mariadb/storage/innobase/trx/trx0trx.cc
Marko Mäkelä 0ff62ad808 InnoDB: Remove a redundant condition and an outdated comment
Since MariaDB 10.2.2, temporary table metadata is not written
to the InnoDB data dictionary tables. Therefore,
the DICT_TF2_TEMPORARY flag cannot be set in SYS_TABLES,
except if there exist orphan temporary tables that were created
before MariaDB 10.2.2.

trx_resurrect_table_locks(): Do not skip temporary tables.
If a resurrect transaction modified a temporary table that was
created before MariaDB 10.2.2, that table would be treated
internally as a persistent table. It is safer to resurrect
locks than to skip the table, because the table would be modified
on transaction rollback.
2017-07-06 02:14:33 +03:00

3286 lines
82 KiB
C++

/*****************************************************************************
Copyright (c) 1996, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2015, 2017, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file trx/trx0trx.cc
The transaction
Created 3/26/1996 Heikki Tuuri
*******************************************************/
#include "ha_prototypes.h"
#include "trx0trx.h"
#ifdef WITH_WSREP
#include <mysql/service_wsrep.h>
#endif
#include <mysql/service_thd_error_context.h>
#include "btr0sea.h"
#include "lock0lock.h"
#include "log0log.h"
#include "os0proc.h"
#include "que0que.h"
#include "read0read.h"
#include "srv0mon.h"
#include "srv0srv.h"
#include "fsp0sysspace.h"
#include "row0mysql.h"
#include "srv0start.h"
#include "trx0purge.h"
#include "trx0rec.h"
#include "trx0roll.h"
#include "trx0rseg.h"
#include "trx0undo.h"
#include "trx0xa.h"
#include "usr0sess.h"
#include "ut0new.h"
#include "ut0pool.h"
#include "ut0vec.h"
#include <set>
#include <new>
extern "C"
int thd_deadlock_victim_preference(const MYSQL_THD thd1, const MYSQL_THD thd2);
static const ulint MAX_DETAILED_ERROR_LEN = 256;
/** Set of table_id */
typedef std::set<
table_id_t,
std::less<table_id_t>,
ut_allocator<table_id_t> > table_id_set;
/** Dummy session used currently in MySQL interface */
sess_t* trx_dummy_sess = NULL;
/** Constructor */
TrxVersion::TrxVersion(trx_t* trx)
:
m_trx(trx),
m_version(trx->version)
{
/* No op */
}
/** Set flush observer for the transaction
@param[in/out] trx transaction struct
@param[in] observer flush observer */
void
trx_set_flush_observer(
trx_t* trx,
FlushObserver* observer)
{
trx->flush_observer = observer;
}
/*************************************************************//**
Set detailed error message for the transaction. */
void
trx_set_detailed_error(
/*===================*/
trx_t* trx, /*!< in: transaction struct */
const char* msg) /*!< in: detailed error message */
{
ut_strlcpy(trx->detailed_error, msg, MAX_DETAILED_ERROR_LEN);
}
/*************************************************************//**
Set detailed error message for the transaction from a file. Note that the
file is rewinded before reading from it. */
void
trx_set_detailed_error_from_file(
/*=============================*/
trx_t* trx, /*!< in: transaction struct */
FILE* file) /*!< in: file to read message from */
{
os_file_read_string(file, trx->detailed_error, MAX_DETAILED_ERROR_LEN);
}
/********************************************************************//**
Initialize transaction object.
@param trx trx to initialize */
static
void
trx_init(
/*=====*/
trx_t* trx)
{
/* This is called at the end of commit, do not reset the
trx_t::state here to NOT_STARTED. The FORCED_ROLLBACK
status is required for asynchronous handling. */
trx->id = 0;
trx->no = TRX_ID_MAX;
trx->is_recovered = false;
trx->op_info = "";
trx->active_commit_ordered = 0;
trx->isolation_level = TRX_ISO_REPEATABLE_READ;
trx->check_foreigns = true;
trx->check_unique_secondary = true;
trx->lock.n_rec_locks = 0;
trx->dict_operation = TRX_DICT_OP_NONE;
trx->table_id = 0;
trx->error_state = DB_SUCCESS;
trx->error_key_num = ULINT_UNDEFINED;
trx->undo_no = 0;
trx->rsegs.m_redo.rseg = NULL;
trx->rsegs.m_noredo.rseg = NULL;
trx->read_only = false;
trx->auto_commit = false;
trx->will_lock = 0;
trx->ddl = false;
trx->internal = false;
ut_d(trx->start_file = 0);
ut_d(trx->start_line = 0);
trx->magic_n = TRX_MAGIC_N;
trx->lock.que_state = TRX_QUE_RUNNING;
trx->last_sql_stat_start.least_undo_no = 0;
ut_ad(!MVCC::is_view_active(trx->read_view));
trx->lock.rec_cached = 0;
trx->lock.table_cached = 0;
/* During asynchronous rollback, we should reset forced rollback flag
only after rollback is complete to avoid race with the thread owning
the transaction. */
if (!TrxInInnoDB::is_async_rollback(trx)) {
my_atomic_storelong(&trx->killed_by, 0);
/* Note: Do not set to 0, the ref count is decremented inside
the TrxInInnoDB() destructor. We only need to clear the flags. */
trx->in_innodb &= TRX_FORCE_ROLLBACK_MASK;
}
/* Note: It's possible that this list is not empty if a transaction
was interrupted after it collected the victim transactions and before
it got a chance to roll them back asynchronously. */
trx->hit_list.clear();
trx->flush_observer = NULL;
++trx->version;
}
/** For managing the life-cycle of the trx_t instance that we get
from the pool. */
struct TrxFactory {
/** Initializes a transaction object. It must be explicitly started
with trx_start_if_not_started() before using it. The default isolation
level is TRX_ISO_REPEATABLE_READ.
@param trx Transaction instance to initialise */
static void init(trx_t* trx)
{
/* Explicitly call the constructor of the already
allocated object. trx_t objects are allocated by
ut_zalloc() in Pool::Pool() which would not call
the constructors of the trx_t members. */
new(&trx->mod_tables) trx_mod_tables_t();
new(&trx->lock.rec_pool) lock_pool_t();
new(&trx->lock.table_pool) lock_pool_t();
new(&trx->lock.table_locks) lock_pool_t();
new(&trx->hit_list) hit_list_t();
trx_init(trx);
trx->state = TRX_STATE_NOT_STARTED;
trx->dict_operation_lock_mode = 0;
trx->xid = UT_NEW_NOKEY(xid_t());
trx->detailed_error = reinterpret_cast<char*>(
ut_zalloc_nokey(MAX_DETAILED_ERROR_LEN));
trx->lock.lock_heap = mem_heap_create_typed(
1024, MEM_HEAP_FOR_LOCK_HEAP);
lock_trx_lock_list_init(&trx->lock.trx_locks);
UT_LIST_INIT(
trx->trx_savepoints,
&trx_named_savept_t::trx_savepoints);
mutex_create(LATCH_ID_TRX, &trx->mutex);
mutex_create(LATCH_ID_TRX_UNDO, &trx->undo_mutex);
lock_trx_alloc_locks(trx);
}
/** Release resources held by the transaction object.
@param trx the transaction for which to release resources */
static void destroy(trx_t* trx)
{
ut_a(trx->magic_n == TRX_MAGIC_N);
ut_ad(!trx->in_rw_trx_list);
ut_ad(!trx->in_mysql_trx_list);
ut_a(trx->lock.wait_lock == NULL);
ut_a(trx->lock.wait_thr == NULL);
ut_a(trx->dict_operation_lock_mode == 0);
if (trx->lock.lock_heap != NULL) {
mem_heap_free(trx->lock.lock_heap);
trx->lock.lock_heap = NULL;
}
ut_a(UT_LIST_GET_LEN(trx->lock.trx_locks) == 0);
UT_DELETE(trx->xid);
ut_free(trx->detailed_error);
mutex_free(&trx->mutex);
mutex_free(&trx->undo_mutex);
trx->mod_tables.~trx_mod_tables_t();
ut_ad(trx->read_view == NULL);
if (!trx->lock.rec_pool.empty()) {
/* See lock_trx_alloc_locks() why we only free
the first element. */
ut_free(trx->lock.rec_pool[0]);
}
if (!trx->lock.table_pool.empty()) {
/* See lock_trx_alloc_locks() why we only free
the first element. */
ut_free(trx->lock.table_pool[0]);
}
trx->lock.rec_pool.~lock_pool_t();
trx->lock.table_pool.~lock_pool_t();
trx->lock.table_locks.~lock_pool_t();
trx->hit_list.~hit_list_t();
}
/** Enforce any invariants here, this is called before the transaction
is added to the pool.
@return true if all OK */
static bool debug(const trx_t* trx)
{
ut_a(trx->error_state == DB_SUCCESS);
ut_a(trx->magic_n == TRX_MAGIC_N);
ut_ad(!trx->read_only);
ut_ad(trx->state == TRX_STATE_NOT_STARTED
|| trx->state == TRX_STATE_FORCED_ROLLBACK);
ut_ad(trx->dict_operation == TRX_DICT_OP_NONE);
ut_ad(trx->mysql_thd == 0);
ut_ad(!trx->in_rw_trx_list);
ut_ad(!trx->in_mysql_trx_list);
ut_a(trx->lock.wait_thr == NULL);
ut_a(trx->lock.wait_lock == NULL);
ut_a(trx->dict_operation_lock_mode == 0);
ut_a(UT_LIST_GET_LEN(trx->lock.trx_locks) == 0);
ut_ad(trx->autoinc_locks == NULL);
ut_ad(trx->lock.table_locks.empty());
ut_ad(!trx->abort);
ut_ad(trx->hit_list.empty());
ut_ad(trx->killed_by == 0);
return(true);
}
};
/** The lock strategy for TrxPool */
struct TrxPoolLock {
TrxPoolLock() { }
/** Create the mutex */
void create()
{
mutex_create(LATCH_ID_TRX_POOL, &m_mutex);
}
/** Acquire the mutex */
void enter() { mutex_enter(&m_mutex); }
/** Release the mutex */
void exit() { mutex_exit(&m_mutex); }
/** Free the mutex */
void destroy() { mutex_free(&m_mutex); }
/** Mutex to use */
ib_mutex_t m_mutex;
};
/** The lock strategy for the TrxPoolManager */
struct TrxPoolManagerLock {
TrxPoolManagerLock() { }
/** Create the mutex */
void create()
{
mutex_create(LATCH_ID_TRX_POOL_MANAGER, &m_mutex);
}
/** Acquire the mutex */
void enter() { mutex_enter(&m_mutex); }
/** Release the mutex */
void exit() { mutex_exit(&m_mutex); }
/** Free the mutex */
void destroy() { mutex_free(&m_mutex); }
/** Mutex to use */
ib_mutex_t m_mutex;
};
/** Use explicit mutexes for the trx_t pool and its manager. */
typedef Pool<trx_t, TrxFactory, TrxPoolLock> trx_pool_t;
typedef PoolManager<trx_pool_t, TrxPoolManagerLock > trx_pools_t;
/** The trx_t pool manager */
static trx_pools_t* trx_pools;
/** Size of on trx_t pool in bytes. */
static const ulint MAX_TRX_BLOCK_SIZE = 1024 * 1024 * 4;
/** Create the trx_t pool */
void
trx_pool_init()
{
trx_pools = UT_NEW_NOKEY(trx_pools_t(MAX_TRX_BLOCK_SIZE));
ut_a(trx_pools != 0);
}
/** Destroy the trx_t pool */
void
trx_pool_close()
{
UT_DELETE(trx_pools);
trx_pools = 0;
}
/** @return a trx_t instance from trx_pools. */
static
trx_t*
trx_create_low()
{
trx_t* trx = trx_pools->get();
assert_trx_is_free(trx);
mem_heap_t* heap;
ib_alloc_t* alloc;
/* We just got trx from pool, it should be non locking */
ut_ad(trx->will_lock == 0);
/* Background trx should not be forced to rollback,
we will unset the flag for user trx. */
trx->in_innodb |= TRX_FORCE_ROLLBACK_DISABLE;
/* Trx state can be TRX_STATE_FORCED_ROLLBACK if
the trx was forced to rollback before it's reused.*/
trx->state = TRX_STATE_NOT_STARTED;
heap = mem_heap_create(sizeof(ib_vector_t) + sizeof(void*) * 8);
alloc = ib_heap_allocator_create(heap);
/* Remember to free the vector explicitly in trx_free(). */
trx->autoinc_locks = ib_vector_create(alloc, sizeof(void**), 4);
/* Should have been either just initialized or .clear()ed by
trx_free(). */
ut_a(trx->mod_tables.size() == 0);
#ifdef WITH_WSREP
trx->wsrep_event = NULL;
#endif /* WITH_WSREP */
return(trx);
}
/**
Release a trx_t instance back to the pool.
