mirror of
https://github.com/MariaDB/server.git
synced 2025-01-27 01:04:19 +01:00
2a0d2fef51
cause ROLLBACK of statement", part 1. Review fixes. Do not send OK/EOF packets to the client until we reached the end of the current statement. This is a consolidation, to keep the functionality that is shared by all SQL statements in one place in the server. Currently this functionality includes: - close_thread_tables() - log_slow_statement(). After this patch and the subsequent patch for Bug#12713, it shall also include: - ha_autocommit_or_rollback() - net_end_statement() - query_cache_end_of_result(). In future it may also include: - mysql_reset_thd_for_next_command(). include/mysql_com.h: Rename now unused members of NET: no_send_ok, no_send_error, report_error. These were server-specific variables related to the client/server protocol. They have been made obsolete by this patch. Previously the same members of NET were used to store the error message both on the client and on the server. The error message was stored in net.last_error (client: mysql->net.last_error, server: thd->net.last_error). The error code was stored in net.last_errno (client: mysql->net.last_errno, server: thd->net.last_errno). The server error code and message are now stored elsewhere (in the Diagnostics_area), thus NET members are no longer used by the server. Rename last_error to client_last_error, last_errno to client_last_errno to avoid potential bugs introduced by merges. include/mysql_h.ic: Update the ABI file to reflect a rename. Renames do not break the binary compatibility. libmysql/libmysql.c: Rename last_error to client_last_error, last_errno to client_last_errno. This is necessary to ensure no unnoticed bugs introduced by merged changesets. Remove net.report_error, net.no_send_ok, net.no_send_error. libmysql/manager.c: Rename net.last_errno to net.client_last_errno. libmysqld/lib_sql.cc: Rename net.last_errno to net.client_last_errno. Update the embedded implementation of the client-server protocol to reflect the refactoring of protocol.cc. libmysqld/libmysqld.c: Rename net.last_errno to net.client_last_errno. mysql-test/r/events.result: Update to reflect the change in mysql_rm_db(). Now we drop stored routines and events for a given database name only if there is a directory for this database name. ha_drop_database() and query_cache_invalidate() are called likewise. Previously we would attempt to drop routines/events even if database directory was not found (it worked, since routines and events are stored in tables). This fixes Bug 29958 "Weird message on DROP DATABASE if mysql.proc does not exist". The change was done because the previous code used to call send_ok() twice, which led to an assertion failure when asserts against it were added by this patch. mysql-test/r/grant.result: Fix the patch for Bug 16470, now FLUSH PRIVILEGES produces an error if mysql.procs_priv is missing. This fixes the assert that send_ok() must not called after send_error() (the original patch for Bug 16470 was prone to this). mysql-test/suite/rpl/r/rpl_row_tabledefs_2myisam.result: Produce a more detailed error message. mysql-test/suite/rpl/r/rpl_row_tabledefs_3innodb.result: Produce a more detailed error message. mysql-test/t/grant.test: Update the test, now FLUSH PRIVILEGES returns an error if mysql.procs_priv is missing. server-tools/instance-manager/mysql_connection.cc: Rename net.last_errno to net.client_last_errno. sql/ha_ndbcluster_binlog.cc: Add asserts. Use getters to access statement status information. Add a comment why run_query() is broken. Reset the diagnostics area in the end of run_query() to fulfill the invariant that the diagnostics_area is never assigned twice per statement (see the comment in the code when this can happen). We still do not clear thd->is_fatal_error and thd->is_slave_error, which may lead to bugs, I consider the whole affair as something to be dealt with separately. sql/ha_partition.cc: fatal_error() doesn't set an error by itself. Perhaps we should remove this method altogether and instead add a flag to my_error to set thd->is_fatal_error property. Meanwhile, this change is a part of inspection made to the entire source code with the goal to ensure that fatal_error() is always accompanied by my_error(). sql/item_func.cc: There is no net.last_error anymore. Remove the obsolete assignment. sql/log_event.cc: Use getters to access statement error status information. sql/log_event_old.cc: Use getters to access statement error status information. sql/mysqld.cc: Previously, if a continue handler for an error was found, my_message_sql() would not set an error in THD. Since the current statement must be aborted in any case, find_handler() had a hack to assign thd->net.report_error to 1. Remove this hack. Set an error in my_message_sql() even if the continue handler is found. The error will be cleared anyway when the handler is executed. This is one action among many in this patch to ensure the invariant that whenever thd->is_error() is TRUE, we have a message in thd->main_da.message(). sql/net_serv.cc: Use a full-blown my_error() in net_serv.cc to report an error, instead of just setting net->last_errno. This ensures the invariant that whenever thd->is_error() returns TRUE, we have a message in thd->main_da.message(). Remove initialization of removed NET members. sql/opt_range.cc: Use my_error() instead of just raising thd->net.report_error. This ensures the invariant that whenever thd->is_error() returns TRUE, there is a message in thd->main_da.message(). sql/opt_sum.cc: Move invocation of fatal_error() right next to the place where we set the error message. That makes it easier to track that whenever fatal_error() is called, there is a message in THD. sql/protocol.cc: Rename send_ok() and send_eof() to net_send_ok() and net_send_eof() respectively. These functions write directly to the network and are not for use anywhere outside the client/server protocol code. Remove the code that was responsible for cases when either there is no error code, or no error message, or both. Instead the calling code ensures that they are always present. Asserts are added to enforce the invariant. Instead of a direct access to thd->server_status and thd->total_warn_count use function parameters, since these from now on don't always come directly from THD. Introduce net_end_statement(), the single-entry-point replacement API for send_ok(), send_eof() and net_send_error(). Implement Protocol::end_partial_result_set to use in select_send::abort() when there is a continue handler. sql/protocol.h: Update declarations. sql/repl_failsafe.cc: Use getters to access statement status information in THD. Rename net.last_error to