mariadb/storage/innobase/include/dict0mem.h
Marko Mäkelä 89d80c1b0b Fix many -Wconversion warnings.
Define my_thread_id as an unsigned type, to avoid mismatch with
ulonglong.  Change some parameters to this type.

Use size_t in a few more places.

Declare many flag constants as unsigned to avoid sign mismatch
when shifting bits or applying the unary ~ operator.

When applying the unary ~ operator to enum constants, explictly
cast the result to an unsigned type, because enum constants can
be treated as signed.

In InnoDB, change the source code line number parameters from
ulint to unsigned type. Also, make some InnoDB functions return
a narrower type (unsigned or uint32_t instead of ulint;
bool instead of ibool).
2017-03-07 19:07:27 +02:00

1886 lines
64 KiB
C++

/*****************************************************************************
Copyright (c) 1996, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2012, Facebook Inc.
Copyright (c) 2013, 2017, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file include/dict0mem.h
Data dictionary memory object creation
Created 1/8/1996 Heikki Tuuri
*******************************************************/
#ifndef dict0mem_h
#define dict0mem_h
#include "univ.i"
#include "dict0types.h"
#include "data0type.h"
#include "mem0mem.h"
#include "row0types.h"
#include "rem0types.h"
#include "btr0types.h"
#include "lock0types.h"
#include "que0types.h"
#include "sync0rw.h"
#include "ut0mem.h"
#include "ut0rnd.h"
#include "ut0byte.h"
#include "hash0hash.h"
#include "trx0types.h"
#include "fts0fts.h"
#include "buf0buf.h"
#include "gis0type.h"
#include "os0once.h"
#include "ut0new.h"
#include "fil0fil.h"
#include <my_crypt.h>
#include "fil0crypt.h"
#include <set>
#include <algorithm>
#include <iterator>
#include <ostream>
/* Forward declaration. */
struct ib_rbt_t;
/** Type flags of an index: OR'ing of the flags is allowed to define a
combination of types */
/* @{ */
#define DICT_CLUSTERED 1 /*!< clustered index; for other than
auto-generated clustered indexes,
also DICT_UNIQUE will be set */
#define DICT_UNIQUE 2 /*!< unique index */
#define DICT_UNIVERSAL 4 /*!< index which can contain records from any
other index */
#define DICT_IBUF 8 /*!< insert buffer tree */
#define DICT_CORRUPT 16 /*!< bit to store the corrupted flag
in SYS_INDEXES.TYPE */
#define DICT_FTS 32 /* FTS index; can't be combined with the
other flags */
#define DICT_SPATIAL 64 /* SPATIAL index; can't be combined with the
other flags */
#define DICT_VIRTUAL 128 /* Index on Virtual column */
#define DICT_IT_BITS 8 /*!< number of bits used for
SYS_INDEXES.TYPE */
/* @} */
#if 0 /* not implemented, retained for history */
/** Types for a table object */
#define DICT_TABLE_ORDINARY 1 /*!< ordinary table */
#define DICT_TABLE_CLUSTER_MEMBER 2
#define DICT_TABLE_CLUSTER 3 /* this means that the table is
really a cluster definition */
#endif
/* Table and tablespace flags are generally not used for the Antelope file
format except for the low order bit, which is used differently depending on
where the flags are stored.
==================== Low order flags bit =========================
| REDUNDANT | COMPACT | COMPRESSED and DYNAMIC
SYS_TABLES.TYPE | 1 | 1 | 1
dict_table_t::flags | 0 | 1 | 1
FSP_SPACE_FLAGS | 0 | 0 | 1
fil_space_t::flags | 0 | 0 | 1
Before the 5.1 plugin, SYS_TABLES.TYPE was always DICT_TABLE_ORDINARY (1)
and the tablespace flags field was always 0. In the 5.1 plugin, these fields
were repurposed to identify compressed and dynamic row formats.
The following types and constants describe the flags found in dict_table_t
and SYS_TABLES.TYPE. Similar flags found in fil_space_t and FSP_SPACE_FLAGS
are described in fsp0fsp.h. */
/* @{ */
/** dict_table_t::flags bit 0 is equal to 0 if the row format = Redundant */
#define DICT_TF_REDUNDANT 0 /*!< Redundant row format. */
/** dict_table_t::flags bit 0 is equal to 1 if the row format = Compact */
#define DICT_TF_COMPACT 1 /*!< Compact row format. */
/** This bitmask is used in SYS_TABLES.N_COLS to set and test whether
the Compact page format is used, i.e ROW_FORMAT != REDUNDANT */
#define DICT_N_COLS_COMPACT 0x80000000UL
/** Width of the COMPACT flag */
#define DICT_TF_WIDTH_COMPACT 1
/** Width of the ZIP_SSIZE flag */
#define DICT_TF_WIDTH_ZIP_SSIZE 4
/** Width of the ATOMIC_BLOBS flag. The Antelope file formats broke up
BLOB and TEXT fields, storing the first 768 bytes in the clustered index.
Barracuda row formats store the whole blob or text field off-page atomically.
Secondary indexes are created from this external data using row_ext_t
to cache the BLOB prefixes. */
#define DICT_TF_WIDTH_ATOMIC_BLOBS 1
/** If a table is created with the MYSQL option DATA DIRECTORY and
innodb-file-per-table, an older engine will not be able to find that table.
This flag prevents older engines from attempting to open the table and
allows InnoDB to update_create_info() accordingly. */
#define DICT_TF_WIDTH_DATA_DIR 1
/** Width of the SHARED tablespace flag (Oracle MYSQL 5.7).
Not supported by MariaDB. */
#define DICT_TF_WIDTH_SHARED_SPACE 1
/**
Width of the page compression flag
*/
#define DICT_TF_WIDTH_PAGE_COMPRESSION 1
#define DICT_TF_WIDTH_PAGE_COMPRESSION_LEVEL 4
/**
Width of the page encryption flag
*/
#define DICT_TF_WIDTH_PAGE_ENCRYPTION 1
#define DICT_TF_WIDTH_PAGE_ENCRYPTION_KEY 8
/**
Width of atomic writes flag
DEFAULT=0, ON = 1, OFF = 2
*/
#define DICT_TF_WIDTH_ATOMIC_WRITES 2
/** Width of all the currently known table flags */
#define DICT_TF_BITS (DICT_TF_WIDTH_COMPACT \
+ DICT_TF_WIDTH_ZIP_SSIZE \
+ DICT_TF_WIDTH_ATOMIC_BLOBS \
+ DICT_TF_WIDTH_DATA_DIR \
+ DICT_TF_WIDTH_SHARED_SPACE \
+ DICT_TF_WIDTH_PAGE_COMPRESSION \
+ DICT_TF_WIDTH_PAGE_COMPRESSION_LEVEL \
+ DICT_TF_WIDTH_ATOMIC_WRITES \
+ DICT_TF_WIDTH_PAGE_ENCRYPTION \
+ DICT_TF_WIDTH_PAGE_ENCRYPTION_KEY)
/** A mask of all the known/used bits in table flags */
#define DICT_TF_BIT_MASK (~(~0U << DICT_TF_BITS))
/** Zero relative shift position of the COMPACT field */
#define DICT_TF_POS_COMPACT 0
/** Zero relative shift position of the ZIP_SSIZE field */
#define DICT_TF_POS_ZIP_SSIZE (DICT_TF_POS_COMPACT \
+ DICT_TF_WIDTH_COMPACT)
