mirror of
https://github.com/MariaDB/server.git
synced 2025-01-25 00:04:33 +01:00
813fc4104e
cursor is interpreted latin1 character and Bug#9819 "Cursors: Mysql Server Crash while fetching from table with 5 million records." A fix for a possible memory leak when fetching into an SP cursor in a long loop. The patch uses a common implementation of cursors in the binary protocol and in stored procedures and implements materialized cursors. For implementation details, see comments in sql_cursor.cc include/my_sys.h: - declaration for multi_alloc_root libmysqld/Makefile.am: - drop protocol_cursor.cc, add sql_cursor.cc (replaces the old implementation of cursors with a new one) mysql-test/r/ctype_ujis.result: - test results fixed (a test case for Bug#6513) mysql-test/r/sp-big.result: - test results fixed (a test case for Bug#9819) mysql-test/t/ctype_ujis.test: Add a test case for Bug#6513 "Test Suite: Values inserted by using cursor is interpreted latin1 character" mysql-test/t/sp-big.test: Add a restricted test case for Bug#9819 "Cursors: Mysql Server Crash while fetching from table with 5 million records." mysys/my_alloc.c: - an implementation of multi_alloc_root; this is largely a copy-paste from mulalloc.c, but the function is small and there is no easy way to reuse the existing C function. sql/Makefile.am: - add sql_cursor.h, sql_cursor.cc (a new implementation of stored procedure cursors) and drop protocol_cursor.cc (the old one) sql/handler.cc: - now TABLE object has its mem_root always initialized. Adjust the implementation handler::ha_open sql/item_subselect.cc: - adjust to the changed declaration of st_select_lex_unit::prepare sql/protocol.h: - drop Protocol_cursor sql/sp_head.cc: - move juggling with Query_arena::free_list and Item::next to sp_eval_func_item, as this is needed in 3 places already. sql/sp_head.h: - declare a no-op implementation for cleanup_stmt in sp_instr_cpush. This method is needed for non-materializing cursors, which are yet not used in stored procedures. - declaration for sp_eval_func_item sql/sp_rcontext.cc: - reimplement sp_cursor using the new implementation of server side cursors. - use sp_eval_func_item to assign values of SP variables from the row fetched from a cursor. This should fix a possible memory leak in the old implementation of sp_cursor::fetch sql/sp_rcontext.h: - reimplement sp_cursor using the new implementation of server side cursors. sql/sql_class.cc: - disable the functionality that closes transient cursors at commit/rollback; transient cursors are not used in 5.0, instead we use materialized ones. To be enabled in a later version. sql/sql_class.h: - adjust to the rename Cursor -> Server_side_cursor - additional declarations of select_union used in materialized cursors sql/sql_derived.cc: - reuse bits of tmp table code in UNION, derived tables, and materialized cursors - cleanup comments sql/sql_lex.h: - declarations of auxiliary methods used by materialized cursors - a cleanup in st_select_lex_unit interface sql/sql_list.h: - add an array operator new[] to class Sql_alloc sql/sql_prepare.cc: - split the tight coupling of cursors and prepared statements to reuse the same implementation in stored procedures - cleanups of error processing in Prepared_statement::{prepare,execute} sql/sql_select.cc: - move the implementation of sensitive (non-materializing) cursors to sql_cursor.cc - make temporary tables self-contained: the table, its record and fields are allocated in TABLE::mem_root. This implementation is not clean and resets thd->mem_root several times because of the way create_tmp_table works (many additional things are done inside it). - adjust to the changed declaration of st_select_lex_unit::prepare sql/sql_select.h: - move the declaration of sensitive (non-materializing) cursors to sql_cursor.cc sql/sql_union.cc: - move pieces of st_select_unit::prepare to select_union and st_table methods to be able to reuse code in the implementation of materialized cursors sql/sql_view.cc: - adjust to the changed signature of st_select_lex_unit::prepare sql/table.cc: - implement auxiliary st_table methods for use with temporary tables sql/table.h: - add declarations for auxiliary methods of st_table used to work with temporary tables tests/mysql_client_test.c: - if cursors are materialized, a parallel update of the table used in the cursor may go through: update the test. sql/sql_cursor.cc: New BitKeeper file ``sql/sql_cursor.cc'' -- implementation of server side cursors sql/sql_cursor.h: New BitKeeper file ``sql/sql_cursor.h'' - declarations for server side cursors.