@param trx the instance to release. */
static
void
trx_free(trx_t*& trx)
{
assert_trx_is_free(trx);
trx->mysql_thd = 0;
trx->mysql_log_file_name = 0;
// FIXME: We need to avoid this heap free/alloc for each commit.
if (trx->autoinc_locks != NULL) {
ut_ad(ib_vector_is_empty(trx->autoinc_locks));
/* We allocated a dedicated heap for the vector. */
ib_vector_free(trx->autoinc_locks);
trx->autoinc_locks = NULL;
}
trx->mod_tables.clear();
ut_ad(trx->read_view == NULL);
/* trx locking state should have been reset before returning trx
to pool */
ut_ad(trx->will_lock == 0);
trx_pools->mem_free(trx);
trx = NULL;
}
/********************************************************************//**
Creates a transaction object for background operations by the master thread.
@return own: transaction object */
trx_t*
trx_allocate_for_background(void)
/*=============================*/
{
trx_t* trx;
trx = trx_create_low();
trx->sess = trx_dummy_sess;
return(trx);
}
/********************************************************************//**
Creates a transaction object for MySQL.
@return own: transaction object */
trx_t*
trx_allocate_for_mysql(void)
/*========================*/
{
trx_t* trx;
trx = trx_allocate_for_background();
trx_sys_mutex_enter();
ut_d(trx->in_mysql_trx_list = TRUE);
UT_LIST_ADD_FIRST(trx_sys->mysql_trx_list, trx);
trx_sys_mutex_exit();
return(trx);
}
/** Check state of transaction before freeing it.
@param trx trx object to validate */
static
void
trx_validate_state_before_free(trx_t* trx)
{
ut_ad(!trx->declared_to_be_inside_innodb);
ut_ad(!trx->n_mysql_tables_in_use);
ut_ad(!trx->mysql_n_tables_locked);
if (trx->declared_to_be_inside_innodb) {
ib::error() << "Freeing a trx (" << trx << ", "
<< trx_get_id_for_print(trx) << ") which is declared"
" to be processing inside InnoDB";
trx_print(stderr, trx, 600);
putc('\n', stderr);
/* This is an error but not a fatal error. We must keep
the counters like srv_conc.n_active accurate. */
srv_conc_force_exit_innodb(trx);
}
if (trx->n_mysql_tables_in_use != 0
|| trx->mysql_n_tables_locked != 0) {
ib::error() << "MySQL is freeing a thd though"
" trx->n_mysql_tables_in_use is "
<< trx->n_mysql_tables_in_use
<< " and trx->mysql_n_tables_locked is "
<< trx->mysql_n_tables_locked << ".";
trx_print(stderr, trx, 600);
ut_print_buf(stderr, trx, sizeof(trx_t));
putc('\n', stderr);
}
trx->dict_operation = TRX_DICT_OP_NONE;
assert_trx_is_inactive(trx);
}
/** Free and initialize a transaction object instantinated during recovery.
@param trx trx object to free and initialize during recovery */
void
trx_free_resurrected(trx_t* trx)
{
trx_validate_state_before_free(trx);
trx_init(trx);
trx_free(trx);
}
/** Free a transaction that was allocated by background or user threads.
@param trx trx object to free */
void
trx_free_for_background(trx_t* trx)
{
trx_validate_state_before_free(trx);
trx_free(trx);
}
/********************************************************************//**
At shutdown, frees a transaction object that is in the PREPARED state. */
void
trx_free_prepared(
/*==============*/
trx_t* trx) /*!< in, own: trx object */
{
ut_a(trx_state_eq(trx, TRX_STATE_PREPARED)
|| (trx_state_eq(trx, TRX_STATE_ACTIVE)
&& trx->is_recovered
&& (!srv_was_started
|| srv_read_only_mode
|| srv_force_recovery >= SRV_FORCE_NO_TRX_UNDO)));
ut_a(trx->magic_n == TRX_MAGIC_N);
lock_trx_release_locks(trx);
trx_undo_free_prepared(trx);
assert_trx_in_rw_list(trx);
ut_a(!trx->read_only);
ut_d(trx->in_rw_trx_list = FALSE);
trx->state = TRX_STATE_NOT_STARTED;
/* Undo trx_resurrect_table_locks(). */
lock_trx_lock_list_init(&trx->lock.trx_locks);
/* Note: This vector is not guaranteed to be empty because the
transaction was never committed and therefore lock_trx_release()
was not called. */
trx->lock.table_locks.clear();
trx_free(trx);
}
/** Disconnect a transaction from MySQL and optionally mark it as if
it's been recovered. For the marking the transaction must be in prepared state.
The recovery-marked transaction is going to survive "alone" so its association
with the mysql handle is destroyed now rather than when it will be
finally freed.
@param[in,out] trx transaction
@param[in] prepared boolean value to specify whether trx is
for recovery or not. */
inline
void
trx_disconnect_from_mysql(
trx_t* trx,
bool prepared)
{
trx_sys_mutex_enter();
ut_ad(trx->in_mysql_trx_list);
ut_d(trx->in_mysql_trx_list = FALSE);
UT_LIST_REMOVE(trx_sys->mysql_trx_list, trx);
if (trx->read_view != NULL) {
trx_sys->mvcc->view_close(trx->read_view, true);
}
ut_ad(trx_sys_validate_trx_list());
if (prepared) {
ut_ad(trx_state_eq(trx, TRX_STATE_PREPARED));
trx->is_recovered = true;
trx_sys->n_prepared_recovered_trx++;
trx->mysql_thd = NULL;
/* todo/fixme: suggest to do it at innodb prepare */
trx->will_lock = 0;
}
trx_sys_mutex_exit();
}
/** Disconnect a transaction from MySQL.
@param[in,out] trx transaction */
inline
void
trx_disconnect_plain(trx_t* trx)
{
trx_disconnect_from_mysql(trx, false);
}
/** Disconnect a prepared transaction from MySQL.
@param[in,out] trx transaction */
void
trx_disconnect_prepared(trx_t* trx)
{
trx_disconnect_from_mysql(trx, true);
}
/** Free a transaction object for MySQL.
@param[in,out] trx transaction */
void
trx_free_for_mysql(trx_t* trx)
{
trx_disconnect_plain(trx);
trx_free_for_background(trx);
}
/****************************************************************//**
Resurrect the table locks for a resurrected transaction. */
static
void
trx_resurrect_table_locks(
/*======================*/
trx_t* trx, /*!< in/out: transaction */
const trx_undo_ptr_t* undo_ptr,
/*!< in: pointer to undo segment. */
const trx_undo_t* undo) /*!< in: undo log */
{
mtr_t mtr;
page_t* undo_page;
trx_undo_rec_t* undo_rec;
table_id_set tables;
ut_ad(undo == undo_ptr->insert_undo || undo == undo_ptr->update_undo);
if (trx_state_eq(trx, TRX_STATE_COMMITTED_IN_MEMORY) || undo->empty) {
return;
}
mtr_start(&mtr);
/* trx_rseg_mem_create() may have acquired an X-latch on this
page, so we cannot acquire an S-latch. */
undo_page = trx_undo_page_get(
page_id_t(undo->space, undo->top_page_no), &mtr);
undo_rec = undo_page + undo->top_offset;
do {
ulint type;
undo_no_t undo_no;
table_id_t table_id;
ulint cmpl_info;
bool updated_extern;
page_t* undo_rec_page = page_align(undo_rec);
if (undo_rec_page != undo_page) {
mtr.release_page(undo_page, MTR_MEMO_PAGE_X_FIX);
undo_page = undo_rec_page;
}
trx_undo_rec_get_pars(
undo_rec, &type, &cmpl_info,
&updated_extern, &undo_no, &table_id);
tables.insert(table_id);
undo_rec = trx_undo_get_prev_rec(
undo_rec, undo->hdr_page_no,
undo->hdr_offset, false, &mtr);
} while (undo_rec);
mtr_commit(&mtr);
for (table_id_set::const_iterator i = tables.begin();
i != tables.end(); i++) {
if (dict_table_t* table = dict_table_open_on_id(
*i, FALSE, DICT_TABLE_OP_LOAD_TABLESPACE)) {
if (!table->is_readable()) {
mutex_enter(&dict_sys->mutex);
dict_table_close(table, TRUE, FALSE);
dict_table_remove_from_cache(table);
mutex_exit(&dict_sys->mutex);
continue;
}
if (trx->state == TRX_STATE_PREPARED) {
trx->mod_tables.insert(table);
}
lock_table_ix_resurrect(table, trx);
DBUG_PRINT("ib_trx",
("resurrect" TRX_ID_FMT
" table '%s' IX lock from %s undo",
trx_get_id_for_print(trx),
table->name.m_name,
undo == undo_ptr->insert_undo
? "insert" : "update"));
dict_table_close(table, FALSE, FALSE);
}
}
}
/****************************************************************//**
Resurrect the transactions that were doing inserts the time of the
crash, they need to be undone.