/** Zero relative shift position of the ATOMIC_BLOBS field */
#define DICT_TF_POS_ATOMIC_BLOBS (DICT_TF_POS_ZIP_SSIZE \
+ DICT_TF_WIDTH_ZIP_SSIZE)
/** Zero relative shift position of the DATA_DIR field */
#define DICT_TF_POS_DATA_DIR (DICT_TF_POS_ATOMIC_BLOBS \
+ DICT_TF_WIDTH_ATOMIC_BLOBS)
/** Zero relative shift position of the SHARED TABLESPACE field */
#define DICT_TF_POS_SHARED_SPACE (DICT_TF_POS_DATA_DIR \
+ DICT_TF_WIDTH_DATA_DIR)
/** Zero relative shift position of the PAGE_COMPRESSION field */
#define DICT_TF_POS_PAGE_COMPRESSION (DICT_TF_POS_SHARED_SPACE \
+ DICT_TF_WIDTH_SHARED_SPACE)
/** Zero relative shift position of the PAGE_COMPRESSION_LEVEL field */
#define DICT_TF_POS_PAGE_COMPRESSION_LEVEL (DICT_TF_POS_PAGE_COMPRESSION \
+ DICT_TF_WIDTH_PAGE_COMPRESSION)
/** Zero relative shift position of the ATOMIC_WRITES field */
#define DICT_TF_POS_ATOMIC_WRITES (DICT_TF_POS_PAGE_COMPRESSION_LEVEL \
+ DICT_TF_WIDTH_PAGE_COMPRESSION_LEVEL)
/** Zero relative shift position of the PAGE_ENCRYPTION field */
#define DICT_TF_POS_PAGE_ENCRYPTION (DICT_TF_POS_ATOMIC_WRITES \
+ DICT_TF_WIDTH_ATOMIC_WRITES)
/** Zero relative shift position of the PAGE_ENCRYPTION_KEY field */
#define DICT_TF_POS_PAGE_ENCRYPTION_KEY (DICT_TF_POS_PAGE_ENCRYPTION \
+ DICT_TF_WIDTH_PAGE_ENCRYPTION)
#define DICT_TF_POS_UNUSED (DICT_TF_POS_PAGE_ENCRYPTION_KEY \
+ DICT_TF_WIDTH_PAGE_ENCRYPTION_KEY)
/** Bit mask of the COMPACT field */
#define DICT_TF_MASK_COMPACT \
((~(~0U << DICT_TF_WIDTH_COMPACT)) \
<< DICT_TF_POS_COMPACT)
/** Bit mask of the ZIP_SSIZE field */
#define DICT_TF_MASK_ZIP_SSIZE \
((~(~0U << DICT_TF_WIDTH_ZIP_SSIZE)) \
<< DICT_TF_POS_ZIP_SSIZE)
/** Bit mask of the ATOMIC_BLOBS field */
#define DICT_TF_MASK_ATOMIC_BLOBS \
((~(~0U << DICT_TF_WIDTH_ATOMIC_BLOBS)) \
<< DICT_TF_POS_ATOMIC_BLOBS)
/** Bit mask of the DATA_DIR field */
#define DICT_TF_MASK_DATA_DIR \
((~(~0U << DICT_TF_WIDTH_DATA_DIR)) \
<< DICT_TF_POS_DATA_DIR)
/** Bit mask of the PAGE_COMPRESSION field */
#define DICT_TF_MASK_PAGE_COMPRESSION \
((~(~0U << DICT_TF_WIDTH_PAGE_COMPRESSION)) \
<< DICT_TF_POS_PAGE_COMPRESSION)
/** Bit mask of the PAGE_COMPRESSION_LEVEL field */
#define DICT_TF_MASK_PAGE_COMPRESSION_LEVEL \
((~(~0U << DICT_TF_WIDTH_PAGE_COMPRESSION_LEVEL)) \
<< DICT_TF_POS_PAGE_COMPRESSION_LEVEL)
/** Bit mask of the ATOMIC_WRITES field */
#define DICT_TF_MASK_ATOMIC_WRITES \
((~(~0U << DICT_TF_WIDTH_ATOMIC_WRITES)) \
<< DICT_TF_POS_ATOMIC_WRITES)
/** Bit mask of the PAGE_ENCRYPTION field */
#define DICT_TF_MASK_PAGE_ENCRYPTION \
((~(~0U << DICT_TF_WIDTH_PAGE_ENCRYPTION)) \
<< DICT_TF_POS_PAGE_ENCRYPTION)
/** Bit mask of the PAGE_ENCRYPTION_KEY field */
#define DICT_TF_MASK_PAGE_ENCRYPTION_KEY \
((~(~0U << DICT_TF_WIDTH_PAGE_ENCRYPTION_KEY)) \
<< DICT_TF_POS_PAGE_ENCRYPTION_KEY)
/** Return the value of the COMPACT field */
#define DICT_TF_GET_COMPACT(flags) \
((flags & DICT_TF_MASK_COMPACT) \
>> DICT_TF_POS_COMPACT)
/** Return the value of the ZIP_SSIZE field */
#define DICT_TF_GET_ZIP_SSIZE(flags) \
((flags & DICT_TF_MASK_ZIP_SSIZE) \
>> DICT_TF_POS_ZIP_SSIZE)
/** Return the value of the ATOMIC_BLOBS field */
#define DICT_TF_HAS_ATOMIC_BLOBS(flags) \
((flags & DICT_TF_MASK_ATOMIC_BLOBS) \
>> DICT_TF_POS_ATOMIC_BLOBS)
/** Return the value of the DATA_DIR field */
#define DICT_TF_HAS_DATA_DIR(flags) \
((flags & DICT_TF_MASK_DATA_DIR) \
>> DICT_TF_POS_DATA_DIR)
/** Return the value of the PAGE_COMPRESSION field */
#define DICT_TF_GET_PAGE_COMPRESSION(flags) \
((flags & DICT_TF_MASK_PAGE_COMPRESSION) \
>> DICT_TF_POS_PAGE_COMPRESSION)
/** Return the value of the PAGE_COMPRESSION_LEVEL field */
#define DICT_TF_GET_PAGE_COMPRESSION_LEVEL(flags) \
((flags & DICT_TF_MASK_PAGE_COMPRESSION_LEVEL) \
>> DICT_TF_POS_PAGE_COMPRESSION_LEVEL)
/** Return the value of the ATOMIC_WRITES field */
#define DICT_TF_GET_ATOMIC_WRITES(flags) \
((flags & DICT_TF_MASK_ATOMIC_WRITES) \
>> DICT_TF_POS_ATOMIC_WRITES)
/** Return the contents of the PAGE_ENCRYPTION field */
#define DICT_TF_GET_PAGE_ENCRYPTION(flags) \
((flags & DICT_TF_MASK_PAGE_ENCRYPTION) \
>> DICT_TF_POS_PAGE_ENCRYPTION)
/** Return the contents of the PAGE_ENCRYPTION KEY field */
#define DICT_TF_GET_PAGE_ENCRYPTION_KEY(flags) \
((flags & DICT_TF_MASK_PAGE_ENCRYPTION_KEY) \
>> DICT_TF_POS_PAGE_ENCRYPTION_KEY)
/** Return the contents of the UNUSED bits */
#define DICT_TF_GET_UNUSED(flags) \
(flags >> DICT_TF_POS_UNUSED)
/* @} */
/** @brief Table Flags set number 2.
These flags will be stored in SYS_TABLES.MIX_LEN. All unused flags
will be written as 0. The column may contain garbage for tables
created with old versions of InnoDB that only implemented
ROW_FORMAT=REDUNDANT. InnoDB engines do not check these flags
for unknown bits in order to protect backward incompatibility. */
/* @{ */
/** Total number of bits in table->flags2. */
#define DICT_TF2_BITS 9
#define DICT_TF2_UNUSED_BIT_MASK (~0U << DICT_TF2_BITS | \
1U << DICT_TF_POS_SHARED_SPACE)
#define DICT_TF2_BIT_MASK ~DICT_TF2_UNUSED_BIT_MASK
/** TEMPORARY; TRUE for tables from CREATE TEMPORARY TABLE. */
#define DICT_TF2_TEMPORARY 1U
/** The table has an internal defined DOC ID column */
#define DICT_TF2_FTS_HAS_DOC_ID 2U
/** The table has an FTS index */
#define DICT_TF2_FTS 4U
/** Need to add Doc ID column for FTS index build.
This is a transient bit for index build */
#define DICT_TF2_FTS_ADD_DOC_ID 8U
/** This bit is used during table creation to indicate that it will
use its own tablespace instead of the system tablespace. */
#define DICT_TF2_USE_FILE_PER_TABLE 16U
/** Set when we discard/detach the tablespace */
#define DICT_TF2_DISCARDED 32U
/** This bit is set if all aux table names (both common tables and
index tables) of a FTS table are in HEX format. */
#define DICT_TF2_FTS_AUX_HEX_NAME 64U
/* @} */
#define DICT_TF2_FLAG_SET(table, flag) \
(table->flags2 |= (flag))
#define DICT_TF2_FLAG_IS_SET(table, flag) \
(table->flags2 & (flag))
#define DICT_TF2_FLAG_UNSET(table, flag) \
(table->flags2 &= ~(flag))
/** Tables could be chained together with Foreign key constraint. When
first load the parent table, we would load all of its descedents.
This could result in rescursive calls and out of stack error eventually.
