mariadb/mysql-test/r/mdl_sync.result
Alexander Nozdrin d1ad316a59 Patch for WL#3736: Extended Table, Column and Index Comments.
The task is to 
  (a) add a comment on indexes and 
  (b) increase the maximum length of column, table and the new index comments.

The patch committed on behalf of Yoshinori Matsunobu (Yoshinori.Matsunobu@Sun.COM).
2010-02-20 13:07:32 +03:00

2377 lines
64 KiB
Text

SET DEBUG_SYNC= 'RESET';
drop table if exists t1,t2,t3;
create table t1 (i int);
create table t2 (i int);
connection: default
lock tables t2 read;
connection: con1
set debug_sync='mdl_upgrade_shared_lock_to_exclusive SIGNAL parked WAIT_FOR go';
alter table t1 rename t3;
connection: default
set debug_sync= 'now WAIT_FOR parked';
connection: con2
set debug_sync='mdl_acquire_lock_wait SIGNAL go';
drop table t1,t2;
connection: con1
connection: default
unlock tables;
connection: con2
ERROR 42S02: Unknown table 't1'
drop table t3;
SET DEBUG_SYNC= 'RESET';
#
# Basic test coverage for type-of-operation aware metadata locks.
#
drop table if exists t1, t2, t3;
set debug_sync= 'RESET';
create table t1 (c1 int);
#
# A) First let us check compatibility rules between differend kinds of
# type-of-operation aware metadata locks.
# Of course, these rules are already covered by the tests scattered
# across the test suite. But it still makes sense to have one place
# which covers all of them.
#
# 1) Acquire S (simple shared) lock on the table (by using HANDLER):
#
handler t1 open;
#
# Switching to connection 'mdl_con1'.
# Check that S, SH, SR and SW locks are compatible with it.
handler t1 open t;
handler t close;
select column_name from information_schema.columns where
table_schema='test' and table_name='t1';
column_name
c1
select count(*) from t1;
count(*)
0
insert into t1 values (1), (1);
# Check that SNW lock is compatible with it. To do this use ALTER TABLE
# which will fail after opening the table and thus obtaining SNW metadata
# lock.
alter table t1 add primary key (c1);
ERROR 23000: Duplicate entry '1' for key 'PRIMARY'
# Check that SNRW lock is compatible with S lock.
lock table t1 write;
insert into t1 values (1);
unlock tables;
# Check that X lock is incompatible with S lock.
# Sending:
rename table t1 to t2;;
#
# Switching to connection 'mdl_con2'.
# Check that the above RENAME is blocked because of S lock.
#
# Switching to connection 'default'.
# Unblock RENAME TABLE.
handler t1 close;
#
# Switching to connection 'mdl_con1'.
# Reaping RENAME TABLE.
# Restore the original state of the things.
rename table t2 to t1;
#
# Switching to connection 'default'.
handler t1 open;
#
# Switching to connection 'mdl_con1'.
# Check that upgrade from SNW to X is blocked by presence of S lock.
# Sending:
alter table t1 add column c2 int;;
#
# Switching to connection 'mdl_con2'.
# Check that the above ALTER TABLE is blocked because of S lock.
#
# Switching to connection 'default'.
# Unblock ALTER TABLE.
handler t1 close;
#
# Switching to connection 'mdl_con1'.
# Reaping ALTER TABLE.
# Restore the original state of the things.
alter table t1 drop column c2;
#
# Switching to connection 'default'.
handler t1 open;
#
# Switching to connection 'mdl_con1'.
# Check that upgrade from SNRW to X is blocked by presence of S lock.
lock table t1 write;
# Sending:
alter table t1 add column c2 int;;
#
# Switching to connection 'mdl_con2'.
# Check that the above upgrade of SNRW to X in ALTER TABLE is blocked
# because of S lock.
#
# Switching to connection 'default'.
# Unblock ALTER TABLE.
handler t1 close;
#
# Switching to connection 'mdl_con1'.
# Reaping ALTER TABLE.
# Restore the original state of the things.
alter table t1 drop column c2;
unlock tables;
#
# Switching to connection 'default'.
#
# 2) Acquire SH (shared high-priority) lock on the table.
# We have to involve DEBUG_SYNC facility for this as usually
# such kind of locks are short-lived.
#
set debug_sync= 'after_open_table_mdl_shared SIGNAL locked WAIT_FOR finish';
# Sending:
select table_name, table_type, auto_increment, table_comment from information_schema.tables where table_schema='test' and table_name='t1';;
#
# Switching to connection 'mdl_con1'.
set debug_sync= 'now WAIT_FOR locked';
# Check that S, SH, SR and SW locks are compatible with it.
handler t1 open;
handler t1 close;
select column_name from information_schema.columns where
table_schema='test' and table_name='t1';
column_name
c1
select count(*) from t1;
count(*)
3
insert into t1 values (1);
# Check that SNW lock is compatible with it. To do this use ALTER TABLE
# which will fail after opening the table and thus obtaining SNW metadata
# lock.
alter table t1 add primary key (c1);
ERROR 23000: Duplicate entry '1' for key 'PRIMARY'
# Check that SNRW lock is compatible with SH lock.
lock table t1 write;
delete from t1 limit 1;
unlock tables;
# Check that X lock is incompatible with SH lock.
# Sending:
rename table t1 to t2;;
#
# Switching to connection 'mdl_con2'.
# Check that the above RENAME is blocked because of SH lock.
# Unblock RENAME TABLE.
set debug_sync= 'now SIGNAL finish';
#
# Switching to connection 'default'.
# Reaping SELECT ... FROM I_S.
table_name table_type auto_increment table_comment
t1 BASE TABLE NULL
#
# Switching to connection 'mdl_con1'.
# Reaping RENAME TABLE.
# Restore the original state of the things.
rename table t2 to t1;
#
# Switching to connection 'default'.
set debug_sync= 'after_open_table_mdl_shared SIGNAL locked WAIT_FOR finish';
# Sending:
select table_name, table_type, auto_increment, table_comment from information_schema.tables where table_schema='test' and table_name='t1';;
#
# Switching to connection 'mdl_con1'.
set debug_sync= 'now WAIT_FOR locked';
# Check that upgrade from SNW to X is blocked by presence of SH lock.
# Sending:
alter table t1 add column c2 int;;
#
# Switching to connection 'mdl_con2'.
# Check that the above ALTER TABLE is blocked because of SH lock.
# Unblock RENAME TABLE.
set debug_sync= 'now SIGNAL finish';
#
# Switching to connection 'default'.
# Reaping SELECT ... FROM I_S.
table_name table_type auto_increment table_comment
t1 BASE TABLE NULL
#
# Switching to connection 'mdl_con1'.
# Reaping ALTER TABLE.
# Restore the original state of the things.
alter table t1 drop column c2;
#
# Switching to connection 'default'.
set debug_sync= 'after_open_table_mdl_shared SIGNAL locked WAIT_FOR finish';
select table_name, table_type, auto_increment, table_comment from information_schema.tables where table_schema='test' and table_name='t1';;
#
# Switching to connection 'mdl_con1'.
set debug_sync= 'now WAIT_FOR locked';
# Check that upgrade from SNRW to X is blocked by presence of S lock.
lock table t1 write;
# Sending:
alter table t1 add column c2 int;;
#
# Switching to connection 'mdl_con2'.
# Check that the above upgrade of SNRW to X in ALTER TABLE is blocked
# because of S lock.
# Unblock RENAME TABLE.
set debug_sync= 'now SIGNAL finish';
#
# Switching to connection 'default'.
# Reaping SELECT ... FROM I_S.
table_name table_type auto_increment table_comment
t1 BASE TABLE NULL
#
# Switching to connection 'mdl_con1'.
# Reaping ALTER TABLE.
# Restore the original state of the things.
alter table t1 drop column c2;
unlock tables;
#
# Switching to connection 'default'.
#
#
# 3) Acquire SR lock on the table.
#
#
begin;
select count(*) from t1;
count(*)
3
#
# Switching to connection 'mdl_con1'.
# Check that S, SH, SR and SW locks are compatible with it.
handler t1 open;
handler t1 close;
select column_name from information_schema.columns where
table_schema='test' and table_name='t1';
column_name
c1
select count(*) from t1;
count(*)
3
insert into t1 values (1);
# Check that SNW lock is compatible with it. To do this use ALTER TABLE
# which will fail after opening the table and thus obtaining SNW metadata
# lock.
alter table t1 add primary key (c1);
ERROR 23000: Duplicate entry '1' for key 'PRIMARY'
# Check that SNRW lock is not compatible with SR lock.
# Sending:
lock table t1 write;;
#
# Switching to connection 'default'.
# Check that the above LOCK TABLES is blocked because of SR lock.
# Unblock LOCK TABLES.
commit;
#
# Switching to connection 'mdl_con1'.
# Reaping LOCK TABLES.
delete from t1 limit 1;
unlock tables;
#
# Switching to connection 'default'.
begin;
select count(*) from t1;
count(*)