@return trx_t instance */
static
trx_t*
trx_resurrect_insert(
/*=================*/
trx_undo_t* undo, /*!< in: entry to UNDO */
trx_rseg_t* rseg) /*!< in: rollback segment */
{
trx_t* trx;
trx = trx_allocate_for_background();
ut_d(trx->start_file = __FILE__);
ut_d(trx->start_line = __LINE__);
trx->rsegs.m_redo.rseg = rseg;
/* For transactions with active data will not have rseg size = 1
or will not qualify for purge limit criteria. So it is safe to increment
this trx_ref_count w/o mutex protection. */
++trx->rsegs.m_redo.rseg->trx_ref_count;
*trx->xid = undo->xid;
trx->id = undo->trx_id;
trx->rsegs.m_redo.insert_undo = undo;
trx->is_recovered = true;
/* This is single-threaded startup code, we do not need the
protection of trx->mutex or trx_sys->mutex here. */
if (undo->state != TRX_UNDO_ACTIVE) {
/* Prepared transactions are left in the prepared state
waiting for a commit or abort decision from MySQL */
if (undo->state == TRX_UNDO_PREPARED) {
ib::info() << "Transaction "
<< trx_get_id_for_print(trx)
<< " was in the XA prepared state.";
if (srv_force_recovery == 0) {
trx->state = TRX_STATE_PREPARED;
++trx_sys->n_prepared_trx;
++trx_sys->n_prepared_recovered_trx;
} else {
ib::info() << "Since innodb_force_recovery"
" > 0, we will force a rollback.";
trx->state = TRX_STATE_ACTIVE;
}
} else {
trx->state = TRX_STATE_COMMITTED_IN_MEMORY;
}
/* We give a dummy value for the trx no; this should have no
relevance since purge is not interested in committed
transaction numbers, unless they are in the history
list, in which case it looks the number from the disk based
undo log structure */
trx->no = trx->id;
} else {
trx->state = TRX_STATE_ACTIVE;
/* A running transaction always has the number
field inited to TRX_ID_MAX */
trx->no = TRX_ID_MAX;
}
/* trx_start_low() is not called with resurrect, so need to initialize
start time here.*/
if (trx->state == TRX_STATE_ACTIVE
|| trx->state == TRX_STATE_PREPARED) {
trx->start_time = ut_time();
}
if (undo->dict_operation) {
trx_set_dict_operation(trx, TRX_DICT_OP_TABLE);
trx->table_id = undo->table_id;
}
if (!undo->empty) {
trx->undo_no = undo->top_undo_no + 1;
trx->undo_rseg_space = undo->rseg->space;
}
return(trx);
}
/****************************************************************//**
Prepared transactions are left in the prepared state waiting for a
commit or abort decision from MySQL */
static
void
trx_resurrect_update_in_prepared_state(
/*===================================*/
trx_t* trx, /*!< in,out: transaction */
const trx_undo_t* undo) /*!< in: update UNDO record */
{
/* This is single-threaded startup code, we do not need the
protection of trx->mutex or trx_sys->mutex here. */
if (undo->state == TRX_UNDO_PREPARED) {
ib::info() << "Transaction " << trx_get_id_for_print(trx)
<< " was in the XA prepared state.";
if (srv_force_recovery == 0) {
ut_ad(trx->state != TRX_STATE_FORCED_ROLLBACK);
if (trx_state_eq(trx, TRX_STATE_NOT_STARTED)) {
++trx_sys->n_prepared_trx;
++trx_sys->n_prepared_recovered_trx;
} else {
ut_ad(trx_state_eq(trx, TRX_STATE_PREPARED));
}
trx->state = TRX_STATE_PREPARED;
} else {
ib::info() << "Since innodb_force_recovery > 0, we"
" will rollback it anyway.";
trx->state = TRX_STATE_ACTIVE;
}
} else {
trx->state = TRX_STATE_COMMITTED_IN_MEMORY;
}
}
/****************************************************************//**
Resurrect the transactions that were doing updates the time of the
crash, they need to be undone. */
static
void
trx_resurrect_update(
/*=================*/
trx_t* trx, /*!< in/out: transaction */
trx_undo_t* undo, /*!< in/out: update UNDO record */
trx_rseg_t* rseg) /*!< in/out: rollback segment */
{
trx->rsegs.m_redo.rseg = rseg;
/* For transactions with active data will not have rseg size = 1
or will not qualify for purge limit criteria. So it is safe to increment
this trx_ref_count w/o mutex protection. */
++trx->rsegs.m_redo.rseg->trx_ref_count;
*trx->xid = undo->xid;
trx->id = undo->trx_id;
trx->rsegs.m_redo.update_undo = undo;
trx->is_recovered = true;
/* This is single-threaded startup code, we do not need the
protection of trx->mutex or trx_sys->mutex here. */
if (undo->state != TRX_UNDO_ACTIVE) {
trx_resurrect_update_in_prepared_state(trx, undo);
/* We give a dummy value for the trx number */
trx->no = trx->id;
} else {
trx->state = TRX_STATE_ACTIVE;
/* A running transaction always has the number field inited to
TRX_ID_MAX */
trx->no = TRX_ID_MAX;
}
/* trx_start_low() is not called with resurrect, so need to initialize
start time here.*/
if (trx->state == TRX_STATE_ACTIVE
|| trx->state == TRX_STATE_PREPARED) {
trx->start_time = ut_time();
}
if (undo->dict_operation) {
trx_set_dict_operation(trx, TRX_DICT_OP_TABLE);
trx->table_id = undo->table_id;
}
if (!undo->empty && undo->top_undo_no >= trx->undo_no) {
trx->undo_no = undo->top_undo_no + 1;
trx->undo_rseg_space = undo->rseg->space;
}
}
/** Initialize (resurrect) transactions at startup. */
void
trx_lists_init_at_db_start()
{
ut_a(srv_is_being_started);
ut_ad(!srv_was_started);
ut_ad(!purge_sys);
purge_sys = UT_NEW_NOKEY(purge_sys_t());
if (srv_force_recovery < SRV_FORCE_NO_UNDO_LOG_SCAN) {
trx_rseg_array_init();
}
/* Look from the rollback segments if there exist undo logs for
transactions. */
for (ulint i = 0; i < TRX_SYS_N_RSEGS; ++i) {
trx_undo_t* undo;
trx_rseg_t* rseg = trx_sys->rseg_array[i];
/* At this stage non-redo rseg slots are all NULL as they are
re-created on server start and existing slots are not read. */
if (rseg == NULL) {
continue;
}
/* Resurrect transactions that were doing inserts. */
for (undo = UT_LIST_GET_FIRST(rseg->insert_undo_list);
undo != NULL;
undo = UT_LIST_GET_NEXT(undo_list, undo)) {
trx_t* trx;
trx = trx_resurrect_insert(undo, rseg);
trx_sys_rw_trx_add(trx);
trx_resurrect_table_locks(
trx, &trx->rsegs.m_redo, undo);
}
/* Ressurrect transactions that were doing updates. */
for (undo = UT_LIST_GET_FIRST(rseg->update_undo_list);
undo != NULL;
undo = UT_LIST_GET_NEXT(undo_list, undo)) {
/* Check the trx_sys->rw_trx_set first. */
trx_sys_mutex_enter();
trx_t* trx = trx_get_rw_trx_by_id(undo->trx_id);
trx_sys_mutex_exit();
if (trx == NULL) {
trx = trx_allocate_for_background();
ut_d(trx->start_file = __FILE__);
ut_d(trx->start_line = __LINE__);
}
trx_resurrect_update(trx, undo, rseg);
trx_sys_rw_trx_add(trx);
trx_resurrect_table_locks(
trx, &trx->rsegs.m_redo, undo);
}
}
TrxIdSet::iterator end = trx_sys->rw_trx_set.end();
for (TrxIdSet::iterator it = trx_sys->rw_trx_set.begin();
it != end;
++it) {
ut_ad(it->m_trx->in_rw_trx_list);
#ifdef UNIV_DEBUG
if (it->m_trx->id > trx_sys->rw_max_trx_id) {
trx_sys->rw_max_trx_id = it->m_trx->id;
}
#endif /* UNIV_DEBUG */
if (it->m_trx->state == TRX_STATE_ACTIVE
|| it->m_trx->state == TRX_STATE_PREPARED) {
trx_sys->rw_trx_ids.push_back(it->m_id);
}
UT_LIST_ADD_FIRST(trx_sys->rw_trx_list, it->m_trx);
}
}
/** Assign a persistent rollback segment in a round-robin fashion,
evenly distributed between 0 and innodb_undo_logs-1
@return persistent rollback segment
@retval NULL if innodb_read_only */
static
trx_rseg_t*
trx_assign_rseg_low()
{
if (srv_read_only_mode) {
ut_ad(srv_undo_logs == ULONG_UNDEFINED);
return(NULL);
}
/* The first slot is always assigned to the system tablespace. */
ut_ad(trx_sys->rseg_array[0]->space == TRX_SYS_SPACE);
/* Choose a rollback segment evenly distributed between 0 and
innodb_undo_logs-1 in a round-robin fashion, skipping those
undo tablespaces that are scheduled for truncation.
Because rseg_slot is not protected by atomics or any mutex, race
conditions are possible, meaning that multiple transactions
that start modifications concurrently will write their undo
log to the same rollback segment. */
static ulong rseg_slot;
ulint slot = rseg_slot++ % srv_undo_logs;
trx_rseg_t* rseg;
#ifdef UNIV_DEBUG
ulint start_scan_slot = slot;
bool look_for_rollover = false;
#endif /* UNIV_DEBUG */
bool allocated = false;
do {
for (;;) {
rseg = trx_sys->rseg_array[slot];
#ifdef UNIV_DEBUG
/* Ensure that we are not revisiting the same
slot that we have already inspected. */
if (look_for_rollover) {
ut_ad(start_scan_slot != slot);
}
look_for_rollover = true;
#endif /* UNIV_DEBUG */
slot = (slot + 1) % srv_undo_logs;
if (rseg == NULL) {
continue;
}
ut_ad(rseg->is_persistent());
if (rseg->space != TRX_SYS_SPACE) {
ut_ad(srv_undo_tablespaces > 1);
if (rseg->skip_allocation) {
continue;
}
} else if (trx_rseg_t* next
= trx_sys->rseg_array[slot]) {
if (next->space != TRX_SYS_SPACE
&& srv_undo_tablespaces > 0) {
/** If dedicated
innodb_undo_tablespaces have
been configured, try to use them
instead of the system tablespace. */
continue;
}
}
break;
}
/* By now we have only selected the rseg but not marked it
allocated. By marking it allocated we are ensuring that it will
never be selected for UNDO truncate purge. */
mutex_enter(&rseg->mutex);
if (!rseg->skip_allocation) {
rseg->trx_ref_count++;
allocated = true;
}
mutex_exit(&rseg->mutex);
} while (!allocated);
ut_ad(rseg->trx_ref_count > 0);
ut_ad(rseg->is_persistent());
return(rseg);
}
/** Assign a rollback segment for modifying temporary tables.
@return the assigned rollback segment */
trx_rseg_t*
trx_t::assign_temp_rseg()
{
ut_ad(!rsegs.m_noredo.rseg);
ut_ad(!trx_is_autocommit_non_locking(this));
compile_time_assert(ut_is_2pow(TRX_SYS_N_RSEGS));
/* Choose a temporary rollback segment between 0 and 127
in a round-robin fashion. Because rseg_slot is not protected by
atomics or any mutex, race conditions are possible, meaning that
multiple transactions that start modifications concurrently
will write their undo log to the same rollback segment. */
static ulong rseg_slot;
trx_rseg_t* rseg = trx_sys->temp_rsegs[
rseg_slot++ & (TRX_SYS_N_RSEGS - 1)];
ut_ad(!rseg->is_persistent());
rsegs.m_noredo.rseg = rseg;
if (id == 0) {
mutex_enter(&trx_sys->mutex);
id = trx_sys_get_new_trx_id();
trx_sys->rw_trx_ids.push_back(id);
trx_sys->rw_trx_set.insert(TrxTrack(id, this));
mutex_exit(&trx_sys->mutex);
}
ut_ad(!rseg->is_persistent());
return(rseg);
}
/****************************************************************//**
Starts a transaction. */
static
void
trx_start_low(
/*==========*/
trx_t* trx, /*!< in: transaction */
bool read_write) /*!< in: true if read-write transaction */
{
ut_ad(!trx->in_rollback);
ut_ad(!trx->is_recovered);
ut_ad(trx->hit_list.empty());
ut_ad(trx->start_line != 0);
ut_ad(trx->start_file != 0);
ut_ad(trx->roll_limit == 0);
ut_ad(trx->error_state == DB_SUCCESS);
ut_ad(trx->rsegs.m_redo.rseg == NULL);
ut_ad(trx->rsegs.m_noredo.rseg == NULL);
ut_ad(trx_state_eq(trx, TRX_STATE_NOT_STARTED));
ut_ad(UT_LIST_GET_LEN(trx->lock.trx_locks) == 0);
ut_ad(!(trx->in_innodb & TRX_FORCE_ROLLBACK));
ut_ad(!(trx->in_innodb & TRX_FORCE_ROLLBACK_ASYNC));
++trx->version;
/* Check whether it is an AUTOCOMMIT SELECT */
trx->auto_commit = thd_trx_is_auto_commit(trx->mysql_thd);
trx->read_only = srv_read_only_mode
|| (!trx->ddl && !trx->internal
&& thd_trx_is_read_only(trx->mysql_thd));
if (!trx->auto_commit) {
++trx->will_lock;
} else if (trx->will_lock == 0) {
trx->read_only = true;
}
#ifdef WITH_WSREP
memset(trx->xid, 0, sizeof(xid_t));
trx->xid->formatID = -1;
#endif /* WITH_WSREP */
/* The initial value for trx->no: TRX_ID_MAX is used in
read_view_open_now: */
trx->no = TRX_ID_MAX;
ut_a(ib_vector_is_empty(trx->autoinc_locks));
ut_a(trx->lock.table_locks.empty());
/* If this transaction came from trx_allocate_for_mysql(),
trx->in_mysql_trx_list would hold. In that case, the trx->state
change must be protected by the trx_sys->mutex, so that
lock_print_info_all_transactions() will have a consistent view. */
ut_ad(!trx->in_rw_trx_list);
/* We tend to over assert and that complicates the code somewhat.
