mariadb/sql/opt_sum.cc
unknown 2a0d2fef51 Bug#12713 "Error in a stored function called from a SELECT doesn't
cause ROLLBACK of statement", part 1. Review fixes.

Do not send OK/EOF packets to the client until we reached the end of 
the current statement.
This is a consolidation, to keep the functionality that is shared by all 
SQL statements in one place in the server.
Currently this functionality includes:
- close_thread_tables()
- log_slow_statement().

After this patch and the subsequent patch for Bug#12713, it shall also include:
- ha_autocommit_or_rollback()
- net_end_statement()
- query_cache_end_of_result().

In future it may also include:
- mysql_reset_thd_for_next_command().


include/mysql_com.h:
  Rename now unused members of NET: no_send_ok, no_send_error, report_error.
  These were server-specific variables related to the client/server
  protocol. They have been made obsolete by this patch.
  
  Previously the same members of NET were used to store the error message
  both on the client and on the server. 
  The error message was stored in net.last_error (client: mysql->net.last_error,
  server: thd->net.last_error).
  The error code was stored in net.last_errno (client: mysql->net.last_errno,
  server: thd->net.last_errno).
  The server error code and message are now stored elsewhere 
  (in the Diagnostics_area), thus NET members are no longer used by the
  server.
  Rename last_error to client_last_error, last_errno to client_last_errno
  to avoid potential bugs introduced by merges.
include/mysql_h.ic:
  Update the ABI file to reflect a rename. 
  Renames do not break the binary compatibility.
libmysql/libmysql.c:
  Rename last_error to client_last_error, last_errno to client_last_errno.
  This is necessary to ensure no unnoticed bugs introduced by merged
  changesets.
  
  Remove net.report_error, net.no_send_ok, net.no_send_error.
libmysql/manager.c:
  Rename net.last_errno to net.client_last_errno.
libmysqld/lib_sql.cc:
  Rename net.last_errno to net.client_last_errno.
  
  Update the embedded implementation of the client-server protocol to
  reflect the refactoring of protocol.cc.
libmysqld/libmysqld.c:
  Rename net.last_errno to net.client_last_errno.
mysql-test/r/events.result:
  Update to reflect the change in mysql_rm_db(). Now we drop stored
  routines and events for a given database name only if there
  is a directory for this database name. ha_drop_database() and
  query_cache_invalidate() are called likewise. 
  Previously we would attempt to drop routines/events even if database
  directory was not found (it worked, since routines and events are stored
  in tables). This fixes Bug 29958 "Weird message on DROP DATABASE if mysql.proc
  does not exist".
  The change was done because the previous code used to call send_ok()
  twice, which led to an assertion failure when asserts against it were
  added by this patch.
mysql-test/r/grant.result:
  Fix the patch for Bug 16470, now FLUSH PRIVILEGES produces an error 
  if mysql.procs_priv is missing.
  This fixes the assert that send_ok() must not called after send_error()
  (the original patch for Bug 16470 was prone to this).
mysql-test/suite/rpl/r/rpl_row_tabledefs_2myisam.result:
  Produce a more detailed error message.
mysql-test/suite/rpl/r/rpl_row_tabledefs_3innodb.result:
  Produce a more detailed error message.
mysql-test/t/grant.test:
  Update the test, now FLUSH PRIVILEGES returns an error if mysql.procs_priv
  is missing.
server-tools/instance-manager/mysql_connection.cc:
  Rename net.last_errno to net.client_last_errno.
sql/ha_ndbcluster_binlog.cc:
  Add asserts. 
  
  Use getters to access statement status information.
  
  Add a comment why run_query() is broken. Reset the diagnostics area
  in the end of run_query() to fulfill the invariant that the diagnostics_area
  is never assigned twice per statement (see the comment in the code
  when this can happen). We still do not clear thd->is_fatal_error and
  thd->is_slave_error, which may lead to bugs, I consider the whole affair
  as something to be dealt with separately.
sql/ha_partition.cc:
  fatal_error() doesn't set an error by itself. Perhaps we should
  remove this method altogether and instead add a flag to my_error 
  to set thd->is_fatal_error property.
  
  Meanwhile, this change is a part of inspection made to the entire source
  code with the goal to ensure that fatal_error()
  is always accompanied by my_error().
sql/item_func.cc:
  There is no net.last_error anymore. Remove the obsolete assignment.
sql/log_event.cc:
  Use getters to access statement error status information.
sql/log_event_old.cc:
  Use getters to access statement error status information.
sql/mysqld.cc:
  Previously, if a continue handler for an error was found, my_message_sql() 
  would not set an error in THD. Since the current statement
  must be aborted in any case, find_handler() had a hack to assign 
  thd->net.report_error to 1.
  
  Remove this hack. Set an error in my_message_sql() even if the continue
  handler is found. The error will be cleared anyway when the handler
  is executed. This is one action among many in this patch to ensure the 
  invariant that whenever thd->is_error() is TRUE, we have a message in 
  thd->main_da.message().
sql/net_serv.cc:
  Use a full-blown my_error() in net_serv.cc to report an error,
  instead of just setting net->last_errno. This ensures the invariant that
  whenever thd->is_error() returns TRUE, we have a message in 
  thd->main_da.message().
  