3
#
# Switching to connection 'mdl_con1'.
# Check that X lock is incompatible with SR lock.
# Sending:
rename table t1 to t2;;
#
# Switching to connection 'mdl_con2'.
# Check that the above RENAME is blocked because of SR lock.
#
# Switching to connection 'default'.
# Unblock RENAME TABLE.
commit;
#
# Switching to connection 'mdl_con1'.
# Reaping RENAME TABLE.
# Restore the original state of the things.
rename table t2 to t1;
#
# Switching to connection 'default'.
begin;
select count(*) from t1;
count(*)
3
#
# Switching to connection 'mdl_con1'.
# Check that upgrade from SNW to X is blocked by presence of SR lock.
# Sending:
alter table t1 add column c2 int;;
#
# Switching to connection 'mdl_con2'.
# Check that the above ALTER TABLE is blocked because of SR lock.
#
# Switching to connection 'default'.
# Unblock ALTER TABLE.
commit;
#
# Switching to connection 'mdl_con1'.
# Reaping ALTER TABLE.
# Restore the original state of the things.
alter table t1 drop column c2;
#
# There is no need to check that upgrade from SNRW to X is blocked
# by presence of SR lock because SNRW is incompatible with SR anyway.
#
#
# Switching to connection 'default'.
#
#
# 4) Acquire SW lock on the table.
#
#
begin;
insert into t1 values (1);
#
# Switching to connection 'mdl_con1'.
# Check that S, SH, SR and SW locks are compatible with it.
handler t1 open;
handler t1 close;
select column_name from information_schema.columns where
table_schema='test' and table_name='t1';
column_name
c1
select count(*) from t1;
count(*)
4
insert into t1 values (1);
# Check that SNW lock is not compatible with SW lock.
# Again we use ALTER TABLE which fails after opening
# the table to avoid upgrade of SNW -> X.
# Sending:
alter table t1 add primary key (c1);;
#
# Switching to connection 'default'.
# Check that the above ALTER TABLE is blocked because of SW lock.
# Unblock ALTER TABLE.
commit;
#
# Switching to connection 'mdl_con1'.
# Reaping ALTER TABLE.
ERROR 23000: Duplicate entry '1' for key 'PRIMARY'
#
# Switching to connection 'default'.
begin;
insert into t1 values (1);
#
# Switching to connection 'mdl_con1'.
# Check that SNRW lock is not compatible with SW lock.
# Sending:
lock table t1 write;;
#
# Switching to connection 'default'.
# Check that the above LOCK TABLES is blocked because of SW lock.
# Unblock LOCK TABLES.
commit;
#
# Switching to connection 'mdl_con1'.
# Reaping LOCK TABLES.
delete from t1 limit 2;
unlock tables;
#
# Switching to connection 'default'.
begin;
insert into t1 values (1);
#
# Switching to connection 'mdl_con1'.
# Check that X lock is incompatible with SW lock.
# Sending:
rename table t1 to t2;;
#
# Switching to connection 'mdl_con2'.
# Check that the above RENAME is blocked because of SW lock.
#
# Switching to connection 'default'.
# Unblock RENAME TABLE.
commit;
#
# Switching to connection 'mdl_con1'.
# Reaping RENAME TABLE.
# Restore the original state of the things.
rename table t2 to t1;
#
# There is no need to check that upgrade from SNW/SNRW to X is
# blocked by presence of SW lock because SNW/SNRW is incompatible
# with SW anyway.
#
#
# Switching to connection 'default'.
#
#
# 5) Acquire SNW lock on the table. We have to use DEBUG_SYNC for
# this, to prevent SNW from being immediately upgraded to X.
#
set debug_sync= 'after_open_table_mdl_shared SIGNAL locked WAIT_FOR finish';
# Sending:
alter table t1 add primary key (c1);;
#
# Switching to connection 'mdl_con1'.
set debug_sync= 'now WAIT_FOR locked';
# Check that S, SH and SR locks are compatible with it.
handler t1 open;
handler t1 close;
select column_name from information_schema.columns where
table_schema='test' and table_name='t1';
column_name
c1
select count(*) from t1;
count(*)
5
# Check that SW lock is incompatible with SNW lock.
# Sending:
delete from t1 limit 2;;
#
# Switching to connection 'mdl_con2'.
# Check that the above DELETE is blocked because of SNW lock.
# Unblock ALTER and thus DELETE.
set debug_sync= 'now SIGNAL finish';
#
# Switching to connection 'default'.
# Reaping ALTER TABLE.
ERROR 23000: Duplicate entry '1' for key 'PRIMARY'
#
# Switching to connection 'mdl_con1'.
# Reaping DELETE.
#
# Switching to connection 'default'.
set debug_sync= 'after_open_table_mdl_shared SIGNAL locked WAIT_FOR finish';
# Sending:
alter table t1 add primary key (c1);;
#
# Switching to connection 'mdl_con1'.
set debug_sync= 'now WAIT_FOR locked';
# Check that SNW lock is incompatible with SNW lock.
# Sending:
alter table t1 add primary key (c1);;
#
# Switching to connection 'mdl_con2'.
# Check that the above ALTER is blocked because of SNW lock.
# Unblock ALTERs.
set debug_sync= 'now SIGNAL finish';
#
# Switching to connection 'default'.
# Reaping first ALTER TABLE.
ERROR 23000: Duplicate entry '1' for key 'PRIMARY'
#
# Switching to connection 'mdl_con1'.
# Reaping another ALTER TABLE.
ERROR 23000: Duplicate entry '1' for key 'PRIMARY'
#
# Switching to connection 'default'.
set debug_sync= 'after_open_table_mdl_shared SIGNAL locked WAIT_FOR finish';
# Sending:
alter table t1 add primary key (c1);;
#
# Switching to connection 'mdl_con1'.
set debug_sync= 'now WAIT_FOR locked';
# Check that SNRW lock is incompatible with SNW lock.
# Sending:
lock table t1 write;;
#
# Switching to connection 'mdl_con2'.
# Check that the above LOCK TABLES is blocked because of SNW lock.
# Unblock ALTER and thus LOCK TABLES.
set debug_sync= 'now SIGNAL finish';
#
# Switching to connection 'default'.
# Reaping ALTER TABLE.
ERROR 23000: Duplicate entry '1' for key 'PRIMARY'
#
# Switching to connection 'mdl_con1'.
# Reaping LOCK TABLES
insert into t1 values (1);
unlock tables;
#
# Switching to connection 'default'.
set debug_sync= 'after_open_table_mdl_shared SIGNAL locked WAIT_FOR finish';
# Sending:
alter table t1 add primary key (c1);;
#
# Switching to connection 'mdl_con1'.
set debug_sync= 'now WAIT_FOR locked';
# Check that X lock is incompatible with SNW lock.
# Sending:
rename table t1 to t2;;
#
# Switching to connection 'mdl_con2'.
# Check that the above RENAME is blocked because of SNW lock.
# Unblock ALTER and thus RENAME TABLE.
set debug_sync= 'now SIGNAL finish';
#
# Switching to connection 'default'.
# Reaping ALTER TABLE.
ERROR 23000: Duplicate entry '1' for key 'PRIMARY'
#
# Switching to connection 'mdl_con1'.
# Reaping RENAME TABLE
# Revert back to original state of things.
rename table t2 to t1;
#
# There is no need to check that upgrade from SNW/SNRW to X is
# blocked by presence of another SNW lock because SNW/SNRW is
# incompatible with SNW anyway.
#
# Switching to connection 'default'.
#
#
# 6) Acquire SNRW lock on the table.
#
#
lock table t1 write;
#
# Switching to connection 'mdl_con1'.
# Check that S and SH locks are compatible with it.
handler t1 open;
handler t1 close;
select column_name from information_schema.columns where
table_schema='test' and table_name='t1';
column_name
c1
# Check that SR lock is incompatible with SNRW lock.
# Sending:
select count(*) from t1;;
#
# Switching to connection 'default'.
# Check that the above SELECT is blocked because of SNRW lock.
# Unblock SELECT.
unlock tables;
#
# Switching to connection 'mdl_con1'.
# Reaping SELECT.
count(*)
4
#
# Switching to connection 'default'.
lock table t1 write;
#
# Switching to connection 'mdl_con1'.
# Check that SW lock is incompatible with SNRW lock.
# Sending:
delete from t1 limit 1;;
#
# Switching to connection 'default'.
# Check that the above DELETE is blocked because of SNRW lock.
# Unblock DELETE.
unlock tables;
#
# Switching to connection 'mdl_con1'.
# Reaping DELETE.
#
# Switching to connection 'default'.
lock table t1 write;
#
# Switching to connection 'mdl_con1'.
# Check that SNW lock is incompatible with SNRW lock.
# Sending:
alter table t1 add primary key (c1);;
#
# Switching to connection 'default'.
# Check that the above ALTER is blocked because of UNWR lock.
# Unblock ALTER.
unlock tables;
#
# Switching to connection 'mdl_con1'.
# Reaping ALTER TABLE.
ERROR 23000: Duplicate entry '1' for key 'PRIMARY'
#
# Switching to connection 'default'.
lock table t1 write;