e.g., the transaction state can be set earlier but we are forced to
set it under the protection of the trx_sys_t::mutex because some
trx list assertions are triggered unnecessarily. */
/* By default all transactions are in the read-only list unless they
are non-locking auto-commit read only transactions or background
(internal) transactions. Note: Transactions marked explicitly as
read only can write to temporary tables, we put those on the RO
list too. */
if (!trx->read_only
&& (trx->mysql_thd == 0 || read_write || trx->ddl)) {
trx->rsegs.m_redo.rseg = trx_assign_rseg_low();
/* Temporary rseg is assigned only if the transaction
updates a temporary table */
trx_sys_mutex_enter();
trx->id = trx_sys_get_new_trx_id();
trx_sys->rw_trx_ids.push_back(trx->id);
trx_sys_rw_trx_add(trx);
ut_ad(trx->rsegs.m_redo.rseg != 0
|| srv_read_only_mode
|| srv_force_recovery >= SRV_FORCE_NO_TRX_UNDO);
UT_LIST_ADD_FIRST(trx_sys->rw_trx_list, trx);
ut_d(trx->in_rw_trx_list = true);
#ifdef UNIV_DEBUG
if (trx->id > trx_sys->rw_max_trx_id) {
trx_sys->rw_max_trx_id = trx->id;
}
#endif /* UNIV_DEBUG */
trx->state = TRX_STATE_ACTIVE;
ut_ad(trx_sys_validate_trx_list());
trx_sys_mutex_exit();
} else {
trx->id = 0;
if (!trx_is_autocommit_non_locking(trx)) {
/* If this is a read-only transaction that is writing
to a temporary table then it needs a transaction id
to write to the temporary table. */
if (read_write) {
trx_sys_mutex_enter();
ut_ad(!srv_read_only_mode);
trx->id = trx_sys_get_new_trx_id();
trx_sys->rw_trx_ids.push_back(trx->id);
trx_sys->rw_trx_set.insert(
TrxTrack(trx->id, trx));
trx_sys_mutex_exit();
}
trx->state = TRX_STATE_ACTIVE;
} else {
ut_ad(!read_write);
trx->state = TRX_STATE_ACTIVE;
}
}
if (trx->mysql_thd != NULL) {
trx->start_time = thd_start_time_in_secs(trx->mysql_thd);
trx->start_time_micro = thd_query_start_micro(trx->mysql_thd);
} else {
trx->start_time = ut_time();
trx->start_time_micro = 0;
}
ut_a(trx->error_state == DB_SUCCESS);
MONITOR_INC(MONITOR_TRX_ACTIVE);
}
/** Set the serialisation number for a persistent committed transaction.
@param[in,out] trx committed transaction with persistent changes
@param[in,out] rseg rollback segment for update_undo, or NULL */
static
void
trx_serialise(trx_t* trx, trx_rseg_t* rseg)
{
ut_ad(!rseg || rseg == trx->rsegs.m_redo.rseg);
trx_sys_mutex_enter();
trx->no = trx_sys_get_new_trx_id();
/* Track the minimum serialisation number. */
UT_LIST_ADD_LAST(trx_sys->serialisation_list, trx);
/* If the rollack segment is not empty then the
new trx_t::no can't be less than any trx_t::no
already in the rollback segment. User threads only
produce events when a rollback segment is empty. */
if (rseg && rseg->last_page_no == FIL_NULL) {
TrxUndoRsegs elem(trx->no);
elem.push_back(rseg);
mutex_enter(&purge_sys->pq_mutex);
/* This is to reduce the pressure on the trx_sys_t::mutex
though in reality it should make very little (read no)
difference because this code path is only taken when the
rbs is empty. */
trx_sys_mutex_exit();
purge_sys->purge_queue.push(elem);
mutex_exit(&purge_sys->pq_mutex);
} else {
trx_sys_mutex_exit();
}
}
/****************************************************************//**
Assign the transaction its history serialisation number and write the
update UNDO log record to the assigned rollback segment.
@return true if a serialisation log was written */
static
bool
trx_write_serialisation_history(
/*============================*/
trx_t* trx, /*!< in/out: transaction */
mtr_t* mtr) /*!< in/out: mini-transaction */
{
/* Change the undo log segment states from TRX_UNDO_ACTIVE to some
other state: these modifications to the file data structure define
the transaction as committed in the file based domain, at the
serialization point of the log sequence number lsn obtained below. */
/* We have to hold the rseg mutex because update log headers have
to be put to the history list in the (serialisation) order of the
UNDO trx number. This is required for the purge in-memory data
structures too. */
if (trx_undo_t* undo = trx->rsegs.m_noredo.undo) {
/* Undo log for temporary tables is discarded at transaction
commit. There is no purge for temporary tables, and also no
MVCC, because they are private to a session. */
mtr_t temp_mtr;
temp_mtr.start();
temp_mtr.set_log_mode(MTR_LOG_NO_REDO);
mutex_enter(&trx->rsegs.m_noredo.rseg->mutex);
trx_undo_set_state_at_finish(undo, &temp_mtr);
mutex_exit(&trx->rsegs.m_noredo.rseg->mutex);
temp_mtr.commit();
}
if (!trx->rsegs.m_redo.rseg) {
ut_ad(!trx->rsegs.m_redo.insert_undo);
ut_ad(!trx->rsegs.m_redo.update_undo);
return false;
}
trx_undo_t* insert = trx->rsegs.m_redo.insert_undo;
trx_undo_t* update = trx->rsegs.m_redo.update_undo;
if (!insert && !update) {
return false;
}
ut_ad(!trx->read_only);
trx_rseg_t* update_rseg = update ? trx->rsegs.m_redo.rseg : NULL;
mutex_enter(&trx->rsegs.m_redo.rseg->mutex);
/* Assign the transaction serialisation number and add any
update_undo log to the purge queue. */
trx_serialise(trx, update_rseg);
/* It is not necessary to acquire trx->undo_mutex here because
only a single OS thread is allowed to commit this transaction. */
if (insert) {
trx_undo_set_state_at_finish(insert, mtr);
}
if (update) {
/* The undo logs and possible delete-marked records
for updates and deletes will be purged later. */
page_t* undo_hdr_page = trx_undo_set_state_at_finish(
update, mtr);
trx_undo_update_cleanup(trx, undo_hdr_page, mtr);
}
mutex_exit(&trx->rsegs.m_redo.rseg->mutex);
MONITOR_INC(MONITOR_TRX_COMMIT_UNDO);
trx_sysf_t* sys_header = trx_sysf_get(mtr);
#ifdef WITH_WSREP
/* Update latest MySQL wsrep XID in trx sys header. */
if (wsrep_is_wsrep_xid(trx->xid)) {
trx_sys_update_wsrep_checkpoint(trx->xid, sys_header, mtr);
}
#endif /* WITH_WSREP */
/* Update the latest MySQL binlog name and offset info
in trx sys header if MySQL binlogging is on or the database
server is a MySQL replication slave */
if (trx->mysql_log_file_name != NULL
&& trx->mysql_log_file_name[0] != '\0') {
trx_sys_update_mysql_binlog_offset(
trx->mysql_log_file_name,
trx->mysql_log_offset,
sys_header,
mtr);
trx->mysql_log_file_name = NULL;
}
return(true);
}
/********************************************************************
Finalize a transaction containing updates for a FTS table. */
static
void
trx_finalize_for_fts_table(
/*=======================*/
fts_trx_table_t* ftt) /* in: FTS trx table */
{
fts_t* fts = ftt->table->fts;
fts_doc_ids_t* doc_ids = ftt->added_doc_ids;
mutex_enter(&fts->bg_threads_mutex);
if (fts->fts_status & BG_THREAD_STOP) {
/* The table is about to be dropped, no use
adding anything to its work queue. */
mutex_exit(&fts->bg_threads_mutex);
} else {
mem_heap_t* heap;
mutex_exit(&fts->bg_threads_mutex);
ut_a(fts->add_wq);
heap = static_cast<mem_heap_t*>(doc_ids->self_heap->arg);
ib_wqueue_add(fts->add_wq, doc_ids, heap);
/* fts_trx_table_t no longer owns the list. */
ftt->added_doc_ids = NULL;
}
}
/******************************************************************//**
Finalize a transaction containing updates to FTS tables. */
static
void
trx_finalize_for_fts(
/*=================*/
trx_t* trx, /*!< in/out: transaction */
bool is_commit) /*!< in: true if the transaction was
committed, false if it was rolled back. */
{
if (is_commit) {
const ib_rbt_node_t* node;
ib_rbt_t* tables;
fts_savepoint_t* savepoint;
savepoint = static_cast<fts_savepoint_t*>(
ib_vector_last(trx->fts_trx->savepoints));
tables = savepoint->tables;
for (node = rbt_first(tables);
node;
node = rbt_next(tables, node)) {
fts_trx_table_t** ftt;
ftt = rbt_value(fts_trx_table_t*, node);
if ((*ftt)->added_doc_ids) {
trx_finalize_for_fts_table(*ftt);
}
}
}
fts_trx_free(trx->fts_trx);
trx->fts_trx = NULL;
}
/**********************************************************************//**
If required, flushes the log to disk based on the value of
innodb_flush_log_at_trx_commit. */
static
void
trx_flush_log_if_needed_low(
/*========================*/
lsn_t lsn) /*!< in: lsn up to which logs are to be
flushed. */
{
bool flush = srv_file_flush_method != SRV_NOSYNC;
switch (srv_flush_log_at_trx_commit) {
case 3:
case 2:
/* Write the log but do not flush it to disk */
flush = false;
/* fall through */
case 1:
/* Write the log and optionally flush it to disk */
log_write_up_to(lsn, flush);
return;
case 0:
/* Do nothing */
return;
}
ut_error;
}
/**********************************************************************//**
If required, flushes the log to disk based on the value of
innodb_flush_log_at_trx_commit. */
static
void
trx_flush_log_if_needed(
/*====================*/
lsn_t lsn, /*!< in: lsn up to which logs are to be
flushed. */
trx_t* trx) /*!< in/out: transaction */
{
trx->op_info = "flushing log";
trx_flush_log_if_needed_low(lsn);
trx->op_info = "";
}
/**********************************************************************//**
For each table that has been modified by the given transaction: update
its dict_table_t::update_time with the current timestamp. Clear the list
of the modified tables at the end. */
static
void
trx_update_mod_tables_timestamp(
/*============================*/
trx_t* trx) /*!< in: transaction */
{
ut_ad(trx->id != 0);
/* consider using trx->start_time if calling time() is too
expensive here */
time_t now = ut_time();
trx_mod_tables_t::const_iterator end = trx->mod_tables.end();
for (trx_mod_tables_t::const_iterator it = trx->mod_tables.begin();
it != end;
++it) {
/* This could be executed by multiple threads concurrently
on the same table object. This is fine because time_t is
word size or less. And _purely_ _theoretically_, even if
time_t write is not atomic, likely the value of 'now' is
the same in all threads and even if it is not, getting a
"garbage" in table->update_time is justified because
protecting it with a latch here would be too performance
intrusive. */
(*it)->update_time = now;
}
trx->mod_tables.clear();
}
/**
Erase the transaction from running transaction lists and serialization
list. Active RW transaction list of a MVCC snapshot(ReadView::prepare)
won't include this transaction after this call. All implicit locks are
also released by this call as trx is removed from rw_trx_list.