  Remove initialization of removed NET members.
sql/opt_range.cc:
  Use my_error() instead of just raising thd->net.report_error. 
  This ensures the invariant that whenever thd->is_error() returns TRUE, 
  there is a message in thd->main_da.message().
sql/opt_sum.cc:
  Move invocation of fatal_error() right next to the place where
  we set the error message. That makes it easier to track that whenever
  fatal_error() is called, there is a message in THD.
sql/protocol.cc:
  Rename send_ok() and send_eof() to net_send_ok() and net_send_eof() 
  respectively. These functions write directly to the network and are not 
  for use anywhere outside the client/server protocol code. 
  
  Remove the code that was responsible for cases when either there is 
  no error code, or no error message, or both.
  Instead the calling code ensures that they are always present. Asserts
  are added to enforce the invariant.
  
  Instead of a direct access to thd->server_status and thd->total_warn_count
  use function parameters, since these from now on don't always come directly
  from THD.
  
  Introduce net_end_statement(), the single-entry-point replacement API for 
  send_ok(), send_eof() and net_send_error().
  
  Implement Protocol::end_partial_result_set to use in select_send::abort()
  when there is a continue handler.
sql/protocol.h:
  Update declarations.
sql/repl_failsafe.cc:
  Use getters to access statement status information in THD.
  Rename net.last_error to net.client_last_error.
sql/rpl_record.cc:
  Set an error message in prepare_record() if there is no default
  value for the field -- later we do print this message to the client.
sql/rpl_rli.cc:
  Use getters to access statement status information in THD.
sql/slave.cc:
  In create_table_from_dump() (a common function that is used in 
  LOAD MASTER TABLE SQL statement and COM_LOAD_MASTER_DATA), instead of hacks
  with no_send_ok, clear the diagnostics area when mysql_rm_table() succeeded.
  
  Update has_temporary_error() to work correctly when no error is set.
  This is the case when Incident_log_event is executed: it always returns
  an error but does not set an error message.
  
  Use getters to access error status information.
sql/sp_head.cc:
  Instead of hacks with no_send_error, work through the diagnostics area 
  interface to suppress sending of OK/ERROR packets to the client.
  
  Move query_cache_end_of_result before log_slow_statement(), similarly
  to how it's done in dispatch_command().
sql/sp_rcontext.cc:
  Remove hacks with assignment of thd->net.report_error, they are not
  necessary any more (see the changes in mysqld.cc).
sql/sql_acl.cc:
  Use getters to access error status information in THD.
sql/sql_base.cc:
  Access thd->main_da.sql_errno() only if there is an error. This fixes
  a bug when auto-discovery, that was effectively disabled under pre-locking.
sql/sql_binlog.cc:
  Remove hacks with no_send_ok/no_send_error, they are not necessary 
  anymore: the caller is responsible for network communication.
sql/sql_cache.cc:
  Disable sending of OK/ERROR/EOF packet in the end of dispatch_command
  if the response has been served from the query cache. This raises the 
  question whether we should store EOF packet in the query cache at all,
  or generate it anew for each statement (we should generate it anew), but
  this is to be addressed separately.
sql/sql_class.cc:
  Implement class Diagnostics_area. Please see comments in sql_class.h
  for details.
  
  Fix a subtle coding mistake in select_send::send_data: when on slave, 
  an error in Item::send() was ignored.
  The problem became visible due to asserts that the diagnostics area is
  never double assigned.
  
  Remove initialization of removed NET members.
  
  In select_send::abort() do not call select_send::send_eof(). This is
  not inheritance-safe. Even if a stored procedure continue handler is
  found, the current statement is aborted, not succeeded.
  Instead introduce a Protocol API to send the required response, 
  Protocol::end_partial_result_set().
  
  This simplifies implementation of select_send::send_eof(). No need
  to add more asserts that there is no error, there is an assert inside
  Diagnostics_area::set_ok_status() already.
  
  Leave no trace of no_send_* in the code.
sql/sql_class.h:
  Declare class Diagnostics_area. 
  
  Remove the hack with no_send_ok from
  Substatement_state.
  
  Provide inline implementations of send_ok/send_eof.
  
  Add commetns.
sql/sql_connect.cc:
  Remove hacks with no_send_error. 
  
  Since now an error in THD is always set if net->error, it's not necessary
  to check both net->error and thd->is_error() in the do_command loop.
  
  Use thd->main_da.message() instead of net->last_errno.
  
  Remove the hack with is_slave_error in sys_init_connect. Since now we do not
  reset the diagnostics area in net_send_error (it's reset at the beginning
  of the next statement), we can access it safely even after 
  execute_init_command.
sql/sql_db.cc:
  Update the code to satisfy the invariant that the diagnostics area is never
  assigned twice.
  Incidentally, this fixes Bug 29958 "Weird message on DROP DATABASE if 
  mysql.proc does not exist".
sql/sql_delete.cc:
  Change multi-delete to abort in abort(), as per select_send protocol.
  Fixes the merge error with the test for Bug 29136
sql/sql_derived.cc:
  Use getters to access error information.
sql/sql_insert.cc:
  Use getters to access error information.
sql-common/client.c:
  Rename last_error to client_last_error, last_errno to client_last_errno.
sql/sql_parse.cc:
  Remove hacks with no_send_error. Deploy net_end_statement().
  
