mutex_list);
|
|
mutex_create(&mutex_list_mutex);
|
|
mutex_set_level(&mutex_list_mutex, SYNC_NO_ORDER_CHECK);
|
|
|
|
mutex_create(&sync_thread_mutex);
|
|
mutex_set_level(&sync_thread_mutex, SYNC_NO_ORDER_CHECK);
|
|
|
|
/* Init the rw-lock list and create the mutex to protect it. */
|
|
|
|
UT_LIST_INIT(rw_lock_list);
|
|
mutex_create(&rw_lock_list_mutex);
|
|
mutex_set_level(&rw_lock_list_mutex, SYNC_NO_ORDER_CHECK);
|
|
|
|
#ifdef UNIV_SYNC_DEBUG
|
|
mutex_create(&rw_lock_debug_mutex);
|
|
mutex_set_level(&rw_lock_debug_mutex, SYNC_NO_ORDER_CHECK);
|
|
|
|
rw_lock_debug_event = os_event_create(NULL);
|
|
rw_lock_debug_waiters = FALSE;
|
|
#endif /* UNIV_SYNC_DEBUG */
|
|
}
|
|
|
|
/**********************************************************************
|
|
Frees the resources in InnoDB's own synchronization data structures. Use
|
|
os_sync_free() after calling this. */
|
|
|
|
void
|
|
sync_close(void)
|
|
/*===========*/
|
|
{
|
|
mutex_t* mutex;
|
|
|
|
sync_array_free(sync_primary_wait_array);
|
|
|
|
mutex = UT_LIST_GET_FIRST(mutex_list);
|
|
|
|
while (mutex) {
|
|
mutex_free(mutex);
|
|
mutex = UT_LIST_GET_FIRST(mutex_list);
|
|
}
|
|
|
|
mutex_free(&mutex_list_mutex);
|
|
mutex_free(&sync_thread_mutex);
|
|
}
|
|
|
|
/***********************************************************************
|
|
Prints wait info of the sync system. */
|
|
|
|
void
|
|
sync_print_wait_info(
|
|
/*=================*/
|
|
FILE* file) /* in: file where to print */
|
|
{
|
|
#ifdef UNIV_SYNC_DEBUG
|
|
fprintf(stderr, "Mutex exits %lu, rws exits %lu, rwx exits %lu\n",
|
|
mutex_exit_count, rw_s_exit_count, rw_x_exit_count);
|
|
#endif
|
|
|
|
fprintf(file,
|
|
"Mutex spin waits %lu, rounds %lu, OS waits %lu\n"
|
|
"RW-shared spins %lu, OS waits %lu; RW-excl spins %lu, OS waits %lu\n",
|
|
(ulong) mutex_spin_wait_count,
|
|
(ulong) mutex_spin_round_count,
|
|
(ulong) mutex_os_wait_count,
|
|
(ulong) rw_s_spin_wait_count,
|
|
(ulong) rw_s_os_wait_count,
|
|
(ulong) rw_x_spin_wait_count,
|
|
(ulong) rw_x_os_wait_count);
|
|
}
|
|
|
|
/***********************************************************************
|
|
Prints info of the sync system. */
|
|
|
|
void
|
|
sync_print(
|
|
/*=======*/
|
|
FILE* file) /* in: file where to print */
|
|
{
|
|
#ifdef UNIV_SYNC_DEBUG
|
|
mutex_list_print_info();
|
|
|
|
rw_lock_list_print_info();
|
|
#endif /* UNIV_SYNC_DEBUG */
|
|
|
|
sync_array_print_info(file, sync_primary_wait_array);
|
|
|
|
sync_print_wait_info(file);
|
|
}
|