mirror of
https://github.com/MariaDB/server.git
synced 2025-01-17 04:22:27 +01:00
0d734037cc
join cache module. Without these calls SELECTs over tables with virtual columns that used join cache could return wrong results. This could be seen with the test case added into vcol_misc.test
3298 lines
102 KiB
C++
3298 lines
102 KiB
C++
/* Copyright (C) 2000-2006 MySQL AB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
/**
|
|
@file
|
|
|
|
@brief
|
|
join cache optimizations
|
|
|
|
@defgroup Query_Optimizer Query Optimizer
|
|
@{
|
|
*/
|
|
|
|
#ifdef USE_PRAGMA_IMPLEMENTATION
|
|
#pragma implementation // gcc: Class implementation
|
|
#endif
|
|
|
|
#include "mysql_priv.h"
|
|
#include "sql_select.h"
|
|
#include "opt_subselect.h"
|
|
|
|
#define NO_MORE_RECORDS_IN_BUFFER (uint)(-1)
|
|
|
|
|
|
/*****************************************************************************
|
|
* Join cache module
|
|
******************************************************************************/
|
|
|
|
/*
|
|
Fill in the descriptor of a flag field associated with a join cache
|
|
|
|
SYNOPSIS
|
|
add_field_flag_to_join_cache()
|
|
str position in a record buffer to copy the field from/to
|
|
length length of the field
|
|
field IN/OUT pointer to the field descriptor to fill in
|
|
|
|
DESCRIPTION
|
|
The function fill in the descriptor of a cache flag field to which
|
|
the parameter 'field' points to. The function uses the first two
|
|
parameters to set the position in the record buffer from/to which
|
|
the field value is to be copied and the length of the copied fragment.
|
|
Before returning the result the function increments the value of
|
|
*field by 1.
|
|
The function ignores the fields 'blob_length' and 'ofset' of the
|
|
descriptor.
|
|
|
|
RETURN
|
|
the length of the field
|
|
*/
|
|
|
|
static
|
|
uint add_flag_field_to_join_cache(uchar *str, uint length, CACHE_FIELD **field)
|
|
{
|
|
CACHE_FIELD *copy= *field;
|
|
copy->str= str;
|
|
copy->length= length;
|
|
copy->type= 0;
|
|
copy->field= 0;
|
|
copy->referenced_field_no= 0;
|
|
(*field)++;
|
|
return length;
|
|
}
|
|
|
|
|
|
/*
|
|
Fill in the descriptors of table data fields associated with a join cache
|
|
|
|
SYNOPSIS
|
|
add_table_data_fields_to_join_cache()
|
|
tab descriptors of fields from this table are to be filled
|
|
field_set descriptors for only these fields are to be created
|
|
field_cnt IN/OUT counter of data fields
|
|
descr IN/OUT pointer to the first descriptor to be filled
|
|
field_ptr_cnt IN/OUT counter of pointers to the data fields
|
|
descr_ptr IN/OUT pointer to the first pointer to blob descriptors
|
|
|
|
DESCRIPTION
|
|
The function fills in the descriptors of cache data fields from the table
|
|
'tab'. The descriptors are filled only for the fields marked in the
|
|
bitmap 'field_set'.
|
|
The function fills the descriptors starting from the position pointed
|
|
by 'descr'. If an added field is of a BLOB type then a pointer to the
|
|
its descriptor is added to the array descr_ptr.
|
|
At the return 'descr' points to the position after the last added
|
|
descriptor while 'descr_ptr' points to the position right after the
|
|
last added pointer.
|
|
|
|
RETURN
|
|
the total length of the added fields
|
|
*/
|
|
|
|
static
|
|
uint add_table_data_fields_to_join_cache(JOIN_TAB *tab,
|
|
MY_BITMAP *field_set,
|
|
uint *field_cnt,
|
|
CACHE_FIELD **descr,
|
|
uint *field_ptr_cnt,
|
|
CACHE_FIELD ***descr_ptr)
|
|
{
|
|
Field **fld_ptr;
|
|
uint len= 0;
|
|
CACHE_FIELD *copy= *descr;
|
|
CACHE_FIELD **copy_ptr= *descr_ptr;
|
|
uint used_fields= bitmap_bits_set(field_set);
|
|
for (fld_ptr= tab->table->field; used_fields; fld_ptr++)
|
|
{
|
|
if (bitmap_is_set(field_set, (*fld_ptr)->field_index))
|
|
{
|
|
len+= (*fld_ptr)->fill_cache_field(copy);
|
|
if (copy->type == CACHE_BLOB)
|
|
{
|
|
*copy_ptr= copy;
|
|
copy_ptr++;
|
|
(*field_ptr_cnt)++;
|
|
}
|
|
copy->field= *fld_ptr;
|
|
copy->referenced_field_no= 0;
|
|
copy++;
|
|
(*field_cnt)++;
|
|
used_fields--;
|
|
}
|
|
}
|
|
*descr= copy;
|
|
*descr_ptr= copy_ptr;
|
|
return len;
|
|
}
|
|
|
|
|
|
/*
|
|
Determine different counters of fields associated with a record in the cache
|
|
|
|
SYNOPSIS
|
|
calc_record_fields()
|
|
|
|
DESCRIPTION
|
|
The function counts the number of total fields stored in a record
|
|
of the cache and saves this number in the 'fields' member. It also
|
|
determines the number of flag fields and the number of blobs.
|
|
The function sets 'with_match_flag' on if 'join_tab' needs a match flag
|
|
i.e. if it is the first inner table of an outer join or a semi-join.
|
|
|
|
RETURN
|
|
none
|
|
*/
|
|
|
|
void JOIN_CACHE::calc_record_fields()
|
|
{
|
|
JOIN_TAB *tab = prev_cache ? prev_cache->join_tab :
|
|
join->join_tab+join->const_tables;
|
|
tables= join_tab-tab;
|
|
|
|
fields= 0;
|
|
blobs= 0;
|
|
flag_fields= 0;
|
|
data_field_count= 0;
|
|
data_field_ptr_count= 0;
|
|
referenced_fields= 0;
|
|
|
|
for ( ; tab < join_tab ; tab++)
|
|
{
|
|
calc_used_field_length(join->thd, tab);
|
|
flag_fields+= test(tab->used_null_fields || tab->used_uneven_bit_fields);
|
|
flag_fields+= test(tab->table->maybe_null);
|
|
fields+= tab->used_fields;
|
|
blobs+= tab->used_blobs;
|
|
|
|
fields+= tab->check_rowid_field();
|
|
}
|
|
if ((with_match_flag= join_tab->use_match_flag()))
|
|
flag_fields++;
|
|
fields+= flag_fields;
|
|
}
|
|
|
|
/*
|
|
Allocate memory for descriptors and pointers to them associated with the cache
|
|
|
|
SYNOPSIS
|
|
alloc_fields()
|
|
|
|
DESCRIPTION
|
|
The function allocates memory for the array of fields descriptors
|
|
and the array of pointers to the field descriptors used to copy
|
|
join record data from record buffers into the join buffer and
|
|
backward. Some pointers refer to the field descriptor associated
|
|
with previous caches. They are placed at the beginning of the
|
|
array of pointers and its total number is specified by the parameter
|
|
'external fields'.
|
|
The pointer of the first array is assigned to field_descr and the
|
|
number of elements is precalculated by the function calc_record_fields.
|
|
The allocated arrays are adjacent.
|
|
|
|
NOTES
|
|
The memory is allocated in join->thd->memroot
|
|
|
|
RETURN
|
|
pointer to the first array
|
|
*/
|
|
|
|
int JOIN_CACHE::alloc_fields(uint external_fields)
|
|
{
|
|
uint ptr_cnt= external_fields+blobs+1;
|
|
uint fields_size= sizeof(CACHE_FIELD)*fields;
|
|
field_descr= (CACHE_FIELD*) sql_alloc(fields_size +
|
|
sizeof(CACHE_FIELD*)*ptr_cnt);
|
|
blob_ptr= (CACHE_FIELD **) ((uchar *) field_descr + fields_size);
|
|
return (field_descr == NULL);
|
|
}
|
|
|
|
/*
|
|
Create descriptors of the record flag fields stored in the join buffer
|
|
|
|
SYNOPSIS
|
|
create_flag_fields()
|
|
|
|
DESCRIPTION
|
|
The function creates descriptors of the record flag fields stored
|
|
in the join buffer. These are descriptors for:
|
|
- an optional match flag field,
|
|
- table null bitmap fields,
|
|
- table null row fields.