DICT_FK_MAX_RECURSIVE_LOAD defines the maximum number of recursive loads,
when exceeded, the child table will not be loaded. It will be loaded when
the foreign constraint check needs to be run. */
#define DICT_FK_MAX_RECURSIVE_LOAD 20
/** Similarly, when tables are chained together with foreign key constraints
with on cascading delete/update clause, delete from parent table could
result in recursive cascading calls. This defines the maximum number of
such cascading deletes/updates allowed. When exceeded, the delete from
parent table will fail, and user has to drop excessive foreign constraint
before proceeds. */
#define FK_MAX_CASCADE_DEL 255
/**********************************************************************//**
Creates a table memory object.
@return own: table object */
dict_table_t*
dict_mem_table_create(
/*==================*/
const char* name, /*!< in: table name */
ulint space, /*!< in: space where the clustered index
of the table is placed */
ulint n_cols, /*!< in: total number of columns
including virtual and non-virtual
columns */
ulint n_v_cols, /*!< in: number of virtual columns */
ulint flags, /*!< in: table flags */
ulint flags2); /*!< in: table flags2 */
/**********************************************************************//**
Determines if a table belongs to a system database
@return */
UNIV_INTERN
bool
dict_mem_table_is_system(
/*==================*/
char *name); /*!< in: table name */
/****************************************************************//**
Free a table memory object. */
void
dict_mem_table_free(
/*================*/
dict_table_t* table); /*!< in: table */
/**********************************************************************//**
Adds a column definition to a table. */
void
dict_mem_table_add_col(
/*===================*/
dict_table_t* table, /*!< in: table */
mem_heap_t* heap, /*!< in: temporary memory heap, or NULL */
const char* name, /*!< in: column name, or NULL */
ulint mtype, /*!< in: main datatype */
ulint prtype, /*!< in: precise type */
ulint len) /*!< in: precision */
MY_ATTRIBUTE((nonnull(1)));
/** Adds a virtual column definition to a table.
@param[in,out] table table
@param[in] heap temporary memory heap, or NULL. It is
used to store name when we have not finished
adding all columns. When all columns are
added, the whole name will copy to memory from
table->heap
@param[in] name column name
@param[in] mtype main datatype
@param[in] prtype precise type
@param[in] len length
@param[in] pos position in a table
@param[in] num_base number of base columns
@return the virtual column definition */
dict_v_col_t*
dict_mem_table_add_v_col(
dict_table_t* table,
mem_heap_t* heap,
const char* name,
ulint mtype,
ulint prtype,
ulint len,
ulint pos,
ulint num_base);
/** Adds a stored column definition to a table.
@param[in] table table
@param[in] num_base number of base columns. */
void
dict_mem_table_add_s_col(
dict_table_t* table,
ulint num_base);
/**********************************************************************//**
Renames a column of a table in the data dictionary cache. */
void
dict_mem_table_col_rename(
/*======================*/
dict_table_t* table, /*!< in/out: table */
ulint nth_col,/*!< in: column index */
const char* from, /*!< in: old column name */
const char* to, /*!< in: new column name */
bool is_virtual);
/*!< in: if this is a virtual column */
/**********************************************************************//**
This function populates a dict_col_t memory structure with
supplied information. */
void
dict_mem_fill_column_struct(
/*========================*/
dict_col_t* column, /*!< out: column struct to be
filled */
ulint col_pos, /*!< in: column position */
ulint mtype, /*!< in: main data type */
ulint prtype, /*!< in: precise type */
ulint col_len); /*!< in: column length */
/**********************************************************************//**
This function poplulates a dict_index_t index memory structure with
supplied information. */
UNIV_INLINE
void
dict_mem_fill_index_struct(
/*=======================*/
dict_index_t* index, /*!< out: index to be filled */
mem_heap_t* heap, /*!< in: memory heap */
const char* table_name, /*!< in: table name */
const char* index_name, /*!< in: index name */
ulint space, /*!< in: space where the index tree is
placed, ignored if the index is of
the clustered type */
ulint type, /*!< in: DICT_UNIQUE,
DICT_CLUSTERED, ... ORed */
ulint n_fields); /*!< in: number of fields */
/**********************************************************************//**
Creates an index memory object.
@return own: index object */
dict_index_t*
dict_mem_index_create(
/*==================*/
const char* table_name, /*!< in: table name */
const char* index_name, /*!< in: index name */
ulint space, /*!< in: space where the index tree is
placed, ignored if the index is of
the clustered type */
ulint type, /*!< in: DICT_UNIQUE,
DICT_CLUSTERED, ... ORed */
ulint n_fields); /*!< in: number of fields */
/**********************************************************************//**
Adds a field definition to an index. NOTE: does not take a copy
of the column name if the field is a column. The memory occupied
by the column name may be released only after publishing the index. */
void
dict_mem_index_add_field(
/*=====================*/
dict_index_t* index, /*!< in: index */
const char* name, /*!< in: column name */
ulint prefix_len); /*!< in: 0 or the column prefix length
in a MySQL index like
INDEX (textcol(25)) */
/**********************************************************************//**
Frees an index memory object. */
void
dict_mem_index_free(
/*================*/
dict_index_t* index); /*!< in: index */
/**********************************************************************//**
Creates and initializes a foreign constraint memory object.
@return own: foreign constraint struct */
dict_foreign_t*
dict_mem_foreign_create(void);
/*=========================*/
/**********************************************************************//**
Sets the foreign_table_name_lookup pointer based on the value of
lower_case_table_names. If that is 0 or 1, foreign_table_name_lookup
will point to foreign_table_name. If 2, then another string is
allocated from the heap and set to lower case. */
void
dict_mem_foreign_table_name_lookup_set(
/*===================================*/
dict_foreign_t* foreign, /*!< in/out: foreign struct */
ibool do_alloc); /*!< in: is an alloc needed */
/**********************************************************************//**
Sets the referenced_table_name_lookup pointer based on the value of
lower_case_table_names. If that is 0 or 1, referenced_table_name_lookup
will point to referenced_table_name. If 2, then another string is
allocated from the heap and set to lower case. */
void
dict_mem_referenced_table_name_lookup_set(
/*======================================*/
dict_foreign_t* foreign, /*!< in/out: foreign struct */
ibool do_alloc); /*!< in: is an alloc needed */
/** Fills the dependent virtual columns in a set.
Reason for being dependent are
1) FK can be present on base column of virtual columns
2) FK can be present on column which is a part of virtual index
@param[in,out] foreign foreign key information. */
void
dict_mem_foreign_fill_vcol_set(
dict_foreign_t* foreign);
/** Fill virtual columns set in each fk constraint present in the table.
@param[in,out] table innodb table object. */
void
dict_mem_table_fill_foreign_vcol_set(
dict_table_t* table);
/** Free the vcol_set from all foreign key constraint on the table.
@param[in,out] table innodb table object. */
void
dict_mem_table_free_foreign_vcol_set(
dict_table_t* table);
/** Create a temporary tablename like "#sql-ibtid-inc where
tid = the Table ID
inc = a randomly initialized number that is incremented for each file
The table ID is a 64 bit integer, can use up to 20 digits, and is
initialized at bootstrap. The second number is 32 bits, can use up to 10
digits, and is initialized at startup to a randomly distributed number.
It is hoped that the combination of these two numbers will provide a
reasonably unique temporary file name.
@param[in] heap A memory heap
@param[in] dbtab Table name in the form database/table name
@param[in] id Table id
@return A unique temporary tablename suitable for InnoDB use */
char*
dict_mem_create_temporary_tablename(
mem_heap_t* heap,
const char* dbtab,
table_id_t id);
/** Initialize dict memory variables */
void
dict_mem_init(void);
/** SQL identifier name wrapper for pretty-printing */
class id_name_t
{
public:
/** Default constructor */
id_name_t()
: m_name()
{}
/** Constructor
@param[in] name identifier to assign */
explicit id_name_t(
const char* name)
: m_name(name)
{}
/** Assignment operator
@param[in] name identifier to assign */
id_name_t& operator=(
const char* name)
{
m_name = name;
return(*this);
}
/** Implicit type conversion
@return the name */
operator const char*() const
{
return(m_name);
}
/** Explicit type conversion
@return the name */
const char* operator()() const
{
return(m_name);
}
private:
/** The name in internal representation */
const char* m_name;
};
/** Table name wrapper for pretty-printing */
struct table_name_t
{
/** The name in internal representation */
char* m_name;
};
/** Data structure for a column in a table */
struct dict_col_t{
/*----------------------*/
/** The following are copied from dtype_t,
so that all bit-fields can be packed tightly. */
/* @{ */
unsigned prtype:32; /*!< precise type; MySQL data
type, charset code, flags to
indicate nullability,
signedness, whether this is a
binary string, whether this is
a true VARCHAR where MySQL
uses 2 bytes to store the length */
unsigned mtype:8; /*!< main data type */
/* the remaining fields do not affect alphabetical ordering: */
unsigned len:16; /*!< length; for MySQL data this
is field->pack_length(),
except that for a >= 5.0.3
type true VARCHAR this is the
maximum byte length of the
string data (in addition to
the string, MySQL uses 1 or 2
bytes to store the string length) */
unsigned mbminmaxlen:5; /*!< minimum and maximum length of a
character, in bytes;
DATA_MBMINMAXLEN(mbminlen,mbmaxlen);
mbminlen=DATA_MBMINLEN(mbminmaxlen);
mbmaxlen=DATA_MBMINLEN(mbminmaxlen) */
/*----------------------*/
/* End of definitions copied from dtype_t */
/* @} */
unsigned ind:10; /*!< table column position
(starting from 0) */
unsigned ord_part:1; /*!< nonzero if this column
appears in the ordering fields
of an index */
unsigned max_prefix:12; /*!< maximum index prefix length on
this column. Our current max limit is
3072 for Barracuda table */
};
/** Index information put in a list of virtual column structure. Index
id and virtual column position in the index will be logged.