#
# Switching to connection 'mdl_con1'.
# Check that SNRW lock is incompatible with SNRW lock.
# Sending:
lock table t1 write;;
#
# Switching to connection 'default'.
# Check that the above LOCK TABLES is blocked because of SNRW lock.
# Unblock waiting LOCK TABLES.
unlock tables;
#
# Switching to connection 'mdl_con1'.
# Reaping LOCK TABLES
insert into t1 values (1);
unlock tables;
#
# Switching to connection 'default'.
lock table t1 write;
#
# Switching to connection 'mdl_con1'.
# Check that X lock is incompatible with SNRW lock.
# Sending:
rename table t1 to t2;;
#
# Switching to connection 'default'.
# Check that the above RENAME is blocked because of SNRW lock.
# Unblock RENAME TABLE
unlock tables;
#
# Switching to connection 'mdl_con1'.
# Reaping RENAME TABLE
# Revert back to original state of things.
rename table t2 to t1;
#
# There is no need to check that upgrade from SNW/SNRW to X is
# blocked by presence of another SNRW lock because SNW/SNRW is
# incompatible with SNRW anyway.
#
# Switching to connection 'default'.
#
#
# 7) Now do the same round of tests for X lock. We use additional
# table to get long-lived lock of this type.
#
create table t2 (c1 int);
#
# Switching to connection 'mdl_con2'.
# Take a lock on t2, so RENAME TABLE t1 TO t2 will get blocked
# after acquiring X lock on t1.
lock tables t2 read;
#
# Switching to connection 'default'.
# Sending:
rename table t1 to t2;;
#
# Switching to connection 'mdl_con1'.
# Check that RENAME has acquired X lock on t1 and is waiting for t2.
# Check that S lock in incompatible with X lock.
# Sending:
handler t1 open;;
#
# Switching to connection 'mdl_con2'.
# Check that the above HANDLER statement is blocked because of X lock.
# Unblock RENAME TABLE
unlock tables;
#
# Switching to connection 'default'.
# Reaping RENAME TABLE.
ERROR 42S01: Table 't2' already exists
#
# Switching to connection 'mdl_con1'.
# Reaping HANDLER.
handler t1 close;
#
# Switching to connection 'mdl_con2'.
# Prepare for blocking RENAME TABLE.
lock tables t2 read;
#
# Switching to connection 'default'.
# Sending:
rename table t1 to t2;;
#
# Switching to connection 'mdl_con1'.
# Check that RENAME has acquired X lock on t1 and is waiting for t2.
# Check that SH lock in incompatible with X lock.
# Sending:
select column_name from information_schema.columns where table_schema='test' and table_name='t1';;
#
# Switching to connection 'mdl_con2'.
# Check that the above SELECT ... FROM I_S ... statement is blocked
# because of X lock.
# Unblock RENAME TABLE
unlock tables;
#
# Switching to connection 'default'.
# Reaping RENAME TABLE.
ERROR 42S01: Table 't2' already exists
#
# Switching to connection 'mdl_con1'.
# Reaping SELECT ... FROM I_S.
column_name
c1
#
# Switching to connection 'mdl_con2'.
# Prepare for blocking RENAME TABLE.
lock tables t2 read;
#
# Switching to connection 'default'.
# Sending:
rename table t1 to t2;;
#
# Switching to connection 'mdl_con1'.
# Check that RENAME has acquired X lock on t1 and is waiting for t2.
# Check that SR lock in incompatible with X lock.
# Sending:
select count(*) from t1;;
#
# Switching to connection 'mdl_con2'.
# Check that the above SELECT statement is blocked
# because of X lock.
# Unblock RENAME TABLE
unlock tables;
#
# Switching to connection 'default'.
# Reaping RENAME TABLE.
ERROR 42S01: Table 't2' already exists
#
# Switching to connection 'mdl_con1'.
# Reaping SELECT.
count(*)
4
#
# Switching to connection 'mdl_con2'.
# Prepare for blocking RENAME TABLE.
lock tables t2 read;
#
# Switching to connection 'default'.
# Sending:
rename table t1 to t2;;
#
# Switching to connection 'mdl_con1'.
# Check that RENAME has acquired X lock on t1 and is waiting for t2.
# Check that SW lock in incompatible with X lock.
# Sending:
delete from t1 limit 1;;
#
# Switching to connection 'mdl_con2'.
# Check that the above DELETE statement is blocked
# because of X lock.
# Unblock RENAME TABLE
unlock tables;
#
# Switching to connection 'default'.
# Reaping RENAME TABLE.
ERROR 42S01: Table 't2' already exists
#
# Switching to connection 'mdl_con1'.
# Reaping DELETE.
#
# Switching to connection 'mdl_con2'.
# Prepare for blocking RENAME TABLE.
lock tables t2 read;
#
# Switching to connection 'default'.
# Sending:
rename table t1 to t2;;
#
# Switching to connection 'mdl_con1'.
# Check that RENAME has acquired X lock on t1 and is waiting for t2.
# Check that SNW lock is incompatible with X lock.
# Sending:
alter table t1 add primary key (c1);;
#
# Switching to connection 'mdl_con2'.
# Check that the above ALTER statement is blocked
# because of X lock.
# Unblock RENAME TABLE
unlock tables;
#
# Switching to connection 'default'.
# Reaping RENAME TABLE
ERROR 42S01: Table 't2' already exists
#
# Switching to connection 'mdl_con1'.
# Reaping ALTER.
ERROR 23000: Duplicate entry '1' for key 'PRIMARY'
#
# Switching to connection 'mdl_con2'.
# Prepare for blocking RENAME TABLE.
lock tables t2 read;
#
# Switching to connection 'default'.
# Sending:
rename table t1 to t2;;
#
# Switching to connection 'mdl_con1'.
# Check that RENAME has acquired X lock on t1 and is waiting for t2.
# Check that SNRW lock is incompatible with X lock.
# Sending:
lock table t1 write;;
#
# Switching to connection 'mdl_con2'.
# Check that the above LOCK TABLE statement is blocked
# because of X lock.
# Unblock RENAME TABLE
unlock tables;
#
# Switching to connection 'default'.
# Reaping RENAME TABLE
ERROR 42S01: Table 't2' already exists
#
# Switching to connection 'mdl_con1'.
# Reaping LOCK TABLE.
unlock tables;
#
# Switching to connection 'mdl_con2'.
# Prepare for blocking RENAME TABLE.
lock tables t2 read;
#
# Switching to connection 'default'.
# Sending:
rename table t1 to t2;;
#
# Switching to connection 'mdl_con1'.
# Check that RENAME has acquired X lock on t1 and is waiting for t2.
# Check that X lock is incompatible with X lock.
# Sending:
rename table t1 to t3;;
#
# Switching to connection 'mdl_con2'.
# Check that the above RENAME statement is blocked
# because of X lock.
# Unblock RENAME TABLE
unlock tables;
#
# Switching to connection 'default'.
# Reaping RENAME TABLE
ERROR 42S01: Table 't2' already exists
#
# Switching to connection 'mdl_con1'.
# Reaping RENAME.
rename table t3 to t1;
#
# B) Now let us test compatibility in cases when both locks
# are pending. I.e. let us test rules for priorities between
# different types of metadata locks.
#
#
# Switching to connection 'mdl_con2'.
#
# 1) Check compatibility for pending SNW lock.
#
# Acquire SW lock in order to create pending SNW lock later.
begin;
insert into t1 values (1);
#
# Switching to connection 'default'.
# Add pending SNW lock.
# Sending:
alter table t1 add primary key (c1);;
#
# Switching to connection 'mdl_con1'.
# Check that ALTER TABLE is waiting with pending SNW lock.
# Check that S, SH and SR locks are compatible with pending SNW
handler t1 open t;
handler t close;
select column_name from information_schema.columns where
table_schema='test' and table_name='t1';
column_name
c1
select count(*) from t1;
count(*)
4
# Check that SW is incompatible with pending SNW
# Sending:
delete from t1 limit 1;;
#
# Switching to connection 'mdl_con2'.
# Check that the above DELETE is blocked because of pending SNW lock.
# Unblock ALTER TABLE.
commit;
#
# Switching to connection 'default'.
# Reaping ALTER.
ERROR 23000: Duplicate entry '1' for key 'PRIMARY'
#
# Switching to connection 'mdl_con1'.
# Reaping DELETE.
#
# We can't do similar check for SNW, SNRW and X locks because
# they will also be blocked by active SW lock.
#
#
# Switching to connection 'mdl_con2'.
#
# 2) Check compatibility for pending SNRW lock.
#
# Acquire SR lock in order to create pending SNRW lock.
begin;
select count(*) from t1;
count(*)
3
#
# Switching to connection 'default'.
# Add pending SNRW lock.
# Sending:
lock table t1 write;;
#
# Switching to connection 'mdl_con1'.
# Check that LOCK TABLE is waiting with pending SNRW lock.
# Check that S and SH locks are compatible with pending SNRW
handler t1 open t;
handler t close;
select column_name from information_schema.columns where
table_schema='test' and table_name='t1';
column_name
c1
# Check that SR is incompatible with pending SNRW
# Sending:
select count(*) from t1;;