|
|
The match flag field is created when 'join_tab' is the first inner
|
|
table of an outer join our a semi-join. A null bitmap field is
|
|
created for any table whose fields are to be stored in the join
|
|
buffer if at least one of these fields is nullable or is a BIT field
|
|
whose bits are partially stored with null bits. A null row flag
|
|
is created for any table assigned to the cache if it is an inner
|
|
table of an outer join.
|
|
The descriptor for flag fields are placed one after another at the
|
|
beginning of the array of field descriptors 'field_descr' that
|
|
contains 'fields' elements. If there is a match flag field the
|
|
descriptor for it is always first in the sequence of flag fields.
|
|
The descriptors for other flag fields can follow in an arbitrary
|
|
order.
|
|
The flag field values follow in a record stored in the join buffer
|
|
in the same order as field descriptors, with the match flag always
|
|
following first.
|
|
The function sets the value of 'flag_fields' to the total number
|
|
of the descriptors created for the flag fields.
|
|
The function sets the value of 'length' to the total length of the
|
|
flag fields.
|
|
|
|
RETURN
|
|
none
|
|
*/
|
|
|
|
void JOIN_CACHE::create_flag_fields()
|
|
{
|
|
CACHE_FIELD *copy;
|
|
JOIN_TAB *tab;
|
|
|
|
copy= field_descr;
|
|
|
|
length=0;
|
|
|
|
/* If there is a match flag the first field is always used for this flag */
|
|
if (with_match_flag)
|
|
length+= add_flag_field_to_join_cache((uchar*) &join_tab->found,
|
|
sizeof(join_tab->found),
|
|
©);
|
|
|
|
/* Create fields for all null bitmaps and null row flags that are needed */
|
|
for (tab= join_tab-tables; tab < join_tab; tab++)
|
|
{
|
|
TABLE *table= tab->table;
|
|
|
|
/* Create a field for the null bitmap from table if needed */
|
|
if (tab->used_null_fields || tab->used_uneven_bit_fields)
|
|
length+= add_flag_field_to_join_cache(table->null_flags,
|
|
table->s->null_bytes,
|
|
©);
|
|
|
|
/* Create table for the null row flag if needed */
|
|
if (table->maybe_null)
|
|
length+= add_flag_field_to_join_cache((uchar*) &table->null_row,
|
|
sizeof(table->null_row),
|
|
©);
|
|
}
|
|
|
|
/* Theoretically the new value of flag_fields can be less than the old one */
|
|
flag_fields= copy-field_descr;
|
|
}
|
|
|
|
|
|
/*
|
|
Create descriptors of all remaining data fields stored in the join buffer
|
|
|
|
SYNOPSIS
|
|
create_remaining_fields()
|
|
all_read_fields indicates that descriptors for all read data fields
|
|
are to be created
|
|
|
|
DESCRIPTION
|
|
The function creates descriptors for all remaining data fields of a
|
|
record from the join buffer. If the parameter 'all_read_fields' is
|
|
true the function creates fields for all read record fields that
|
|
comprise the partial join record joined with join_tab. Otherwise,
|
|
for each table tab, the set of the read fields for which the descriptors
|
|
have to be added is determined as the difference between all read fields
|
|
and and those for which the descriptors have been already created.
|
|
The latter are supposed to be marked in the bitmap tab->table->tmp_set.
|
|
The function increases the value of 'length' to the the total length of
|
|
the added fields.
|
|
|
|
NOTES
|
|
If 'all_read_fields' is false the function modifies the value of
|
|
tab->table->tmp_set for a each table whose fields are stored in the cache.
|
|
The function calls the method Field::fill_cache_field to figure out
|
|
the type of the cache field and the maximal length of its representation
|
|
in the join buffer. If this is a blob field then additionally a pointer
|
|
to this field is added as an element of the array blob_ptr. For a blob
|
|
field only the size of the length of the blob data is taken into account.
|
|
It is assumed that 'data_field_count' contains the number of descriptors
|
|
for data fields that have been already created and 'data_field_ptr_count'
|
|
contains the number of the pointers to such descriptors having been
|
|
stored up to the moment.
|
|
|
|
RETURN
|
|
none
|
|
*/
|
|
|
|
void JOIN_CACHE:: create_remaining_fields(bool all_read_fields)
|
|
{
|
|
JOIN_TAB *tab;
|
|
CACHE_FIELD *copy= field_descr+flag_fields+data_field_count;
|
|
CACHE_FIELD **copy_ptr= blob_ptr+data_field_ptr_count;
|
|
|
|
for (tab= join_tab-tables; tab < join_tab; tab++)
|
|
{
|
|
MY_BITMAP *rem_field_set;
|
|
TABLE *table= tab->table;
|
|
|
|
if (all_read_fields)
|
|
rem_field_set= table->read_set;
|
|
else
|
|
{
|
|
bitmap_invert(&table->tmp_set);
|
|
bitmap_intersect(&table->tmp_set, table->read_set);
|
|
rem_field_set= &table->tmp_set;
|
|
}
|
|
|
|
length+= add_table_data_fields_to_join_cache(tab, rem_field_set,
|
|
&data_field_count, ©,
|
|
&data_field_ptr_count,
|
|
©_ptr);
|
|
|
|
/* SemiJoinDuplicateElimination: allocate space for rowid if needed */
|
|
if (tab->keep_current_rowid)
|
|
{
|
|
copy->str= table->file->ref;
|
|
copy->length= table->file->ref_length;
|
|
copy->type= 0;
|
|
copy->field= 0;
|
|
copy->referenced_field_no= 0;
|
|
length+= copy->length;
|
|
data_field_count++;
|
|
copy++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Calculate and set all cache constants
|
|
|
|
SYNOPSIS
|
|
set_constants()
|
|
|
|
DESCRIPTION
|
|
The function calculates and set all precomputed constants that are used
|
|
when writing records into the join buffer and reading them from it.
|
|
It calculates the size of offsets of a record within the join buffer
|
|
and of a field within a record. It also calculates the number of bytes
|
|
used to store record lengths.
|
|
The function also calculates the maximal length of the representation
|
|
of record in the cache excluding blob_data. This value is used when
|
|
making a dicision whether more records should be added into the join
|
|
buffer or not.
|
|
|
|
RETURN
|
|
none
|
|
*/
|
|
|
|
void JOIN_CACHE::set_constants()
|
|
{
|
|
/*
|
|
Any record from a BKA cache is prepended with the record length.
|
|
We use the record length when reading the buffer and building key values
|
|
for each record. The length allows us not to read the fields that are
|
|
not needed for keys.
|
|
If a record has match flag it also may be skipped when the match flag
|
|
is on. It happens if the cache is used for a semi-join operation or
|
|
for outer join when the 'not exist' optimization can be applied.
|
|
If some of the fields are referenced from other caches then
|
|
the record length allows us to easily reach the saved offsets for
|
|
these fields since the offsets are stored at the very end of the record.
|
|
However at this moment we don't know whether we have referenced fields for
|
|
the cache or not. Later when a referenced field is registered for the cache
|
|
we adjust the value of the flag 'with_length'.
|
|
*/
|
|
with_length= is_key_access() ||
|
|
join_tab->is_inner_table_of_semi_join_with_first_match() ||
|
|
join_tab->is_inner_table_of_outer_join();
|
|
/*
|
|
At this moment we don't know yet the value of 'referenced_fields',
|
|
but in any case it can't be greater than the value of 'fields'.
|
|
*/
|
|
uint len= length + fields*sizeof(uint)+blobs*sizeof(uchar *) +
|
|
(prev_cache ? prev_cache->get_size_of_rec_offset() : 0) +
|
|
sizeof(ulong);
|
|
buff_size= max(join->thd->variables.join_buff_size, 2*len);
|
|
size_of_rec_ofs= offset_size(buff_size);
|
|
size_of_rec_len= blobs ? size_of_rec_ofs : offset_size(len);
|
|
size_of_fld_ofs= size_of_rec_len;
|
|
/*
|
|
The size of the offsets for referenced fields will be added later.