There can be multiple entries for a given index, with a different position. */
struct dict_v_idx_t {
/** active index on the column */
dict_index_t* index;
/** position in this index */
ulint nth_field;
};
/** Index list to put in dict_v_col_t */
typedef std::list<dict_v_idx_t, ut_allocator<dict_v_idx_t> > dict_v_idx_list;
/** Data structure for a virtual column in a table */
struct dict_v_col_t{
/** column structure */
dict_col_t m_col;
/** array of base column ptr */
dict_col_t** base_col;
/** number of base column */
ulint num_base;
/** column pos in table */
ulint v_pos;
/** Virtual index list, and column position in the index,
the allocated memory is not from table->heap, nor it is
tracked by dict_sys->size */
dict_v_idx_list* v_indexes;
};
/** Data structure for newly added virtual column in a table */
struct dict_add_v_col_t{
/** number of new virtual column */
ulint n_v_col;
/** column structures */
const dict_v_col_t* v_col;
/** new col names */
const char** v_col_name;
};
/** Data structure for a stored column in a table. */
struct dict_s_col_t {
/** Stored column ptr */
dict_col_t* m_col;
/** array of base col ptr */
dict_col_t** base_col;
/** number of base columns */
ulint num_base;
/** column pos in table */
ulint s_pos;
};
/** list to put stored column for create_table_info_t */
typedef std::list<dict_s_col_t, ut_allocator<dict_s_col_t> > dict_s_col_list;
/** @brief DICT_ANTELOPE_MAX_INDEX_COL_LEN is measured in bytes and
is the maximum indexed column length (or indexed prefix length) in
ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT. Also, in any format,
any fixed-length field that is longer than this will be encoded as
a variable-length field.
It is set to 3*256, so that one can create a column prefix index on
256 characters of a TEXT or VARCHAR column also in the UTF-8
charset. In that charset, a character may take at most 3 bytes. This
constant MUST NOT BE CHANGED, or the compatibility of InnoDB data
files would be at risk! */
#define DICT_ANTELOPE_MAX_INDEX_COL_LEN REC_ANTELOPE_MAX_INDEX_COL_LEN
/** Find out maximum indexed column length by its table format.
For ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT, the maximum
field length is REC_ANTELOPE_MAX_INDEX_COL_LEN - 1 (767). For
Barracuda row formats COMPRESSED and DYNAMIC, the length could
be REC_VERSION_56_MAX_INDEX_COL_LEN (3072) bytes */
#define DICT_MAX_FIELD_LEN_BY_FORMAT(table) \
((dict_table_get_format(table) < UNIV_FORMAT_B) \
? (REC_ANTELOPE_MAX_INDEX_COL_LEN - 1) \
: REC_VERSION_56_MAX_INDEX_COL_LEN)
#define DICT_MAX_FIELD_LEN_BY_FORMAT_FLAG(flags) \
((DICT_TF_HAS_ATOMIC_BLOBS(flags) < UNIV_FORMAT_B) \
? (REC_ANTELOPE_MAX_INDEX_COL_LEN - 1) \
: REC_VERSION_56_MAX_INDEX_COL_LEN)
/** Defines the maximum fixed length column size */
#define DICT_MAX_FIXED_COL_LEN DICT_ANTELOPE_MAX_INDEX_COL_LEN
#ifdef WITH_WSREP
#define WSREP_MAX_SUPPORTED_KEY_LENGTH 3500
#endif /* WITH_WSREP */
/** Data structure for a field in an index */
struct dict_field_t{
dict_col_t* col; /*!< pointer to the table column */
id_name_t name; /*!< name of the column */
unsigned prefix_len:12; /*!< 0 or the length of the column
prefix in bytes in a MySQL index of
type, e.g., INDEX (textcol(25));
must be smaller than
DICT_MAX_FIELD_LEN_BY_FORMAT;
NOTE that in the UTF-8 charset, MySQL
sets this to (mbmaxlen * the prefix len)
in UTF-8 chars */
unsigned fixed_len:10; /*!< 0 or the fixed length of the
column if smaller than
DICT_ANTELOPE_MAX_INDEX_COL_LEN */
};
/**********************************************************************//**
PADDING HEURISTIC BASED ON LINEAR INCREASE OF PADDING TO AVOID
COMPRESSION FAILURES
(Note: this is relevant only for compressed indexes)
GOAL: Avoid compression failures by maintaining information about the
compressibility of data. If data is not very compressible then leave
some extra space 'padding' in the uncompressed page making it more
likely that compression of less than fully packed uncompressed page will
succeed.
This padding heuristic works by increasing the pad linearly until the
desired failure rate is reached. A "round" is a fixed number of
compression operations.
After each round, the compression failure rate for that round is
computed. If the failure rate is too high, then padding is incremented
by a fixed value, otherwise it's left intact.
If the compression failure is lower than the desired rate for a fixed
number of consecutive rounds, then the padding is decreased by a fixed
value. This is done to prevent overshooting the padding value,
and to accommodate the possible change in data compressibility. */
/** Number of zip ops in one round. */
#define ZIP_PAD_ROUND_LEN (128)
/** Number of successful rounds after which the padding is decreased */
#define ZIP_PAD_SUCCESSFUL_ROUND_LIMIT (5)
/** Amount by which padding is increased. */
#define ZIP_PAD_INCR (128)
/** Percentage of compression failures that are allowed in a single
round */
extern ulong zip_failure_threshold_pct;
/** Maximum percentage of a page that can be allowed as a pad to avoid
compression failures */
extern ulong zip_pad_max;
/** Data structure to hold information about about how much space in
an uncompressed page should be left as padding to avoid compression
failures. This estimate is based on a self-adapting heuristic. */
struct zip_pad_info_t {
SysMutex* mutex; /*!< mutex protecting the info */
ulint pad; /*!< number of bytes used as pad */
ulint success;/*!< successful compression ops during
current round */
ulint failure;/*!< failed compression ops during
current round */
ulint n_rounds;/*!< number of currently successful
rounds */
volatile os_once::state_t
mutex_created;
/*!< Creation state of mutex member */
};
/** Number of samples of data size kept when page compression fails for
a certain index.*/
#define STAT_DEFRAG_DATA_SIZE_N_SAMPLE 10
/** "GEN_CLUST_INDEX" is the name reserved for InnoDB default
system clustered index when there is no primary key. */
const char innobase_index_reserve_name[] = "GEN_CLUST_INDEX";
/* Estimated number of offsets in records (based on columns)
to start with. */
#define OFFS_IN_REC_NORMAL_SIZE 100
/** Data structure for an index. Most fields will be
initialized to 0, NULL or FALSE in dict_mem_index_create(). */
struct dict_index_t{
index_id_t id; /*!< id of the index */
mem_heap_t* heap; /*!< memory heap */
id_name_t name; /*!< index name */
const char* table_name;/*!< table name */
dict_table_t* table; /*!< back pointer to table */
unsigned space:32;
/*!< space where the index tree is placed */
unsigned page:32;/*!< index tree root page number */
unsigned merge_threshold:6;
/*!< In the pessimistic delete, if the page
data size drops below this limit in percent,
merging it to a neighbor is tried */
# define DICT_INDEX_MERGE_THRESHOLD_DEFAULT 50
unsigned type:DICT_IT_BITS;
/*!< index type (DICT_CLUSTERED, DICT_UNIQUE,
DICT_IBUF, DICT_CORRUPT) */
#define MAX_KEY_LENGTH_BITS 12
unsigned trx_id_offset:MAX_KEY_LENGTH_BITS;
/*!< position of the trx id column
in a clustered index record, if the fields
before it are known to be of a fixed size,
0 otherwise */
#if (1<<MAX_KEY_LENGTH_BITS) < MAX_KEY_LENGTH
# error (1<<MAX_KEY_LENGTH_BITS) < MAX_KEY_LENGTH
#endif
unsigned n_user_defined_cols:10;
/*!< number of columns the user defined to
be in the index: in the internal
representation we add more columns */
unsigned nulls_equal:1;
/*!< if true, SQL NULL == SQL NULL */
#ifdef BTR_CUR_HASH_ADAPT
#ifdef MYSQL_INDEX_DISABLE_AHI
unsigned disable_ahi:1;
/*!< whether to disable the
adaptive hash index.