  The story of COM_SHUTDOWN is interesting. Long story short, the server 
  would become on its death's door, and only no_send_ok/no_send_error assigned
  by send_ok()/net_send_error() would hide its babbling from the client.
  
  First of all, COM_QUIT does not require a response. So, the comment saying
  "Let's send a response to possible COM_QUIT" is not only groundless 
  (even mysqladmin shutdown/mysql_shutdown() doesn't send COM_QUIT after 
  COM_SHUTDOWN), it's plainly incorrect.
  
  Secondly, besides this additional 'OK' packet to respond to a hypothetical
  COM_QUIT, there was the following code in dispatch_command():
  
  if (thd->killed)
    thd->send_kill_message();
  if (thd->is_error()
    net_send_error(thd);
  
  This worked out really funny for the thread through which COM_SHUTDOWN
  was delivered: we would get COM_SHUTDOWN, say okay, say okay again, 
  kill everybody, get the kill signal ourselves, and then attempt to say 
  "Server shutdown in progress" to the client that is very likely long gone.
  
  This all became visible when asserts were added that the Diagnostics_area
  is not assigned twice.
  
  Move query_cache_end_of_result() to the end of dispatch_command(), since
  net_send_eof() has been moved there. This is safe, query_cache_end_of_result()
  is a no-op if there is no started query in the cache.
  
  Consistently use select_send interface to call abort() or send_eof()
  depending on the operation result.
  
  Remove thd->fatal_error() from reset_master(), it was a no-op. 
  in hacks with no_send_error woudl save us
  from complete breakage of the client/server protocol.
  
  Consistently use select_send::abort() whenever there is an error, 
  and select_send::send_eof() in case of success.
  The issue became visible due to added asserts.
sql/sql_partition.cc:
  Always set an error in THD whenever there is a call to fatal_error().
sql/sql_prepare.cc:
  Deploy class Diagnostics_area.
  Remove the unnecessary juggling with the protocol in 
  Select_fetch_protocol_binary::send_eof(). EOF packet format is 
  protocol-independent.
sql/sql_select.cc:
  Call fatal_error() directly in opt_sum_query.
  Call my_error() whenever we call thd->fatal_error().
sql/sql_servers.cc:
  Use getters to access error information in THD.
sql/sql_show.cc:
  Use getters to access error information in THD.
  
  Add comments.
  
  Call my_error() whenever we call fatal_error().
sql/sql_table.cc:
  Replace hacks with no_send_ok with the interface of the diagnostics area.
  
  Clear the error if ENOENT error in ha_delete_table().
sql/sql_update.cc:
  Introduce multi_update::abort(), which is the proper way to abort a
  multi-update. This fixes the merge conflict between this patch and
  the patch for Bug 29136.
sql/table.cc:
  Use a getter to access error information in THD.
sql/tztime.cc:
  Use a getter to access error information in THD.
2007-12-12 18:21:01 +03:00