|
|
The values of 'pack_length' and 'pack_length_with_blob_ptrs' are adjusted
|
|
every time when the first reference to the referenced field is registered.
|
|
*/
|
|
pack_length= (with_length ? size_of_rec_len : 0) +
|
|
(prev_cache ? prev_cache->get_size_of_rec_offset() : 0) +
|
|
length;
|
|
pack_length_with_blob_ptrs= pack_length + blobs*sizeof(uchar *);
|
|
}
|
|
|
|
|
|
/*
|
|
Allocate memory for a join buffer
|
|
|
|
SYNOPSIS
|
|
alloc_buffer()
|
|
|
|
DESCRIPTION
|
|
The function allocates a lump of memory for the cache join buffer. The
|
|
size of the allocated memory is 'buff_size' bytes.
|
|
|
|
RETURN
|
|
0 - if the memory has been successfully allocated
|
|
1 - otherwise
|
|
*/
|
|
|
|
int JOIN_CACHE::alloc_buffer()
|
|
{
|
|
buff= (uchar*) my_malloc(buff_size, MYF(0));
|
|
return buff == NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
Initialize a BNL cache
|
|
|
|
SYNOPSIS
|
|
init()
|
|
|
|
DESCRIPTION
|
|
The function initializes the cache structure. It supposed to be called
|
|
right after a constructor for the JOIN_CACHE_BNL.
|
|
The function allocates memory for the join buffer and for descriptors of
|
|
the record fields stored in the buffer.
|
|
|
|
NOTES
|
|
The code of this function should have been included into the constructor
|
|
code itself. However the new operator for the class JOIN_CACHE_BNL would
|
|
never fail while memory allocation for the join buffer is not absolutely
|
|
unlikely to fail. That's why this memory allocation has to be placed in a
|
|
separate function that is called in a couple with a cache constructor.
|
|
It is quite natural to put almost all other constructor actions into
|
|
this function.
|
|
|
|
RETURN
|
|
0 initialization with buffer allocations has been succeeded
|
|
1 otherwise
|
|
*/
|
|
|
|
int JOIN_CACHE_BNL::init()
|
|
{
|
|
DBUG_ENTER("JOIN_CACHE::init");
|
|
|
|
calc_record_fields();
|
|
|
|
if (alloc_fields(0))
|
|
DBUG_RETURN(1);
|
|
|
|
create_flag_fields();
|
|
|
|
create_remaining_fields(TRUE);
|
|
|
|
set_constants();
|
|
|
|
if (alloc_buffer())
|
|
DBUG_RETURN(1);
|
|
|
|
reset(TRUE);
|
|
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
Initialize a BKA cache
|
|
|
|
SYNOPSIS
|
|
init()
|
|
|
|
DESCRIPTION
|
|
The function initializes the cache structure. It supposed to be called
|
|
right after a constructor for the JOIN_CACHE_BKA.
|
|
The function allocates memory for the join buffer and for descriptors of
|
|
the record fields stored in the buffer.
|
|
|
|
NOTES
|
|
The code of this function should have been included into the constructor
|
|
code itself. However the new operator for the class JOIN_CACHE_BKA would
|
|
never fail while memory allocation for the join buffer is not absolutely
|
|
unlikely to fail. That's why this memory allocation has to be placed in a
|
|
separate function that is called in a couple with a cache constructor.
|
|
It is quite natural to put almost all other constructor actions into
|
|
this function.
|
|
|
|
RETURN
|
|
0 initialization with buffer allocations has been succeeded
|
|
1 otherwise
|
|
*/
|
|
|
|
int JOIN_CACHE_BKA::init()
|
|
{
|
|
JOIN_TAB *tab;
|
|
JOIN_CACHE *cache;
|
|
local_key_arg_fields= 0;
|
|
external_key_arg_fields= 0;
|
|
DBUG_ENTER("JOIN_CACHE_BKA::init");
|
|
|
|
calc_record_fields();
|
|
|
|
/* Mark all fields that can be used as arguments for this key access */
|
|
TABLE_REF *ref= &join_tab->ref;
|
|
cache= this;
|
|
do
|
|
{
|
|
/*
|
|
Traverse the ref expressions and find the occurrences of fields in them for
|
|
each table 'tab' whose fields are to be stored in the 'cache' join buffer.
|
|
Mark these fields in the bitmap tab->table->tmp_set.
|
|
For these fields count the number of them stored in this cache and the
|
|
total number of them stored in the previous caches. Save the result
|
|
of the counting 'in local_key_arg_fields' and 'external_key_arg_fields'
|
|
respectively.
|
|
*/
|
|
for (tab= cache->join_tab-cache->tables; tab < cache->join_tab ; tab++)
|
|
{
|
|
uint key_args;
|
|
bitmap_clear_all(&tab->table->tmp_set);
|
|
for (uint i= 0; i < ref->key_parts; i++)
|
|
{
|
|
Item *ref_item= ref->items[i];
|
|
if (!(tab->table->map & ref_item->used_tables()))
|
|
continue;
|
|
ref_item->walk(&Item::add_field_to_set_processor, 1,
|
|
(uchar *) tab->table);
|
|
}
|
|
if ((key_args= bitmap_bits_set(&tab->table->tmp_set)))
|
|
{
|
|
if (cache == this)
|
|
local_key_arg_fields+= key_args;
|
|
else
|
|
external_key_arg_fields+= key_args;
|
|
}
|
|
}
|
|
cache= cache->prev_cache;
|
|
}
|
|
while (cache);
|
|
|
|
if (alloc_fields(external_key_arg_fields))
|
|
DBUG_RETURN(1);
|
|
|
|
create_flag_fields();
|
|
|
|
/*
|
|
Save pointers to the cache fields in previous caches
|
|
that are used to build keys for this key access.
|
|
*/
|
|
cache= this;
|
|
uint ext_key_arg_cnt= external_key_arg_fields;
|
|
CACHE_FIELD *copy;
|
|
CACHE_FIELD **copy_ptr= blob_ptr;
|
|
while (ext_key_arg_cnt)
|
|
{
|
|
cache= cache->prev_cache;
|
|
for (tab= cache->join_tab-cache->tables; tab < cache->join_tab ; tab++)
|
|
{
|
|
CACHE_FIELD *copy_end;
|
|
MY_BITMAP *key_read_set= &tab->table->tmp_set;
|
|
/* key_read_set contains the bitmap of tab's fields referenced by ref */
|
|
if (bitmap_is_clear_all(key_read_set))
|
|
continue;
|
|
copy_end= cache->field_descr+cache->fields;
|
|
for (copy= cache->field_descr+cache->flag_fields; copy < copy_end; copy++)
|
|
{
|
|
/*
|
|
(1) - when we store rowids for DuplicateWeedout, they have
|
|
copy->field==NULL
|
|
*/
|
|
if (copy->field && // (1)
|
|
copy->field->table == tab->table &&
|
|
bitmap_is_set(key_read_set, copy->field->field_index))
|
|
{
|
|
*copy_ptr++= copy;
|
|
ext_key_arg_cnt--;
|
|
if (!copy->referenced_field_no)
|
|
{
|
|
/*
|
|
Register the referenced field 'copy':
|
|
- set the offset number in copy->referenced_field_no,
|
|
- adjust the value of the flag 'with_length',
|
|
- adjust the values of 'pack_length' and
|
|
of 'pack_length_with_blob_ptrs'.