#
# Switching to connection 'mdl_con2'.
# Check that the above SELECT is blocked because of pending SNRW lock.
# Unblock LOCK TABLE.
commit;
#
# Switching to connection 'default'.
# Reaping LOCK TABLE.
unlock tables;
#
# Switching to connection 'mdl_con1'.
# Reaping SELECT.
count(*)
3
# Restore pending SNRW lock.
#
# Switching to connection 'mdl_con2'.
begin;
select count(*) from t1;
count(*)
3
#
# Switching to connection 'default'.
# Sending:
lock table t1 write;;
#
# Switching to connection 'mdl_con1'.
# Check that LOCK TABLE is waiting with pending SNRW lock.
# Check that SW is incompatible with pending SNRW
# Sending:
insert into t1 values (1);;
#
# Switching to connection 'mdl_con2'.
# Check that the above INSERT is blocked because of pending SNRW lock.
# Unblock LOCK TABLE.
commit;
#
# Switching to connection 'default'.
# Reaping LOCK TABLE.
unlock tables;
#
# Switching to connection 'mdl_con1'.
# Reaping INSERT.
# Restore pending SNRW lock.
#
# Switching to connection 'mdl_con2'.
begin;
select count(*) from t1;
count(*)
4
#
# Switching to connection 'default'.
# Sending:
lock table t1 write;;
#
# Switching to connection 'mdl_con1'.
# Check that LOCK TABLE is waiting with pending SNRW lock.
# Check that SNW is compatible with pending SNRW
# So ALTER TABLE statements are not starved by LOCK TABLEs.
alter table t1 add primary key (c1);
ERROR 23000: Duplicate entry '1' for key 'PRIMARY'
#
# Switching to connection 'mdl_con2'.
# Unblock LOCK TABLE.
commit;
#
# Switching to connection 'default'.
# Reaping LOCK TABLE.
unlock tables;
#
# We can't do similar check for SNRW and X locks because
# they will also be blocked by active SR lock.
#
#
# Switching to connection 'mdl_con2'.
#
# 3) Check compatibility for pending X lock.
#
# Acquire SR lock in order to create pending X lock.
begin;
select count(*) from t1;
count(*)
4
#
# Switching to connection 'default'.
# Add pending X lock.
# Sending:
rename table t1 to t2;;
#
# Switching to connection 'mdl_con1'.
# Check that RENAME TABLE is waiting with pending X lock.
# Check that SH locks are compatible with pending X
select column_name from information_schema.columns where
table_schema='test' and table_name='t1';
column_name
c1
# Check that S is incompatible with pending X
# Sending:
handler t1 open;;
#
# Switching to connection 'mdl_con2'.
# Check that the above HANDLER OPEN is blocked because of pending X lock.
# Unblock RENAME TABLE.
commit;
#
# Switching to connection 'default'.
# Reaping RENAME TABLE.
ERROR 42S01: Table 't2' already exists
#
# Switching to connection 'mdl_con1'.
# Reaping HANDLER t1 OPEN.
handler t1 close;
# Restore pending X lock.
#
# Switching to connection 'mdl_con2'.
begin;
select count(*) from t1;
count(*)
4
#
# Switching to connection 'default'.
# Add pending X lock.
# Sending:
rename table t1 to t2;;
#
# Switching to connection 'mdl_con1'.
# Check that RENAME TABLE is waiting with pending X lock.
# Check that SR is incompatible with pending X
# Sending:
select count(*) from t1;;
#
# Switching to connection 'mdl_con2'.
# Check that the above SELECT is blocked because of pending X lock.
# Unblock RENAME TABLE.
commit;
#
# Switching to connection 'default'.
# Reaping RENAME TABLE.
ERROR 42S01: Table 't2' already exists
#
# Switching to connection 'mdl_con1'.
# Reaping SELECT.
count(*)
4
# Restore pending X lock.
#
# Switching to connection 'mdl_con2'.
begin;
select count(*) from t1;
count(*)
4
#
# Switching to connection 'default'.
# Add pending X lock.
# Sending:
rename table t1 to t2;;
#
# Switching to connection 'mdl_con1'.
# Check that RENAME TABLE is waiting with pending X lock.
# Check that SW is incompatible with pending X
# Sending:
delete from t1 limit 1;;
#
# Switching to connection 'mdl_con2'.
# Check that the above DELETE is blocked because of pending X lock.
# Unblock RENAME TABLE.
commit;
#
# Switching to connection 'default'.
# Reaping RENAME TABLE.
ERROR 42S01: Table 't2' already exists
#
# Switching to connection 'mdl_con1'.
# Reaping DELETE.
# Restore pending X lock.
#
# Switching to connection 'mdl_con2'.
begin;
select count(*) from t1;
count(*)
3
#
# Switching to connection 'default'.
# Add pending X lock.
# Sending:
rename table t1 to t2;;
#
# Switching to connection 'mdl_con1'.
# Check that RENAME TABLE is waiting with pending X lock.
# Check that SNW is incompatible with pending X
# Sending:
alter table t1 add primary key (c1);;
#
# Switching to connection 'mdl_con2'.
# Check that the above ALTER TABLE is blocked because of pending X lock.
# Unblock RENAME TABLE.
commit;
#
# Switching to connection 'default'.
# Reaping RENAME TABLE.
ERROR 42S01: Table 't2' already exists
#
# Switching to connection 'mdl_con1'.
# Reaping ALTER TABLE.
ERROR 23000: Duplicate entry '1' for key 'PRIMARY'
# Restore pending X lock.
#
# Switching to connection 'mdl_con2'.
handler t1 open;
#
# Switching to connection 'default'.
# Add pending X lock.
# Sending:
rename table t1 to t2;;
#
# Switching to connection 'mdl_con1'.
# Check that RENAME TABLE is waiting with pending X lock.
# Check that SNRW is incompatible with pending X
# Sending:
lock table t1 write;;
#
# Switching to connection 'mdl_con3'.
# Check that the above LOCK TABLES is blocked because of pending X lock.
#
# Switching to connection 'mdl_con2'.
# Unblock RENAME TABLE.
handler t1 close;
#
# Switching to connection 'default'.
# Reaping RENAME TABLE.
ERROR 42S01: Table 't2' already exists
#
# Switching to connection 'mdl_con1'.
# Reaping LOCK TABLES.
unlock tables;
#
# Switching to connection 'default'.
#
#
# C) Now let us test how type-of-operation locks are handled in
# transactional context. Obviously we are mostly interested
# in conflicting types of locks.
#
#
# 1) Let us check how various locks used within transactional
# context interact with active/pending SNW lock.
#
# We start with case when we are acquiring lock on the table
# which was not used in the transaction before.
begin;
select count(*) from t1;
count(*)
3
#
# Switching to connection 'mdl_con1'.
# Create an active SNW lock on t2.
# We have to use DEBUG_SYNC facility as otherwise SNW lock
# will be immediately released (or upgraded to X lock).
insert into t2 values (1), (1);
set debug_sync= 'after_open_table_mdl_shared SIGNAL locked WAIT_FOR finish';
# Sending:
alter table t2 add primary key (c1);;
#
# Switching to connection 'default'.
set debug_sync= 'now WAIT_FOR locked';
# SR lock should be acquired without any waiting.
select count(*) from t2;
count(*)
2
commit;
# Now let us check that we will wait in case of SW lock.
begin;
select count(*) from t1;
count(*)
3
# Sending:
insert into t2 values (1);;
#
# Switching to connection 'mdl_con2'.
# Check that the above INSERT is blocked.
# Unblock ALTER TABLE and thus INSERT.
set debug_sync= 'now SIGNAL finish';
#
# Switching to connection 'mdl_con1'.
# Reap ALTER TABLE.
ERROR 23000: Duplicate entry '1' for key 'PRIMARY'
#
# Switching to connection 'default'.
# Reap INSERT.
commit;
#
# Now let us see what happens when we are acquiring lock on the table
# which is already used in transaction.
#
# *) First, case when transaction which has SR lock on the table also
# locked in SNW mode acquires yet another SR lock and then tries
# to acquire SW lock.
begin;
select count(*) from t1;
count(*)
3
#
# Switching to connection 'mdl_con1'.
# Create an active SNW lock on t1.
set debug_sync= 'after_open_table_mdl_shared SIGNAL locked WAIT_FOR finish';
# Sending:
alter table t1 add primary key (c1);;
#
# Switching to connection 'default'.
set debug_sync= 'now WAIT_FOR locked';
# We should still be able to get SR lock without waiting.
select count(*) from t1;
count(*)
3
# Since the above ALTER TABLE is not upgrading SNW lock to X by waiting
# for SW lock we won't create deadlock.
# So the below INSERT should not end-up with ER_LOCK_DEADLOCK error.
# Sending:
insert into t1 values (1);;
#
# Switching to connection 'mdl_con2'.
# Check that the above INSERT is blocked.
# Unblock ALTER TABLE and thus INSERT.
set debug_sync= 'now SIGNAL finish';
#
# Switching to connection 'mdl_con1'.
# Reap ALTER TABLE.
ERROR 23000: Duplicate entry '1' for key 'PRIMARY'