Maybe this could be disabled for
temporary tables? */
#endif
#endif /* BTR_CUR_HASH_ADAPT */
unsigned n_uniq:10;/*!< number of fields from the beginning
which are enough to determine an index
entry uniquely */
unsigned n_def:10;/*!< number of fields defined so far */
unsigned n_fields:10;/*!< number of fields in the index */
unsigned n_nullable:10;/*!< number of nullable fields */
unsigned cached:1;/*!< TRUE if the index object is in the
dictionary cache */
unsigned to_be_dropped:1;
/*!< TRUE if the index is to be dropped;
protected by dict_operation_lock */
unsigned online_status:2;
/*!< enum online_index_status.
Transitions from ONLINE_INDEX_COMPLETE (to
ONLINE_INDEX_CREATION) are protected
by dict_operation_lock and
dict_sys->mutex. Other changes are
protected by index->lock. */
unsigned uncommitted:1;
/*!< a flag that is set for secondary indexes
that have not been committed to the
data dictionary yet */
#ifdef UNIV_DEBUG
uint32_t magic_n;/*!< magic number */
/** Value of dict_index_t::magic_n */
# define DICT_INDEX_MAGIC_N 76789786
#endif
dict_field_t* fields; /*!< array of field descriptions */
st_mysql_ftparser*
parser; /*!< fulltext parser plugin */
bool is_ngram;
/*!< true if it's ngram parser */
bool has_new_v_col;
/*!< whether it has a newly added virtual
column in ALTER */
UT_LIST_NODE_T(dict_index_t)
indexes;/*!< list of indexes of the table */
#ifdef BTR_CUR_ADAPT
btr_search_t* search_info;
/*!< info used in optimistic searches */
#endif /* BTR_CUR_ADAPT */
row_log_t* online_log;
/*!< the log of modifications
during online index creation;
valid when online_status is
ONLINE_INDEX_CREATION */
/*----------------------*/
/** Statistics for query optimization */
/* @{ */
ib_uint64_t* stat_n_diff_key_vals;
/*!< approximate number of different
key values for this index, for each
n-column prefix where 1 <= n <=
dict_get_n_unique(index) (the array is
indexed from 0 to n_uniq-1); we
periodically calculate new
estimates */
ib_uint64_t* stat_n_sample_sizes;
/*!< number of pages that were sampled
to calculate each of stat_n_diff_key_vals[],
e.g. stat_n_sample_sizes[3] pages were sampled
to get the number stat_n_diff_key_vals[3]. */
ib_uint64_t* stat_n_non_null_key_vals;
/* approximate number of non-null key values
for this index, for each column where
1 <= n <= dict_get_n_unique(index) (the array
is indexed from 0 to n_uniq-1); This
is used when innodb_stats_method is
"nulls_ignored". */
ulint stat_index_size;
/*!< approximate index size in
database pages */
ulint stat_n_leaf_pages;
/*!< approximate number of leaf pages in the
index tree */
bool stats_error_printed;
/*!< has persistent statistics error printed
for this index ? */
/* @} */
/** Statistics for defragmentation, these numbers are estimations and
could be very inaccurate at certain times, e.g. right after restart,
during defragmentation, etc. */
/* @{ */
ulint stat_defrag_modified_counter;
ulint stat_defrag_n_pages_freed;
/* number of pages freed by defragmentation. */
ulint stat_defrag_n_page_split;
/* number of page splits since last full index
defragmentation. */
ulint stat_defrag_data_size_sample[STAT_DEFRAG_DATA_SIZE_N_SAMPLE];
/* data size when compression failure happened
the most recent 10 times. */
ulint stat_defrag_sample_next_slot;
/* in which slot the next sample should be
saved. */
/* @} */
rtr_ssn_t rtr_ssn;/*!< Node sequence number for RTree */
rtr_info_track_t*
rtr_track;/*!< tracking all R-Tree search cursors */
trx_id_t trx_id; /*!< id of the transaction that created this
index, or 0 if the index existed
when InnoDB was started up */
zip_pad_info_t zip_pad;/*!< Information about state of
compression failures and successes */
rw_lock_t lock; /*!< read-write lock protecting the
upper levels of the index tree */
/** Determine if the index has been committed to the
data dictionary.
@return whether the index definition has been committed */
bool is_committed() const
{
ut_ad(!uncommitted || !(type & DICT_CLUSTERED));
return(UNIV_LIKELY(!uncommitted));
}
/** Flag an index committed or uncommitted.
@param[in] committed whether the index is committed */
void set_committed(bool committed)
{
ut_ad(!to_be_dropped);
ut_ad(committed || !(type & DICT_CLUSTERED));
uncommitted = !committed;
}
};
/** The status of online index creation */
enum online_index_status {
/** the index is complete and ready for access */
ONLINE_INDEX_COMPLETE = 0,
/** the index is being created, online
(allowing concurrent modifications) */
ONLINE_INDEX_CREATION,
/** secondary index creation was aborted and the index
should be dropped as soon as index->table->n_ref_count reaches 0,
or online table rebuild was aborted and the clustered index
of the original table should soon be restored to
ONLINE_INDEX_COMPLETE */
ONLINE_INDEX_ABORTED,
/** the online index creation was aborted, the index was
dropped from the data dictionary and the tablespace, and it
should be dropped from the data dictionary cache as soon as
index->table->n_ref_count reaches 0. */
ONLINE_INDEX_ABORTED_DROPPED
};
/** Set to store the virtual columns which are affected by Foreign
key constraint. */
typedef std::set<dict_v_col_t*, std::less<dict_v_col_t*>,
ut_allocator<dict_v_col_t*> > dict_vcol_set;
/** Data structure for a foreign key constraint; an example:
FOREIGN KEY (A, B) REFERENCES TABLE2 (C, D). Most fields will be
initialized to 0, NULL or FALSE in dict_mem_foreign_create(). */
struct dict_foreign_t{
mem_heap_t* heap; /*!< this object is allocated from
this memory heap */
char* id; /*!< id of the constraint as a
null-terminated string */
unsigned n_fields:10; /*!< number of indexes' first fields
for which the foreign key
constraint is defined: we allow the
indexes to contain more fields than
mentioned in the constraint, as long
as the first fields are as mentioned */
unsigned type:6; /*!< 0 or DICT_FOREIGN_ON_DELETE_CASCADE
or DICT_FOREIGN_ON_DELETE_SET_NULL */
char* foreign_table_name;/*!< foreign table name */
char* foreign_table_name_lookup;
/*!< foreign table name used for dict lookup */
dict_table_t* foreign_table; /*!< table where the foreign key is */
const char** foreign_col_names;/*!< names of the columns in the
foreign key */
char* referenced_table_name;/*!< referenced table name */
char* referenced_table_name_lookup;
/*!< referenced table name for dict lookup*/
dict_table_t* referenced_table;/*!< table where the referenced key
is */
const char** referenced_col_names;/*!< names of the referenced
columns in the referenced table */
dict_index_t* foreign_index; /*!< foreign index; we require that
both tables contain explicitly defined
indexes for the constraint: InnoDB
does not generate new indexes
implicitly */
dict_index_t* referenced_index;/*!< referenced index */
dict_vcol_set* v_cols; /*!< set of virtual columns affected
by foreign key constraint. */
};
std::ostream&
operator<< (std::ostream& out, const dict_foreign_t& foreign);
struct dict_foreign_print {
dict_foreign_print(std::ostream& out)
: m_out(out)
{}
void operator()(const dict_foreign_t* foreign) {
m_out << *foreign;
}
private:
std::ostream& m_out;
};
/** Compare two dict_foreign_t objects using their ids. Used in the ordering
of dict_table_t::foreign_set and dict_table_t::referenced_set. It returns
true if the first argument is considered to go before the second in the
strict weak ordering it defines, and false otherwise. */
struct dict_foreign_compare {
bool operator()(
const dict_foreign_t* lhs,
const dict_foreign_t* rhs) const
{
return(ut_strcmp(lhs->id, rhs->id) < 0);
}
};
/** A function object to find a foreign key with the given index as the