511 lines
13 KiB
C++
511 lines
13 KiB
C++
/* Copyright (C) 2000-2003 MySQL AB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
|
|
#ifdef USE_PRAGMA_INTERFACE
|
|
#pragma interface /* gcc class implementation */
|
|
#endif
|
|
|
|
/* mysql standard class memory allocator */
|
|
|
|
class Sql_alloc
|
|
{
|
|
public:
|
|
static void *operator new(size_t size)
|
|
{
|
|
return (void*) sql_alloc((uint) size);
|
|
}
|
|
static void *operator new[](size_t size)
|
|
{
|
|
return (void*) sql_alloc((uint) size);
|
|
}
|
|
static void *operator new[](size_t size, MEM_ROOT *mem_root)
|
|
{ return (void*) alloc_root(mem_root, (uint) size); }
|
|
static void *operator new(size_t size, MEM_ROOT *mem_root)
|
|
{ return (void*) alloc_root(mem_root, (uint) size); }
|
|
static void operator delete(void *ptr, size_t size) { TRASH(ptr, size); }
|
|
static void operator delete(void *ptr, MEM_ROOT *mem_root)
|
|
{ /* never called */ }
|
|
static void operator delete[](void *ptr, size_t size) { TRASH(ptr, size); }
|
|
#ifdef HAVE_purify
|
|
bool dummy;
|
|
inline Sql_alloc() :dummy(0) {}
|
|
inline ~Sql_alloc() {}
|
|
#else
|
|
inline Sql_alloc() {}
|
|
inline ~Sql_alloc() {}
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
/*
|
|
Basic single linked list
|
|
Used for item and item_buffs.
|
|
All list ends with a pointer to the 'end_of_list' element, which
|
|
data pointer is a null pointer and the next pointer points to itself.
|
|
This makes it very fast to traverse lists as we don't have to
|
|
test for a specialend condition for list that can't contain a null
|
|
pointer.
|
|
*/
|
|
|
|
class list_node :public Sql_alloc
|
|
{
|
|
public:
|
|
list_node *next;
|
|
void *info;
|
|
list_node(void *info_par,list_node *next_par)
|
|
:next(next_par),info(info_par)
|
|
{}
|
|
list_node() /* For end_of_list */
|
|
{
|
|
info=0;
|
|
next= this;
|
|
}
|
|
friend class base_list;
|
|
friend class base_list_iterator;
|
|
};
|
|
|
|
|
|
extern list_node end_of_list;
|
|
|
|
class base_list :public Sql_alloc
|
|
{
|
|
protected:
|
|
list_node *first,**last;
|
|
|
|
public:
|
|
uint elements;
|
|
|
|
inline void empty() { elements=0; first= &end_of_list; last=&first;}
|
|
inline base_list() { empty(); }
|
|
inline base_list(const base_list &tmp) :Sql_alloc()
|
|
{
|
|
elements=tmp.elements;
|
|
first=tmp.first;
|
|
last=tmp.last;
|
|
}
|
|
inline base_list(bool error) { }
|
|
inline bool push_back(void *info)
|
|
{
|
|
if (((*last)=new list_node(info, &end_of_list)))
|
|
{
|
|
last= &(*last)->next;
|
|
elements++;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
inline bool push_back(void *info, MEM_ROOT *mem_root)
|
|
{
|
|
if (((*last)=new (mem_root) list_node(info, &end_of_list)))
|
|
{
|
|
last= &(*last)->next;
|
|
elements++;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
inline bool push_front(void *info)
|
|
{
|
|
list_node *node=new list_node(info,first);
|
|
if (node)
|
|
{
|
|
if (last == &first)
|
|
last= &node->next;
|
|
first=node;
|
|
elements++;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
void remove(list_node **prev)
|
|
{
|
|
list_node *node=(*prev)->next;
|
|
if (!--elements)
|
|
last= &first;
|
|
else if (last == &(*prev)->next)
|
|
last= prev;
|
|