#
# Switching to connection 'default'.
# Reap INSERT.
commit;
#
# **) Now test in which transaction that has SW lock on the table
# against which there is pending SNW lock acquires SR and SW
# locks on this table.
#
begin;
insert into t1 values (1);
#
# Switching to connection 'mdl_con1'.
# Create pending SNW lock on t1.
# Sending:
alter table t1 add primary key (c1);;
#
# Switching to connection 'default'.
# Wait until ALTER TABLE starts waiting for SNW lock.
# We should still be able to get both SW and SR locks without waiting.
select count(*) from t1;
count(*)
5
delete from t1 limit 1;
# Unblock ALTER TABLE.
commit;
#
# Switching to connection 'mdl_con1'.
# Reap ALTER TABLE.
ERROR 23000: Duplicate entry '1' for key 'PRIMARY'
#
# Switching to connection 'default'.
#
# 2) Now similar tests for active SNW lock which is being upgraded
# to X lock.
#
# Again we start with case when we are acquiring lock on the
# table which was not used in the transaction before.
begin;
select count(*) from t1;
count(*)
4
#
# Switching to connection 'mdl_con2'.
# Start transaction which will prevent SNW -> X upgrade from
# completing immediately.
begin;
select count(*) from t2;
count(*)
3
#
# Switching to connection 'mdl_con1'.
# Create SNW lock pending upgrade to X on t2.
# Sending:
alter table t2 add column c2 int;;
#
# Switching to connection 'default'.
# Wait until ALTER TABLE starts waiting X lock.
# Check that attempt to acquire SR lock on t2 causes waiting.
# Sending:
select count(*) from t2;;
#
# Switching to connection 'mdl_con2'.
# Check that the above SELECT is blocked.
# Unblock ALTER TABLE.
commit;
#
# Switching to connection 'mdl_con1'.
# Reap ALTER TABLE.
#
# Switching to connection 'default'.
# Reap SELECT.
count(*)
3
commit;
# Do similar check for SW lock.
begin;
select count(*) from t1;
count(*)
4
#
# Switching to connection 'mdl_con2'.
# Start transaction which will prevent SNW -> X upgrade from
# completing immediately.
begin;
select count(*) from t2;
count(*)
3
#
# Switching to connection 'mdl_con1'.
# Create SNW lock pending upgrade to X on t2.
# Sending:
alter table t2 drop column c2;;
#
# Switching to connection 'default'.
# Wait until ALTER TABLE starts waiting X lock.
# Check that attempt to acquire SW lock on t2 causes waiting.
# Sending:
insert into t2 values (1);;
#
# Switching to connection 'mdl_con2'.
# Check that the above INSERT is blocked.
# Unblock ALTER TABLE.
commit;
#
# Switching to connection 'mdl_con1'.
# Reap ALTER TABLE.
#
# Switching to connection 'default'.
# Reap INSERT.
commit;
#
# Test for the case in which we are acquiring lock on the table
# which is already used in transaction.
#
begin;
select count(*) from t1;
count(*)
4
#
# Switching to connection 'mdl_con1'.
# Create SNW lock pending upgrade to X.
# Sending:
alter table t1 add column c2 int;;
#
# Switching to connection 'default'.
# Wait until ALTER TABLE starts waiting X lock.
# Check that transaction is still able to acquire SR lock.
select count(*) from t1;
count(*)
4
# Waiting trying to acquire SW lock will cause deadlock and
# therefore should cause an error.
delete from t1 limit 1;
ERROR 40001: Deadlock found when trying to get lock; try restarting transaction
# Unblock ALTER TABLE.
commit;
#
# Switching to connection 'mdl_con1'.
# Reap ALTER TABLE.
#
# Switching to connection 'default'.
#
# 3) Check how various locks used within transactional context
# interact with active/pending SNRW lock.
#
# Once again we start with case when we are acquiring lock on
# the table which was not used in the transaction before.
begin;
select count(*) from t1;
count(*)
4
#
# Switching to connection 'mdl_con1'.
lock table t2 write;
#
# Switching to connection 'default'.
# Attempt to acquire SR should be blocked. It should
# not cause errors as it does not creates deadlock.
# Sending:
select count(*) from t2;;
#
# Switching to connection 'mdl_con1'.
# Check that the above SELECT is blocked
# Unblock SELECT.
unlock tables;
#
# Switching to connection 'default'.
# Reap SELECT.
count(*)
4
commit;
# Repeat the same test for SW lock.
begin;
select count(*) from t1;
count(*)
4
#
# Switching to connection 'mdl_con1'.
lock table t2 write;
#
# Switching to connection 'default'.
# Again attempt to acquire SW should be blocked and should
# not cause any errors.
# Sending:
delete from t2 limit 1;;
#
# Switching to connection 'mdl_con1'.
# Check that the above DELETE is blocked
# Unblock DELETE.
unlock tables;
#
# Switching to connection 'default'.
# Reap DELETE.
commit;
#
# Now coverage for the case in which we are acquiring lock on
# the table which is already used in transaction and against
# which there is a pending SNRW lock request.
#
# *) Let us start with case when transaction has only a SR lock.
#
begin;
select count(*) from t1;
count(*)
4
#
# Switching to connection 'mdl_con1'.
# Sending:
lock table t1 write;;
#
# Switching to connection 'default'.
# Wait until LOCK TABLE is blocked creating pending request for X lock.
# Check that another instance of SR lock is granted without waiting.
select count(*) from t1;
count(*)
4
# Attempt to wait for SW lock will lead to deadlock, thus
# the below statement should end with ER_LOCK_DEADLOCK error.
delete from t1 limit 1;
ERROR 40001: Deadlock found when trying to get lock; try restarting transaction
# Unblock LOCK TABLES.
commit;
#
# Switching to connection 'mdl_con1'.
# Reap LOCK TABLES.
unlock tables;
#
# Switching to connection 'default'.
#
# **) Now case when transaction has a SW lock.
#
begin;
delete from t1 limit 1;
#
# Switching to connection 'mdl_con1'.
# Sending:
lock table t1 write;;
#
# Switching to connection 'default'.
# Wait until LOCK TABLE is blocked creating pending request for X lock.
# Check that both SR and SW locks are granted without waiting
# and errors.
select count(*) from t1;
count(*)
3
insert into t1 values (1, 1);
# Unblock LOCK TABLES.
commit;
#
# Switching to connection 'mdl_con1'.
# Reap LOCK TABLES.
unlock tables;
#
# Switching to connection 'default'.
#
# 4) Check how various locks used within transactional context
# interact with active/pending X lock.
#
# As usual we start with case when we are acquiring lock on
# the table which was not used in the transaction before.
begin;
select count(*) from t1;
count(*)
4
#
# Switching to connection 'mdl_con2'.
# Start transaction which will prevent X lock from going away
# immediately.
begin;
select count(*) from t2;
count(*)
3
#
# Switching to connection 'mdl_con1'.
# Create pending X lock on t2.
# Sending:
rename table t2 to t3;;
#
# Switching to connection 'default'.
# Wait until RENAME TABLE starts waiting with pending X lock.
# Check that attempt to acquire SR lock on t2 causes waiting.
# Sending:
select count(*) from t2;;
#
# Switching to connection 'mdl_con2'.
# Check that the above SELECT is blocked.
# Unblock RENAME TABLE.
commit;
#
# Switching to connection 'mdl_con1'.
# Reap RENAME TABLE.
#
# Switching to connection 'default'.
# Reap SELECT.
ERROR 42S02: Table 'test.t2' doesn't exist
commit;
rename table t3 to t2;
# The same test for SW lock.
begin;
select count(*) from t1;
count(*)
4
#
# Switching to connection 'mdl_con2'.
# Start transaction which will prevent X lock from going away
# immediately.
begin;
select count(*) from t2;
count(*)
3
#
# Switching to connection 'mdl_con1'.
# Create pending X lock on t2.
# Sending:
rename table t2 to t3;;
#
# Switching to connection 'default'.
# Wait until RENAME TABLE starts waiting with pending X lock.
# Check that attempt to acquire SW lock on t2 causes waiting.
# Sending:
delete from t2 limit 1;;
#
# Switching to connection 'mdl_con2'.
# Check that the above DELETE is blocked.
# Unblock RENAME TABLE.
commit;
#
# Switching to connection 'mdl_con1'.
# Reap RENAME TABLE.
#
# Switching to connection 'default'.
# Reap DELETE.
ERROR 42S02: Table 'test.t2' doesn't exist
commit;
rename table t3 to t2;
#
# Coverage for the case in which we are acquiring lock on
# the table which is already used in transaction and against
# which there is a pending X lock request.
#
# *) The first case is when transaction has only a SR lock.
#
begin;
select count(*) from t1;
count(*)
4
#
# Switching to connection 'mdl_con1'.
# Sending:
rename table t1 to t2;;