980 lines
32 KiB
C++

/* Copyright (C) 2000-2003 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
Optimising of MIN(), MAX() and COUNT(*) queries without 'group by' clause
by replacing the aggregate expression with a constant.
Given a table with a compound key on columns (a,b,c), the following
types of queries are optimised (assuming the table handler supports
the required methods)
SELECT COUNT(*) FROM t1[,t2,t3,...]
SELECT MIN(b) FROM t1 WHERE a=const
SELECT MAX(c) FROM t1 WHERE a=const AND b=const
SELECT MAX(b) FROM t1 WHERE a=const AND b<const
SELECT MIN(b) FROM t1 WHERE a=const AND b>const
SELECT MIN(b) FROM t1 WHERE a=const AND b BETWEEN const AND const
SELECT MAX(b) FROM t1 WHERE a=const AND b BETWEEN const AND const
Instead of '<' one can use '<=', '>', '>=' and '=' as well.
Instead of 'a=const' the condition 'a IS NULL' can be used.
If all selected fields are replaced then we will also remove all
involved tables and return the answer without any join. Thus, the
following query will be replaced with a row of two constants:
SELECT MAX(b), MIN(d) FROM t1,t2
WHERE a=const AND b<const AND d>const
(assuming a index for column d of table t2 is defined)
*/
#include "mysql_priv.h"
#include "sql_select.h"
static bool find_key_for_maxmin(bool max_fl, TABLE_REF *ref, Field* field,
COND *cond, uint *range_fl,
uint *key_prefix_length);
static int reckey_in_range(bool max_fl, TABLE_REF *ref, Field* field,
COND *cond, uint range_fl, uint prefix_len);
static int maxmin_in_range(bool max_fl, Field* field, COND *cond);
/*
Get exact count of rows in all tables
SYNOPSIS
get_exact_records()
tables List of tables
NOTES
When this is called, we know all table handlers supports HA_HAS_RECORDS
or HA_STATS_RECORDS_IS_EXACT
RETURN
ULONGLONG_MAX Error: Could not calculate number of rows
# Multiplication of number of rows in all tables
*/
static ulonglong get_exact_record_count(TABLE_LIST *tables)
{
ulonglong count= 1;
for (TABLE_LIST *tl= tables; tl; tl= tl->next_leaf)
{
ha_rows tmp= tl->table->file->records();
if ((tmp == HA_POS_ERROR))
return ULONGLONG_MAX;
count*= tmp;
}
return count;
}
/*
Substitutes constants for some COUNT(), MIN() and MAX() functions.
SYNOPSIS
opt_sum_query()
tables list of leaves of join table tree
all_fields All fields to be returned
conds WHERE clause
NOTE:
This function is only called for queries with sum functions and no
GROUP BY part.
RETURN VALUES
0 no errors
1 if all items were resolved
HA_ERR_KEY_NOT_FOUND on impossible conditions
OR an error number from my_base.h HA_ERR_... if a deadlock or a lock
wait timeout happens, for example
*/
int opt_sum_query(TABLE_LIST *tables, List<Item> &all_fields,COND *conds)
{
List_iterator_fast<Item> it(all_fields);
int const_result= 1;
bool recalc_const_item= 0;
ulonglong count= 1;
bool is_exact_count= TRUE, maybe_exact_count= TRUE;
table_map removed_tables= 0, outer_tables= 0, used_tables= 0;
table_map where_tables= 0;
Item *item;
int error;
if (conds)
where_tables= conds->used_tables();
/*
Analyze outer join dependencies, and, if possible, compute the number
of returned rows.
*/
for (TABLE_LIST *tl= tables; tl; tl= tl->next_leaf)
{
TABLE_LIST *embedded;
for (embedded= tl ; embedded; embedded= embedded->embedding)
{
if (embedded->on_expr)
break;
}
if (embedded)
/* Don't replace expression on a table that is part of an outer join */
{
outer_tables|= tl->table->map;
/*
We can't optimise LEFT JOIN in cases where the WHERE condition
restricts the table that is used, like in:
SELECT MAX(t1.a) FROM t1 LEFT JOIN t2 join-condition
WHERE t2.field IS NULL;
*/
if (tl->table->map & where_tables)
return 0;
}
else
used_tables|= tl->table->map;
/*
If the storage manager of 'tl' gives exact row count as part of
statistics (cheap), compute the total number of rows. If there are
no outer table dependencies, this count may be used as the real count.
Schema tables are filled after this function is invoked, so we can't
get row count
*/
if (!(tl->table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT) ||
tl->schema_table)
{
maybe_exact_count&= test(!tl->schema_table &&
(tl->table->file->ha_table_flags() &
HA_HAS_RECORDS));
is_exact_count= FALSE;
count= 1; // ensure count != 0
}
else
{
error= tl->table->file->info(HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK);
if(error)
{
tl->table->file->print_error(error, MYF(0));
tl->table->in_use->fatal_error();
return error;
}
count*= tl->table->file->stats.records;
}
}
/*
Iterate through all items in the SELECT clause and replace
COUNT(), MIN() and MAX() with constants (if possible).
*/
while ((item= it++))
{
if (item->type() == Item::SUM_FUNC_ITEM)
{
Item_sum *item_sum= (((Item_sum*) item));
switch (item_sum->sum_func()) {
case Item_sum::COUNT_FUNC:
/*
If the expr in COUNT(expr) can never be null we can change this
to the number of rows in the tables if this number is exact and
there are no outer joins.
*/
if (!conds && !((Item_sum_count*) item)->args[0]->maybe_null &&
!outer_tables && maybe_exact_count)
{
if (!is_exact_count)
{
if ((count= get_exact_record_count(tables)) == ULONGLONG_MAX)