delete *prev;
|
|
*prev=node;
|
|
}
|
|
inline void concat(base_list *list)
|
|
{
|
|
if (!list->is_empty())
|
|
{
|
|
*last= list->first;
|
|
last= list->last;
|
|
elements+= list->elements;
|
|
}
|
|
}
|
|
inline void *pop(void)
|
|
{
|
|
if (first == &end_of_list) return 0;
|
|
list_node *tmp=first;
|
|
first=first->next;
|
|
if (!--elements)
|
|
last= &first;
|
|
return tmp->info;
|
|
}
|
|
inline void disjoin(base_list *list)
|
|
{
|
|
list_node **prev= &first;
|
|
list_node *node= first;
|
|
list_node *list_first= list->first;
|
|
elements=0;
|
|
while (node && node != list_first)
|
|
{
|
|
prev= &node->next;
|
|
node= node->next;
|
|
elements++;
|
|
}
|
|
*prev= *last;
|
|
last= prev;
|
|
}
|
|
inline void prepand(base_list *list)
|
|
{
|
|
if (!list->is_empty())
|
|
{
|
|
*list->last= first;
|
|
first= list->first;
|
|
elements+= list->elements;
|
|
}
|
|
}
|
|
inline list_node* last_node() { return *last; }
|
|
inline list_node* first_node() { return first;}
|
|
inline void *head() { return first->info; }
|
|
inline void **head_ref() { return first != &end_of_list ? &first->info : 0; }
|
|
inline bool is_empty() { return first == &end_of_list ; }
|
|
inline list_node *last_ref() { return &end_of_list; }
|
|
friend class base_list_iterator;
|
|
friend class error_list;
|
|
friend class error_list_iterator;
|
|
|
|
#ifdef LIST_EXTRA_DEBUG
|
|
/*
|
|
Check list invariants and print results into trace. Invariants are:
|
|
- (*last) points to end_of_list
|
|
- There are no NULLs in the list.
|
|
- base_list::elements is the number of elements in the list.
|
|
|
|
SYNOPSIS
|
|
check_list()
|
|
name Name to print to trace file
|
|
|
|
RETURN
|
|
1 The list is Ok.
|
|
0 List invariants are not met.
|
|
*/
|
|
|
|
bool check_list(const char *name)
|
|
{
|
|
base_list *list= this;
|
|
list_node *node= first;
|
|
uint cnt= 0;
|
|
|
|
while (node->next != &end_of_list)
|
|
{
|
|
if (!node->info)
|
|
{
|
|
DBUG_PRINT("list_invariants",("%s: error: NULL element in the list",
|
|
name));
|
|
return FALSE;
|
|
}
|
|
node= node->next;
|
|
cnt++;
|
|
}
|
|
if (last != &(node->next))
|
|
{
|
|
DBUG_PRINT("list_invariants", ("%s: error: wrong last pointer", name));
|
|
return FALSE;
|
|
}
|
|
if (cnt+1 != elements)
|
|
{
|
|
DBUG_PRINT("list_invariants", ("%s: error: wrong element count", name));
|
|
return FALSE;
|
|
}
|
|
DBUG_PRINT("list_invariants", ("%s: list is ok", name));
|
|
return TRUE;
|
|
}
|
|
#endif // LIST_EXTRA_DEBUG
|
|
|
|
protected:
|
|
void after(void *info,list_node *node)
|
|
{
|
|
list_node *new_node=new list_node(info,node->next);
|
|
node->next=new_node;
|
|
elements++;
|
|
if (last == &(node->next))
|
|
last= &new_node->next;
|
|
}
|
|
};
|
|
|
|
|
|
class base_list_iterator
|
|
{
|
|
protected:
|
|
base_list *list;
|
|
list_node **el,**prev,*current;
|
|
void sublist(base_list &ls, uint elm)
|
|
{
|
|
ls.first= *el;
|
|
ls.last= list->last;
|
|
ls.elements= elm;
|
|
}
|
|
public:
|
|
base_list_iterator(base_list &list_par)
|
|
:list(&list_par), el(&list_par.first), prev(0), current(0)
|
|
{}
|
|
|
|
inline void *next(void)
|
|
{
|
|
prev=el;
|
|
current= *el;
|
|
el= ¤t->next;
|
|
return current->info;
|
|
}
|
|
inline void *next_fast(void)
|
|
{