@param[in] trx Transaction to erase, must have an ID > 0
@param[in] serialised true if serialisation log was written */
static
void
trx_erase_lists(
trx_t* trx,
bool serialised)
{
ut_ad(trx->id > 0);
trx_sys_mutex_enter();
if (serialised) {
UT_LIST_REMOVE(trx_sys->serialisation_list, trx);
}
trx_ids_t::iterator it = std::lower_bound(
trx_sys->rw_trx_ids.begin(),
trx_sys->rw_trx_ids.end(),
trx->id);
ut_ad(*it == trx->id);
trx_sys->rw_trx_ids.erase(it);
if (trx->read_only || trx->rsegs.m_redo.rseg == NULL) {
ut_ad(!trx->in_rw_trx_list);
} else {
UT_LIST_REMOVE(trx_sys->rw_trx_list, trx);
ut_d(trx->in_rw_trx_list = false);
ut_ad(trx_sys_validate_trx_list());
if (trx->read_view != NULL) {
trx_sys->mvcc->view_close(trx->read_view, true);
}
}
trx_sys->rw_trx_set.erase(TrxTrack(trx->id));
trx_sys_mutex_exit();
}
/****************************************************************//**
Commits a transaction in memory. */
static
void
trx_commit_in_memory(
/*=================*/
trx_t* trx, /*!< in/out: transaction */
const mtr_t* mtr, /*!< in: mini-transaction of
trx_write_serialisation_history(), or NULL if
the transaction did not modify anything */
bool serialised)
/*!< in: true if serialisation log was
written */
{
trx->must_flush_log_later = false;
if (trx_is_autocommit_non_locking(trx)) {
ut_ad(trx->id == 0);
ut_ad(trx->read_only);
ut_a(!trx->is_recovered);
ut_ad(trx->rsegs.m_redo.rseg == NULL);
ut_ad(!trx->in_rw_trx_list);
/* Note: We are asserting without holding the lock mutex. But
that is OK because this transaction is not waiting and cannot
be rolled back and no new locks can (or should not) be added
becuase it is flagged as a non-locking read-only transaction. */
ut_a(UT_LIST_GET_LEN(trx->lock.trx_locks) == 0);
/* This state change is not protected by any mutex, therefore
there is an inherent race here around state transition during
printouts. We ignore this race for the sake of efficiency.
However, the trx_sys_t::mutex will protect the trx_t instance
and it cannot be removed from the mysql_trx_list and freed
without first acquiring the trx_sys_t::mutex. */
ut_ad(trx_state_eq(trx, TRX_STATE_ACTIVE));
if (trx->read_view != NULL) {
trx_sys->mvcc->view_close(trx->read_view, false);
}
MONITOR_INC(MONITOR_TRX_NL_RO_COMMIT);
/* AC-NL-RO transactions can't be rolled back asynchronously. */
ut_ad(!trx->abort);
ut_ad(!(trx->in_innodb
& (TRX_FORCE_ROLLBACK | TRX_FORCE_ROLLBACK_ASYNC)));
trx->state = TRX_STATE_NOT_STARTED;
} else {
if (trx->id > 0) {
/* For consistent snapshot, we need to remove current
transaction from running transaction id list for mvcc
before doing commit and releasing locks. */
trx_erase_lists(trx, serialised);
}
lock_trx_release_locks(trx);
/* Remove the transaction from the list of active
transactions now that it no longer holds any user locks. */
ut_ad(trx_state_eq(trx, TRX_STATE_COMMITTED_IN_MEMORY));
DEBUG_SYNC_C("after_trx_committed_in_memory");
if (trx->read_only || trx->rsegs.m_redo.rseg == NULL) {
MONITOR_INC(MONITOR_TRX_RO_COMMIT);
if (trx->read_view != NULL) {
trx_sys->mvcc->view_close(
trx->read_view, false);
}
} else {
ut_ad(trx->id > 0);
MONITOR_INC(MONITOR_TRX_RW_COMMIT);
}
}
ut_ad(!trx->rsegs.m_redo.update_undo);
if (trx_rseg_t* rseg = trx->rsegs.m_redo.rseg) {
mutex_enter(&rseg->mutex);
ut_ad(rseg->trx_ref_count > 0);
--rseg->trx_ref_count;
mutex_exit(&rseg->mutex);
if (trx_undo_t*& insert = trx->rsegs.m_redo.insert_undo) {
ut_ad(insert->rseg == rseg);
trx_undo_commit_cleanup(insert, false);
insert = NULL;
}
}
ut_ad(!trx->rsegs.m_redo.insert_undo);
if (mtr != NULL) {
if (trx_undo_t*& undo = trx->rsegs.m_noredo.undo) {
ut_ad(undo->rseg == trx->rsegs.m_noredo.rseg);
trx_undo_commit_cleanup(undo, true);
undo = NULL;
}
/* NOTE that we could possibly make a group commit more
efficient here: call os_thread_yield here to allow also other
trxs to come to commit! */
/*-------------------------------------*/
/* Depending on the my.cnf options, we may now write the log
buffer to the log files, making the transaction durable if
the OS does not crash. We may also flush the log files to
disk, making the transaction durable also at an OS crash or a
power outage.
The idea in InnoDB's group commit is that a group of
transactions gather behind a trx doing a physical disk write
to log files, and when that physical write has been completed,
one of those transactions does a write which commits the whole
group. Note that this group commit will only bring benefit if
there are > 2 users in the database. Then at least 2 users can
gather behind one doing the physical log write to disk.
If we are calling trx_commit() under prepare_commit_mutex, we
will delay possible log write and flush to a separate function
trx_commit_complete_for_mysql(), which is only called when the
thread has released the mutex. This is to make the
group commit algorithm to work. Otherwise, the prepare_commit
mutex would serialize all commits and prevent a group of
transactions from gathering. */
lsn_t lsn = mtr->commit_lsn();
if (lsn == 0) {
/* Nothing to be done. */
} else if (trx->flush_log_later) {
/* Do nothing yet */
trx->must_flush_log_later = true;
} else if (srv_flush_log_at_trx_commit == 0
|| thd_requested_durability(trx->mysql_thd)
== HA_IGNORE_DURABILITY) {
/* Do nothing */
} else {
trx_flush_log_if_needed(lsn, trx);
}
trx->commit_lsn = lsn;
/* Tell server some activity has happened, since the trx
does changes something. Background utility threads like
master thread, purge thread or page_cleaner thread might
have some work to do. */
srv_active_wake_master_thread();
}
ut_ad(!trx->rsegs.m_noredo.undo);
/* Free all savepoints, starting from the first. */
trx_named_savept_t* savep = UT_LIST_GET_FIRST(trx->trx_savepoints);
trx_roll_savepoints_free(trx, savep);
if (trx->fts_trx != NULL) {
trx_finalize_for_fts(trx, trx->undo_no != 0);
}
trx_mutex_enter(trx);
trx->dict_operation = TRX_DICT_OP_NONE;
#ifdef WITH_WSREP
if (trx->mysql_thd && wsrep_on(trx->mysql_thd)) {
trx->lock.was_chosen_as_deadlock_victim = FALSE;
}
#endif
/* Because we can rollback transactions asynchronously, we change
the state at the last step. trx_t::abort cannot change once commit
or rollback has started because we will have released the locks by
the time we get here. */
if (trx->abort) {
trx->abort = false;
trx->state = TRX_STATE_FORCED_ROLLBACK;
} else {
trx->state = TRX_STATE_NOT_STARTED;
}
/* trx->in_mysql_trx_list would hold between
trx_allocate_for_mysql() and trx_free_for_mysql(). It does not
hold for recovered transactions or system transactions. */
assert_trx_is_free(trx);
trx_init(trx);
trx_mutex_exit(trx);
ut_a(trx->error_state == DB_SUCCESS);
srv_wake_purge_thread_if_not_active();
}
/****************************************************************//**
Commits a transaction and a mini-transaction. */
void
trx_commit_low(
/*===========*/
trx_t* trx, /*!< in/out: transaction */
mtr_t* mtr) /*!< in/out: mini-transaction (will be committed),
or NULL if trx made no modifications */
{
assert_trx_nonlocking_or_in_list(trx);
ut_ad(!trx_state_eq(trx, TRX_STATE_COMMITTED_IN_MEMORY));
ut_ad(!mtr || mtr->is_active());
ut_ad(!mtr == !trx->has_logged());
/* undo_no is non-zero if we're doing the final commit. */
if (trx->fts_trx != NULL && trx->undo_no != 0) {
dberr_t error;
ut_a(!trx_is_autocommit_non_locking(trx));
error = fts_commit(trx);
/* FTS-FIXME: Temporarily tolerate DB_DUPLICATE_KEY
instead of dying. This is a possible scenario if there
is a crash between insert to DELETED table committing
and transaction committing. The fix would be able to
return error from this function */
if (error != DB_SUCCESS && error != DB_DUPLICATE_KEY) {
/* FTS-FIXME: once we can return values from this
function, we should do so and signal an error
instead of just dying. */
ut_error;
}
}
bool serialised;
if (mtr != NULL) {
mtr->set_sync();
serialised = trx_write_serialisation_history(trx, mtr);
/* The following call commits the mini-transaction, making the
whole transaction committed in the file-based world, at this
log sequence number. The transaction becomes 'durable' when
we write the log to disk, but in the logical sense the commit
in the file-based data structures (undo logs etc.) happens
here.
NOTE that transaction numbers, which are assigned only to
transactions with an update undo log, do not necessarily come
in exactly the same order as commit lsn's, if the transactions
have different rollback segments. To get exactly the same
order we should hold the kernel mutex up to this point,
adding to the contention of the kernel mutex. However, if
a transaction T2 is able to see modifications made by
a transaction T1, T2 will always get a bigger transaction
number and a bigger commit lsn than T1. */
/*--------------*/
mtr_commit(mtr);
DBUG_EXECUTE_IF("ib_crash_during_trx_commit_in_mem",
if (trx->has_logged()) {
log_make_checkpoint_at(LSN_MAX, TRUE);
DBUG_SUICIDE();
});
/*--------------*/
} else {
serialised = false;
}
#ifndef DBUG_OFF
/* In case of this function is called from a stack executing
THD::release_resources -> ...
innobase_connection_close() ->
trx_rollback_for_mysql... -> .
mysql's thd does not seem to have
thd->debug_sync_control defined any longer. However the stack
is possible only with a prepared trx not updating any data.