|
|
*/
|
|
copy->referenced_field_no= ++cache->referenced_fields;
|
|
cache->with_length= TRUE;
|
|
cache->pack_length+= cache->get_size_of_fld_offset();
|
|
cache->pack_length_with_blob_ptrs+= cache->get_size_of_fld_offset();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* After this 'blob_ptr' shall not be be changed */
|
|
blob_ptr= copy_ptr;
|
|
|
|
/* Now create local fields that are used to build ref for this key access */
|
|
copy= field_descr+flag_fields;
|
|
for (tab= join_tab-tables; tab < join_tab ; tab++)
|
|
{
|
|
length+= add_table_data_fields_to_join_cache(tab, &tab->table->tmp_set,
|
|
&data_field_count, ©,
|
|
&data_field_ptr_count,
|
|
©_ptr);
|
|
}
|
|
|
|
use_emb_key= check_emb_key_usage();
|
|
|
|
create_remaining_fields(FALSE);
|
|
|
|
set_constants();
|
|
|
|
if (alloc_buffer())
|
|
DBUG_RETURN(1);
|
|
|
|
reset(TRUE);
|
|
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
Check the possibility to read the access keys directly from the join buffer
|
|
|
|
SYNOPSIS
|
|
check_emb_key_usage()
|
|
|
|
DESCRIPTION
|
|
The function checks some conditions at which the key values can be read
|
|
directly from the join buffer. This is possible when the key values can be
|
|
composed by concatenation of the record fields stored in the join buffer.
|
|
Sometimes when the access key is multi-component the function has to re-order
|
|
the fields written into the join buffer to make keys embedded. If key
|
|
values for the key access are detected as embedded then 'use_emb_key'
|
|
is set to TRUE.
|
|
|
|
EXAMPLE
|
|
Let table t2 has an index defined on the columns a,b . Let's assume also
|
|
that the columns t2.a, t2.b as well as the columns t1.a, t1.b are all
|
|
of the integer type. Then if the query
|
|
SELECT COUNT(*) FROM t1, t2 WHERE t1.a=t2.a and t1.b=t2.b
|
|
is executed with a join cache in such a way that t1 is the driving
|
|
table then the key values to access table t2 can be read directly
|
|
from the join buffer.
|
|
|
|
NOTES
|
|
In some cases key values could be read directly from the join buffer but
|
|
we still do not consider them embedded. In the future we'll expand the
|
|
the class of keys which we identify as embedded.
|
|
|
|
RETURN
|
|
TRUE - key values will be considered as embedded,
|
|
FALSE - otherwise.
|
|
*/
|
|
|
|
bool JOIN_CACHE_BKA::check_emb_key_usage()
|
|
{
|
|
uint i;
|
|
Item *item;
|
|
KEY_PART_INFO *key_part;
|
|
CACHE_FIELD *copy;
|
|
CACHE_FIELD *copy_end;
|
|
uint len= 0;
|
|
TABLE *table= join_tab->table;
|
|
TABLE_REF *ref= &join_tab->ref;
|
|
KEY *keyinfo= table->key_info+ref->key;
|
|
|
|
/*
|
|
If some of the key arguments are not from the local cache the key
|
|
is not considered as embedded.
|
|
TODO:
|
|
Expand it to the case when ref->key_parts=1 and local_key_arg_fields=0.
|
|
*/
|
|
if (external_key_arg_fields != 0)
|
|
return FALSE;
|
|
/*
|
|
If the number of the local key arguments is not equal to the number
|
|
of key parts the key value cannot be read directly from the join buffer.
|
|
*/
|
|
if (local_key_arg_fields != ref->key_parts)
|
|
return FALSE;
|
|
|
|
/*
|
|
A key is not considered embedded if one of the following is true:
|
|
- one of its key parts is not equal to a field
|
|
- it is a partial key
|
|
- definition of the argument field does not coincide with the
|
|
definition of the corresponding key component
|
|
- some of the key components are nullable
|
|
*/
|
|
for (i=0; i < ref->key_parts; i++)
|
|
{
|
|
item= ref->items[i]->real_item();
|
|
if (item->type() != Item::FIELD_ITEM)
|
|
return FALSE;
|
|
key_part= keyinfo->key_part+i;
|
|
if (key_part->key_part_flag & HA_PART_KEY_SEG)
|
|
return FALSE;
|
|
if (!key_part->field->eq_def(((Item_field *) item)->field))
|
|
return FALSE;
|
|
if (key_part->field->maybe_null())
|
|
return FALSE;
|
|
}
|
|
|
|
copy= field_descr+flag_fields;
|
|
copy_end= copy+local_key_arg_fields;
|
|
for ( ; copy < copy_end; copy++)
|
|
{
|
|
/*
|
|
If some of the key arguments are of variable length the key
|
|
is not considered as embedded.
|
|
*/
|
|
if (copy->type != 0)
|
|
return FALSE;
|
|
/*
|
|
If some of the key arguments are bit fields whose bits are partially
|
|
stored with null bits the key is not considered as embedded.
|
|
*/
|
|
if (copy->field->type() == MYSQL_TYPE_BIT &&
|
|
((Field_bit*) (copy->field))->bit_len)
|
|
return FALSE;
|
|
len+= copy->length;
|
|
}
|
|
|
|
emb_key_length= len;
|
|
|
|
/*
|
|
Make sure that key fields follow the order of the corresponding
|
|
key components these fields are equal to. For this the descriptors
|
|
of the fields that comprise the key might be re-ordered.
|
|
*/
|
|
for (i= 0; i < ref->key_parts; i++)
|
|
{
|
|
uint j;
|
|
Item *item= ref->items[i]->real_item();
|
|
Field *fld= ((Item_field *) item)->field;
|
|
CACHE_FIELD *init_copy= field_descr+flag_fields+i;
|
|
for (j= i, copy= init_copy; i < local_key_arg_fields; i++, copy++)
|
|
{
|
|
if (fld->eq(copy->field))
|
|
{
|
|
if (j != i)
|
|
{
|
|
CACHE_FIELD key_part_copy= *copy;
|
|
*copy= *init_copy;
|
|
*init_copy= key_part_copy;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
Calculate the increment of the MRR buffer for a record write
|
|
|
|
SYNOPSIS
|
|
aux_buffer_incr()
|
|
|
|
DESCRIPTION
|
|
This implementation of the virtual function aux_buffer_incr determines
|
|
for how much the size of the MRR buffer should be increased when another
|
|
record is added to the cache.
|
|
|
|
RETURN
|
|
the increment of the size of the MRR buffer for the next record
|
|
*/
|
|
|
|
uint JOIN_CACHE_BKA::aux_buffer_incr()
|
|
{
|
|
uint incr= 0;
|
|
TABLE_REF *ref= &join_tab->ref;
|
|
TABLE *tab= join_tab->table;
|
|
uint rec_per_key= tab->key_info[ref->key].rec_per_key[ref->key_parts-1];
|
|
set_if_bigger(rec_per_key, 1);
|
|
if (records == 1)
|
|
incr= ref->key_length + tab->file->ref_length;
|
|
incr+= tab->file->stats.mrr_length_per_rec * rec_per_key;
|
|
return incr;
|
|
}
|
|
|
|
|
|
/*
|
|
Check if the record combination matches the index condition
|
|
|
|
SYNOPSIS
|
|
JOIN_CACHE_BKA::skip_index_tuple()
|
|
rseq Value returned by bka_range_seq_init()
|
|
range_info MRR range association data
|
|
|
|
DESCRIPTION
|
|
This function is invoked from MRR implementation to check if an index
|
|
tuple matches the index condition. It is used in the case where the index
|
|
condition actually depends on both columns of the used index and columns
|
|
from previous tables.
|
|
|
|
Accessing columns of the previous tables requires special handling with
|
|
BKA. The idea of BKA is to collect record combinations in a buffer and
|
|
then do a batch of ref access lookups, i.e. by the time we're doing a
|
|
lookup its previous-records-combination is not in prev_table->record[0]
|
|
but somewhere in the join buffer.
|
|
|
|
We need to get it from there back into prev_table(s)->record[0] before we
|
|
can evaluate the index condition, and that's why we need this function
|
|
instead of regular IndexConditionPushdown.
|
|
|
|
NOTE
|
|
Possible optimization:
|
|
Before we unpack the record from a previous table
|
|
check if this table is used in the condition.
|
|
If so then unpack the record otherwise skip the unpacking.
|
|
This should be done by a special virtual method
|
|
get_partial_record_by_pos().