|
|
list_node *tmp;
|
|
tmp= *el;
|
|
el= &tmp->next;
|
|
return tmp->info;
|
|
}
|
|
inline void rewind(void)
|
|
{
|
|
el= &list->first;
|
|
}
|
|
inline void *replace(void *element)
|
|
{ // Return old element
|
|
void *tmp=current->info;
|
|
DBUG_ASSERT(current->info != 0);
|
|
current->info=element;
|
|
return tmp;
|
|
}
|
|
void *replace(base_list &new_list)
|
|
{
|
|
void *ret_value=current->info;
|
|
if (!new_list.is_empty())
|
|
{
|
|
*new_list.last=current->next;
|
|
current->info=new_list.first->info;
|
|
current->next=new_list.first->next;
|
|
if ((list->last == ¤t->next) && (new_list.elements > 1))
|
|
list->last= new_list.last;
|
|
list->elements+=new_list.elements-1;
|
|
}
|
|
return ret_value; // return old element
|
|
}
|
|
inline void remove(void) // Remove current
|
|
{
|
|
list->remove(prev);
|
|
el=prev;
|
|
current=0; // Safeguard
|
|
}
|
|
void after(void *element) // Insert element after current
|
|
{
|
|
list->after(element,current);
|
|
current=current->next;
|
|
el= ¤t->next;
|
|
}
|
|
inline void **ref(void) // Get reference pointer
|
|
{
|
|
return ¤t->info;
|
|
}
|
|
inline bool is_last(void)
|
|
{
|
|
return el == &list->last_ref()->next;
|
|
}
|
|
friend class error_list_iterator;
|
|
};
|
|
|
|
template <class T> class List :public base_list
|
|
{
|
|
public:
|
|
inline List() :base_list() {}
|
|
inline List(const List<T> &tmp) :base_list(tmp) {}
|
|
inline bool push_back(T *a) { return base_list::push_back(a); }
|
|
inline bool push_back(T *a, MEM_ROOT *mem_root)
|
|
{ return base_list::push_back(a, mem_root); }
|
|
inline bool push_front(T *a) { return base_list::push_front(a); }
|
|
inline T* head() {return (T*) base_list::head(); }
|
|
inline T** head_ref() {return (T**) base_list::head_ref(); }
|
|
inline T* pop() {return (T*) base_list::pop(); }
|
|
inline void concat(List<T> *list) { base_list::concat(list); }
|
|
inline void disjoin(List<T> *list) { base_list::disjoin(list); }
|
|
inline void prepand(List<T> *list) { base_list::prepand(list); }
|
|
void delete_elements(void)
|
|
{
|
|
list_node *element,*next;
|
|
for (element=first; element != &end_of_list; element=next)
|
|
{
|
|
next=element->next;
|
|
delete (T*) element->info;
|
|
}
|
|
empty();
|
|
}
|
|
};
|
|
|
|
|
|
template <class T> class List_iterator :public base_list_iterator
|
|
{
|
|
public:
|
|
List_iterator(List<T> &a) : base_list_iterator(a) {}
|
|
inline T* operator++(int) { return (T*) base_list_iterator::next(); }
|
|
inline T *replace(T *a) { return (T*) base_list_iterator::replace(a); }
|
|
inline T *replace(List<T> &a) { return (T*) base_list_iterator::replace(a); }
|
|
inline void rewind(void) { base_list_iterator::rewind(); }
|
|
inline void remove() { base_list_iterator::remove(); }
|
|
inline void after(T *a) { base_list_iterator::after(a); }
|
|
inline T** ref(void) { return (T**) base_list_iterator::ref(); }
|
|
};
|
|
|
|
|
|
template <class T> class List_iterator_fast :public base_list_iterator
|
|
{
|
|
protected:
|
|
inline T *replace(T *a) { return (T*) 0; }
|
|
inline T *replace(List<T> &a) { return (T*) 0; }
|
|
inline void remove(void) { }
|
|
inline void after(T *a) { }
|
|
inline T** ref(void) { return (T**) 0; }
|
|
|
|
public:
|
|