#
# Switching to connection 'default'.
# Wait until RENAME TABLE is blocked creating pending request for X lock.
# Check that another instance of SR lock is granted without waiting.
select count(*) from t1;
count(*)
4
# Attempt to wait for SW lock will lead to deadlock, thus
# the below statement should end with ER_LOCK_DEADLOCK error.
delete from t1 limit 1;
ERROR 40001: Deadlock found when trying to get lock; try restarting transaction
# Unblock RENAME TABLE.
commit;
#
# Switching to connection 'mdl_con1'.
# Reap RENAME TABLE.
ERROR 42S01: Table 't2' already exists
#
# Switching to connection 'default'.
#
# **) The second case is when transaction has a SW lock.
#
begin;
delete from t1 limit 1;
#
# Switching to connection 'mdl_con1'.
# Sending:
rename table t1 to t2;;
#
# Switching to connection 'default'.
# Wait until RENAME TABLE is blocked creating pending request for X lock.
# Check that both SR and SW locks are granted without waiting
# and errors.
select count(*) from t1;
count(*)
3
insert into t1 values (1, 1);
# Unblock RENAME TABLE.
commit;
#
# Switching to connection 'mdl_con1'.
# Reap RENAME TABLE.
ERROR 42S01: Table 't2' already exists
#
# Switching to connection 'default'.
# Clean-up.
set debug_sync= 'RESET';
drop table t1, t2;
#
# Additional coverage for some scenarios in which not quite
# correct use of S metadata locks by HANDLER statement might
# have caused deadlocks.
#
drop table if exists t1, t2;
create table t1 (i int);
create table t2 (j int);
insert into t1 values (1);
#
# First, check scenario in which we upgrade SNRW lock to X lock
# on a table while having HANDLER READ trying to acquire TL_READ
# on the same table.
#
handler t1 open;
#
# Switching to connection 'handler_con1'.
lock table t1 write;
# Upgrade SNRW to X lock.
# Sending:
alter table t1 add column j int;;
#
# Switching to connection 'handler_con2'.
# Wait until ALTER is blocked during upgrade.
#
# Switching to connection 'default'.
# The below statement should not cause deadlock.
handler t1 read first;;
#
# Switching to connection 'handler_con1'.
# Reap ALTER TABLE.
unlock tables;
#
# Switching to connection 'default'.
# Reap HANDLER READ.
i j
1 NULL
handler t1 close;
#
# Now, check scenario in which upgrade of SNRW lock to X lock
# can be blocked by HANDLER which is open in connection currently
# waiting to get table-lock owned by connection doing upgrade.
#
handler t1 open;
#
# Switching to connection 'handler_con1'.
lock table t1 write, t2 read;
#
# Switching to connection 'default'.
# Execute statement which will be blocked on table-level lock
# owned by connection 'handler_con1'.
# Sending:
insert into t2 values (1);;
#
# Switching to connection 'handler_con1'.
# Wait until INSERT is blocked on table-level lock.
# The below statement should not cause deadlock.
alter table t1 drop column j;
unlock tables;
#
# Switching to connection 'default'.
# Reap INSERT.
handler t1 close;
#
# Then, check the scenario in which upgrade of SNRW lock to X
# lock is blocked by HANDLER which is open in connection currently
# waiting to get SW lock on the same table.
#
handler t1 open;
#
# Switching to connection 'handler_con1'.
lock table t1 write;
#
# Switching to connection 'default'.
# The below insert should be blocked because active SNRW lock on 't1'.
# Sending:
insert into t1 values (1);;
#
# Switching to connection 'handler_con1'.
# Wait until INSERT is blocked because of SNRW lock.
# The below ALTER TABLE will be blocked because of presence of HANDLER.
# Sending:
alter table t1 add column j int;;
#
# Switching to connection 'default'.
# INSERT should be chosen as victim for resolving deadlock.
# Reaping INSERT.
ERROR 40001: Deadlock found when trying to get lock; try restarting transaction
# Close HANDLER to unblock ALTER TABLE.
handler t1 close;
#
# Switching to connection 'handler_con1'.
# Reaping ALTER TABLE.
unlock tables;
#
# Switching to connection 'default'.
#
# Finally, test in which upgrade of SNRW lock to X lock is blocked
# by HANDLER which is open in connection currently waiting to get
# SR lock on the table on which lock is upgraded.
#
handler t1 open;
#
# Switching to connection 'handler_con1'.
lock table t1 write, t2 write;
#
# Switching to connection 'default'.
# The below insert should be blocked because active SNRW lock on 't1'.
# Sending:
insert into t2 values (1);;
#
# Switching to connection 'handler_con1'.
# Wait until INSERT is blocked because of SNRW lock.
# The below ALTER TABLE will be blocked because of presence of HANDLER.
# Sending:
alter table t1 drop column j;;
#
# Switching to connection 'default'.
# INSERT should be chosen as victim for resolving deadlock.
# Reaping INSERT.
ERROR 40001: Deadlock found when trying to get lock; try restarting transaction
# Close HANDLER to unblock ALTER TABLE.
handler t1 close;
#
# Switching to connection 'handler_con1'.
# Reaping ALTER TABLE.
unlock tables;
#
# Switching to connection 'default'.
# Clean-up.
drop tables t1, t2;
#
# Test coverage for basic deadlock detection in metadata
# locking subsystem.
#
drop tables if exists t0, t1, t2, t3, t4, t5;
create table t1 (i int);
create table t2 (j int);
create table t3 (k int);
create table t4 (k int);
#
# Test for the case in which no deadlock occurs.
#
#
# Switching to connection 'deadlock_con1'.
begin;
insert into t1 values (1);
#
# Switching to connection 'deadlock_con2'.
begin;
insert into t2 values (1);
#
# Switching to connection 'default'.
# Send:
rename table t2 to t0, t3 to t2, t0 to t3;;
#
# Switching to connection 'deadlock_con1'.
# Wait until the above RENAME TABLE is blocked because it has to wait
# for 'deadlock_con2' which holds shared metadata lock on 't2'.
# The below statement should wait for exclusive metadata lock
# on 't2' to go away and should not produce ER_LOCK_DEADLOCK
# as no deadlock is possible in this situation.
# Send:
select * from t2;;
#
# Switching to connection 'deadlock_con2'.
# Wait until the above SELECT * FROM t2 is starts waiting
# for an exclusive metadata lock to go away.
#
# Unblock RENAME TABLE by releasing shared metadata lock on t2.
commit;
#
# Switching to connection 'default'.
# Reap RENAME TABLE.
#
# Switching to connection 'deadlock_con1'.
# Reap SELECT.
k
#
# Switching to connection 'default'.
#
# Let us check that in the process of waiting for conflicting lock
# on table 't2' to go away transaction in connection 'deadlock_con1'
# has not released metadata lock on table 't1'.
# Send:
rename table t1 to t0, t3 to t1, t0 to t3;;
#
# Switching to connection 'deadlock_con1'.
# Wait until the above RENAME TABLE is blocked because it has to wait
# for 'deadlock_con1' which should still hold shared metadata lock on
# table 't1'.
# Commit transaction to unblock RENAME TABLE.
commit;
#
# Switching to connection 'default'.
# Reap RENAME TABLE.
#
# Test for case when deadlock occurs and should be detected immediately.
#
#
# Switching to connection 'deadlock_con1'.
begin;
insert into t2 values (2);
#
# Switching to connection 'default'.
# Send:
rename table t2 to t0, t1 to t2, t0 to t1;;
#
# Switching to connection 'deadlock_con1'.
# Wait until the above RENAME TABLE is blocked because it has to wait
# for 'deadlock_con1' which holds shared metadata lock on 't2'.
#
# The below statement should not wait as doing so will cause deadlock.
# Instead it should fail and emit ER_LOCK_DEADLOCK statement.
select * from t1;
ERROR 40001: Deadlock found when trying to get lock; try restarting transaction
#
# Let us check that failure of the above statement has not released
# metadata lock on table 't1', i.e. that RENAME TABLE is still blocked.
# Commit transaction to unblock RENAME TABLE.
commit;
#
# Switching to connection 'default'.
# Reap RENAME TABLE.
#
# Test for the case in which deadlock also occurs but not immediately.
#
#
# Switching to connection 'deadlock_con1'.
begin;
insert into t2 values (1);
#
# Switching to connection 'default'.
lock table t1 write;
#
# Switching to connection 'deadlock_con1'.
# The below SELECT statement should wait for metadata lock
# on table 't1' and should not produce ER_LOCK_DEADLOCK
# immediately as no deadlock is possible at the moment.
select * from t1;;
#
# Switching to connection 'deadlock_con2'.
# Wait until the above SELECT * FROM t1 is starts waiting
# for an UNRW metadata lock to go away.
# Send RENAME TABLE statement that will deadlock with the
# SELECT statement and thus should abort the latter.
rename table t1 to t0, t2 to t1, t0 to t2;;
#
# Switching to connection 'default'.
# Wait till above RENAME TABLE is blocked while holding
# pending X lock on t1.
# Allow the above RENAME TABLE to acquire lock on t1 and
# create pending lock on t2 thus creating deadlock.
unlock tables;