*/
if (trx->mysql_thd != NULL && trx->has_logged_persistent()) {
DEBUG_SYNC_C("before_trx_state_committed_in_memory");
}
#endif
trx_commit_in_memory(trx, mtr, serialised);
}
/****************************************************************//**
Commits a transaction. */
void
trx_commit(
/*=======*/
trx_t* trx) /*!< in/out: transaction */
{
mtr_t* mtr;
mtr_t local_mtr;
DBUG_EXECUTE_IF("ib_trx_commit_crash_before_trx_commit_start",
DBUG_SUICIDE(););
if (trx->has_logged()) {
mtr = &local_mtr;
mtr_start_sync(mtr);
} else {
mtr = NULL;
}
trx_commit_low(trx, mtr);
}
/****************************************************************//**
Cleans up a transaction at database startup. The cleanup is needed if
the transaction already got to the middle of a commit when the database
crashed, and we cannot roll it back. */
void
trx_cleanup_at_db_startup(
/*======================*/
trx_t* trx) /*!< in: transaction */
{
ut_ad(trx->is_recovered);
ut_ad(!trx->rsegs.m_noredo.undo);
ut_ad(!trx->rsegs.m_redo.update_undo);
if (trx_undo_t*& undo = trx->rsegs.m_redo.insert_undo) {
ut_ad(undo->rseg == trx->rsegs.m_redo.rseg);
trx_undo_commit_cleanup(undo, false);
undo = NULL;
}
memset(&trx->rsegs, 0x0, sizeof(trx->rsegs));
trx->undo_no = 0;
trx->undo_rseg_space = 0;
trx->last_sql_stat_start.least_undo_no = 0;
trx_sys_mutex_enter();
ut_a(!trx->read_only);
UT_LIST_REMOVE(trx_sys->rw_trx_list, trx);
ut_d(trx->in_rw_trx_list = FALSE);
trx_sys_mutex_exit();
/* Change the transaction state without mutex protection, now
that it no longer is in the trx_list. Recovered transactions
are never placed in the mysql_trx_list. */
ut_ad(trx->is_recovered);
ut_ad(!trx->in_rw_trx_list);
ut_ad(!trx->in_mysql_trx_list);
trx->state = TRX_STATE_NOT_STARTED;
}
/********************************************************************//**
Assigns a read view for a consistent read query. All the consistent reads
within the same transaction will get the same read view, which is created
when this function is first called for a new started transaction.
@return consistent read view */
ReadView*
trx_assign_read_view(
/*=================*/
trx_t* trx) /*!< in/out: active transaction */
{
ut_ad(trx->state == TRX_STATE_ACTIVE);
if (srv_read_only_mode) {
ut_ad(trx->read_view == NULL);
return(NULL);
} else if (!MVCC::is_view_active(trx->read_view)) {
trx_sys->mvcc->view_open(trx->read_view, trx);
}
return(trx->read_view);
}
/****************************************************************//**
Prepares a transaction for commit/rollback. */
void
trx_commit_or_rollback_prepare(
/*===========================*/
trx_t* trx) /*!< in/out: transaction */
{
/* We are reading trx->state without holding trx_sys->mutex
here, because the commit or rollback should be invoked for a
running (or recovered prepared) transaction that is associated
with the current thread. */
switch (trx->state) {
case TRX_STATE_NOT_STARTED:
case TRX_STATE_FORCED_ROLLBACK:
trx_start_low(trx, true);
/* fall through */
case TRX_STATE_ACTIVE:
case TRX_STATE_PREPARED:
/* If the trx is in a lock wait state, moves the waiting
query thread to the suspended state */
if (trx->lock.que_state == TRX_QUE_LOCK_WAIT) {
ut_a(trx->lock.wait_thr != NULL);
trx->lock.wait_thr->state = QUE_THR_SUSPENDED;
trx->lock.wait_thr = NULL;
trx->lock.que_state = TRX_QUE_RUNNING;
}
ut_a(trx->lock.n_active_thrs == 1);
return;
case TRX_STATE_COMMITTED_IN_MEMORY:
break;
}
ut_error;
}
/*********************************************************************//**
Creates a commit command node struct.
@return own: commit node struct */
commit_node_t*
trx_commit_node_create(
/*===================*/
mem_heap_t* heap) /*!< in: mem heap where created */
{
commit_node_t* node;
node = static_cast<commit_node_t*>(mem_heap_alloc(heap, sizeof(*node)));
node->common.type = QUE_NODE_COMMIT;
node->state = COMMIT_NODE_SEND;
return(node);
}
/***********************************************************//**
Performs an execution step for a commit type node in a query graph.
@return query thread to run next, or NULL */
que_thr_t*
trx_commit_step(
/*============*/
que_thr_t* thr) /*!< in: query thread */
{
commit_node_t* node;
node = static_cast<commit_node_t*>(thr->run_node);
ut_ad(que_node_get_type(node) == QUE_NODE_COMMIT);
if (thr->prev_node == que_node_get_parent(node)) {
node->state = COMMIT_NODE_SEND;
}
if (node->state == COMMIT_NODE_SEND) {
trx_t* trx;
node->state = COMMIT_NODE_WAIT;
trx = thr_get_trx(thr);
ut_a(trx->lock.wait_thr == NULL);
ut_a(trx->lock.que_state != TRX_QUE_LOCK_WAIT);
trx_commit_or_rollback_prepare(trx);
trx->lock.que_state = TRX_QUE_COMMITTING;
trx_commit(trx);
ut_ad(trx->lock.wait_thr == NULL);
trx->lock.que_state = TRX_QUE_RUNNING;
thr = NULL;
} else {
ut_ad(node->state == COMMIT_NODE_WAIT);
node->state = COMMIT_NODE_SEND;
thr->run_node = que_node_get_parent(node);
}
return(thr);
}
/**********************************************************************//**
Does the transaction commit for MySQL.
@return DB_SUCCESS or error number */
dberr_t
trx_commit_for_mysql(
/*=================*/
trx_t* trx) /*!< in/out: transaction */
{
TrxInInnoDB trx_in_innodb(trx, true);
if (trx_in_innodb.is_aborted()
&& trx->killed_by != os_thread_get_curr_id()) {
return(DB_FORCED_ABORT);
}
/* Because we do not do the commit by sending an Innobase
sig to the transaction, we must here make sure that trx has been
started. */
switch (trx->state) {
case TRX_STATE_NOT_STARTED:
case TRX_STATE_FORCED_ROLLBACK:
ut_d(trx->start_file = __FILE__);
ut_d(trx->start_line = __LINE__);
trx_start_low(trx, true);
/* fall through */
case TRX_STATE_ACTIVE:
case TRX_STATE_PREPARED:
trx->op_info = "committing";
if (trx->id != 0) {
trx_update_mod_tables_timestamp(trx);
}
trx_commit(trx);
MONITOR_DEC(MONITOR_TRX_ACTIVE);
trx->op_info = "";
return(DB_SUCCESS);
case TRX_STATE_COMMITTED_IN_MEMORY:
break;
}
ut_error;
return(DB_CORRUPTION);
}
/**********************************************************************//**
If required, flushes the log to disk if we called trx_commit_for_mysql()
with trx->flush_log_later == TRUE. */
void
trx_commit_complete_for_mysql(
/*==========================*/
trx_t* trx) /*!< in/out: transaction */
{
if (trx->id != 0
|| !trx->must_flush_log_later
|| thd_requested_durability(trx->mysql_thd)
== HA_IGNORE_DURABILITY) {
return;
}
trx_flush_log_if_needed(trx->commit_lsn, trx);
trx->must_flush_log_later = false;
}
/**********************************************************************//**
Marks the latest SQL statement ended. */
void
trx_mark_sql_stat_end(
/*==================*/
trx_t* trx) /*!< in: trx handle */
{
ut_a(trx);
switch (trx->state) {
case TRX_STATE_PREPARED:
case TRX_STATE_COMMITTED_IN_MEMORY:
break;
case TRX_STATE_NOT_STARTED:
case TRX_STATE_FORCED_ROLLBACK:
trx->undo_no = 0;
trx->undo_rseg_space = 0;
/* fall through */
case TRX_STATE_ACTIVE:
trx->last_sql_stat_start.least_undo_no = trx->undo_no;
if (trx->fts_trx != NULL) {
fts_savepoint_laststmt_refresh(trx);
}
return;
}
ut_error;
}
/**********************************************************************//**
Prints info about a transaction.
Caller must hold trx_sys->mutex. */
void
trx_print_low(
/*==========*/
FILE* f,
/*!< in: output stream */
const trx_t* trx,
/*!< in: transaction */
ulint max_query_len,
/*!< in: max query length to print,
or 0 to use the default max length */
ulint n_rec_locks,
/*!< in: lock_number_of_rows_locked(&trx->lock) */
ulint n_trx_locks,
/*!< in: length of trx->lock.trx_locks */
ulint heap_size)
/*!< in: mem_heap_get_size(trx->lock.lock_heap) */
{
ibool newline;
const char* op_info;
ut_ad(trx_sys_mutex_own());
fprintf(f, "TRANSACTION " TRX_ID_FMT, trx_get_id_for_print(trx));
/* trx->state cannot change from or to NOT_STARTED while we
are holding the trx_sys->mutex. It may change from ACTIVE to
PREPARED or COMMITTED. */
switch (trx->state) {
case TRX_STATE_NOT_STARTED:
fputs(", not started", f);
goto state_ok;
case TRX_STATE_FORCED_ROLLBACK:
fputs(", forced rollback", f);
goto state_ok;
case TRX_STATE_ACTIVE:
fprintf(f, ", ACTIVE %lu sec",
(ulong) difftime(time(NULL), trx->start_time));
goto state_ok;
case TRX_STATE_PREPARED:
fprintf(f, ", ACTIVE (PREPARED) %lu sec",
(ulong) difftime(time(NULL), trx->start_time));
goto state_ok;
case TRX_STATE_COMMITTED_IN_MEMORY:
fputs(", COMMITTED IN MEMORY", f);
goto state_ok;
}
fprintf(f, ", state %lu", (ulong) trx->state);
ut_ad(0);
state_ok:
/* prevent a race condition */
op_info = trx->op_info;
if (*op_info) {
putc(' ', f);
fputs(op_info, f);
}
if (trx->is_recovered) {
fputs(" recovered trx", f);
}
if (trx->declared_to_be_inside_innodb) {
fprintf(f, ", thread declared inside InnoDB %lu",
(ulong) trx->n_tickets_to_enter_innodb);
}
putc('\n', f);
if (trx->n_mysql_tables_in_use > 0 || trx->mysql_n_tables_locked > 0) {
fprintf(f, "mysql tables in use %lu, locked %lu\n",
(ulong) trx->n_mysql_tables_in_use,
(ulong) trx->mysql_n_tables_locked);
}
newline = TRUE;
/* trx->lock.que_state of an ACTIVE transaction may change
while we are not holding trx->mutex. We perform a dirty read
for performance reasons. */
switch (trx->lock.que_state) {
case TRX_QUE_RUNNING:
newline = FALSE; break;
case TRX_QUE_LOCK_WAIT:
fputs("LOCK WAIT ", f); break;
case TRX_QUE_ROLLING_BACK:
fputs("ROLLING BACK ", f); break;
case TRX_QUE_COMMITTING:
fputs("COMMITTING ", f); break;
default:
fprintf(f, "que state %lu ", (ulong) trx->lock.que_state);
}
if (n_trx_locks > 0 || heap_size > 400) {
newline = TRUE;
fprintf(f, "%lu lock struct(s), heap size %lu,"
" %lu row lock(s)",
(ulong) n_trx_locks,
(ulong) heap_size,
(ulong) n_rec_locks);
}
if (trx->undo_no != 0) {
newline = TRUE;
fprintf(f, ", undo log entries " TRX_ID_FMT, trx->undo_no);
}
if (newline) {
putc('\n', f);
}
if (trx->state != TRX_STATE_NOT_STARTED && trx->mysql_thd != NULL) {
innobase_mysql_print_thd(
f, trx->mysql_thd, static_cast<uint>(max_query_len));
}
}
/**********************************************************************//**
Prints info about a transaction.
The caller must hold lock_sys->mutex and trx_sys->mutex.
When possible, use trx_print() instead. */
void
trx_print_latched(
/*==============*/
FILE* f, /*!< in: output stream */
const trx_t* trx, /*!< in: transaction */
ulint max_query_len) /*!< in: max query length to print,
or 0 to use the default max length */
{
ut_ad(lock_mutex_own());
ut_ad(trx_sys_mutex_own());
trx_print_low(f, trx, max_query_len,
lock_number_of_rows_locked(&trx->lock),
UT_LIST_GET_LEN(trx->lock.trx_locks),
mem_heap_get_size(trx->lock.lock_heap));
}
#ifdef WITH_WSREP
/**********************************************************************//**
Prints info about a transaction.