{
/* Error from handler in counting rows. Don't optimize count() */
const_result= 0;
continue;
}
is_exact_count= 1; // count is now exact
}
((Item_sum_count*) item)->make_const((longlong) count);
recalc_const_item= 1;
}
else
const_result= 0;
break;
case Item_sum::MIN_FUNC:
{
/*
If MIN(expr) is the first part of a key or if all previous
parts of the key is found in the COND, then we can use
indexes to find the key.
*/
Item *expr=item_sum->args[0];
if (expr->real_item()->type() == Item::FIELD_ITEM)
{
uchar key_buff[MAX_KEY_LENGTH];
TABLE_REF ref;
uint range_fl, prefix_len;
ref.key_buff= key_buff;
Item_field *item_field= (Item_field*) (expr->real_item());
TABLE *table= item_field->field->table;
/*
Look for a partial key that can be used for optimization.
If we succeed, ref.key_length will contain the length of
this key, while prefix_len will contain the length of
the beginning of this key without field used in MIN().
Type of range for the key part for this field will be
returned in range_fl.
*/
if (table->file->inited || (outer_tables & table->map) ||
!find_key_for_maxmin(0, &ref, item_field->field, conds,
&range_fl, &prefix_len))
{
const_result= 0;
break;
}
error= table->file->ha_index_init((uint) ref.key, 1);
if (!ref.key_length)
error= table->file->index_first(table->record[0]);
else
{
/*
Use index to replace MIN/MAX functions with their values
according to the following rules:
1) Insert the minimum non-null values where the WHERE clause still
matches, or
2) a NULL value if there are only NULL values for key_part_k.
3) Fail, producing a row of nulls
Implementation: Read the smallest value using the search key. If
the interval is open, read the next value after the search
key. If read fails, and we're looking for a MIN() value for a
nullable column, test if there is an exact match for the key.
*/
if (!(range_fl & NEAR_MIN))
/*
Closed interval: Either The MIN argument is non-nullable, or
we have a >= predicate for the MIN argument.
*/
error= table->file->index_read_map(table->record[0],
ref.key_buff,
make_prev_keypart_map(ref.key_parts),
HA_READ_KEY_OR_NEXT);
else
{
/*
Open interval: There are two cases:
1) We have only MIN() and the argument column is nullable, or
2) there is a > predicate on it, nullability is irrelevant.
We need to scan the next bigger record first.
*/
error= table->file->index_read_map(table->record[0],
ref.key_buff,
make_prev_keypart_map(ref.key_parts),
HA_READ_AFTER_KEY);
/*
If the found record is outside the group formed by the search
prefix, or there is no such record at all, check if all
records in that group have NULL in the MIN argument
column. If that is the case return that NULL.
Check if case 1 from above holds. If it does, we should read
the skipped tuple.
*/
if (item_field->field->real_maybe_null() &&
ref.key_buff[prefix_len] == 1 &&
/*
Last keypart (i.e. the argument to MIN) is set to NULL by
find_key_for_maxmin only if all other keyparts are bound
to constants in a conjunction of equalities. Hence, we
can detect this by checking only if the last keypart is
NULL.
*/
(error == HA_ERR_KEY_NOT_FOUND ||
key_cmp_if_same(table, ref.key_buff, ref.key, prefix_len)))
{
DBUG_ASSERT(item_field->field->real_maybe_null());
error= table->file->index_read_map(table->record[0],
ref.key_buff,
make_prev_keypart_map(ref.key_parts),
HA_READ_KEY_EXACT);
}
}
}
/* Verify that the read tuple indeed matches the search key */
if (!error && reckey_in_range(0, &ref, item_field->field,
conds, range_fl, prefix_len))
error= HA_ERR_KEY_NOT_FOUND;
if (table->key_read)
{
table->key_read= 0;
table->file->extra(HA_EXTRA_NO_KEYREAD);
}
table->file->ha_index_end();
if (error)
{
if (error == HA_ERR_KEY_NOT_FOUND || error == HA_ERR_END_OF_FILE)
return HA_ERR_KEY_NOT_FOUND; // No rows matching WHERE
/* HA_ERR_LOCK_DEADLOCK or some other error */
table->file->print_error(error, MYF(0));
return(error);
}
removed_tables|= table->map;
}
else if (!expr->const_item() || !is_exact_count)
{
/*
The optimization is not applicable in both cases:
(a) 'expr' is a non-constant expression. Then we can't
replace 'expr' by a constant.
(b) 'expr' is a costant. According to ANSI, MIN/MAX must return
NULL if the query does not return any rows. Thus, if we are not
able to determine if the query returns any rows, we can't apply
the optimization and replace MIN/MAX with a constant.
*/
const_result= 0;
break;
}
if (!count)
{
/* If count == 0, then we know that is_exact_count == TRUE. */
((Item_sum_min*) item_sum)->clear(); /* Set to NULL. */
}
else
((Item_sum_min*) item_sum)->reset(); /* Set to the constant value. */
((Item_sum_min*) item_sum)->make_const();
recalc_const_item= 1;
break;
}
case Item_sum::MAX_FUNC:
{
/*
If MAX(expr) is the first part of a key or if all previous
parts of the key is found in the COND, then we can use
indexes to find the key.
*/
Item *expr=item_sum->args[0];
if (expr->real_item()->type() == Item::FIELD_ITEM)
{
uchar key_buff[MAX_KEY_LENGTH];
TABLE_REF ref;
uint range_fl, prefix_len;
ref.key_buff= key_buff;