inline List_iterator_fast(List<T> &a) : base_list_iterator(a) {}
|
|
inline T* operator++(int) { return (T*) base_list_iterator::next_fast(); }
|
|
inline void rewind(void) { base_list_iterator::rewind(); }
|
|
void sublist(List<T> &list_arg, uint el_arg)
|
|
{
|
|
base_list_iterator::sublist(list_arg, el_arg);
|
|
}
|
|
};
|
|
|
|
|
|
/*
|
|
A simple intrusive list which automaticly removes element from list
|
|
on delete (for THD element)
|
|
*/
|
|
|
|
struct ilink
|
|
{
|
|
struct ilink **prev,*next;
|
|
static void *operator new(size_t size)
|
|
{
|
|
return (void*)my_malloc((uint)size, MYF(MY_WME | MY_FAE));
|
|
}
|
|
static void operator delete(void* ptr_arg, size_t size)
|
|
{
|
|
my_free((gptr)ptr_arg, MYF(MY_WME|MY_ALLOW_ZERO_PTR));
|
|
}
|
|
|
|
inline ilink()
|
|
{
|
|
prev=0; next=0;
|
|
}
|
|
inline void unlink()
|
|
{
|
|
/* Extra tests because element doesn't have to be linked */
|
|
if (prev) *prev= next;
|
|
if (next) next->prev=prev;
|
|
prev=0 ; next=0;
|
|
}
|
|
virtual ~ilink() { unlink(); } /*lint -e1740 */
|
|
};
|
|
|
|
|
|
template <class T> class I_List_iterator;
|
|
|
|
/*
|
|
WARNING: copy constructor of this class does not create a usable
|
|
copy, as its members may point at each other.
|
|
*/
|
|
|
|
class base_ilist
|
|
{
|
|
public:
|
|
struct ilink *first,last;
|
|
inline void empty() { first= &last; last.prev= &first; }
|
|
base_ilist() { empty(); }
|
|
inline bool is_empty() { return first == &last; }
|
|
inline void append(ilink *a)
|
|
{
|
|
first->prev= &a->next;
|
|
a->next=first; a->prev= &first; first=a;
|
|
}
|
|
inline void push_back(ilink *a)
|
|
{
|
|
*last.prev= a;
|
|
a->next= &last;
|
|
a->prev= last.prev;
|
|
last.prev= &a->next;
|
|
}
|
|
inline struct ilink *get()
|
|
{
|
|
struct ilink *first_link=first;
|
|
if (first_link == &last)
|
|
return 0;
|
|
first_link->unlink(); // Unlink from list
|
|
return first_link;
|
|
}
|
|
inline struct ilink *head()
|
|
{
|
|
return (first != &last) ? first : 0;
|
|
}
|
|
friend class base_list_iterator;
|
|
};
|
|
|
|
|
|
class base_ilist_iterator
|
|
{
|
|
base_ilist *list;
|
|
struct ilink **el,*current;
|
|
public:
|
|
base_ilist_iterator(base_ilist &list_par) :list(&list_par),
|
|
el(&list_par.first),current(0) {}
|
|
void *next(void)
|
|
{
|
|
/* This is coded to allow push_back() while iterating */
|
|
current= *el;
|
|
if (current == &list->last) return 0;
|
|
el= ¤t->next;
|
|
return current;
|
|
}
|
|
};
|
|
|
|
|
|
template <class T>
|
|
class I_List :private base_ilist
|
|
{
|
|
public:
|
|
I_List() :base_ilist() {}
|
|
inline void empty() { base_ilist::empty(); }
|
|
inline bool is_empty() { return base_ilist::is_empty(); }
|
|
inline void append(T* a) { base_ilist::append(a); }
|
|
inline void push_back(T* a) { base_ilist::push_back(a); }
|
|
inline T* get() { return (T*) base_ilist::get(); }
|
|
inline T* head() { return (T*) base_ilist::head(); }
|
|
#ifndef _lint
|
|
friend class I_List_iterator<T>;
|
|
#endif
|
|
};
|
|
|
|
|
|
template <class T> class I_List_iterator :public base_ilist_iterator
|
|
{
|
|
public:
|
|
I_List_iterator(I_List<T> &a) : base_ilist_iterator(a) {}
|
|
inline T* operator++(int) { return (T*) base_ilist_iterator::next(); }
|
|
};
|