Transaction information may be retrieved without having trx_sys->mutex acquired
so it may not be completely accurate. The caller must own lock_sys->mutex
and the trx must have some locks to make sure that it does not escape
without locking lock_sys->mutex. */
UNIV_INTERN
void
wsrep_trx_print_locking(
FILE* f,
/*!< in: output stream */
const trx_t* trx,
/*!< in: transaction */
ulint max_query_len)
/*!< in: max query length to print,
or 0 to use the default max length */
{
ibool newline;
const char* op_info;
ut_ad(lock_mutex_own());
ut_ad(trx->lock.trx_locks.count > 0);
fprintf(f, "TRANSACTION " TRX_ID_FMT, trx->id);
/* trx->state may change since trx_sys->mutex is not required */
switch (trx->state) {
case TRX_STATE_NOT_STARTED:
fputs(", not started", f);
goto state_ok;
case TRX_STATE_ACTIVE:
fprintf(f, ", ACTIVE %lu sec",
(ulong) difftime(time(NULL), trx->start_time));
goto state_ok;
case TRX_STATE_FORCED_ROLLBACK:
fprintf(f, ", FORCED ROLLBACK, %lu sec",
(ulong) difftime(time(NULL), trx->start_time));
goto state_ok;
case TRX_STATE_PREPARED:
fprintf(f, ", ACTIVE (PREPARED) %lu sec",
(ulong) difftime(time(NULL), trx->start_time));
goto state_ok;
case TRX_STATE_COMMITTED_IN_MEMORY:
fputs(", COMMITTED IN MEMORY", f);
goto state_ok;
}
fprintf(f, ", state %lu", (ulong) trx->state);
ut_ad(0);
state_ok:
/* prevent a race condition */
op_info = trx->op_info;
if (*op_info) {
putc(' ', f);
fputs(op_info, f);
}
if (trx->is_recovered) {
fputs(" recovered trx", f);
}
if (trx->declared_to_be_inside_innodb) {
fprintf(f, ", thread declared inside InnoDB %lu",
(ulong) trx->n_tickets_to_enter_innodb);
}
putc('\n', f);
if (trx->n_mysql_tables_in_use > 0 || trx->mysql_n_tables_locked > 0) {
fprintf(f, "mysql tables in use %lu, locked %lu\n",
(ulong) trx->n_mysql_tables_in_use,
(ulong) trx->mysql_n_tables_locked);
}
newline = TRUE;
/* trx->lock.que_state of an ACTIVE transaction may change
while we are not holding trx->mutex. We perform a dirty read
for performance reasons. */
switch (trx->lock.que_state) {
case TRX_QUE_RUNNING:
newline = FALSE; break;
case TRX_QUE_LOCK_WAIT:
fputs("LOCK WAIT ", f); break;
case TRX_QUE_ROLLING_BACK:
fputs("ROLLING BACK ", f); break;
case TRX_QUE_COMMITTING:
fputs("COMMITTING ", f); break;
default:
fprintf(f, "que state %lu ", (ulong) trx->lock.que_state);
}
if (trx->undo_no != 0) {
newline = TRUE;
fprintf(f, ", undo log entries " TRX_ID_FMT, trx->undo_no);
}
if (newline) {
putc('\n', f);
}
if (trx->mysql_thd != NULL) {
innobase_mysql_print_thd(
f, trx->mysql_thd, static_cast<uint>(max_query_len));
}
}
#endif /* WITH_WSREP */
/**********************************************************************//**
Prints info about a transaction.
Acquires and releases lock_sys->mutex and trx_sys->mutex. */
void
trx_print(
/*======*/
FILE* f, /*!< in: output stream */
const trx_t* trx, /*!< in: transaction */
ulint max_query_len) /*!< in: max query length to print,
or 0 to use the default max length */
{
ulint n_rec_locks;
ulint n_trx_locks;
ulint heap_size;
lock_mutex_enter();
n_rec_locks = lock_number_of_rows_locked(&trx->lock);
n_trx_locks = UT_LIST_GET_LEN(trx->lock.trx_locks);
heap_size = mem_heap_get_size(trx->lock.lock_heap);
lock_mutex_exit();
mutex_enter(&trx_sys->mutex);
trx_print_low(f, trx, max_query_len,
n_rec_locks, n_trx_locks, heap_size);
mutex_exit(&trx_sys->mutex);
}
#ifdef UNIV_DEBUG
/**********************************************************************//**
Asserts that a transaction has been started.
The caller must hold trx_sys->mutex.
@return TRUE if started */
ibool
trx_assert_started(
/*===============*/
const trx_t* trx) /*!< in: transaction */
{
ut_ad(trx_sys_mutex_own());
/* Non-locking autocommits should not hold any locks and this
function is only called from the locking code. */
check_trx_state(trx);
/* trx->state can change from or to NOT_STARTED while we are holding
trx_sys->mutex for non-locking autocommit selects but not for other
types of transactions. It may change from ACTIVE to PREPARED. Unless
we are holding lock_sys->mutex, it may also change to COMMITTED. */
switch (trx->state) {
case TRX_STATE_PREPARED:
return(TRUE);
case TRX_STATE_ACTIVE:
case TRX_STATE_COMMITTED_IN_MEMORY:
return(TRUE);
case TRX_STATE_NOT_STARTED:
case TRX_STATE_FORCED_ROLLBACK:
break;
}
ut_error;
return(FALSE);
}
#endif /* UNIV_DEBUG */
/*******************************************************************//**
Compares the "weight" (or size) of two transactions. Transactions that
have edited non-transactional tables are considered heavier than ones
that have not.
@return TRUE if weight(a) >= weight(b) */
bool
trx_weight_ge(
/*==========*/
const trx_t* a, /*!< in: transaction to be compared */
const trx_t* b) /*!< in: transaction to be compared */
{
ibool a_notrans_edit;
ibool b_notrans_edit;
/* If mysql_thd is NULL for a transaction we assume that it has
not edited non-transactional tables. */
a_notrans_edit = a->mysql_thd != NULL
&& thd_has_edited_nontrans_tables(a->mysql_thd);
b_notrans_edit = b->mysql_thd != NULL
&& thd_has_edited_nontrans_tables(b->mysql_thd);
if (a_notrans_edit != b_notrans_edit) {
return(a_notrans_edit);
}
/* Either both had edited non-transactional tables or both had
not, we fall back to comparing the number of altered/locked
rows. */
return(TRX_WEIGHT(a) >= TRX_WEIGHT(b));
}
/** Prepare a transaction.
@return log sequence number that makes the XA PREPARE durable
@retval 0 if no changes needed to be made durable */
static
lsn_t
trx_prepare_low(trx_t* trx)
{
mtr_t mtr;
/* It is not necessary to acquire trx->undo_mutex here because
only the owning (connection) thread of the transaction is
allowed to perform XA PREPARE. */
if (trx_undo_t* undo = trx->rsegs.m_noredo.undo) {
ut_ad(undo->rseg == trx->rsegs.m_noredo.rseg);
mtr.start();
mtr.set_log_mode(MTR_LOG_NO_REDO);
mutex_enter(&undo->rseg->mutex);
trx_undo_set_state_at_prepare(trx, undo, false, &mtr);
mutex_exit(&undo->rseg->mutex);
mtr.commit();
}
trx_undo_t* insert = trx->rsegs.m_redo.insert_undo;
trx_undo_t* update = trx->rsegs.m_redo.update_undo;
if (!insert && !update) {
/* There were no changes to persistent tables. */
return(0);
}
trx_rseg_t* rseg = trx->rsegs.m_redo.rseg;
mtr.start(true);
/* Change the undo log segment states from TRX_UNDO_ACTIVE to
TRX_UNDO_PREPARED: these modifications to the file data
structure define the transaction as prepared in the file-based
world, at the serialization point of lsn. */
mutex_enter(&rseg->mutex);
if (insert) {
ut_ad(insert->rseg == rseg);
trx_undo_set_state_at_prepare(trx, insert, false, &mtr);
}
if (update) {
ut_ad(update->rseg == rseg);
trx_undo_set_state_at_prepare(trx, update, false, &mtr);
}
mutex_exit(&rseg->mutex);
/* Make the XA PREPARE durable. */
mtr.commit();
ut_ad(mtr.commit_lsn() > 0);
return(mtr.commit_lsn());
}
/****************************************************************//**
Prepares a transaction. */
static
void
trx_prepare(
/*========*/
trx_t* trx) /*!< in/out: transaction */
{
/* This transaction has crossed the point of no return and cannot
be rolled back asynchronously now. It must commit or rollback
synhronously. */
/* Only fresh user transactions can be prepared.
Recovered transactions cannot. */
ut_a(!trx->is_recovered);
lsn_t lsn = trx_prepare_low(trx);
DBUG_EXECUTE_IF("ib_trx_crash_during_xa_prepare_step", DBUG_SUICIDE(););
/*--------------------------------------*/
ut_a(trx->state == TRX_STATE_ACTIVE);
trx_sys_mutex_enter();
trx->state = TRX_STATE_PREPARED;
trx_sys->n_prepared_trx++;
trx_sys_mutex_exit();
/*--------------------------------------*/
switch (thd_requested_durability(trx->mysql_thd)) {
case HA_IGNORE_DURABILITY:
/* We set the HA_IGNORE_DURABILITY during prepare phase of
binlog group commit to not flush redo log for every transaction
here. So that we can flush prepared records of transactions to
redo log in a group right before writing them to binary log
during flush stage of binlog group commit. */
break;
case HA_REGULAR_DURABILITY:
if (lsn == 0) {
break;
}
/* Depending on the my.cnf options, we may now write the log
buffer to the log files, making the prepared state of the
transaction durable if the OS does not crash. We may also
flush the log files to disk, making the prepared state of the
transaction durable also at an OS crash or a power outage.
The idea in InnoDB's group prepare is that a group of
transactions gather behind a trx doing a physical disk write
to log files, and when that physical write has been completed,
one of those transactions does a write which prepares the whole
group. Note that this group prepare will only bring benefit if
there are > 2 users in the database. Then at least 2 users can
gather behind one doing the physical log write to disk.
We must not be holding any mutexes or latches here. */
trx_flush_log_if_needed(lsn, trx);
}
}
/**
Does the transaction prepare for MySQL.
@param[in, out] trx Transaction instance to prepare */
dberr_t
trx_prepare_for_mysql(trx_t* trx)
{
trx_start_if_not_started_xa(trx, false);
TrxInInnoDB trx_in_innodb(trx, true);
if (trx_in_innodb.is_aborted()
&& trx->killed_by != os_thread_get_curr_id()) {
return(DB_FORCED_ABORT);
}
trx->op_info = "preparing";
trx_prepare(trx);
trx->op_info = "";
return(DB_SUCCESS);
}
/**********************************************************************//**
This function is used to find number of prepared transactions and
their transaction objects for a recovery.