Item_field *item_field= (Item_field*) (expr->real_item());
TABLE *table= item_field->field->table;
/*
Look for a partial key that can be used for optimization.
If we succeed, ref.key_length will contain the length of
this key, while prefix_len will contain the length of
the beginning of this key without field used in MAX().
Type of range for the key part for this field will be
returned in range_fl.
*/
if (table->file->inited || (outer_tables & table->map) ||
!find_key_for_maxmin(1, &ref, item_field->field, conds,
&range_fl, &prefix_len))
{
const_result= 0;
break;
}
error= table->file->ha_index_init((uint) ref.key, 1);
if (!ref.key_length)
error= table->file->index_last(table->record[0]);
else
error= table->file->index_read_map(table->record[0], key_buff,
make_prev_keypart_map(ref.key_parts),
range_fl & NEAR_MAX ?
HA_READ_BEFORE_KEY :
HA_READ_PREFIX_LAST_OR_PREV);
if (!error && reckey_in_range(1, &ref, item_field->field,
conds, range_fl, prefix_len))
error= HA_ERR_KEY_NOT_FOUND;
if (table->key_read)
{
table->key_read=0;
table->file->extra(HA_EXTRA_NO_KEYREAD);
}
table->file->ha_index_end();
if (error)
{
if (error == HA_ERR_KEY_NOT_FOUND || error == HA_ERR_END_OF_FILE)
return HA_ERR_KEY_NOT_FOUND; // No rows matching WHERE
/* HA_ERR_LOCK_DEADLOCK or some other error */
table->file->print_error(error, MYF(0));
table->in_use->fatal_error();
return(error);
}
removed_tables|= table->map;
}
else if (!expr->const_item() || !is_exact_count)
{
/*
The optimization is not applicable in both cases:
(a) 'expr' is a non-constant expression. Then we can't
replace 'expr' by a constant.
(b) 'expr' is a costant. According to ANSI, MIN/MAX must return
NULL if the query does not return any rows. Thus, if we are not
able to determine if the query returns any rows, we can't apply
the optimization and replace MIN/MAX with a constant.
*/
const_result= 0;
break;
}
if (!count)
{
/* If count != 1, then we know that is_exact_count == TRUE. */
((Item_sum_max*) item_sum)->clear(); /* Set to NULL. */
}
else
((Item_sum_max*) item_sum)->reset(); /* Set to the constant value. */
((Item_sum_max*) item_sum)->make_const();
recalc_const_item= 1;
break;
}
default:
const_result= 0;
break;
}
}
else if (const_result)
{
if (recalc_const_item)
item->update_used_tables();
if (!item->const_item())
const_result= 0;
}
}
/*
If we have a where clause, we can only ignore searching in the
tables if MIN/MAX optimisation replaced all used tables
We do not use replaced values in case of:
SELECT MIN(key) FROM table_1, empty_table
removed_tables is != 0 if we have used MIN() or MAX().
*/
if (removed_tables && used_tables != removed_tables)
const_result= 0; // We didn't remove all tables
return const_result;
}
/*
Test if the predicate compares a field with constants
SYNOPSIS
simple_pred()
func_item Predicate item
args out: Here we store the field followed by constants
inv_order out: Is set to 1 if the predicate is of the form
'const op field'
RETURN
0 func_item is a simple predicate: a field is compared with
constants
1 Otherwise
*/
bool simple_pred(Item_func *func_item, Item **args, bool *inv_order)
{
Item *item;
*inv_order= 0;
switch (func_item->argument_count()) {
case 0:
/* MULT_EQUAL_FUNC */
{
Item_equal *item_equal= (Item_equal *) func_item;
Item_equal_iterator it(*item_equal);
args[0]= it++;
if (it++)
return 0;
if (!(args[1]= item_equal->get_const()))
return 0;
}
break;
case 1:
/* field IS NULL */
item= func_item->arguments()[0];
if (item->type() != Item::FIELD_ITEM)
return 0;
args[0]= item;
break;
case 2:
/* 'field op const' or 'const op field' */
item= func_item->arguments()[0];
if (item->type() == Item::FIELD_ITEM)
{
args[0]= item;
item= func_item->arguments()[1];
if (!item->const_item())
return 0;
args[1]= item;
}
else if (item->const_item())
{
args[1]= item;
item= func_item->arguments()[1];
if (item->type() != Item::FIELD_ITEM)
return 0;
args[0]= item;
*inv_order= 1;
}
else
return 0;
break;
case 3:
/* field BETWEEN const AND const */
item= func_item->arguments()[0];
if (item->type() == Item::FIELD_ITEM)
{
args[0]= item;
for (int i= 1 ; i <= 2; i++)
{
item= func_item->arguments()[i];
if (!item->const_item())
return 0;
args[i]= item;
}
}
else
return 0;
}
return 1;
}
/*
Check whether a condition matches a key to get {MAX|MIN}(field):
SYNOPSIS
matching_cond()
max_fl in: Set to 1 if we are optimising MAX()
ref in/out: Reference to the structure we store the key value
keyinfo in Reference to the key info
field_part in: Pointer to the key part for the field
cond in WHERE condition
key_part_used in/out: Map of matchings parts
range_fl in/out: Says whether including key will be used
prefix_len out: Length of common key part for the range
where MAX/MIN is searched for
DESCRIPTION
For the index specified by the keyinfo parameter, index that
contains field as its component (field_part), the function
checks whether the condition cond is a conjunction and all its
conjuncts referring to the columns of the same table as column
field are one of the following forms:
- f_i= const_i or const_i= f_i or f_i is null,
where f_i is part of the index