net.client_last_error. sql/rpl_record.cc: Set an error message in prepare_record() if there is no default value for the field -- later we do print this message to the client. sql/rpl_rli.cc: Use getters to access statement status information in THD. sql/slave.cc: In create_table_from_dump() (a common function that is used in LOAD MASTER TABLE SQL statement and COM_LOAD_MASTER_DATA), instead of hacks with no_send_ok, clear the diagnostics area when mysql_rm_table() succeeded. Update has_temporary_error() to work correctly when no error is set. This is the case when Incident_log_event is executed: it always returns an error but does not set an error message. Use getters to access error status information. sql/sp_head.cc: Instead of hacks with no_send_error, work through the diagnostics area interface to suppress sending of OK/ERROR packets to the client. Move query_cache_end_of_result before log_slow_statement(), similarly to how it's done in dispatch_command(). sql/sp_rcontext.cc: Remove hacks with assignment of thd->net.report_error, they are not necessary any more (see the changes in mysqld.cc). sql/sql_acl.cc: Use getters to access error status information in THD. sql/sql_base.cc: Access thd->main_da.sql_errno() only if there is an error. This fixes a bug when auto-discovery, that was effectively disabled under pre-locking. sql/sql_binlog.cc: Remove hacks with no_send_ok/no_send_error, they are not necessary anymore: the caller is responsible for network communication. sql/sql_cache.cc: Disable sending of OK/ERROR/EOF packet in the end of dispatch_command if the response has been served from the query cache. This raises the question whether we should store EOF packet in the query cache at all, or generate it anew for each statement (we should generate it anew), but this is to be addressed separately. sql/sql_class.cc: Implement class Diagnostics_area. Please see comments in sql_class.h for details. Fix a subtle coding mistake in select_send::send_data: when on slave, an error in Item::send() was ignored. The problem became visible due to asserts that the diagnostics area is never double assigned. Remove initialization of removed NET members. In select_send::abort() do not call select_send::send_eof(). This is not inheritance-safe. Even if a stored procedure continue handler is found, the current statement is aborted, not succeeded. Instead introduce a Protocol API to send the required response, Protocol::end_partial_result_set(). This simplifies implementation of select_send::send_eof(). No need to add more asserts that there is no error, there is an assert inside Diagnostics_area::set_ok_status() already. Leave no trace of no_send_* in the code. sql/sql_class.h: Declare class Diagnostics_area. Remove the hack with no_send_ok from Substatement_state. Provide inline implementations of send_ok/send_eof. Add commetns. sql/sql_connect.cc: Remove hacks with no_send_error. Since now an error in THD is always set if net->error, it's not necessary to check both net->error and thd->is_error() in the do_command loop. Use thd->main_da.message() instead of net->last_errno. Remove the hack with is_slave_error in sys_init_connect. Since now we do not reset the diagnostics area in net_send_error (it's reset at the beginning of the next statement), we can access it safely even after execute_init_command. sql/sql_db.cc: Update the code to satisfy the invariant that the diagnostics area is never assigned twice. Incidentally, this fixes Bug 29958 "Weird message on DROP DATABASE if mysql.proc does not exist". sql/sql_delete.cc: Change multi-delete to abort in abort(), as per select_send protocol. Fixes the merge error with the test for Bug 29136 sql/sql_derived.cc: Use getters to access error information. sql/sql_insert.cc: Use getters to access error information. sql-common/client.c: Rename last_error to client_last_error, last_errno to client_last_errno. sql/sql_parse.cc: Remove hacks with no_send_error. Deploy net_end_statement(). The story of COM_SHUTDOWN is interesting. Long story short, the server would become on its death's door, and only no_send_ok/no_send_error assigned by send_ok()/net_send_error() would hide its babbling from the client. First of all, COM_QUIT does not require a response. So, the comment saying "Let's send a response to possible COM_QUIT" is not only groundless (even mysqladmin shutdown/mysql_shutdown() doesn't send COM_QUIT after COM_SHUTDOWN), it's plainly incorrect. Secondly, besides this additional 'OK' packet to respond to a hypothetical COM_QUIT, there was the following code in dispatch_command(): if (thd->killed) thd->send_kill_message(); if (thd->is_error() net_send_error(thd); This worked out really funny for the thread through which COM_SHUTDOWN was delivered: we would get COM_SHUTDOWN, say okay, say okay again, kill everybody, get the kill signal ourselves, and then attempt to say "Server shutdown in progress" to the client that is very likely long gone. This all became visible when asserts were added that the Diagnostics_area is not assigned twice. Move query_cache_end_of_result() to the end of dispatch_command(), since net_send_eof() has been moved there. This is safe, query_cache_end_of_result() is a no-op if there is no started query in the cache. Consistently use select_send interface to call abort() or send_eof() depending on the operation result. Remove thd->fatal_error() from reset_master(), it was a no-op. in hacks with no_send_error woudl save us from complete breakage of the client/server protocol. Consistently use select_send::abort() whenever there is an error, and select_send::send_eof() in case of success. The issue became visible due to added asserts. sql/sql_partition.cc: Always set an error in THD whenever there is a call to fatal_error(). sql/sql_prepare.cc: Deploy class Diagnostics_area. Remove the unnecessary juggling with the protocol in Select_fetch_protocol_binary::send_eof(). EOF packet format is protocol-independent. sql/sql_select.cc: Call fatal_error() directly in opt_sum_query. Call my_error() whenever we call thd->fatal_error(). sql/sql_servers.cc: Use getters to access error information in THD. sql/sql_show.cc: Use getters to access error information in THD. Add comments. Call my_error() whenever we call fatal_error(). sql/sql_table.cc: Replace hacks with no_send_ok with the interface of the diagnostics area. Clear the error if ENOENT error in ha_delete_table(). sql/sql_update.cc: Introduce multi_update::abort(), which is the proper way to abort a multi-update. This fixes the merge conflict between this patch and the patch for Bug 29136. sql/table.cc: Use a getter to access error information in THD. sql/tztime.cc: Use a getter to access error information in THD.