|
|
|
|
RETURN
|
|
0 The record combination satisfies the index condition
|
|
1 Otherwise
|
|
*/
|
|
|
|
bool JOIN_CACHE_BKA::skip_index_tuple(range_seq_t rseq, char *range_info)
|
|
{
|
|
DBUG_ENTER("JOIN_CACHE_BKA::skip_index_tuple");
|
|
JOIN_CACHE_BKA *cache= (JOIN_CACHE_BKA *) rseq;
|
|
cache->get_record_by_pos((uchar*)range_info);
|
|
DBUG_RETURN(!join_tab->cache_idx_cond->val_int());
|
|
}
|
|
|
|
|
|
/*
|
|
Check if the record combination matches the index condition
|
|
|
|
SYNOPSIS
|
|
bka_skip_index_tuple()
|
|
rseq Value returned by bka_range_seq_init()
|
|
range_info MRR range association data
|
|
|
|
DESCRIPTION
|
|
This is wrapper for JOIN_CACHE_BKA::skip_index_tuple method,
|
|
see comments there.
|
|
|
|
NOTE
|
|
This function is used as a RANGE_SEQ_IF::skip_index_tuple callback.
|
|
|
|
RETURN
|
|
0 The record combination satisfies the index condition
|
|
1 Otherwise
|
|
*/
|
|
|
|
static
|
|
bool bka_skip_index_tuple(range_seq_t rseq, char *range_info)
|
|
{
|
|
DBUG_ENTER("bka_skip_index_tuple");
|
|
JOIN_CACHE_BKA *cache= (JOIN_CACHE_BKA *) rseq;
|
|
DBUG_RETURN(cache->skip_index_tuple(rseq, range_info));
|
|
}
|
|
|
|
|
|
/*
|
|
Write record fields and their required offsets into the join cache buffer
|
|
|
|
SYNOPSIS
|
|
write_record_data()
|
|
link a reference to the associated info in the previous cache
|
|
is_full OUT true if it has been decided that no more records will be
|
|
added to the join buffer
|
|
|
|
DESCRIPTION
|
|
This function put into the cache buffer the following info that it reads
|
|
from the join record buffers or computes somehow:
|
|
(1) the length of all fields written for the record (optional)
|
|
(2) an offset to the associated info in the previous cache (if there is any)
|
|
determined by the link parameter
|
|
(3) all flag fields of the tables whose data field are put into the cache:
|
|
- match flag (optional),
|
|
- null bitmaps for all tables,
|
|
- null row flags for all tables
|
|
(4) values of all data fields including
|
|
- full images of those fixed legth data fields that cannot have
|
|
trailing spaces
|
|
- significant part of fixed length fields that can have trailing spaces
|
|
with the prepanded length
|
|
- data of non-blob variable length fields with the prepanded data length
|
|
- blob data from blob fields with the prepanded data length
|
|
(5) record offset values for the data fields that are referred to from
|
|
other caches
|
|
|
|
The record is written at the current position stored in the field 'pos'.
|
|
At the end of the function 'pos' points at the position right after the
|
|
written record data.
|
|
The function increments the number of records in the cache that is stored
|
|
in the 'records' field by 1. The function also modifies the values of
|
|
'curr_rec_pos' and 'last_rec_pos' to point to the written record.
|
|
The 'end_pos' cursor is modified accordingly.
|
|
The 'last_rec_blob_data_is_in_rec_buff' is set on if the blob data
|
|
remains in the record buffers and not copied to the join buffer. It may
|
|
happen only to the blob data from the last record added into the cache.
|
|
|
|
|
|
RETURN
|
|
length of the written record data
|
|
*/
|
|
|
|
uint JOIN_CACHE::write_record_data(uchar * link, bool *is_full)
|
|
{
|
|
uint len;
|
|
bool last_record;
|
|
CACHE_FIELD *copy;
|
|
CACHE_FIELD *copy_end;
|
|
uchar *cp= pos;
|
|
uchar *init_pos= cp;
|
|
uchar *rec_len_ptr= 0;
|
|
|
|
records++; /* Increment the counter of records in the cache */
|
|
|
|
len= pack_length;
|
|
|
|
/* Make an adjustment for the size of the auxiliary buffer if there is any */
|
|
uint incr= aux_buffer_incr();
|
|
ulong rem= rem_space();
|
|
aux_buff_size+= len+incr < rem ? incr : rem;
|
|
|
|
/*
|
|
For each blob to be put into cache save its length and a pointer
|
|
to the value in the corresponding element of the blob_ptr array.
|
|
Blobs with null values are skipped.
|
|
Increment 'len' by the total length of all these blobs.
|
|
*/
|
|
if (blobs)
|
|
{
|
|
CACHE_FIELD **copy_ptr= blob_ptr;
|
|
CACHE_FIELD **copy_ptr_end= copy_ptr+blobs;
|
|
for ( ; copy_ptr < copy_ptr_end; copy_ptr++)
|
|
{
|
|
Field_blob *blob_field= (Field_blob *) (*copy_ptr)->field;
|
|
if (!blob_field->is_null())
|
|
{
|
|
uint blob_len= blob_field->get_length();
|
|
(*copy_ptr)->blob_length= blob_len;
|
|
len+= blob_len;
|
|
blob_field->get_ptr(&(*copy_ptr)->str);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Check whether we won't be able to add any new record into the cache after
|
|
this one because the cache will be full. Set last_record to TRUE if it's so.
|
|
The assume that the cache will be full after the record has been written
|
|
into it if either the remaining space of the cache is not big enough for the
|
|
record's blob values or if there is a chance that not all non-blob fields
|
|
of the next record can be placed there.
|
|
This function is called only in the case when there is enough space left in
|
|
the cache to store at least non-blob parts of the current record.
|
|
*/
|
|
last_record= (len+pack_length_with_blob_ptrs) > rem_space();
|
|
|
|
/*
|
|
Save the position for the length of the record in the cache if it's needed.
|
|
The length of the record will be inserted here when all fields of the record
|
|
are put into the cache.
|
|
*/
|
|
if (with_length)
|
|
{
|
|
rec_len_ptr= cp;
|
|
cp+= size_of_rec_len;
|
|
}
|
|
|
|
/*
|
|
Put a reference to the fields of the record that are stored in the previous
|
|
cache if there is any. This reference is passed by the 'link' parameter.
|
|
*/
|
|
if (prev_cache)
|
|
{
|
|
cp+= prev_cache->get_size_of_rec_offset();
|
|
prev_cache->store_rec_ref(cp, link);
|
|
}
|
|
|
|
curr_rec_pos= cp;
|
|
|
|
/* If the there is a match flag set its value to 0 */
|
|
copy= field_descr;
|
|
if (with_match_flag)
|
|
*copy[0].str= 0;
|
|
|
|
/* First put into the cache the values of all flag fields */
|
|
copy_end= field_descr+flag_fields;
|
|
for ( ; copy < copy_end; copy++)
|
|
{
|
|
memcpy(cp, copy->str, copy->length);
|
|
cp+= copy->length;
|
|
}
|
|
|
|
/* Now put the values of the remaining fields as soon as they are not nulls */
|
|
copy_end= field_descr+fields;
|
|
for ( ; copy < copy_end; copy++)
|
|
{
|
|
Field *field= copy->field;
|
|
if (field && field->maybe_null() && field->is_null())
|
|
{
|
|
/* Do not copy a field if its value is null */
|
|
if (copy->referenced_field_no)
|
|
copy->offset= 0;
|
|
continue;
|
|
}
|
|
/* Save the offset of the field to put it later at the end of the record */
|
|
if (copy->referenced_field_no)
|
|
copy->offset= cp-curr_rec_pos;
|
|
|
|
if (copy->type == CACHE_BLOB)
|
|
{
|
|
Field_blob *blob_field= (Field_blob *) copy->field;
|
|
if (last_record)
|
|
{
|
|
last_rec_blob_data_is_in_rec_buff= 1;
|
|
/* Put down the length of the blob and the pointer to the data */
|
|
blob_field->get_image(cp, copy->length+sizeof(char*),
|
|
blob_field->charset());
|
|
cp+= copy->length+sizeof(char*);
|
|
}
|
|
else
|
|
{
|
|
/* First put down the length of the blob and then copy the data */
|
|
blob_field->get_image(cp, copy->length,
|
|
blob_field->charset());
|
|
memcpy(cp+copy->length, copy->str, copy->blob_length);
|
|
cp+= copy->length+copy->blob_length;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (copy->type) {
|
|
case CACHE_VARSTR1:
|
|
/* Copy the significant part of the short varstring field */
|
|
len= (uint) copy->str[0] + 1;
|
|
memcpy(cp, copy->str, len);
|
|
cp+= len;
|
|
break;
|
|
case CACHE_VARSTR2:
|
|
/* Copy the significant part of the long varstring field */
|
|
len= uint2korr(copy->str) + 2;
|
|
memcpy(cp, copy->str, len);
|
|
cp+= len;
|
|
break;
|
|
case CACHE_STRIPPED:
|
|
{
|
|
/*
|
|
Put down the field value stripping all trailing spaces off.