- field {<|<=|>=|>|=} const or const {<|<=|>=|>|=} field
- field between const1 and const2
RETURN
0 Index can't be used.
1 We can use index to get MIN/MAX value
*/
static bool matching_cond(bool max_fl, TABLE_REF *ref, KEY *keyinfo,
KEY_PART_INFO *field_part, COND *cond,
key_part_map *key_part_used, uint *range_fl,
uint *prefix_len)
{
if (!cond)
return 1;
Field *field= field_part->field;
if (!(cond->used_tables() & field->table->map))
{
/* Condition doesn't restrict the used table */
return 1;
}
if (cond->type() == Item::COND_ITEM)
{
if (((Item_cond*) cond)->functype() == Item_func::COND_OR_FUNC)
return 0;
/* AND */
List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item= li++))
{
if (!matching_cond(max_fl, ref, keyinfo, field_part, item,
key_part_used, range_fl, prefix_len))
return 0;
}
return 1;
}
if (cond->type() != Item::FUNC_ITEM)
return 0; // Not operator, can't optimize
bool eq_type= 0; // =, <=> or IS NULL
bool noeq_type= 0; // < or >
bool less_fl= 0; // < or <=
bool is_null= 0;
bool between= 0;
switch (((Item_func*) cond)->functype()) {
case Item_func::ISNULL_FUNC:
is_null= 1; /* fall through */
case Item_func::EQ_FUNC:
case Item_func::EQUAL_FUNC:
eq_type= 1;
break;
case Item_func::LT_FUNC:
noeq_type= 1; /* fall through */
case Item_func::LE_FUNC:
less_fl= 1;
break;
case Item_func::GT_FUNC:
noeq_type= 1; /* fall through */
case Item_func::GE_FUNC:
break;
case Item_func::BETWEEN:
between= 1;
break;
case Item_func::MULT_EQUAL_FUNC:
eq_type= 1;
break;
default:
return 0; // Can't optimize function
}
Item *args[3];
bool inv;
/* Test if this is a comparison of a field and constant */
if (!simple_pred((Item_func*) cond, args, &inv))
return 0;
if (inv && !eq_type)
less_fl= 1-less_fl; // Convert '<' -> '>' (etc)
/* Check if field is part of the tested partial key */
uchar *key_ptr= ref->key_buff;
KEY_PART_INFO *part;
for (part= keyinfo->key_part; ; key_ptr+= part++->store_length)
{
if (part > field_part)
return 0; // Field is beyond the tested parts
if (part->field->eq(((Item_field*) args[0])->field))
break; // Found a part of the key for the field
}
bool is_field_part= part == field_part;
if (!(is_field_part || eq_type))
return 0;
key_part_map org_key_part_used= *key_part_used;
if (eq_type || between || max_fl == less_fl)
{
uint length= (key_ptr-ref->key_buff)+part->store_length;
if (ref->key_length < length)
{
/* Ultimately ref->key_length will contain the length of the search key */
ref->key_length= length;
ref->key_parts= (part - keyinfo->key_part) + 1;
}
if (!*prefix_len && part+1 == field_part)
*prefix_len= length;
if (is_field_part && eq_type)
*prefix_len= ref->key_length;
*key_part_used|= (key_part_map) 1 << (part - keyinfo->key_part);
}
if (org_key_part_used != *key_part_used ||
(is_field_part &&
(between || eq_type || max_fl == less_fl) && !cond->val_int()))
{
/*
It's the first predicate for this part or a predicate of the
following form that moves upper/lower bounds for max/min values:
- field BETWEEN const AND const
- field = const
- field {<|<=} const, when searching for MAX
- field {>|>=} const, when searching for MIN
*/
if (is_null)
{
part->field->set_null();
*key_ptr= (uchar) 1;
}
else
{
store_val_in_field(part->field, args[between && max_fl ? 2 : 1],
CHECK_FIELD_IGNORE);
if (part->null_bit)
*key_ptr++= (uchar) test(part->field->is_null());
part->field->get_key_image(key_ptr, part->length, Field::itRAW);
}
if (is_field_part)
{
if (between || eq_type)
*range_fl&= ~(NO_MAX_RANGE | NO_MIN_RANGE);
else
{
*range_fl&= ~(max_fl ? NO_MAX_RANGE : NO_MIN_RANGE);
if (noeq_type)
*range_fl|= (max_fl ? NEAR_MAX : NEAR_MIN);
else
*range_fl&= ~(max_fl ? NEAR_MAX : NEAR_MIN);
}
}
}
else if (eq_type)
{
if (!is_null && !cond->val_int() ||
is_null && !test(part->field->is_null()))
return 0; // Impossible test
}
else if (is_field_part)
*range_fl&= ~(max_fl ? NO_MIN_RANGE : NO_MAX_RANGE);
return 1;
}
/*
Check whether we can get value for {max|min}(field) by using a key.
SYNOPSIS
find_key_for_maxmin()
max_fl in: 0 for MIN(field) / 1 for MAX(field)
ref in/out Reference to the structure we store the key value
field in: Field used inside MIN() / MAX()
cond in: WHERE condition
range_fl out: Bit flags for how to search if key is ok
prefix_len out: Length of prefix for the search range
DESCRIPTION
If where condition is not a conjunction of 0 or more conjuct the
function returns false, otherwise it checks whether there is an
index including field as its k-th component/part such that:
1. for each previous component f_i there is one and only one conjunct
of the form: f_i= const_i or const_i= f_i or f_i is null
2. references to field occur only in conjucts of the form:
field {<|<=|>=|>|=} const or const {<|<=|>=|>|=} field or
field BETWEEN const1 AND const2
3. all references to the columns from the same table as column field
occur only in conjucts mentioned above.
4. each of k first components the index is not partial, i.e. is not
defined on a fixed length proper prefix of the field.
If such an index exists the function through the ref parameter