#
# Switching to connection 'deadlock_con1'.
# Since the latest RENAME TABLE entered in deadlock with SELECT
# statement the latter should be aborted and emit ER_LOCK_DEADLOCK
# error.
# Reap SELECT * FROM t1.
ERROR 40001: Deadlock found when trying to get lock; try restarting transaction
#
# Again let us check that failure of the SELECT statement has not
# released metadata lock on table 't2', i.e. that the latest RENAME
# is blocked.
# Commit transaction to unblock this RENAME TABLE.
commit;
#
# Switching to connection 'deadlock_con2'.
# Reap RENAME TABLE ... .
#
# Switching to connection 'default'.
drop tables t1, t2, t3, t4;
#
# Now, test case which shows that deadlock detection empiric
# also takes into account requests for metadata lock upgrade.
#
create table t1 (i int);
insert into t1 values (1);
# Avoid race which occurs when SELECT in 'deadlock_con1' connection
# accesses table before the above INSERT unlocks the table and thus
# its result becomes visible to other connections.
select * from t1;
i
1
#
# Switching to connection 'deadlock_con1'.
begin;
select * from t1;
i
1
#
# Switching to connection 'default'.
# Send:
alter table t1 add column j int, rename to t2;;
#
# Switching to connection 'deadlock_con1'.
# Wait until the above ALTER TABLE ... RENAME acquires exclusive
# metadata lock on 't2' and starts waiting for connection
# 'deadlock_con1' which holds shared lock on 't1'.
# The below statement should not wait as it will cause deadlock.
# An appropriate error should be reported instead.
select * from t2;
ERROR 40001: Deadlock found when trying to get lock; try restarting transaction
# Again let us check that failure of the above statement has not
# released all metadata locks in connection 'deadlock_con1' and
# so ALTER TABLE ... RENAME is still blocked.
# Commit transaction to unblock ALTER TABLE ... RENAME.
commit;
#
# Switching to connection 'default'.
# Reap ALTER TABLE ... RENAME.
drop table t2;
#
# Test for bug #46748 "Assertion in MDL_context::wait_for_locks()
# on INSERT + CREATE TRIGGER".
#
drop tables if exists t1, t2, t3, t4, t5;
# Let us simulate scenario in which we open some tables from extended
# part of prelocking set but then encounter conflicting metadata lock,
# so have to back-off and wait for it to go away.
create table t1 (i int);
create table t2 (j int);
create table t3 (k int);
create table t4 (l int);
create trigger t1_bi before insert on t1 for each row
insert into t2 values (new.i);
create trigger t2_bi before insert on t2 for each row
insert into t3 values (new.j);
#
# Switching to connection 'con1root'.
lock tables t4 read;
#
# Switching to connection 'con2root'.
# Send :
rename table t3 to t5, t4 to t3;;
#
# Switching to connection 'default'.
# Wait until the above RENAME TABLE adds pending requests for exclusive
# metadata lock on its tables and blocks due to 't4' being used by LOCK
# TABLES.
# Send :
insert into t1 values (1);;
#
# Switching to connection 'con1root'.
# Wait until INSERT statement waits due to encountering pending
# exclusive metadata lock on 't3'.
unlock tables;
#
# Switching to connection 'con2root'.
# Reap RENAME TABLE.
#
# Switching to connection 'default'.
# Reap INSERT.
# Clean-up.
drop tables t1, t2, t3, t5;
#
# Bug#42546 - Backup: RESTORE fails, thinking it finds an existing table
#
DROP TABLE IF EXISTS t1;
set @save_log_output=@@global.log_output;
set global log_output=file;
#
# Test 1: CREATE TABLE
#
# Connection 2
# Start insert on the not-yet existing table
# Wait after taking the MDL lock
SET DEBUG_SYNC= 'after_open_table_mdl_shared SIGNAL locked WAIT_FOR finish';
INSERT INTO t1 VALUES(1,"def");
# Connection 1
SET DEBUG_SYNC= 'now WAIT_FOR locked';
# Now INSERT has a MDL on the non-existent table t1.
#
# Continue the INSERT once CREATE waits for exclusive lock
SET DEBUG_SYNC= 'mdl_acquire_lock_wait SIGNAL finish';
# Try to create that table.
CREATE TABLE t1 (c1 INT, c2 VARCHAR(100), KEY(c1));
# Connection 2
# Insert fails
ERROR 42S02: Table 'test.t1' doesn't exist
# Connection 1
SET DEBUG_SYNC= 'RESET';
SHOW TABLES;
Tables_in_test
t1
DROP TABLE IF EXISTS t1;
#
# Test 2: CREATE TABLE LIKE
#
CREATE TABLE t2 (c1 INT, c2 VARCHAR(100), KEY(c1));
# Connection 2
# Start insert on the not-yet existing table
# Wait after taking the MDL
SET DEBUG_SYNC= 'after_open_table_mdl_shared SIGNAL locked WAIT_FOR finish';
INSERT INTO t1 VALUES(1,"def");
# Connection 1
SET DEBUG_SYNC= 'now WAIT_FOR locked';
# Now INSERT has a MDL on the non-existent table t1.
#
# Continue the INSERT once CREATE waits for exclusive lock
SET DEBUG_SYNC= 'mdl_acquire_lock_wait SIGNAL finish';
# Try to create that table.
CREATE TABLE t1 LIKE t2;
# Connection 2
# Insert fails
ERROR 42S02: Table 'test.t1' doesn't exist
# Connection 1
SET DEBUG_SYNC= 'RESET';
SHOW TABLES;
Tables_in_test
t1
t2
DROP TABLE t2;
DROP TABLE IF EXISTS t1;
set global log_output=@save_log_output;
#
# Bug #46044 "MDL deadlock on LOCK TABLE + CREATE TABLE HIGH_PRIORITY
# FOR UPDATE"
#
drop tables if exists t1, t2;
create table t1 (i int);
# Let us check that we won't deadlock if during filling
# of I_S table we encounter conflicting metadata lock
# which owner is in its turn waiting for our connection.
lock tables t1 read;
# Switching to connection 'con46044'.
# Sending:
create table t2 select * from t1 for update;;
# Switching to connection 'default'.
# Waiting until CREATE TABLE ... SELECT ... is blocked.
# First let us check that SHOW FIELDS/DESCRIBE doesn't
# gets blocked and emits and error.
show fields from t2;
ERROR HY000: Table 'test'.'t2' was skipped since its definition is being modified by concurrent DDL statement
# Now test for I_S query which reads only .FRMs.
#
# Query below should only emit a warning.
select column_name from information_schema.columns
where table_schema='test' and table_name='t2';
column_name
Warnings:
Warning 1684 Table 'test'.'t2' was skipped since its definition is being modified by concurrent DDL statement
# Finally, test for I_S query which does full-blown table open.
#
# Query below should not be blocked. Warning message should be
# stored in the 'table_comment' column.
select table_name, table_type, auto_increment, table_comment
from information_schema.tables where table_schema='test' and table_name='t2';
table_name table_type auto_increment table_comment
t2 BASE TABLE NULL Table 'test'.'t2' was skipped since its definition is being modified by concurrent DDL statement
# Switching to connection 'default'.
unlock tables;
# Switching to connection 'con46044'.
# Reaping CREATE TABLE ... SELECT ... .
drop table t2;
#
# Let us also check that queries to I_S wait for conflicting metadata
# locks to go away instead of skipping table with a warning in cases
# when deadlock is not possible. This is a nice thing from compatibility
# and ease of use points of view.
#
# We check same three queries to I_S in this new situation.
# Switching to connection 'con46044_2'.
lock tables t1 read;
# Switching to connection 'con46044'.
# Sending:
create table t2 select * from t1 for update;;
# Switching to connection 'default'.
# Waiting until CREATE TABLE ... SELECT ... is blocked.
# Let us check that SHOW FIELDS/DESCRIBE gets blocked.
# Sending:
show fields from t2;;
# Switching to connection 'con46044_2'.
# Wait until SHOW FIELDS gets blocked.
unlock tables;
# Switching to connection 'con46044'.
# Reaping CREATE TABLE ... SELECT ... .
# Switching to connection 'default'.
# Reaping SHOW FIELDS ...
Field Type Null Key Default Extra
i int(11) YES NULL
drop table t2;
# Switching to connection 'con46044_2'.
lock tables t1 read;
# Switching to connection 'con46044'.
# Sending:
create table t2 select * from t1 for update;;
# Switching to connection 'default'.
# Waiting until CREATE TABLE ... SELECT ... is blocked.
# Check that I_S query which reads only .FRMs gets blocked.
# Sending:
select column_name from information_schema.columns where table_schema='test' and table_name='t2';;
# Switching to connection 'con46044_2'.
# Wait until SELECT COLUMN_NAME FROM I_S.COLUMNS gets blocked.
unlock tables;
# Switching to connection 'con46044'.
# Reaping CREATE TABLE ... SELECT ... .
# Switching to connection 'default'.
# Reaping SELECT COLUMN_NAME FROM I_S.COLUMNS
column_name
i
drop table t2;
# Switching to connection 'con46044_2'.
lock tables t1 read;
# Switching to connection 'con46044'.
# Sending:
create table t2 select * from t1 for update;;