980 lines
32 KiB
C++
980 lines
32 KiB
C++
/* Copyright (C) 2000-2003 MySQL AB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
|
|
/*
|
|
Optimising of MIN(), MAX() and COUNT(*) queries without 'group by' clause
|
|
by replacing the aggregate expression with a constant.
|
|
|
|
Given a table with a compound key on columns (a,b,c), the following
|
|
types of queries are optimised (assuming the table handler supports
|
|
the required methods)
|
|
|
|
SELECT COUNT(*) FROM t1[,t2,t3,...]
|
|
SELECT MIN(b) FROM t1 WHERE a=const
|
|
SELECT MAX(c) FROM t1 WHERE a=const AND b=const
|
|
SELECT MAX(b) FROM t1 WHERE a=const AND b<const
|
|
SELECT MIN(b) FROM t1 WHERE a=const AND b>const
|
|
SELECT MIN(b) FROM t1 WHERE a=const AND b BETWEEN const AND const
|
|
SELECT MAX(b) FROM t1 WHERE a=const AND b BETWEEN const AND const
|
|
|
|
Instead of '<' one can use '<=', '>', '>=' and '=' as well.
|
|
Instead of 'a=const' the condition 'a IS NULL' can be used.
|
|
|
|
If all selected fields are replaced then we will also remove all
|
|
involved tables and return the answer without any join. Thus, the
|
|
following query will be replaced with a row of two constants:
|
|
SELECT MAX(b), MIN(d) FROM t1,t2
|
|
WHERE a=const AND b<const AND d>const
|
|
(assuming a index for column d of table t2 is defined)
|
|
|
|
*/
|
|
|
|
#include "mysql_priv.h"
|
|
#include "sql_select.h"
|
|
|
|
static bool find_key_for_maxmin(bool max_fl, TABLE_REF *ref, Field* field,
|
|
COND *cond, uint *range_fl,
|
|
uint *key_prefix_length);
|
|
static int reckey_in_range(bool max_fl, TABLE_REF *ref, Field* field,
|
|
COND *cond, uint range_fl, uint prefix_len);
|
|
static int maxmin_in_range(bool max_fl, Field* field, COND *cond);
|
|
|
|
|
|
/*
|
|
Get exact count of rows in all tables
|
|
|
|
SYNOPSIS
|
|
get_exact_records()
|
|
tables List of tables
|
|
|
|
NOTES
|
|
When this is called, we know all table handlers supports HA_HAS_RECORDS
|
|
or HA_STATS_RECORDS_IS_EXACT
|
|
|
|
RETURN
|
|
ULONGLONG_MAX Error: Could not calculate number of rows
|
|
# Multiplication of number of rows in all tables
|
|
*/
|
|
|
|
static ulonglong get_exact_record_count(TABLE_LIST *tables)
|
|
{
|
|
ulonglong count= 1;
|
|
for (TABLE_LIST *tl= tables; tl; tl= tl->next_leaf)
|
|
{
|
|
ha_rows tmp= tl->table->file->records();
|
|
if ((tmp == HA_POS_ERROR))
|
|
return ULONGLONG_MAX;
|
|
count*= tmp;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
|
|
/*
|
|
Substitutes constants for some COUNT(), MIN() and MAX() functions.
|
|
|
|
SYNOPSIS
|
|
opt_sum_query()
|
|
tables list of leaves of join table tree
|
|
all_fields All fields to be returned
|
|
conds WHERE clause
|
|
|
|
NOTE:
|
|
This function is only called for queries with sum functions and no
|
|
GROUP BY part.
|
|
|
|
RETURN VALUES
|
|
0 no errors
|
|
1 if all items were resolved
|
|
HA_ERR_KEY_NOT_FOUND on impossible conditions
|
|
OR an error number from my_base.h HA_ERR_... if a deadlock or a lock
|
|
wait timeout happens, for example
|
|
*/
|
|
|
|
int opt_sum_query(TABLE_LIST *tables, List<Item> &all_fields,COND *conds)
|
|
{
|
|
List_iterator_fast<Item> it(all_fields);
|
|
int const_result= 1;
|
|
bool recalc_const_item= 0;
|
|
ulonglong count= 1;
|
|
bool is_exact_count= TRUE, maybe_exact_count= TRUE;
|
|
table_map removed_tables= 0, outer_tables= 0, used_tables= 0;
|
|
table_map where_tables= 0;
|
|
Item *item;
|
|
int error;
|
|
|
|
if (conds)
|
|
where_tables= conds->used_tables();
|
|
|
|
/*
|
|
Analyze outer join dependencies, and, if possible, compute the number
|
|
of returned rows.
|
|
*/
|
|
for (TABLE_LIST *tl= tables; tl; tl= tl->next_leaf)
|
|
{
|
|
TABLE_LIST *embedded;
|
|
for (embedded= tl ; embedded; embedded= embedded->embedding)
|
|
{
|
|
if (embedded->on_expr)
|
|
break;
|
|
}
|
|
if (embedded)
|
|
/* Don't replace expression on a table that is part of an outer join */
|
|
{
|
|
outer_tables|= tl->table->map;
|
|
|
|
/*
|
|
We can't optimise LEFT JOIN in cases where the WHERE condition
|
|
restricts the table that is used, like in:
|
|
SELECT MAX(t1.a) FROM t1 LEFT JOIN t2 join-condition
|
|
WHERE t2.field IS NULL;
|
|
*/
|
|
if (tl->table->map & where_tables)
|
|
return 0;
|
|
}
|
|
else
|
|
used_tables|= tl->table->map;
|
|
|
|
/*
|
|
If the storage manager of 'tl' gives exact row count as part of
|
|
statistics (cheap), compute the total number of rows. If there are
|
|
no outer table dependencies, this count may be used as the real count.
|
|
Schema tables are filled after this function is invoked, so we can't
|
|
get row count
|
|
*/
|
|
if (!(tl->table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT) ||
|
|
tl->schema_table)
|
|
{
|
|
maybe_exact_count&= test(!tl->schema_table &&
|
|
(tl->table->file->ha_table_flags() &
|
|
HA_HAS_RECORDS));
|
|
is_exact_count= FALSE;
|
|
count= 1; // ensure count != 0
|
|
}
|
|
else
|
|
{
|
|
error= tl->table->file->info(HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK);
|
|
if(error)
|
|
{
|
|
tl->table->file->print_error(error, MYF(0));
|
|
tl->table->in_use->fatal_error();
|
|
return error;
|
|
}
|
|
count*= tl->table->file->stats.records;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Iterate through all items in the SELECT clause and replace
|
|
COUNT(), MIN() and MAX() with constants (if possible).