|
|
After this insert the length of the written sequence of bytes.
|
|
*/
|
|
uchar *str, *end;
|
|
for (str= copy->str, end= str+copy->length;
|
|
end > str && end[-1] == ' ';
|
|
end--) ;
|
|
len=(uint) (end-str);
|
|
int2store(cp, len);
|
|
memcpy(cp+2, str, len);
|
|
cp+= len+2;
|
|
break;
|
|
}
|
|
default:
|
|
/* Copy the entire image of the field from the record buffer */
|
|
memcpy(cp, copy->str, copy->length);
|
|
cp+= copy->length;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Add the offsets of the fields that are referenced from other caches */
|
|
if (referenced_fields)
|
|
{
|
|
uint cnt= 0;
|
|
for (copy= field_descr+flag_fields; copy < copy_end ; copy++)
|
|
{
|
|
if (copy->referenced_field_no)
|
|
{
|
|
store_fld_offset(cp+size_of_fld_ofs*(copy->referenced_field_no-1),
|
|
copy->offset);
|
|
cnt++;
|
|
}
|
|
}
|
|
cp+= size_of_fld_ofs*cnt;
|
|
}
|
|
|
|
if (rec_len_ptr)
|
|
store_rec_length(rec_len_ptr, (ulong) (cp-rec_len_ptr-size_of_rec_len));
|
|
last_rec_pos= curr_rec_pos;
|
|
end_pos= pos= cp;
|
|
*is_full= last_record;
|
|
return (uint) (cp-init_pos);
|
|
}
|
|
|
|
|
|
/*
|
|
Reset the join buffer for reading/writing: default implementation
|
|
|
|
SYNOPSIS
|
|
reset()
|
|
for_writing if it's TRUE the function reset the buffer for writing
|
|
|
|
DESCRIPTION
|
|
This default implementation of the virtual function reset() resets
|
|
the join buffer for reading or writing.
|
|
If the buffer is reset for reading only the 'pos' value is reset
|
|
to point to the very beginning of the join buffer. If the buffer is
|
|
reset for writing additionally:
|
|
- the counter of the records in the buffer is set to 0,
|
|
- the the value of 'last_rec_pos' gets pointing at the position just
|
|
before the buffer,
|
|
- 'end_pos' is set to point to the beginning of the join buffer,
|
|
- the size of the auxiliary buffer is reset to 0,
|
|
- the flag 'last_rec_blob_data_is_in_rec_buff' is set to 0.
|
|
|
|
RETURN
|
|
none
|
|
*/
|
|
|
|
void JOIN_CACHE::reset(bool for_writing)
|
|
{
|
|
pos= buff;
|
|
curr_rec_link= 0;
|
|
if (for_writing)
|
|
{
|
|
records= 0;
|
|
last_rec_pos= buff;
|
|
aux_buff_size= 0;
|
|
end_pos= pos;
|
|
last_rec_blob_data_is_in_rec_buff= 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Add a record into the join buffer: the default implementation
|
|
|
|
SYNOPSIS
|
|
put_record()
|
|
|
|
DESCRIPTION
|
|
This default implementation of the virtual function put_record writes
|
|
the next matching record into the join buffer.
|
|
It also links the record having been written into the join buffer with
|
|
the matched record in the previous cache if there is any.
|
|
The implementation assumes that the function get_curr_link()
|
|
will return exactly the pointer to this matched record.
|
|
|
|
RETURN
|
|
TRUE if it has been decided that it should be the last record
|
|
in the join buffer,
|
|
FALSE otherwise
|
|
*/
|
|
|
|
bool JOIN_CACHE::put_record()
|
|
{
|
|
bool is_full;
|
|
uchar *link= 0;
|
|
if (prev_cache)
|
|
link= prev_cache->get_curr_rec_link();
|
|
write_record_data(link, &is_full);
|
|
return is_full;
|
|
}
|
|
|
|
|
|
/*
|
|
Read the next record from the join buffer: the default implementation
|
|
|
|
SYNOPSIS
|
|
get_record()
|
|
|
|
DESCRIPTION
|
|
This default implementation of the virtual function get_record
|
|
reads fields of the next record from the join buffer of this cache.
|
|
The function also reads all other fields associated with this record
|
|
from the the join buffers of the previous caches. The fields are read
|
|
into the corresponding record buffers.
|
|
It is supposed that 'pos' points to the position in the buffer
|
|
right after the previous record when the function is called.
|
|
When the function returns the 'pos' values is updated to point
|
|
to the position after the read record.
|
|
The value of 'curr_rec_pos' is also updated by the function to
|
|
point to the beginning of the first field of the record in the
|
|
join buffer.
|
|
|
|
RETURN
|
|
TRUE - there are no more records to read from the join buffer
|
|
FALSE - otherwise
|
|
*/
|
|
|
|
bool JOIN_CACHE::get_record()
|
|
{
|
|
bool res;
|
|
uchar *prev_rec_ptr= 0;
|
|
if (with_length)
|
|
pos+= size_of_rec_len;
|
|
if (prev_cache)
|
|
{
|
|
pos+= prev_cache->get_size_of_rec_offset();
|
|
prev_rec_ptr= prev_cache->get_rec_ref(pos);
|
|
}
|
|
curr_rec_pos= pos;
|
|
if (!(res= read_all_record_fields() == NO_MORE_RECORDS_IN_BUFFER))
|
|
{
|
|
pos+= referenced_fields*size_of_fld_ofs;
|
|
if (prev_cache)
|
|
prev_cache->get_record_by_pos(prev_rec_ptr);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
Read a positioned record from the join buffer: the default implementation
|
|
|
|
SYNOPSIS
|
|
get_record_by_pos()
|
|
rec_ptr position of the first field of the record in the join buffer
|
|
|
|
DESCRIPTION
|
|
This default implementation of the virtual function get_record_pos
|
|
reads the fields of the record positioned at 'rec_ptr' from the join buffer.
|
|
The function also reads all other fields associated with this record
|
|
from the the join buffers of the previous caches. The fields are read
|
|
into the corresponding record buffers.
|
|
|
|
RETURN
|
|
none
|
|
*/
|
|
|
|
void JOIN_CACHE::get_record_by_pos(uchar *rec_ptr)
|
|
{
|
|
uchar *save_pos= pos;
|
|
pos= rec_ptr;
|
|
read_all_record_fields();
|
|
pos= save_pos;
|
|
if (prev_cache)
|
|
{
|
|
uchar *prev_rec_ptr= prev_cache->get_rec_ref(rec_ptr);
|
|
prev_cache->get_record_by_pos(prev_rec_ptr);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Test the match flag from the referenced record: the default implementation
|
|
|
|
SYNOPSIS
|
|
get_match_flag_by_pos()
|
|
rec_ptr position of the first field of the record in the join buffer
|
|
|
|
DESCRIPTION
|
|
This default implementation of the virtual function get_match_flag_by_pos
|
|
test the match flag for the record pointed by the reference at the position
|
|
rec_ptr. If the match flag in placed one of the previous buffers the function
|
|
first reaches the linked record fields in this buffer.
|
|
|
|
RETURN
|
|
TRUE if the match flag is set on
|
|
FALSE otherwise
|
|
*/
|
|
|
|
bool JOIN_CACHE::get_match_flag_by_pos(uchar *rec_ptr)
|
|
{
|
|
if (with_match_flag)
|
|
return test(*rec_ptr);
|
|
if (prev_cache)
|
|
{
|
|
uchar *prev_rec_ptr= prev_cache->get_rec_ref(rec_ptr);
|
|
return prev_cache->get_match_flag_by_pos(prev_rec_ptr);
|
|
}
|
|
DBUG_ASSERT(0);
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/*
|
|
Read all flag and data fields of a record from the join buffer
|
|
|
|
SYNOPSIS
|
|
read_all_record_fields()
|
|
|
|
DESCRIPTION
|
|
The function reads all flag and data fields of a record from the join
|
|
buffer into the corresponding record buffers.