@return number of prepared transactions stored in xid_list */
int
trx_recover_for_mysql(
/*==================*/
XID* xid_list, /*!< in/out: prepared transactions */
ulint len) /*!< in: number of slots in xid_list */
{
const trx_t* trx;
ulint count = 0;
ut_ad(xid_list);
ut_ad(len);
/* We should set those transactions which are in the prepared state
to the xid_list */
trx_sys_mutex_enter();
for (trx = UT_LIST_GET_FIRST(trx_sys->rw_trx_list);
trx != NULL;
trx = UT_LIST_GET_NEXT(trx_list, trx)) {
assert_trx_in_rw_list(trx);
/* The state of a read-write transaction cannot change
from or to NOT_STARTED while we are holding the
trx_sys->mutex. It may change to PREPARED, but not if
trx->is_recovered. It may also change to COMMITTED. */
if (trx_state_eq(trx, TRX_STATE_PREPARED)) {
xid_list[count] = *trx->xid;
if (count == 0) {
ib::info() << "Starting recovery for"
" XA transactions...";
}
ib::info() << "Transaction "
<< trx_get_id_for_print(trx)
<< " in prepared state after recovery";
ib::info() << "Transaction contains changes to "
<< trx->undo_no << " rows";
count++;
if (count == len) {
break;
}
}
}
trx_sys_mutex_exit();
if (count > 0){
ib::info() << count << " transactions in prepared state"
" after recovery";
}
return(int (count));
}
/*******************************************************************//**
This function is used to find one X/Open XA distributed transaction
which is in the prepared state
@return trx on match, the trx->xid will be invalidated;
note that the trx may have been committed, unless the caller is
holding lock_sys->mutex */
static MY_ATTRIBUTE((warn_unused_result))
trx_t*
trx_get_trx_by_xid_low(
/*===================*/
XID* xid) /*!< in: X/Open XA transaction
identifier */
{
trx_t* trx;
ut_ad(trx_sys_mutex_own());
for (trx = UT_LIST_GET_FIRST(trx_sys->rw_trx_list);
trx != NULL;
trx = UT_LIST_GET_NEXT(trx_list, trx)) {
assert_trx_in_rw_list(trx);
/* Compare two X/Open XA transaction id's: their
length should be the same and binary comparison
of gtrid_length+bqual_length bytes should be
the same */
if (trx->is_recovered
&& trx_state_eq(trx, TRX_STATE_PREPARED)
&& xid->eq((XID*)trx->xid)) {
/* Invalidate the XID, so that subsequent calls
will not find it. */
trx->xid->null();
break;
}
}
return(trx);
}
/*******************************************************************//**
This function is used to find one X/Open XA distributed transaction
which is in the prepared state
@return trx or NULL; on match, the trx->xid will be invalidated;
note that the trx may have been committed, unless the caller is
holding lock_sys->mutex */
trx_t*
trx_get_trx_by_xid(
/*===============*/
XID* xid) /*!< in: X/Open XA transaction identifier */
{
trx_t* trx;
if (xid == NULL) {
return(NULL);
}
trx_sys_mutex_enter();
/* Recovered/Resurrected transactions are always only on the
trx_sys_t::rw_trx_list. */
trx = trx_get_trx_by_xid_low((XID*)xid);
trx_sys_mutex_exit();
return(trx);
}
/*************************************************************//**
Starts the transaction if it is not yet started. */
void
trx_start_if_not_started_xa_low(
/*============================*/
trx_t* trx, /*!< in/out: transaction */
bool read_write) /*!< in: true if read write transaction */
{
switch (trx->state) {
case TRX_STATE_NOT_STARTED:
case TRX_STATE_FORCED_ROLLBACK:
trx_start_low(trx, read_write);
return;
case TRX_STATE_ACTIVE:
if (trx->id == 0 && read_write) {
/* If the transaction is tagged as read-only then
it can only write to temp tables and for such
transactions we don't want to move them to the
trx_sys_t::rw_trx_list. */
if (!trx->read_only) {
trx_set_rw_mode(trx);
}
}
return;
case TRX_STATE_PREPARED:
case TRX_STATE_COMMITTED_IN_MEMORY:
break;
}
ut_error;
}
/*************************************************************//**
Starts the transaction if it is not yet started. */
void
trx_start_if_not_started_low(
/*==========================*/
trx_t* trx, /*!< in: transaction */
bool read_write) /*!< in: true if read write transaction */
{
switch (trx->state) {
case TRX_STATE_NOT_STARTED:
case TRX_STATE_FORCED_ROLLBACK:
trx_start_low(trx, read_write);
return;
case TRX_STATE_ACTIVE:
if (read_write && trx->id == 0 && !trx->read_only) {
trx_set_rw_mode(trx);
}
return;
case TRX_STATE_PREPARED:
case TRX_STATE_COMMITTED_IN_MEMORY:
break;
}
ut_error;
}
/*************************************************************//**
Starts a transaction for internal processing. */
void
trx_start_internal_low(
/*===================*/
trx_t* trx) /*!< in/out: transaction */
{
/* Ensure it is not flagged as an auto-commit-non-locking
transaction. */
trx->will_lock = 1;
trx->internal = true;
trx_start_low(trx, true);
}
/** Starts a read-only transaction for internal processing.
@param[in,out] trx transaction to be started */
void
trx_start_internal_read_only_low(
trx_t* trx)
{
/* Ensure it is not flagged as an auto-commit-non-locking
transaction. */
trx->will_lock = 1;
trx->internal = true;
trx_start_low(trx, false);
}
/*************************************************************//**
Starts the transaction for a DDL operation. */
void
trx_start_for_ddl_low(
/*==================*/
trx_t* trx, /*!< in/out: transaction */
trx_dict_op_t op) /*!< in: dictionary operation type */
{
switch (trx->state) {
case TRX_STATE_NOT_STARTED:
case TRX_STATE_FORCED_ROLLBACK:
/* Flag this transaction as a dictionary operation, so that
the data dictionary will be locked in crash recovery. */
trx_set_dict_operation(trx, op);
/* Ensure it is not flagged as an auto-commit-non-locking
transation. */
trx->will_lock = 1;
trx->ddl= true;
trx_start_internal_low(trx);
return;
case TRX_STATE_ACTIVE:
/* We have this start if not started idiom, therefore we
can't add stronger checks here. */
trx->ddl = true;
ut_ad(trx->dict_operation != TRX_DICT_OP_NONE);
ut_ad(trx->will_lock > 0);
return;
case TRX_STATE_PREPARED:
case TRX_STATE_COMMITTED_IN_MEMORY:
break;
}
ut_error;
}
/*************************************************************//**
Set the transaction as a read-write transaction if it is not already
tagged as such. Read-only transactions that are writing to temporary
tables are assigned an ID and a rollback segment but are not added
to the trx read-write list because their updates should not be visible
to other transactions and therefore their changes can be ignored by
by MVCC. */
void
trx_set_rw_mode(
/*============*/
trx_t* trx) /*!< in/out: transaction that is RW */
{
ut_ad(trx->rsegs.m_redo.rseg == 0);
ut_ad(!trx->in_rw_trx_list);
ut_ad(!trx_is_autocommit_non_locking(trx));
if (srv_force_recovery >= SRV_FORCE_NO_TRX_UNDO) {
return;
}
/* Function is promoting existing trx from ro mode to rw mode.
In this process it has acquired trx_sys->mutex as it plan to
move trx from ro list to rw list. If in future, some other thread
looks at this trx object while it is being promoted then ensure
that both threads are synced by acquring trx->mutex to avoid decision
based on in-consistent view formed during promotion. */
trx->rsegs.m_redo.rseg = trx_assign_rseg_low();
ut_ad(trx->rsegs.m_redo.rseg != 0);
mutex_enter(&trx_sys->mutex);
ut_ad(trx->id == 0);
trx->id = trx_sys_get_new_trx_id();
trx_sys->rw_trx_ids.push_back(trx->id);
trx_sys->rw_trx_set.insert(TrxTrack(trx->id, trx));
/* So that we can see our own changes. */
if (MVCC::is_view_active(trx->read_view)) {
MVCC::set_view_creator_trx_id(trx->read_view, trx->id);
}
#ifdef UNIV_DEBUG
if (trx->id > trx_sys->rw_max_trx_id) {
trx_sys->rw_max_trx_id = trx->id;
}
#endif /* UNIV_DEBUG */
if (!trx->read_only) {
UT_LIST_ADD_FIRST(trx_sys->rw_trx_list, trx);
ut_d(trx->in_rw_trx_list = true);
}
mutex_exit(&trx_sys->mutex);
}
/**
Kill all transactions that are blocking this transaction from acquiring locks.
@param[in,out] trx High priority transaction */
void
trx_kill_blocking(trx_t* trx)
{
if (trx->hit_list.empty()) {
return;
}
DEBUG_SYNC_C("trx_kill_blocking_enter");
ulint had_dict_lock = trx->dict_operation_lock_mode;
switch (had_dict_lock) {
case 0:
break;
case RW_S_LATCH:
/* Release foreign key check latch */
row_mysql_unfreeze_data_dictionary(trx);
break;
default:
/* There should never be a lock wait when the
dictionary latch is reserved in X mode. Dictionary
transactions should only acquire locks on dictionary
tables, not other tables. All access to dictionary
tables should be covered by dictionary
transactions. */
ut_error;
}
ut_a(trx->dict_operation_lock_mode == 0);
/** Kill the transactions in the lock acquisition order old -> new. */
hit_list_t::reverse_iterator end = trx->hit_list.rend();
for (hit_list_t::reverse_iterator it = trx->hit_list.rbegin();
it != end;
++it) {
trx_t* victim_trx = it->m_trx;
ulint version = it->m_version;
/* Shouldn't commit suicide. */
ut_ad(victim_trx != trx);
ut_ad(victim_trx->mysql_thd != trx->mysql_thd);
/* Check that the transaction isn't active inside
InnoDB code. We have to wait while it is executing
in the InnoDB context. This can potentially take a
long time */
trx_mutex_enter(victim_trx);
ut_ad(version <= victim_trx->version);
ulint loop_count = 0;
/* start with optimistic sleep time of 20 micro seconds. */
ulint sleep_time = 20;
while ((victim_trx->in_innodb & TRX_FORCE_ROLLBACK_MASK) > 0
&& victim_trx->version == version) {
trx_mutex_exit(victim_trx);
loop_count++;
/* If the wait is long, don't hog the cpu. */
if (loop_count < 100) {
/* 20 microseconds */
sleep_time = 20;
} else if (loop_count < 1000) {
/* 1 millisecond */
sleep_time = 1000;
} else {
/* 100 milliseconds */
sleep_time = 100000;
}
os_thread_sleep(sleep_time);
trx_mutex_enter(victim_trx);
}
/* Compare the version to check if the transaction has
already finished */
if (victim_trx->version != version) {
trx_mutex_exit(victim_trx);
continue;
}
/* We should never kill background transactions. */
ut_ad(victim_trx->mysql_thd != NULL);
ut_ad(!(trx->in_innodb & TRX_FORCE_ROLLBACK_DISABLE));
ut_ad(victim_trx->in_innodb & TRX_FORCE_ROLLBACK);
ut_ad(victim_trx->in_innodb & TRX_FORCE_ROLLBACK_ASYNC);
ut_ad(victim_trx->killed_by == os_thread_get_curr_id());
ut_ad(victim_trx->version == it->m_version);
/* We don't kill Read Only, Background or high priority
transactions. */
ut_a(!victim_trx->read_only);
ut_a(victim_trx->mysql_thd != NULL);
trx_mutex_exit(victim_trx);
#ifndef DBUG_OFF
char buffer[1024];
#endif /* !DBUG_OFF */
DBUG_LOG("trx",
"High Priority Transaction "
<< trx->id << " killed transaction "
<< victim_trx->id << " in hit list"
<< " - "
<< thd_get_error_context_description(
victim_trx->mysql_thd,
buffer, sizeof(buffer), 512));
trx_rollback_for_mysql(victim_trx);
trx_mutex_enter(victim_trx);
version++;
ut_ad(victim_trx->version == version);
my_atomic_storelong(&victim_trx->killed_by, 0);
victim_trx->in_innodb &= TRX_FORCE_ROLLBACK_MASK;
trx_mutex_exit(victim_trx);
}
trx->hit_list.clear();
if (had_dict_lock) {
row_mysql_freeze_data_dictionary(trx);
}
}