|
|
*/
|
|
|
|
while ((item= it++))
|
|
{
|
|
if (item->type() == Item::SUM_FUNC_ITEM)
|
|
{
|
|
Item_sum *item_sum= (((Item_sum*) item));
|
|
switch (item_sum->sum_func()) {
|
|
case Item_sum::COUNT_FUNC:
|
|
/*
|
|
If the expr in COUNT(expr) can never be null we can change this
|
|
to the number of rows in the tables if this number is exact and
|
|
there are no outer joins.
|
|
*/
|
|
if (!conds && !((Item_sum_count*) item)->args[0]->maybe_null &&
|
|
!outer_tables && maybe_exact_count)
|
|
{
|
|
if (!is_exact_count)
|
|
{
|
|
if ((count= get_exact_record_count(tables)) == ULONGLONG_MAX)
|
|
{
|
|
/* Error from handler in counting rows. Don't optimize count() */
|
|
const_result= 0;
|
|
continue;
|
|
}
|
|
is_exact_count= 1; // count is now exact
|
|
}
|
|
((Item_sum_count*) item)->make_const((longlong) count);
|
|
recalc_const_item= 1;
|
|
}
|
|
else
|
|
const_result= 0;
|
|
break;
|
|
case Item_sum::MIN_FUNC:
|
|
{
|
|
/*
|
|
If MIN(expr) is the first part of a key or if all previous
|
|
parts of the key is found in the COND, then we can use
|
|
indexes to find the key.
|
|
*/
|
|
Item *expr=item_sum->args[0];
|
|
if (expr->real_item()->type() == Item::FIELD_ITEM)
|
|
{
|
|
uchar key_buff[MAX_KEY_LENGTH];
|
|
TABLE_REF ref;
|
|
uint range_fl, prefix_len;
|
|
|
|
ref.key_buff= key_buff;
|
|
Item_field *item_field= (Item_field*) (expr->real_item());
|
|
TABLE *table= item_field->field->table;
|
|
|
|
/*
|
|
Look for a partial key that can be used for optimization.
|
|
If we succeed, ref.key_length will contain the length of
|
|
this key, while prefix_len will contain the length of
|
|
the beginning of this key without field used in MIN().
|
|
Type of range for the key part for this field will be
|
|
returned in range_fl.
|
|
*/
|
|
if (table->file->inited || (outer_tables & table->map) ||
|
|
!find_key_for_maxmin(0, &ref, item_field->field, conds,
|
|
&range_fl, &prefix_len))
|
|
{
|
|
const_result= 0;
|
|
break;
|
|
}
|
|
error= table->file->ha_index_init((uint) ref.key, 1);
|
|
|
|
if (!ref.key_length)
|
|
error= table->file->index_first(table->record[0]);
|
|
else
|
|
{
|
|
/*
|
|
Use index to replace MIN/MAX functions with their values
|
|
according to the following rules:
|
|
|
|
1) Insert the minimum non-null values where the WHERE clause still
|
|
matches, or
|
|
2) a NULL value if there are only NULL values for key_part_k.
|
|
3) Fail, producing a row of nulls
|
|
|
|
Implementation: Read the smallest value using the search key. If
|
|
the interval is open, read the next value after the search
|
|
key. If read fails, and we're looking for a MIN() value for a
|
|
nullable column, test if there is an exact match for the key.
|
|
*/
|
|
if (!(range_fl & NEAR_MIN))
|
|
/*
|
|
Closed interval: Either The MIN argument is non-nullable, or
|
|
we have a >= predicate for the MIN argument.
|
|
*/
|
|
error= table->file->index_read_map(table->record[0],
|
|
ref.key_buff,
|
|
make_prev_keypart_map(ref.key_parts),
|
|
HA_READ_KEY_OR_NEXT);
|
|
else
|
|
{
|
|
/*
|
|
Open interval: There are two cases:
|
|
1) We have only MIN() and the argument column is nullable, or
|
|
2) there is a > predicate on it, nullability is irrelevant.
|
|
We need to scan the next bigger record first.
|
|
*/
|
|
error= table->file->index_read_map(table->record[0],
|
|
ref.key_buff,
|
|
make_prev_keypart_map(ref.key_parts),
|
|
HA_READ_AFTER_KEY);
|
|
/*
|
|
If the found record is outside the group formed by the search
|
|
prefix, or there is no such record at all, check if all
|
|
records in that group have NULL in the MIN argument
|
|
column. If that is the case return that NULL.
|
|
|
|
Check if case 1 from above holds. If it does, we should read
|
|
the skipped tuple.
|
|
*/
|
|
if (item_field->field->real_maybe_null() &&
|
|
ref.key_buff[prefix_len] == 1 &&
|
|
/*
|
|
Last keypart (i.e. the argument to MIN) is set to NULL by
|
|
find_key_for_maxmin only if all other keyparts are bound
|
|
to constants in a conjunction of equalities. Hence, we
|
|
can detect this by checking only if the last keypart is
|
|
NULL.
|
|
*/
|
|
(error == HA_ERR_KEY_NOT_FOUND ||
|
|
key_cmp_if_same(table, ref.key_buff, ref.key, prefix_len)))
|
|
{
|
|
DBUG_ASSERT(item_field->field->real_maybe_null());
|
|
error= table->file->index_read_map(table->record[0],
|
|
ref.key_buff,
|
|
make_prev_keypart_map(ref.key_parts),
|
|
HA_READ_KEY_EXACT);
|
|
}
|
|
}
|
|
}
|
|
/* Verify that the read tuple indeed matches the search key */
|
|
if (!error && reckey_in_range(0, &ref, item_field->field,
|
|
conds, range_fl, prefix_len))
|
|
error= HA_ERR_KEY_NOT_FOUND;
|
|
if (table->key_read)
|
|
{
|
|
table->key_read= 0;
|
|
table->file->extra(HA_EXTRA_NO_KEYREAD);
|
|
}
|
|
table->file->ha_index_end();
|
|
if (error)
|
|
{
|
|
if (error == HA_ERR_KEY_NOT_FOUND || error == HA_ERR_END_OF_FILE)
|
|
return HA_ERR_KEY_NOT_FOUND; // No rows matching WHERE
|
|
/* HA_ERR_LOCK_DEADLOCK or some other error */
|
|
table->file->print_error(error, MYF(0));
|
|
return(error);
|
|
}
|
|
removed_tables|= table->map;
|
|
}
|
|
else if (!expr->const_item() || !is_exact_count)
|
|
{
|
|
/*
|
|
The optimization is not applicable in both cases:
|
|
(a) 'expr' is a non-constant expression. Then we can't
|
|
replace 'expr' by a constant.