|
|
The fields are read starting from the position 'pos' which is
|
|
supposed to point to the beginning og the first record field.
|
|
The function increments the value of 'pos' by the length of the
|
|
read data.
|
|
|
|
RETURN
|
|
(-1) - if there is no more records in the join buffer
|
|
length of the data read from the join buffer - otherwise
|
|
*/
|
|
|
|
uint JOIN_CACHE::read_all_record_fields()
|
|
{
|
|
uchar *init_pos= pos;
|
|
|
|
if (pos > last_rec_pos || !records)
|
|
return NO_MORE_RECORDS_IN_BUFFER;
|
|
|
|
/* First match flag, read null bitmaps and null_row flag for each table */
|
|
read_flag_fields();
|
|
|
|
/* Now read the remaining table fields if needed */
|
|
CACHE_FIELD *copy= field_descr+flag_fields;
|
|
CACHE_FIELD *copy_end= field_descr+fields;
|
|
bool blob_in_rec_buff= blob_data_is_in_rec_buff(init_pos);
|
|
for ( ; copy < copy_end; copy++)
|
|
read_record_field(copy, blob_in_rec_buff);
|
|
|
|
return (uint) (pos-init_pos);
|
|
}
|
|
|
|
|
|
/*
|
|
Read all flag fields of a record from the join buffer
|
|
|
|
SYNOPSIS
|
|
read_flag_fields()
|
|
|
|
DESCRIPTION
|
|
The function reads all flag fields of a record from the join
|
|
buffer into the corresponding record buffers.
|
|
The fields are read starting from the position 'pos'.
|
|
The function increments the value of 'pos' by the length of the
|
|
read data.
|
|
|
|
RETURN
|
|
length of the data read from the join buffer
|
|
*/
|
|
|
|
uint JOIN_CACHE::read_flag_fields()
|
|
{
|
|
uchar *init_pos= pos;
|
|
CACHE_FIELD *copy= field_descr;
|
|
CACHE_FIELD *copy_end= copy+flag_fields;
|
|
for ( ; copy < copy_end; copy++)
|
|
{
|
|
memcpy(copy->str, pos, copy->length);
|
|
pos+= copy->length;
|
|
}
|
|
return (pos-init_pos);
|
|
}
|
|
|
|
|
|
/*
|
|
Read a data record field from the join buffer
|
|
|
|
SYNOPSIS
|
|
read_record_field()
|
|
copy the descriptor of the data field to be read
|
|
blob_in_rec_buff indicates whether this is the field from the record
|
|
whose blob data are in record buffers
|
|
|
|
DESCRIPTION
|
|
The function reads the data field specified by the parameter copy
|
|
from the join buffer into the corresponding record buffer.
|
|
The field is read starting from the position 'pos'.
|
|
The data of blob values is not copied from the join buffer.
|
|
The function increments the value of 'pos' by the length of the
|
|
read data.
|
|
|
|
RETURN
|
|
length of the data read from the join buffer
|
|
*/
|
|
|
|
uint JOIN_CACHE::read_record_field(CACHE_FIELD *copy, bool blob_in_rec_buff)
|
|
{
|
|
uint len;
|
|
/* Do not copy the field if its value is null */
|
|
if (copy->field && copy->field->maybe_null() && copy->field->is_null())
|
|
return 0;
|
|
if (copy->type == CACHE_BLOB)
|
|
{
|
|
Field_blob *blob_field= (Field_blob *) copy->field;
|
|
/*
|
|
Copy the length and the pointer to data but not the blob data
|
|
itself to the record buffer
|
|
*/
|
|
if (blob_in_rec_buff)
|
|
{
|
|
blob_field->set_image(pos, copy->length+sizeof(char*),
|
|
blob_field->charset());
|
|
len= copy->length+sizeof(char*);
|
|
}
|
|
else
|
|
{
|
|
blob_field->set_ptr(pos, pos+copy->length);
|
|
len= copy->length+blob_field->get_length();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (copy->type) {
|
|
case CACHE_VARSTR1:
|
|
/* Copy the significant part of the short varstring field */
|
|
len= (uint) pos[0] + 1;
|
|
memcpy(copy->str, pos, len);
|
|
break;
|
|
case CACHE_VARSTR2:
|
|
/* Copy the significant part of the long varstring field */
|
|
len= uint2korr(pos) + 2;
|
|
memcpy(copy->str, pos, len);
|
|
break;
|
|
case CACHE_STRIPPED:
|
|
/* Pad the value by spaces that has been stripped off */
|
|
len= uint2korr(pos);
|
|
memcpy(copy->str, pos+2, len);
|
|
memset(copy->str+len, ' ', copy->length-len);
|
|
len+= 2;
|
|
break;
|
|
default:
|
|
/* Copy the entire image of the field from the record buffer */
|
|
len= copy->length;
|
|
memcpy(copy->str, pos, len);
|
|
}
|
|
}
|
|
pos+= len;
|
|
return len;
|
|
}
|
|
|
|
|
|
/*
|
|
Read a referenced field from the join buffer
|
|
|
|
SYNOPSIS
|
|
read_referenced_field()
|
|
copy pointer to the descriptor of the referenced field
|
|
rec_ptr pointer to the record that may contain this field
|
|
len IN/OUT total length of the record fields
|
|
|
|
DESCRIPTION
|
|
The function checks whether copy points to a data field descriptor
|
|
for this cache object. If it does not then the function returns
|
|
FALSE. Otherwise the function reads the field of the record in
|
|
the join buffer pointed by 'rec_ptr' into the corresponding record
|
|
buffer and returns TRUE.
|
|
If the value of *len is 0 then the function sets it to the total
|
|
length of the record fields including possible trailing offset
|
|
values. Otherwise *len is supposed to provide this value that
|
|
has been obtained earlier.
|
|
|
|
RETURN
|
|
TRUE 'copy' points to a data descriptor of this join cache
|
|
FALSE otherwise
|
|
*/
|
|
|
|
bool JOIN_CACHE::read_referenced_field(CACHE_FIELD *copy,
|
|
uchar *rec_ptr,
|
|
uint *len)
|
|
{
|
|
uchar *ptr;
|
|
uint offset;
|
|
if (copy < field_descr || copy >= field_descr+fields)
|
|
return FALSE;
|
|
if (!*len)
|
|
{
|
|
/* Get the total length of the record fields */
|
|
uchar *len_ptr= rec_ptr;
|
|
if (prev_cache)
|
|
len_ptr-= prev_cache->get_size_of_rec_offset();
|
|
*len= get_rec_length(len_ptr-size_of_rec_len);
|
|
}
|
|
|
|
ptr= rec_ptr-(prev_cache ? prev_cache->get_size_of_rec_offset() : 0);
|
|
offset= get_fld_offset(ptr+ *len -
|
|
size_of_fld_ofs*
|
|
(referenced_fields+1-copy->referenced_field_no));
|
|
bool is_null= FALSE;
|
|
if (offset == 0 && flag_fields)
|
|
is_null= TRUE;
|
|
if (is_null)
|
|
copy->field->set_null();
|
|
else
|
|
{
|
|
uchar *save_pos= pos;
|
|
copy->field->set_notnull();
|
|
pos= rec_ptr+offset;
|
|
read_record_field(copy, blob_data_is_in_rec_buff(rec_ptr));
|
|
pos= save_pos;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
Skip record from join buffer if its match flag is on: default implementation
|
|
|
|
SYNOPSIS
|
|
skip_record_if_match()
|
|
|
|
DESCRIPTION
|
|
This default implementation of the virtual function skip_record_if_match
|
|
skips the next record from the join buffer if its match flag is set on.
|
|
If the record is skipped the value of 'pos' is set to points to the position
|
|
right after the record.