# Switching to connection 'default'.
# Waiting until CREATE TABLE ... SELECT ... is blocked.
# Finally, check that I_S query which does full-blown table open
# also gets blocked.
# Sending:
select table_name, table_type, auto_increment, table_comment from information_schema.tables where table_schema='test' and table_name='t2';;
# Switching to connection 'con46044_2'.
# Wait until SELECT ... FROM I_S.TABLES gets blocked.
unlock tables;
# Switching to connection 'con46044'.
# Reaping CREATE TABLE ... SELECT ... .
# Switching to connection 'default'.
# Reaping SELECT ... FROM I_S.TABLES
table_name table_type auto_increment table_comment
t2 BASE TABLE NULL
drop table t2;
# Switching to connection 'default'.
# Clean-up.
drop table t1;
#
# Test for bug #46273 "MySQL 5.4.4 new MDL: Bug#989 is not fully fixed
# in case of ALTER".
#
drop table if exists t1;
set debug_sync= 'RESET';
create table t1 (c1 int primary key, c2 int, c3 int);
insert into t1 values (1,1,0),(2,2,0),(3,3,0),(4,4,0),(5,5,0);
begin;
select * from t1 where c2 = 3;
c1 c2 c3
3 3 0
#
# Switching to connection 'con46273'.
set debug_sync='after_lock_tables_takes_lock SIGNAL alter_table_locked WAIT_FOR alter_go';
alter table t1 add column e int, rename to t2;;
#
# Switching to connection 'default'.
set debug_sync='now WAIT_FOR alter_table_locked';
set debug_sync='before_open_table_wait_refresh SIGNAL alter_go';
# The below statement should get ER_LOCK_DEADLOCK error
# (i.e. it should not allow ALTER to proceed, and then
# fail due to 't1' changing its name to 't2').
update t1 set c3=c3+1 where c2 = 3;
ERROR 40001: Deadlock found when trying to get lock; try restarting transaction
#
# Let us check that failure of the above statement has not released
# metadata lock on table 't1', i.e. that ALTER TABLE is still blocked.
# Unblock ALTER TABLE by commiting transaction and thus releasing
# metadata lock on 't1'.
commit;
#
# Switching to connection 'con46273'.
# Reap ALTER TABLE.
#
# Switching to connection 'default'.
# Clean-up.
set debug_sync= 'RESET';
drop table t2;
#
# Test for bug #46673 "Deadlock between FLUSH TABLES WITH READ LOCK
# and DML".
#
drop tables if exists t1;
create table t1 (i int);
# Switching to connection 'con46673'.
begin;
insert into t1 values (1);
# Switching to connection 'default'.
# Statement below should not get blocked. And if after some
# changes to code it is there should not be a deadlock between
# it and transaction from connection 'con46673'.
flush tables with read lock;
unlock tables;
# Switching to connection 'con46673'.
delete from t1 where i = 1;
commit;
# Switching to connection 'default'.
# Clean-up
drop table t1;
#
# Bug#48210 FLUSH TABLES WITH READ LOCK deadlocks
# against concurrent CREATE PROCEDURE
#
# Test 1: CREATE PROCEDURE
# Connection 1
# Start CREATE PROCEDURE and open mysql.proc
SET DEBUG_SYNC= 'after_open_table_mdl_shared SIGNAL table_opened WAIT_FOR grlwait';
CREATE PROCEDURE p1() SELECT 1;
# Connection 2
SET DEBUG_SYNC= 'now WAIT_FOR table_opened';
# Check that FLUSH must wait to get the GRL
# and let CREATE PROCEDURE continue
SET DEBUG_SYNC= 'wait_lock_global_read_lock SIGNAL grlwait';
FLUSH TABLES WITH READ LOCK;
# Connection 1
# Connection 2
UNLOCK TABLES;
# Connection 1
SET DEBUG_SYNC= 'RESET';
# Test 2: DROP PROCEDURE
# Start DROP PROCEDURE and open tables
SET DEBUG_SYNC= 'after_open_table_mdl_shared SIGNAL table_opened WAIT_FOR grlwait';
DROP PROCEDURE p1;
# Connection 2
SET DEBUG_SYNC= 'now WAIT_FOR table_opened';
# Check that FLUSH must wait to get the GRL
# and let DROP PROCEDURE continue
SET DEBUG_SYNC= 'wait_lock_global_read_lock SIGNAL grlwait';
FLUSH TABLES WITH READ LOCK;
# Connection 1
# Connection 2
UNLOCK TABLES;
# Connection 1
SET DEBUG_SYNC= 'RESET';
#
# Bug#50786 Assertion `thd->mdl_context.trans_sentinel() == __null'
# failed in open_ltable()
#
DROP TABLE IF EXISTS t1, t2;
CREATE TABLE t1 (i INT);
CREATE TABLE t2 (i INT);
SET @old_general_log= @@global.general_log;
SET @@global.general_log= 1;
SET @old_log_output= @@global.log_output;
SET @@global.log_output= 'TABLE';
SET @old_sql_log_off= @@session.sql_log_off;
SET @@session.sql_log_off= 1;
# connection: con1
HANDLER t1 OPEN;
# connection: con3
SET @@session.sql_log_off= 1;
# connection: con2
SET DEBUG_SYNC= 'thr_multi_lock_after_thr_lock SIGNAL parked WAIT_FOR go';
# Sending:
SELECT 1;
# connection: con3
SET DEBUG_SYNC= 'now WAIT_FOR parked';
# connection: con1
# Sending:
SELECT 1;
# connection: con3
# Sending:
ALTER TABLE t1 ADD COLUMN j INT;
# connection: default
SET DEBUG_SYNC= 'now SIGNAL go';
# connection: con1
# Reaping SELECT 1
1
1
HANDLER t1 CLOSE;
# connection: con2
# Reaping SELECT 1
1
1
# connection: con3
# Reaping ALTER TABLE t1 ADD COLUMN j INT
# connection: default
DROP TABLE t1, t2;
SET DEBUG_SYNC= 'RESET';
SET @@global.general_log= @old_general_log;
SET @@global.log_output= @old_log_output;
SET @@session.sql_log_off= @old_sql_log_off;
#
# Additional coverage for bug #50913 "Deadlock between
# open_and_lock_tables_derived and MDL". The main test
# case is in lock_multi.test
#
drop table if exists t1;
set debug_sync= 'RESET';
create table t1 (i int) engine=InnoDB;
# Switching to connection 'con50913_1'.
set debug_sync= 'thr_multi_lock_after_thr_lock SIGNAL parked WAIT_FOR go';
# Sending:
alter table t1 add column j int;
# Switching to connection 'default'.
# Wait until ALTER TABLE gets blocked on a sync point after
# acquiring thr_lock.c lock.
set debug_sync= 'now WAIT_FOR parked';
# The below statement should wait on MDL lock and not deadlock on
# thr_lock.c lock.
# Sending:
truncate table t1;
# Switching to connection 'con50913_2'.
# Wait until TRUNCATE TABLE is blocked on MDL lock.
# Unblock ALTER TABLE.
set debug_sync= 'now SIGNAL go';
# Switching to connection 'con50913_1'.
# Reaping ALTER TABLE.
# Switching to connection 'default'.
# Reaping TRUNCATE TABLE.
set debug_sync= 'RESET';
drop table t1;
#
# Test for bug #50998 "Deadlock in MDL code during test
# rqg_mdl_stability".
# Also provides coverage for the case when addition of
# waiting statement adds several loops in the waiters
# graph and therefore several searches for deadlock
# should be performed.
drop table if exists t1;
set debug_sync= 'RESET';
create table t1 (i int);
# Switching to connection 'con1'.
begin;
select * from t1;
i
# Switching to connection 'con2'.
begin;
select * from t1;
i
# Switching to connection 'default'.
# Start ALTER TABLE which will acquire SNW lock and
# table lock and get blocked on sync point.
set debug_sync= 'thr_multi_lock_after_thr_lock SIGNAL parked WAIT_FOR go';
# Sending:
alter table t1 add column j int;
# Switching to connection 'con1'.
# Wait until ALTER TABLE gets blocked on a sync point.
set debug_sync= 'now WAIT_FOR parked';
# Sending:
insert into t1 values (1);
# Switching to connection 'con2'.
# Sending:
insert into t1 values (1);
# Switching to connection 'con3'.
# Wait until both 'con1' and 'con2' are blocked trying to acquire
# SW lock on the table.
# Unblock ALTER TABLE. Since it will try to upgrade SNW to X lock
# deadlock with two loops in waiting graph will occur. Both loops
# should be found and DML statements in both 'con1' and 'con2'
# should be aborted with ER_LOCK_DEADLOCK errors.
set debug_sync= 'now SIGNAL go';
# Switching to connection 'con1'.
# Reaping INSERT. It should end with ER_LOCK_DEADLOCK error and
# not wait indefinitely (as it happened before the bugfix).
ERROR 40001: Deadlock found when trying to get lock; try restarting transaction
commit;
# Switching to connection 'con2'.
# Reaping INSERT.
ERROR 40001: Deadlock found when trying to get lock; try restarting transaction
commit;
# Switching to connection 'default'.
# Reap ALTER TABLE.
set debug_sync= 'RESET';
drop table t1;