|
|
(b) 'expr' is a costant. According to ANSI, MIN/MAX must return
|
|
NULL if the query does not return any rows. Thus, if we are not
|
|
able to determine if the query returns any rows, we can't apply
|
|
the optimization and replace MIN/MAX with a constant.
|
|
*/
|
|
const_result= 0;
|
|
break;
|
|
}
|
|
if (!count)
|
|
{
|
|
/* If count == 0, then we know that is_exact_count == TRUE. */
|
|
((Item_sum_min*) item_sum)->clear(); /* Set to NULL. */
|
|
}
|
|
else
|
|
((Item_sum_min*) item_sum)->reset(); /* Set to the constant value. */
|
|
((Item_sum_min*) item_sum)->make_const();
|
|
recalc_const_item= 1;
|
|
break;
|
|
}
|
|
case Item_sum::MAX_FUNC:
|
|
{
|
|
/*
|
|
If MAX(expr) is the first part of a key or if all previous
|
|
parts of the key is found in the COND, then we can use
|
|
indexes to find the key.
|
|
*/
|
|
Item *expr=item_sum->args[0];
|
|
if (expr->real_item()->type() == Item::FIELD_ITEM)
|
|
{
|
|
uchar key_buff[MAX_KEY_LENGTH];
|
|
TABLE_REF ref;
|
|
uint range_fl, prefix_len;
|
|
|
|
ref.key_buff= key_buff;
|
|
Item_field *item_field= (Item_field*) (expr->real_item());
|
|
TABLE *table= item_field->field->table;
|
|
|
|
/*
|
|
Look for a partial key that can be used for optimization.
|
|
If we succeed, ref.key_length will contain the length of
|
|
this key, while prefix_len will contain the length of
|
|
the beginning of this key without field used in MAX().
|
|
Type of range for the key part for this field will be
|
|
returned in range_fl.
|
|
*/
|
|
if (table->file->inited || (outer_tables & table->map) ||
|
|
!find_key_for_maxmin(1, &ref, item_field->field, conds,
|
|
&range_fl, &prefix_len))
|
|
{
|
|
const_result= 0;
|
|
break;
|
|
}
|
|
error= table->file->ha_index_init((uint) ref.key, 1);
|
|
|
|
if (!ref.key_length)
|
|
error= table->file->index_last(table->record[0]);
|
|
else
|
|
error= table->file->index_read_map(table->record[0], key_buff,
|
|
make_prev_keypart_map(ref.key_parts),
|
|
range_fl & NEAR_MAX ?
|
|
HA_READ_BEFORE_KEY :
|
|
HA_READ_PREFIX_LAST_OR_PREV);
|
|
if (!error && reckey_in_range(1, &ref, item_field->field,
|
|
conds, range_fl, prefix_len))
|
|
error= HA_ERR_KEY_NOT_FOUND;
|
|
if (table->key_read)
|
|
{
|
|
table->key_read=0;
|
|
table->file->extra(HA_EXTRA_NO_KEYREAD);
|
|
}
|
|
table->file->ha_index_end();
|
|
if (error)
|
|
{
|
|
if (error == HA_ERR_KEY_NOT_FOUND || error == HA_ERR_END_OF_FILE)
|
|
return HA_ERR_KEY_NOT_FOUND; // No rows matching WHERE
|
|
/* HA_ERR_LOCK_DEADLOCK or some other error */
|
|
table->file->print_error(error, MYF(0));
|
|
table->in_use->fatal_error();
|
|
return(error);
|
|
}
|
|
removed_tables|= table->map;
|
|
}
|
|
else if (!expr->const_item() || !is_exact_count)
|
|
{
|
|
/*
|
|
The optimization is not applicable in both cases:
|
|
(a) 'expr' is a non-constant expression. Then we can't
|
|
replace 'expr' by a constant.
|
|
(b) 'expr' is a costant. According to ANSI, MIN/MAX must return
|
|
NULL if the query does not return any rows. Thus, if we are not
|
|
able to determine if the query returns any rows, we can't apply
|
|
the optimization and replace MIN/MAX with a constant.
|
|
*/
|
|
const_result= 0;
|
|
break;
|
|
}
|
|
if (!count)
|
|
{
|
|
/* If count != 1, then we know that is_exact_count == TRUE. */
|
|
((Item_sum_max*) item_sum)->clear(); /* Set to NULL. */
|
|
}
|
|
else
|
|
((Item_sum_max*) item_sum)->reset(); /* Set to the constant value. */
|
|
((Item_sum_max*) item_sum)->make_const();
|
|
recalc_const_item= 1;
|
|
break;
|
|
}
|
|
default:
|
|
const_result= 0;
|
|
break;
|
|
}
|
|
}
|
|
else if (const_result)
|
|
{
|
|
if (recalc_const_item)
|
|
item->update_used_tables();
|
|
if (!item->const_item())
|
|
const_result= 0;
|
|
}
|
|
}
|
|
/*
|
|
If we have a where clause, we can only ignore searching in the
|
|
tables if MIN/MAX optimisation replaced all used tables
|
|
We do not use replaced values in case of:
|
|
SELECT MIN(key) FROM table_1, empty_table
|
|
removed_tables is != 0 if we have used MIN() or MAX().