returns the key value to find max/min for the field using the index,
the length of first (k-1) components of the key and flags saying
how to apply the key for the search max/min value.
(if we have a condition field = const, prefix_len contains the length
of the whole search key)
NOTE
This function may set table->key_read to 1, which must be reset after
index is used! (This can only happen when function returns 1)
RETURN
0 Index can not be used to optimize MIN(field)/MAX(field)
1 Can use key to optimize MIN()/MAX()
In this case ref, range_fl and prefix_len are updated
*/
static bool find_key_for_maxmin(bool max_fl, TABLE_REF *ref,
Field* field, COND *cond,
uint *range_fl, uint *prefix_len)
{
if (!(field->flags & PART_KEY_FLAG))
return 0; // Not key field
TABLE *table= field->table;
uint idx= 0;
KEY *keyinfo,*keyinfo_end;
for (keyinfo= table->key_info, keyinfo_end= keyinfo+table->s->keys ;
keyinfo != keyinfo_end;
keyinfo++,idx++)
{
KEY_PART_INFO *part,*part_end;
key_part_map key_part_to_use= 0;
/*
Perform a check if index is not disabled by ALTER TABLE
or IGNORE INDEX.
*/
if (!table->keys_in_use_for_query.is_set(idx))
continue;
uint jdx= 0;
*prefix_len= 0;
for (part= keyinfo->key_part, part_end= part+keyinfo->key_parts ;
part != part_end ;
part++, jdx++, key_part_to_use= (key_part_to_use << 1) | 1)
{
if (!(table->file->index_flags(idx, jdx, 0) & HA_READ_ORDER))
return 0;
/* Check whether the index component is partial */
Field *part_field= table->field[part->fieldnr-1];
if ((part_field->flags & BLOB_FLAG) ||
part->length < part_field->key_length())
break;
if (field->eq(part->field))
{
ref->key= idx;
ref->key_length= 0;
ref->key_parts= 0;
key_part_map key_part_used= 0;
*range_fl= NO_MIN_RANGE | NO_MAX_RANGE;
if (matching_cond(max_fl, ref, keyinfo, part, cond,
&key_part_used, range_fl, prefix_len) &&
!(key_part_to_use & ~key_part_used))
{
if (!max_fl && key_part_used == key_part_to_use && part->null_bit)
{
/*
The query is on this form:
SELECT MIN(key_part_k)
FROM t1
WHERE key_part_1 = const and ... and key_part_k-1 = const
If key_part_k is nullable, we want to find the first matching row
where key_part_k is not null. The key buffer is now {const, ...,
NULL}. This will be passed to the handler along with a flag
indicating open interval. If a tuple is read that does not match
these search criteria, an attempt will be made to read an exact
match for the key buffer.
*/
/* Set the first byte of key_part_k to 1, that means NULL */
ref->key_buff[ref->key_length]= 1;
ref->key_length+= part->store_length;
ref->key_parts++;
DBUG_ASSERT(ref->key_parts == jdx+1);
*range_fl&= ~NO_MIN_RANGE;
*range_fl|= NEAR_MIN; // Open interval
}
/*
The following test is false when the key in the key tree is
converted (for example to upper case)
*/
if (field->part_of_key.is_set(idx))
{
table->key_read= 1;
table->file->extra(HA_EXTRA_KEYREAD);
}
return 1;
}
}
}
}
return 0;
}
/*
Check whether found key is in range specified by conditions
SYNOPSIS
reckey_in_range()
max_fl in: 0 for MIN(field) / 1 for MAX(field)
ref in: Reference to the key value and info
field in: Field used the MIN/MAX expression
cond in: WHERE condition
range_fl in: Says whether there is a condition to to be checked
prefix_len in: Length of the constant part of the key
RETURN
0 ok
1 WHERE was not true for the found row
*/
static int reckey_in_range(bool max_fl, TABLE_REF *ref, Field* field,
COND *cond, uint range_fl, uint prefix_len)
{
if (key_cmp_if_same(field->table, ref->key_buff, ref->key, prefix_len))
return 1;
if (!cond || (range_fl & (max_fl ? NO_MIN_RANGE : NO_MAX_RANGE)))
return 0;
return maxmin_in_range(max_fl, field, cond);
}
/*
Check whether {MAX|MIN}(field) is in range specified by conditions
SYNOPSIS
maxmin_in_range()
max_fl in: 0 for MIN(field) / 1 for MAX(field)
field in: Field used the MIN/MAX expression
cond in: WHERE condition
RETURN
0 ok
1 WHERE was not true for the found row
*/
static int maxmin_in_range(bool max_fl, Field* field, COND *cond)
{
/* If AND/OR condition */
if (cond->type() == Item::COND_ITEM)
{
List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item= li++))
{
if (maxmin_in_range(max_fl, field, item))
return 1;
}
return 0;
}
if (cond->used_tables() != field->table->map)
return 0;
bool less_fl= 0;
switch (((Item_func*) cond)->functype()) {
case Item_func::BETWEEN:
return cond->val_int() == 0; // Return 1 if WHERE is false
case Item_func::LT_FUNC:
case Item_func::LE_FUNC:
less_fl= 1;
case Item_func::GT_FUNC:
case Item_func::GE_FUNC:
{
Item *item= ((Item_func*) cond)->arguments()[1];
/* In case of 'const op item' we have to swap the operator */
if (!item->const_item())
less_fl= 1-less_fl;
/*
We only have to check the expression if we are using an expression like
SELECT MAX(b) FROM t1 WHERE a=const AND b>const
not for
SELECT MAX(b) FROM t1 WHERE a=const AND b<const
*/
if (max_fl != less_fl)
return cond->val_int() == 0; // Return 1 if WHERE is false
return 0;
}
case Item_func::EQ_FUNC:
case Item_func::EQUAL_FUNC:
break;
default: // Keep compiler happy
DBUG_ASSERT(1); // Impossible
break;
}
return 0;
}