referenced index. Return the foreign key with matching criteria or NULL */
struct dict_foreign_with_index {
dict_foreign_with_index(const dict_index_t* index)
: m_index(index)
{}
bool operator()(const dict_foreign_t* foreign) const
{
return(foreign->referenced_index == m_index);
}
const dict_index_t* m_index;
};
#ifdef WITH_WSREP
/** A function object to find a foreign key with the given index as the
foreign index. Return the foreign key with matching criteria or NULL */
struct dict_foreign_with_foreign_index {
dict_foreign_with_foreign_index(const dict_index_t* index)
: m_index(index)
{}
bool operator()(const dict_foreign_t* foreign) const
{
return(foreign->foreign_index == m_index);
}
const dict_index_t* m_index;
};
#endif
/* A function object to check if the foreign constraint is between different
tables. Returns true if foreign key constraint is between different tables,
false otherwise. */
struct dict_foreign_different_tables {
bool operator()(const dict_foreign_t* foreign) const
{
return(foreign->foreign_table != foreign->referenced_table);
}
};
/** A function object to check if the foreign key constraint has the same
name as given. If the full name of the foreign key constraint doesn't match,
then, check if removing the database name from the foreign key constraint
matches. Return true if it matches, false otherwise. */
struct dict_foreign_matches_id {
dict_foreign_matches_id(const char* id)
: m_id(id)
{}
bool operator()(const dict_foreign_t* foreign) const
{
if (0 == innobase_strcasecmp(foreign->id, m_id)) {
return(true);
}
if (const char* pos = strchr(foreign->id, '/')) {
if (0 == innobase_strcasecmp(m_id, pos + 1)) {
return(true);
}
}
return(false);
}
const char* m_id;
};
typedef std::set<
dict_foreign_t*,
dict_foreign_compare,
ut_allocator<dict_foreign_t*> > dict_foreign_set;
std::ostream&
operator<< (std::ostream& out, const dict_foreign_set& fk_set);
/** Function object to check if a foreign key object is there
in the given foreign key set or not. It returns true if the
foreign key is not found, false otherwise */
struct dict_foreign_not_exists {
dict_foreign_not_exists(const dict_foreign_set& obj_)
: m_foreigns(obj_)
{}
/* Return true if the given foreign key is not found */
bool operator()(dict_foreign_t* const & foreign) const {
return(m_foreigns.find(foreign) == m_foreigns.end());
}
private:
const dict_foreign_set& m_foreigns;
};
/** Validate the search order in the foreign key set.
@param[in] fk_set the foreign key set to be validated
@return true if search order is fine in the set, false otherwise. */
bool
dict_foreign_set_validate(
const dict_foreign_set& fk_set);
/** Validate the search order in the foreign key sets of the table
(foreign_set and referenced_set).
@param[in] table table whose foreign key sets are to be validated
@return true if foreign key sets are fine, false otherwise. */
bool
dict_foreign_set_validate(
const dict_table_t& table);
/*********************************************************************//**
Frees a foreign key struct. */
inline
void
dict_foreign_free(
/*==============*/
dict_foreign_t* foreign) /*!< in, own: foreign key struct */
{
if (foreign->v_cols != NULL) {
UT_DELETE(foreign->v_cols);
}
mem_heap_free(foreign->heap);
}
/** The destructor will free all the foreign key constraints in the set
by calling dict_foreign_free() on each of the foreign key constraints.
This is used to free the allocated memory when a local set goes out
of scope. */
struct dict_foreign_set_free {
dict_foreign_set_free(const dict_foreign_set& foreign_set)
: m_foreign_set(foreign_set)
{}
~dict_foreign_set_free()
{
std::for_each(m_foreign_set.begin(),
m_foreign_set.end(),
dict_foreign_free);
}
const dict_foreign_set& m_foreign_set;
};
/** The flags for ON_UPDATE and ON_DELETE can be ORed; the default is that
a foreign key constraint is enforced, therefore RESTRICT just means no flag */
/* @{ */
#define DICT_FOREIGN_ON_DELETE_CASCADE 1U /*!< ON DELETE CASCADE */
#define DICT_FOREIGN_ON_DELETE_SET_NULL 2U /*!< ON UPDATE SET NULL */
#define DICT_FOREIGN_ON_UPDATE_CASCADE 4U /*!< ON DELETE CASCADE */
#define DICT_FOREIGN_ON_UPDATE_SET_NULL 8U /*!< ON UPDATE SET NULL */
#define DICT_FOREIGN_ON_DELETE_NO_ACTION 16U /*!< ON DELETE NO ACTION */
#define DICT_FOREIGN_ON_UPDATE_NO_ACTION 32U /*!< ON UPDATE NO ACTION */
/* @} */
/** Display an identifier.
@param[in,out] s output stream
@param[in] id_name SQL identifier (other than table name)
@return the output stream */
std::ostream&
operator<<(
std::ostream& s,
const id_name_t& id_name);
/** Display a table name.
@param[in,out] s output stream
@param[in] table_name table name
@return the output stream */
std::ostream&
operator<<(
std::ostream& s,
const table_name_t& table_name);
/** List of locks that different transactions have acquired on a table. This
list has a list node that is embedded in a nested union/structure. We have to
generate a specific template for it. */
typedef ut_list_base<lock_t, ut_list_node<lock_t> lock_table_t::*>
table_lock_list_t;
/** mysql template structure defined in row0mysql.cc */
struct mysql_row_templ_t;
/** Structure defines template related to virtual columns and
their base columns */
struct dict_vcol_templ_t {
/** number of regular columns */
ulint n_col;
/** number of virtual columns */
ulint n_v_col;
/** array of templates for virtual col and their base columns */
mysql_row_templ_t** vtempl;
/** table's database name */
std::string db_name;
/** table name */
std::string tb_name;
/** MySQL record length */
ulint rec_len;
/** default column value if any */
byte* default_rec;
/** cached MySQL TABLE object */
TABLE* mysql_table;
/** when mysql_table was cached */
uint64_t mysql_table_query_id;
dict_vcol_templ_t() : vtempl(0), mysql_table_query_id(~0ULL) {}
};
/** These are used when MySQL FRM and InnoDB data dictionary are
in inconsistent state. */
typedef enum {
DICT_FRM_CONSISTENT = 0, /*!< Consistent state */
DICT_FRM_NO_PK = 1, /*!< MySQL has no primary key
but InnoDB dictionary has
non-generated one. */
DICT_NO_PK_FRM_HAS = 2, /*!< MySQL has primary key but
InnoDB dictionary has not. */
DICT_FRM_INCONSISTENT_KEYS = 3 /*!< Key count mismatch */
} dict_frm_t;
/** Data structure for a database table. Most fields will be
initialized to 0, NULL or FALSE in dict_mem_table_create(). */
struct dict_table_t {
/** Get reference count.
@return current value of n_ref_count */
inline ulint get_ref_count() const;
/** Acquire the table handle. */
inline void acquire();
void* thd; /*!< thd */
bool page_0_read; /*!< true if page 0 has
been already read */
fil_space_crypt_t *crypt_data; /*!< crypt data if present */
/** Release the table handle. */
inline void release();
/** Id of the table. */
table_id_t id;
/** Memory heap. If you allocate from this heap after the table has
been created then be sure to account the allocation into
dict_sys->size. When closing the table we do something like
dict_sys->size -= mem_heap_get_size(table->heap) and if that is going
to become negative then we would assert. Something like this should do:
old_size = mem_heap_get_size()
mem_heap_alloc()
new_size = mem_heap_get_size()
dict_sys->size += new_size - old_size. */
mem_heap_t* heap;
/** Table name. */
table_name_t name;
/** NULL or the directory path specified by DATA DIRECTORY. */
char* data_dir_path;
/** Space where the clustered index of the table is placed. */
uint32_t space;
/** Stores information about:
1 row format (redundant or compact),
2 compressed page size (zip shift size),
3 whether using atomic blobs,
4 whether the table has been created with the option DATA DIRECTORY.