|
|
*/
|
|
if (removed_tables && used_tables != removed_tables)
|
|
const_result= 0; // We didn't remove all tables
|
|
return const_result;
|
|
}
|
|
|
|
|
|
/*
|
|
Test if the predicate compares a field with constants
|
|
|
|
SYNOPSIS
|
|
simple_pred()
|
|
func_item Predicate item
|
|
args out: Here we store the field followed by constants
|
|
inv_order out: Is set to 1 if the predicate is of the form
|
|
'const op field'
|
|
|
|
RETURN
|
|
0 func_item is a simple predicate: a field is compared with
|
|
constants
|
|
1 Otherwise
|
|
*/
|
|
|
|
bool simple_pred(Item_func *func_item, Item **args, bool *inv_order)
|
|
{
|
|
Item *item;
|
|
*inv_order= 0;
|
|
switch (func_item->argument_count()) {
|
|
case 0:
|
|
/* MULT_EQUAL_FUNC */
|
|
{
|
|
Item_equal *item_equal= (Item_equal *) func_item;
|
|
Item_equal_iterator it(*item_equal);
|
|
args[0]= it++;
|
|
if (it++)
|
|
return 0;
|
|
if (!(args[1]= item_equal->get_const()))
|
|
return 0;
|
|
}
|
|
break;
|
|
case 1:
|
|
/* field IS NULL */
|
|
item= func_item->arguments()[0];
|
|
if (item->type() != Item::FIELD_ITEM)
|
|
return 0;
|
|
args[0]= item;
|
|
break;
|
|
case 2:
|
|
/* 'field op const' or 'const op field' */
|
|
item= func_item->arguments()[0];
|
|
if (item->type() == Item::FIELD_ITEM)
|
|
{
|
|
args[0]= item;
|
|
item= func_item->arguments()[1];
|
|
if (!item->const_item())
|
|
return 0;
|
|
args[1]= item;
|
|
}
|
|
else if (item->const_item())
|
|
{
|
|
args[1]= item;
|
|
item= func_item->arguments()[1];
|
|
if (item->type() != Item::FIELD_ITEM)
|
|
return 0;
|
|
args[0]= item;
|
|
*inv_order= 1;
|
|
}
|
|
else
|
|
return 0;
|
|
break;
|
|
case 3:
|
|
/* field BETWEEN const AND const */
|
|
item= func_item->arguments()[0];
|
|
if (item->type() == Item::FIELD_ITEM)
|
|
{
|
|
args[0]= item;
|
|
for (int i= 1 ; i <= 2; i++)
|
|
{
|
|
item= func_item->arguments()[i];
|
|
if (!item->const_item())
|
|
return 0;
|
|
args[i]= item;
|
|
}
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
Check whether a condition matches a key to get {MAX|MIN}(field):
|
|
|
|
SYNOPSIS
|
|
matching_cond()
|
|
max_fl in: Set to 1 if we are optimising MAX()
|
|
ref in/out: Reference to the structure we store the key value
|
|
keyinfo in Reference to the key info
|
|
field_part in: Pointer to the key part for the field
|
|
cond in WHERE condition
|
|
key_part_used in/out: Map of matchings parts
|
|
range_fl in/out: Says whether including key will be used
|
|
prefix_len out: Length of common key part for the range
|
|
where MAX/MIN is searched for
|
|
|
|
DESCRIPTION
|
|
For the index specified by the keyinfo parameter, index that
|
|
contains field as its component (field_part), the function
|
|
checks whether the condition cond is a conjunction and all its
|
|
conjuncts referring to the columns of the same table as column
|
|
field are one of the following forms:
|
|
- f_i= const_i or const_i= f_i or f_i is null,
|
|
where f_i is part of the index
|
|
- field {<|<=|>=|>|=} const or const {<|<=|>=|>|=} field
|
|
- field between const1 and const2
|
|
|
|
RETURN
|
|
0 Index can't be used.
|
|
1 We can use index to get MIN/MAX value
|
|
*/
|
|
|
|
static bool matching_cond(bool max_fl, TABLE_REF *ref, KEY *keyinfo,
|
|
KEY_PART_INFO *field_part, COND *cond,
|
|
key_part_map *key_part_used, uint *range_fl,
|
|
uint *prefix_len)
|
|
{
|
|
if (!cond)
|
|
return 1;
|
|
Field *field= field_part->field;
|
|
if (!(cond->used_tables() & field->table->map))
|
|
{
|
|
/* Condition doesn't restrict the used table */
|
|
return 1;
|
|
}
|
|
if (cond->type() == Item::COND_ITEM)
|
|
{
|
|
if (((Item_cond*) cond)->functype() == Item_func::COND_OR_FUNC)
|
|
return 0;
|
|
|
|
/* AND */
|
|
List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
|
|
Item *item;
|
|
while ((item= li++))
|
|
{
|
|
if (!matching_cond(max_fl, ref, keyinfo, field_part, item,
|
|
key_part_used, range_fl, prefix_len))
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
if (cond->type() != Item::FUNC_ITEM)
|
|
return 0; // Not operator, can't optimize
|
|
|
|
bool eq_type= 0; // =, <=> or IS NULL
|
|
bool noeq_type= 0; // < or >
|
|
bool less_fl= 0; // < or <=
|
|
bool is_null= 0;
|
|
bool between= 0;
|
|
|
|
switch (((Item_func*) cond)->functype()) {
|
|
case Item_func::ISNULL_FUNC:
|
|
is_null= 1; /* fall through */
|
|
case Item_func::EQ_FUNC:
|
|
case Item_func::EQUAL_FUNC:
|
|
eq_type= 1;
|
|
break;
|
|
case Item_func::LT_FUNC:
|
|
noeq_type= 1; /* fall through */
|
|
case Item_func::LE_FUNC:
|
|
less_fl= 1;
|
|
break;
|
|
case Item_func::GT_FUNC:
|
|
noeq_type= 1; /* fall through */
|
|
case Item_func::GE_FUNC:
|
|
break;
|
|
case Item_func::BETWEEN:
|
|
between= 1;
|
|
break;
|
|
case Item_func::MULT_EQUAL_FUNC:
|
|
eq_type= 1;
|
|
break;
|
|
default:
|
|
return 0; // Can't optimize function
|
|
}
|
|
|
|
Item *args[3];
|
|
bool inv;
|
|
|
|
/* Test if this is a comparison of a field and constant */
|
|
if (!simple_pred((Item_func*) cond, args, &inv))
|
|
return 0;
|
|
|
|
if (inv && !eq_type)
|
|