Use DICT_TF_GET_COMPACT(), DICT_TF_GET_ZIP_SSIZE(),
DICT_TF_HAS_ATOMIC_BLOBS() and DICT_TF_HAS_DATA_DIR() to parse this
flag. */
unsigned flags:DICT_TF_BITS;
/** Stores information about:
1 whether the table has been created using CREATE TEMPORARY TABLE,
2 whether the table has an internally defined DOC ID column,
3 whether the table has a FTS index,
4 whether DOC ID column need to be added to the FTS index,
5 whether the table is being created its own tablespace,
6 whether the table has been DISCARDed,
7 whether the aux FTS tables names are in hex.
8 whether the table is instinc table.
9 whether the table has encryption setting.
Use DICT_TF2_FLAG_IS_SET() to parse this flag. */
unsigned flags2:DICT_TF2_BITS;
/** TRUE if this is in a single-table tablespace and the .ibd file is
missing. Then we must return in ha_innodb.cc an error if the user
tries to query such an orphaned table. */
unsigned ibd_file_missing:1;
/** TRUE if the table object has been added to the dictionary cache. */
unsigned cached:1;
/** TRUE if the table is to be dropped, but not yet actually dropped
(could in the background drop list). It is turned on at the beginning
of row_drop_table_for_mysql() and turned off just before we start to
update system tables for the drop. It is protected by
dict_operation_lock. */
unsigned to_be_dropped:1;
/** Number of non-virtual columns defined so far. */
unsigned n_def:10;
/** Number of non-virtual columns. */
unsigned n_cols:10;
/** Number of total columns (inlcude virtual and non-virtual) */
unsigned n_t_cols:10;
/** Number of total columns defined so far. */
unsigned n_t_def:10;
/** Number of virtual columns defined so far. */
unsigned n_v_def:10;
/** Number of virtual columns. */
unsigned n_v_cols:10;
/** 1 + the position of autoinc counter field in clustered
index, or 0 if there is no persistent AUTO_INCREMENT column in
the table. */
unsigned persistent_autoinc:10;
/** TRUE if it's not an InnoDB system table or a table that has no FK
relationships. */
unsigned can_be_evicted:1;
/** TRUE if table is corrupted. */
unsigned corrupted:1;
/** TRUE if some indexes should be dropped after ONLINE_INDEX_ABORTED
or ONLINE_INDEX_ABORTED_DROPPED. */
unsigned drop_aborted:1;
/** Array of column descriptions. */
dict_col_t* cols;
/** Array of virtual column descriptions. */
dict_v_col_t* v_cols;
/** List of stored column descriptions. It is used only for foreign key
check during create table and copy alter operations.
During copy alter, s_cols list is filled during create table operation
and need to preserve till rename table operation. That is the
reason s_cols is a part of dict_table_t */
dict_s_col_list* s_cols;
/** Column names packed in a character string
"name1\0name2\0...nameN\0". Until the string contains n_cols, it will
be allocated from a temporary heap. The final string will be allocated
from table->heap. */
const char* col_names;
/** Virtual column names */
const char* v_col_names;
bool is_system_db;
/*!< True if the table belongs to a system
database (mysql, information_schema or
performance_schema) */
dict_frm_t dict_frm_mismatch;
/*!< !DICT_FRM_CONSISTENT==0 if data
dictionary information and
MySQL FRM information mismatch. */
/** Hash chain node. */
hash_node_t name_hash;
/** Hash chain node. */
hash_node_t id_hash;
/** The FTS_DOC_ID_INDEX, or NULL if no fulltext indexes exist */
dict_index_t* fts_doc_id_index;
/** List of indexes of the table. */
UT_LIST_BASE_NODE_T(dict_index_t) indexes;
/** List of foreign key constraints in the table. These refer to
columns in other tables. */
UT_LIST_BASE_NODE_T(dict_foreign_t) foreign_list;
/** List of foreign key constraints which refer to this table. */
UT_LIST_BASE_NODE_T(dict_foreign_t) referenced_list;
/** Node of the LRU list of tables. */
UT_LIST_NODE_T(dict_table_t) table_LRU;
/** Maximum recursive level we support when loading tables chained
together with FK constraints. If exceeds this level, we will stop
loading child table into memory along with its parent table. */
unsigned fk_max_recusive_level:8;
/** Count of how many foreign key check operations are currently being
performed on the table. We cannot drop the table while there are
foreign key checks running on it. */
ulint n_foreign_key_checks_running;
/** Transactions whose view low limit is greater than this number are
not allowed to store to the MySQL query cache or retrieve from it.
When a trx with undo logs commits, it sets this to the value of the
current time. */
trx_id_t query_cache_inv_id;
/** Transaction id that last touched the table definition. Either when
loading the definition or CREATE TABLE, or ALTER TABLE (prepare,
commit, and rollback phases). */
trx_id_t def_trx_id;
/*!< set of foreign key constraints in the table; these refer to
columns in other tables */
dict_foreign_set foreign_set;
/*!< set of foreign key constraints which refer to this table */
dict_foreign_set referenced_set;
#ifdef UNIV_DEBUG
/** This field is used to specify in simulations tables which are so
big that disk should be accessed. Disk access is simulated by putting
the thread to sleep for a while. NOTE that this flag is not stored to
the data dictionary on disk, and the database will forget about value
TRUE if it has to reload the table definition from disk. */
ibool does_not_fit_in_memory;
#endif /* UNIV_DEBUG */
/** TRUE if the maximum length of a single row exceeds BIG_ROW_SIZE.
Initialized in dict_table_add_to_cache(). */
unsigned big_rows:1;
/** Statistics for query optimization. @{ */
/** Creation state of 'stats_latch'. */
volatile os_once::state_t stats_latch_created;
/** This latch protects:
dict_table_t::stat_initialized,
dict_table_t::stat_n_rows (*),
dict_table_t::stat_clustered_index_size,
dict_table_t::stat_sum_of_other_index_sizes,
dict_table_t::stat_modified_counter (*),
dict_table_t::indexes*::stat_n_diff_key_vals[],
dict_table_t::indexes*::stat_index_size,
dict_table_t::indexes*::stat_n_leaf_pages.
(*) Those are not always protected for
performance reasons. */
rw_lock_t* stats_latch;
/** TRUE if statistics have been calculated the first time after
database startup or table creation. */
unsigned stat_initialized:1;
/** Timestamp of last recalc of the stats. */
ib_time_t stats_last_recalc;
/** The two bits below are set in the 'stat_persistent' member. They
have the following meaning:
1. _ON=0, _OFF=0, no explicit persistent stats setting for this table,
the value of the global srv_stats_persistent is used to determine
whether the table has persistent stats enabled or not
2. _ON=0, _OFF=1, persistent stats are explicitly disabled for this
table, regardless of the value of the global srv_stats_persistent
3. _ON=1, _OFF=0, persistent stats are explicitly enabled for this
table, regardless of the value of the global srv_stats_persistent
4. _ON=1, _OFF=1, not allowed, we assert if this ever happens. */
#define DICT_STATS_PERSISTENT_ON (1 << 1)
#define DICT_STATS_PERSISTENT_OFF (1 << 2)
/** Indicates whether the table uses persistent stats or not. See
DICT_STATS_PERSISTENT_ON and DICT_STATS_PERSISTENT_OFF. */
ib_uint32_t stat_persistent;
/** The two bits below are set in the 'stats_auto_recalc' member. They
have the following meaning:
1. _ON=0, _OFF=0, no explicit auto recalc setting for this table, the
value of the global srv_stats_persistent_auto_recalc is used to
determine whether the table has auto recalc enabled or not
2. _ON=0, _OFF=1, auto recalc is explicitly disabled for this table,
regardless of the value of the global srv_stats_persistent_auto_recalc
3. _ON=1, _OFF=0, auto recalc is explicitly enabled for this table,
regardless of the value of the global srv_stats_persistent_auto_recalc
4. _ON=1, _OFF=1, not allowed, we assert if this ever happens. */
#define DICT_STATS_AUTO_RECALC_ON (1 << 1)
#define DICT_STATS_AUTO_RECALC_OFF (1 << 2)
/** Indicates whether the table uses automatic recalc for persistent
stats or not. See DICT_STATS_AUTO_RECALC_ON and
DICT_STATS_AUTO_RECALC_OFF. */
ib_uint32_t stats_auto_recalc;
/** The number of pages to sample for this table during persistent
stats estimation. If this is 0, then the value of the global
srv_stats_persistent_sample_pages will be used instead. */
ulint stats_sample_pages;
/** Approximate number of rows in the table. We periodically calculate
new estimates. */
ib_uint64_t stat_n_rows;
/** Approximate clustered index size in database pages. */
ulint stat_clustered_index_size;
/** Approximate size of other indexes in database pages. */
ulint stat_sum_of_other_index_sizes;
/** How many rows are modified since last stats recalc. When a row is
inserted, updated, or deleted, we add 1 to this number; we calculate
new estimates for the table and the indexes if the table has changed
too much, see row_update_statistics_if_needed(). The counter is reset
to zero at statistics calculation. This counter is not protected by
any latch, because this is only used for heuristics. */
ib_uint64_t stat_modified_counter;
/** Background stats thread is not working on this table. */
#define BG_STAT_NONE 0
/** Set in 'stats_bg_flag' when the background stats code is working
on this table. The DROP TABLE code waits for this to be cleared before
proceeding. */
#define BG_STAT_IN_PROGRESS (1 << 0)
/** Set in 'stats_bg_flag' when DROP TABLE starts waiting on
BG_STAT_IN_PROGRESS to be cleared. The background stats thread will
detect this and will eventually quit sooner. */
#define BG_STAT_SHOULD_QUIT (1 << 1)
/** The state of the background stats thread wrt this table.