less_fl= 1-less_fl; // Convert '<' -> '>' (etc)
|
|
|
|
/* Check if field is part of the tested partial key */
|
|
uchar *key_ptr= ref->key_buff;
|
|
KEY_PART_INFO *part;
|
|
for (part= keyinfo->key_part; ; key_ptr+= part++->store_length)
|
|
|
|
{
|
|
if (part > field_part)
|
|
return 0; // Field is beyond the tested parts
|
|
if (part->field->eq(((Item_field*) args[0])->field))
|
|
break; // Found a part of the key for the field
|
|
}
|
|
|
|
bool is_field_part= part == field_part;
|
|
if (!(is_field_part || eq_type))
|
|
return 0;
|
|
|
|
key_part_map org_key_part_used= *key_part_used;
|
|
if (eq_type || between || max_fl == less_fl)
|
|
{
|
|
uint length= (key_ptr-ref->key_buff)+part->store_length;
|
|
if (ref->key_length < length)
|
|
{
|
|
/* Ultimately ref->key_length will contain the length of the search key */
|
|
ref->key_length= length;
|
|
ref->key_parts= (part - keyinfo->key_part) + 1;
|
|
}
|
|
if (!*prefix_len && part+1 == field_part)
|
|
*prefix_len= length;
|
|
if (is_field_part && eq_type)
|
|
*prefix_len= ref->key_length;
|
|
|
|
*key_part_used|= (key_part_map) 1 << (part - keyinfo->key_part);
|
|
}
|
|
|
|
if (org_key_part_used != *key_part_used ||
|
|
(is_field_part &&
|
|
(between || eq_type || max_fl == less_fl) && !cond->val_int()))
|
|
{
|
|
/*
|
|
It's the first predicate for this part or a predicate of the
|
|
following form that moves upper/lower bounds for max/min values:
|
|
- field BETWEEN const AND const
|
|
- field = const
|
|
- field {<|<=} const, when searching for MAX
|
|
- field {>|>=} const, when searching for MIN
|
|
*/
|
|
|
|
if (is_null)
|
|
{
|
|
part->field->set_null();
|
|
*key_ptr= (uchar) 1;
|
|
}
|
|
else
|
|
{
|
|
store_val_in_field(part->field, args[between && max_fl ? 2 : 1],
|
|
CHECK_FIELD_IGNORE);
|
|
if (part->null_bit)
|
|
*key_ptr++= (uchar) test(part->field->is_null());
|
|
part->field->get_key_image(key_ptr, part->length, Field::itRAW);
|
|
}
|
|
if (is_field_part)
|
|
{
|
|
if (between || eq_type)
|
|
*range_fl&= ~(NO_MAX_RANGE | NO_MIN_RANGE);
|
|
else
|
|
{
|
|
*range_fl&= ~(max_fl ? NO_MAX_RANGE : NO_MIN_RANGE);
|
|
if (noeq_type)
|
|
*range_fl|= (max_fl ? NEAR_MAX : NEAR_MIN);
|
|
else
|
|
*range_fl&= ~(max_fl ? NEAR_MAX : NEAR_MIN);
|
|
}
|
|
}
|
|
}
|
|
else if (eq_type)
|
|
{
|
|
if (!is_null && !cond->val_int() ||
|
|
is_null && !test(part->field->is_null()))
|
|
return 0; // Impossible test
|
|
}
|
|
else if (is_field_part)
|
|
*range_fl&= ~(max_fl ? NO_MIN_RANGE : NO_MAX_RANGE);
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
Check whether we can get value for {max|min}(field) by using a key.
|
|
|
|
SYNOPSIS
|
|
find_key_for_maxmin()
|
|
max_fl in: 0 for MIN(field) / 1 for MAX(field)
|
|
ref in/out Reference to the structure we store the key value
|
|
field in: Field used inside MIN() / MAX()
|
|
cond in: WHERE condition
|
|
range_fl out: Bit flags for how to search if key is ok
|
|
prefix_len out: Length of prefix for the search range
|
|
|
|
DESCRIPTION
|
|
If where condition is not a conjunction of 0 or more conjuct the
|
|
function returns false, otherwise it checks whether there is an
|
|
index including field as its k-th component/part such that:
|
|
|
|
1. for each previous component f_i there is one and only one conjunct
|
|
of the form: f_i= const_i or const_i= f_i or f_i is null
|
|
2. references to field occur only in conjucts of the form:
|
|
field {<|<=|>=|>|=} const or const {<|<=|>=|>|=} field or
|
|
field BETWEEN const1 AND const2
|
|
3. all references to the columns from the same table as column field
|
|
occur only in conjucts mentioned above.
|
|
4. each of k first components the index is not partial, i.e. is not
|
|
defined on a fixed length proper prefix of the field.
|
|
|
|
If such an index exists the function through the ref parameter
|
|
returns the key value to find max/min for the field using the index,
|
|
the length of first (k-1) components of the key and flags saying
|
|
how to apply the key for the search max/min value.
|
|
(if we have a condition field = const, prefix_len contains the length
|
|
of the whole search key)
|
|
|
|
NOTE
|
|
This function may set table->key_read to 1, which must be reset after
|
|
index is used! (This can only happen when function returns 1)
|
|
|
|
RETURN
|
|
0 Index can not be used to optimize MIN(field)/MAX(field)
|
|
1 Can use key to optimize MIN()/MAX()
|
|
In this case ref, range_fl and prefix_len are updated
|
|
*/
|
|
|
|
static bool find_key_for_maxmin(bool max_fl, TABLE_REF *ref,
|
|
Field* field, COND *cond,
|
|
uint *range_fl, uint *prefix_len)
|
|
{
|
|
if (!(field->flags & PART_KEY_FLAG))
|
|
return 0; // Not key field
|
|
|
|
TABLE *table= field->table;
|
|
uint idx= 0;
|
|
|
|
KEY *keyinfo,*keyinfo_end;
|
|
for (keyinfo= table->key_info, keyinfo_end= keyinfo+table->s->keys ;
|
|
keyinfo != keyinfo_end;
|
|
keyinfo++,idx++)
|
|
{
|
|
KEY_PART_INFO *part,*part_end;
|
|
key_part_map key_part_to_use= 0;
|
|
/*
|
|
Perform a check if index is not disabled by ALTER TABLE
|
|
or IGNORE INDEX.
|
|
*/
|
|
if (!table->keys_in_use_for_query.is_set(idx))
|
|
continue;
|
|
uint jdx= 0;
|
|
*prefix_len= 0;
|
|
for (part= keyinfo->key_part, part_end= part+keyinfo->key_parts ;
|
|
part != part_end ;
|
|
part++, jdx++, key_part_to_use= (key_part_to_use << 1) | 1)
|
|
{
|
|
if (!(table->file->index_flags(idx, jdx, 0) & HA_READ_ORDER))
|
|
return 0;
|
|
|
|
/* Check whether the index component is partial */
|
|
Field *part_field= table->field[part->fieldnr-1];
|
|
if ((part_field->flags & BLOB_FLAG) ||
|
|
part->length < part_field->key_length())
|
|
break;
|
|
|
|
if (field->eq(part->field))
|
|
{
|
|
ref->key= idx;
|
|
ref->key_length= 0;
|
|
ref->key_parts= 0;
|
|
key_part_map key_part_used= 0;
|
|
*range_fl= NO_MIN_RANGE | NO_MAX_RANGE;
|
|
if (matching_cond(max_fl, ref, keyinfo, part, cond,
|
|
&key_part_used, range_fl, prefix_len) &&
|
|
!(key_part_to_use & ~key_part_used))
|
|
{
|
|
if (!max_fl && key_part_used == key_part_to_use && part->null_bit)
|
|
{
|
|
/*
|
|
The query is on this form:
|
|
|
|
SELECT MIN(key_part_k)
|
|
FROM t1
|
|
WHERE key_part_1 = const and ... and key_part_k-1 = const
|
|
|
|
If key_part_k is nullable, we want to find the first matching row
|
|
where key_part_k is not null. The key buffer is now {const, ...,
|
|
NULL}. This will be passed to the handler along with a flag
|
|
indicating open interval. If a tuple is read that does not match
|
|
these search criteria, an attempt will be made to read an exact
|
|
match for the key buffer.
|
|
*/
|
|
/* Set the first byte of key_part_k to 1, that means NULL */
|
|
ref->key_buff[ref->key_length]= 1;
|
|
ref->key_length+= part->store_length;
|
|
ref->key_parts++;
|
|
DBUG_ASSERT(ref->key_parts == jdx+1);
|
|
*range_fl&= ~NO_MIN_RANGE;
|
|
*range_fl|= NEAR_MIN; // Open interval
|
|
}
|
|
/*
|
|
The following test is false when the key in the key tree is
|
|
converted (for example to upper case)
|
|
*/
|
|
if (field->part_of_key.is_set(idx))
|
|
{
|
|
table->key_read= 1;
|
|
table->file->extra(HA_EXTRA_KEYREAD);
|
|
}
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
Check whether found key is in range specified by conditions
|
|
|
|
SYNOPSIS
|
|
reckey_in_range()
|
|
max_fl in: 0 for MIN(field) / 1 for MAX(field)
|
|
ref in: Reference to the key value and info
|
|
field in: Field used the MIN/MAX expression
|
|
cond in: WHERE condition
|
|
range_fl in: Says whether there is a condition to to be checked
|
|
prefix_len in: Length of the constant part of the key
|
|
|
|
RETURN
|
|
0 ok
|
|
1 WHERE was not true for the found row
|
|
*/
|
|
|
|
static int reckey_in_range(bool max_fl, TABLE_REF *ref, Field* field,
|
|
COND *cond, uint range_fl, uint prefix_len)
|
|
{
|
|
if (key_cmp_if_same(field->table, ref->key_buff, ref->key, prefix_len))
|
|
return 1;
|
|
if (!cond || (range_fl & (max_fl ? NO_MIN_RANGE : NO_MAX_RANGE)))
|
|
return 0;
|
|
return maxmin_in_range(max_fl, field, cond);
|
|
}
|
|
|
|
|
|
/*
|
|
Check whether {MAX|MIN}(field) is in range specified by conditions
|
|
SYNOPSIS
|
|
maxmin_in_range()
|
|
max_fl in: 0 for MIN(field) / 1 for MAX(field)
|
|
field in: Field used the MIN/MAX expression
|
|
cond in: WHERE condition
|
|
|
|
RETURN
|
|
0 ok
|
|
1 WHERE was not true for the found row
|
|
*/
|
|
|
|
static int maxmin_in_range(bool max_fl, Field* field, COND *cond)
|
|
{
|
|
/* If AND/OR condition */
|
|
if (cond->type() == Item::COND_ITEM)
|
|
{
|
|
List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
|
|
Item *item;
|
|
while ((item= li++))
|
|
{
|
|
if (maxmin_in_range(max_fl, field, item))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (cond->used_tables() != field->table->map)
|
|
return 0;
|
|
bool less_fl= 0;
|
|
switch (((Item_func*) cond)->functype()) {
|
|
case Item_func::BETWEEN:
|
|
return cond->val_int() == 0; // Return 1 if WHERE is false
|
|
case Item_func::LT_FUNC:
|
|
case Item_func::LE_FUNC:
|
|
less_fl= 1;
|
|
case Item_func::GT_FUNC:
|
|
case Item_func::GE_FUNC:
|
|
{
|
|
Item *item= ((Item_func*) cond)->arguments()[1];
|
|
/* In case of 'const op item' we have to swap the operator */
|
|
if (!item->const_item())
|
|
less_fl= 1-less_fl;
|
|
/*
|
|
We only have to check the expression if we are using an expression like
|
|
SELECT MAX(b) FROM t1 WHERE a=const AND b>const
|
|
not for
|
|
SELECT MAX(b) FROM t1 WHERE a=const AND b<const
|
|
*/
|
|
if (max_fl != less_fl)
|
|
return cond->val_int() == 0; // Return 1 if WHERE is false
|
|
return 0;
|
|
}
|
|
case Item_func::EQ_FUNC:
|
|
case Item_func::EQUAL_FUNC:
|
|
break;
|
|
default: // Keep compiler happy
|
|
DBUG_ASSERT(1); // Impossible
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|