See BG_STAT_NONE, BG_STAT_IN_PROGRESS and BG_STAT_SHOULD_QUIT.
Writes are covered by dict_sys->mutex. Dirty reads are possible. */
#define BG_SCRUB_IN_PROGRESS ((byte)(1 << 2))
/*!< BG_SCRUB_IN_PROGRESS is set in
stats_bg_flag when the background
scrub code is working on this table. The DROP
TABLE code waits for this to be cleared
before proceeding. */
#define BG_STAT_SHOULD_QUIT (1 << 1)
#define BG_IN_PROGRESS (BG_STAT_IN_PROGRESS | BG_SCRUB_IN_PROGRESS)
/** The state of the background stats thread wrt this table.
See BG_STAT_NONE, BG_STAT_IN_PROGRESS and BG_STAT_SHOULD_QUIT.
Writes are covered by dict_sys->mutex. Dirty reads are possible. */
byte stats_bg_flag;
bool stats_error_printed;
/*!< Has persistent stats error beein
already printed for this table ? */
/* @} */
/** AUTOINC related members. @{ */
/* The actual collection of tables locked during AUTOINC read/write is
kept in trx_t. In order to quickly determine whether a transaction has
locked the AUTOINC lock we keep a pointer to the transaction here in
the 'autoinc_trx' member. This is to avoid acquiring the
lock_sys_t::mutex and scanning the vector in trx_t.
When an AUTOINC lock has to wait, the corresponding lock instance is
created on the trx lock heap rather than use the pre-allocated instance
in autoinc_lock below. */
/** A buffer for an AUTOINC lock for this table. We allocate the
memory here so that individual transactions can get it and release it
without a need to allocate space from the lock heap of the trx:
otherwise the lock heap would grow rapidly if we do a large insert
from a select. */
lock_t* autoinc_lock;
/** Creation state of autoinc_mutex member */
volatile os_once::state_t autoinc_mutex_created;
/** Mutex protecting the autoincrement counter. */
ib_mutex_t* autoinc_mutex;
/** Autoinc counter value to give to the next inserted row. */
ib_uint64_t autoinc;
/** This counter is used to track the number of granted and pending
autoinc locks on this table. This value is set after acquiring the
lock_sys_t::mutex but we peek the contents to determine whether other
transactions have acquired the AUTOINC lock or not. Of course only one
transaction can be granted the lock but there can be multiple
waiters. */
ulong n_waiting_or_granted_auto_inc_locks;
/** The transaction that currently holds the the AUTOINC lock on this
table. Protected by lock_sys->mutex. */
const trx_t* autoinc_trx;
/* @} */
/** FTS specific state variables. */
fts_t* fts;
/** Quiescing states, protected by the dict_index_t::lock. ie. we can
only change the state if we acquire all the latches (dict_index_t::lock)
in X mode of this table's indexes. */
ib_quiesce_t quiesce;
/** Count of the number of record locks on this table. We use this to
determine whether we can evict the table from the dictionary cache.
It is protected by lock_sys->mutex. */
ulint n_rec_locks;
#ifndef UNIV_DEBUG
private:
#endif
/** Count of how many handles are opened to this table. Dropping of the
table is NOT allowed until this count gets to zero. MySQL does NOT
itself check the number of open handles at DROP. */
ulint n_ref_count;
public:
/** List of locks on the table. Protected by lock_sys->mutex. */
table_lock_list_t locks;
/** Timestamp of the last modification of this table. */
time_t update_time;
bool is_encrypted;
#ifdef UNIV_DEBUG
/** Value of 'magic_n'. */
#define DICT_TABLE_MAGIC_N 76333786
/** Magic number. */
ulint magic_n;
#endif /* UNIV_DEBUG */
/** mysql_row_templ_t for base columns used for compute the virtual
columns */
dict_vcol_templ_t* vc_templ;
};
/*******************************************************************//**
Initialise the table lock list. */
void
lock_table_lock_list_init(
/*======================*/
table_lock_list_t* locks); /*!< List to initialise */
/** A function object to add the foreign key constraint to the referenced set
of the referenced table, if it exists in the dictionary cache. */
struct dict_foreign_add_to_referenced_table {
void operator()(dict_foreign_t* foreign) const
{
if (dict_table_t* table = foreign->referenced_table) {
std::pair<dict_foreign_set::iterator, bool> ret
= table->referenced_set.insert(foreign);
ut_a(ret.second);
}
}
};
/** Destroy the autoinc latch of the given table.
This function is only called from either single threaded environment
or from a thread that has not shared the table object with other threads.
@param[in,out] table table whose stats latch to destroy */
inline
void
dict_table_autoinc_destroy(
dict_table_t* table)
{
if (table->autoinc_mutex_created == os_once::DONE
&& table->autoinc_mutex != NULL) {
mutex_free(table->autoinc_mutex);
UT_DELETE(table->autoinc_mutex);
}
}
/** Request for lazy creation of the autoinc latch of a given table.
This function is only called from either single threaded environment
or from a thread that has not shared the table object with other threads.
@param[in,out] table table whose autoinc latch is to be created. */
inline
void
dict_table_autoinc_create_lazy(
dict_table_t* table)
{
table->autoinc_mutex = NULL;
table->autoinc_mutex_created = os_once::NEVER_DONE;
}
/** Request a lazy creation of dict_index_t::zip_pad::mutex.
This function is only called from either single threaded environment
or from a thread that has not shared the table object with other threads.
@param[in,out] index index whose zip_pad mutex is to be created */
inline
void
dict_index_zip_pad_mutex_create_lazy(
dict_index_t* index)
{
index->zip_pad.mutex = NULL;
index->zip_pad.mutex_created = os_once::NEVER_DONE;
}
/** Destroy the zip_pad_mutex of the given index.
This function is only called from either single threaded environment
or from a thread that has not shared the table object with other threads.
@param[in,out] table table whose stats latch to destroy */
inline
void
dict_index_zip_pad_mutex_destroy(
dict_index_t* index)
{
if (index->zip_pad.mutex_created == os_once::DONE
&& index->zip_pad.mutex != NULL) {
mutex_free(index->zip_pad.mutex);
UT_DELETE(index->zip_pad.mutex);
}
}
/** Release the zip_pad_mutex of a given index.
@param[in,out] index index whose zip_pad_mutex is to be released */
inline
void
dict_index_zip_pad_unlock(
dict_index_t* index)
{
mutex_exit(index->zip_pad.mutex);
}
#ifdef UNIV_DEBUG
/** Check if the current thread owns the autoinc_mutex of a given table.
@param[in] table the autoinc_mutex belongs to this table
@return true, if the current thread owns the autoinc_mutex, false otherwise.*/
inline
bool
dict_table_autoinc_own(
const dict_table_t* table)
{
return(mutex_own(table->autoinc_mutex));
}
#endif /* UNIV_DEBUG */
/** Check whether the col is used in spatial index or regular index.
@param[in] col column to check
@return spatial status */
inline
spatial_status_t
dict_col_get_spatial_status(
const dict_col_t* col)
{
spatial_status_t spatial_status = SPATIAL_NONE;
/* Column is not a part of any index. */
if (!col->ord_part) {
return(spatial_status);
}
if (DATA_GEOMETRY_MTYPE(col->mtype)) {
if (col->max_prefix == 0) {
spatial_status = SPATIAL_ONLY;
} else {
/* Any regular index on a geometry column
should have a prefix. */
spatial_status = SPATIAL_MIXED;
}
}
return(spatial_status);
}
#ifndef UNIV_NONINL
#include "dict0mem.ic"
#endif
#endif /* dict0mem_h */