|
|
|
|
RETURN
|
|
TRUE - the match flag is on and the record has been skipped
|
|
FALSE - the match flag is off
|
|
*/
|
|
|
|
bool JOIN_CACHE::skip_record_if_match()
|
|
{
|
|
DBUG_ASSERT(with_length);
|
|
uint offset= size_of_rec_len;
|
|
if (prev_cache)
|
|
offset+= prev_cache->get_size_of_rec_offset();
|
|
/* Check whether the match flag is on */
|
|
if (get_match_flag_by_pos(pos+offset))
|
|
{
|
|
pos+= size_of_rec_len + get_rec_length(pos);
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/*
|
|
Restore the fields of the last record from the join buffer
|
|
|
|
SYNOPSIS
|
|
restore_last_record()
|
|
|
|
DESCRIPTION
|
|
This function restore the values of the fields of the last record put
|
|
into join buffer in record buffers. The values most probably have been
|
|
overwritten by the field values from other records when they were read
|
|
from the join buffer into the record buffer in order to check pushdown
|
|
predicates.
|
|
|
|
RETURN
|
|
none
|
|
*/
|
|
|
|
void JOIN_CACHE::restore_last_record()
|
|
{
|
|
if (records)
|
|
get_record_by_pos(last_rec_pos);
|
|
}
|
|
|
|
|
|
/*
|
|
Join records from the join buffer with records from the next join table
|
|
|
|
SYNOPSIS
|
|
join_records()
|
|
skip_last do not find matches for the last record from the buffer
|
|
|
|
DESCRIPTION
|
|
The functions extends all records from the join buffer by the matched
|
|
records from join_tab. In the case of outer join operation it also
|
|
adds null complementing extensions for the records from the join buffer
|
|
that have no match.
|
|
No extensions are generated for the last record from the buffer if
|
|
skip_last is true.
|
|
|
|
NOTES
|
|
The function must make sure that if linked join buffers are used then
|
|
a join buffer cannot be refilled again until all extensions in the
|
|
buffers chained to this one are generated.
|
|
Currently an outer join operation with several inner tables always uses
|
|
at least two linked buffers with the match join flags placed in the
|
|
first buffer. Any record composed of rows of the inner tables that
|
|
matches a record in this buffer must refer to the position of the
|
|
corresponding match flag.
|
|
|
|
IMPLEMENTATION
|
|
When generating extensions for outer tables of an outer join operation
|
|
first we generate all extensions for those records from the join buffer
|
|
that have matches, after which null complementing extension for all
|
|
unmatched records from the join buffer are generated.
|
|
|
|
RETURN
|
|
return one of enum_nested_loop_state, except NESTED_LOOP_NO_MORE_ROWS.
|
|
*/
|
|
|
|
enum_nested_loop_state JOIN_CACHE::join_records(bool skip_last)
|
|
{
|
|
JOIN_TAB *tab;
|
|
enum_nested_loop_state rc= NESTED_LOOP_OK;
|
|
bool outer_join_first_inner= join_tab->is_first_inner_for_outer_join();
|
|
|
|
if (outer_join_first_inner && !join_tab->first_unmatched)
|
|
join_tab->not_null_compl= TRUE;
|
|
|
|
if (!join_tab->first_unmatched)
|
|
{
|
|
/* Find all records from join_tab that match records from join buffer */
|
|
rc= join_matching_records(skip_last);
|
|
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
|
|
goto finish;
|
|
if (outer_join_first_inner)
|
|
{
|
|
if (next_cache)
|
|
{
|
|
/*
|
|
Ensure that all matches for outer records from join buffer are to be
|
|
found. Now we ensure that all full records are found for records from
|
|
join buffer. Generally this is an overkill.
|
|
TODO: Ensure that only matches of the inner table records have to be
|
|
found for the records from join buffer.
|
|
*/
|
|
rc= next_cache->join_records(skip_last);
|
|
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
|
|
goto finish;
|
|
}
|
|
join_tab->not_null_compl= FALSE;
|
|
/* Prepare for generation of null complementing extensions */
|
|
for (tab= join_tab->first_inner; tab <= join_tab->last_inner; tab++)
|
|
tab->first_unmatched= join_tab->first_inner;
|
|
}
|
|
}
|
|
if (join_tab->first_unmatched)
|
|
{
|
|
if (is_key_access())
|
|
restore_last_record();
|
|
|
|
/*
|
|
Generate all null complementing extensions for the records from
|
|
join buffer that don't have any matching rows from the inner tables.
|
|
*/
|
|
reset(FALSE);
|
|
rc= join_null_complements(skip_last);
|
|
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
|
|
goto finish;
|
|
}
|
|
if(next_cache)
|
|
{
|
|
/*
|
|
When using linked caches we must ensure the records in the next caches
|
|
that refer to the records in the join buffer are fully extended.
|
|
Otherwise we could have references to the records that have been
|
|
already erased from the join buffer and replaced for new records.
|
|
*/
|
|
rc= next_cache->join_records(skip_last);
|
|
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
|
|
goto finish;
|
|
}
|
|
if (outer_join_first_inner)
|
|
{
|
|
/*
|
|
All null complemented rows have been already generated for all
|
|
outer records from join buffer. Restore the state of the
|
|
first_unmatched values to 0 to avoid another null complementing.
|
|
*/
|
|
for (tab= join_tab->first_inner; tab <= join_tab->last_inner; tab++)
|
|
tab->first_unmatched= 0;
|
|
}
|
|
|
|
if (skip_last)
|
|
{
|
|
DBUG_ASSERT(!is_key_access());
|
|
/*
|
|
Restore the last record from the join buffer to generate
|
|
all extentions for it.
|
|
*/
|
|
get_record();
|
|
}
|
|
|
|
finish:
|
|
restore_last_record();
|
|
reset(TRUE);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
Using BNL find matches from the next table for records from the join buffer
|
|
|
|
SYNOPSIS
|
|
join_matching_records()
|
|
skip_last do not look for matches for the last partial join record
|
|
|
|
DESCRIPTION
|
|
The function retrieves all rows of the join_tab table and check whether
|
|
they match partial join records from the join buffer. If a match is found
|
|
the function will call the sub_select function trying to look for matches
|
|
for the remaining join operations.
|
|
This function currently is called only from the function join_records.
|
|
If the value of skip_last is true the function writes the partial join
|
|
record from the record buffer into the join buffer to save its value for
|
|
the future processing in the caller function.
|
|
|
|
NOTES
|
|
The function produces all matching extensions for the records in the
|
|
join buffer following the path of the Blocked Nested Loops algorithm.
|
|
When an outer join operation is performed all unmatched records from
|
|
the join buffer must be extended by null values. The function
|
|
'join_null_complements' serves this purpose.
|
|
|
|
RETURN
|
|
return one of enum_nested_loop_state.
|
|
*/
|
|
|
|
enum_nested_loop_state JOIN_CACHE_BNL::join_matching_records(bool skip_last)
|
|
{
|
|
uint cnt;
|
|
int error;
|
|
JOIN_TAB *tab;
|
|
READ_RECORD *info;
|
|
enum_nested_loop_state rc= NESTED_LOOP_OK;
|
|
bool check_only_first_match= join_tab->check_only_first_match();
|
|
SQL_SELECT *select= join_tab->cache_select;
|
|
|
|
join_tab->table->null_row= 0;
|
|
|
|
/* Return at once if there are no records in the join buffer */
|
|
if (!records)
|
|
return NESTED_LOOP_OK;
|
|
|
|
/*
|
|
When joining we read records from the join buffer back into record buffers.
|
|
If matches for the last partial join record are found through a call to
|
|
the sub_select function then this partial join record must be saved in the
|
|
join buffer in order to be restored just before the sub_select call.
|
|
*/
|
|
if (skip_last)
|
|
put_record();
|
|
|
|
if (join_tab->use_quick == 2 && join_tab->select->quick)
|
|
{
|
|
/* A dynamic range access was used last. Clean up after it */
|
|
delete join_tab->select->quick;
|
|
join_tab->select->quick= 0;
|
|
}
|
|
|
|
for (tab= join->join_tab; tab != join_tab ; tab++)
|
|
{
|
|
tab->status= tab->table->status;
|
|
tab->table->status= 0;
|
|
}
|
|
|
|
/* Start retrieving all records of the joined table */
|
|
if ((error= join_init_read_record(join_tab)))
|
|
{
|
|
rc= error < 0 ? NESTED_LOOP_NO_MORE_ROWS: NESTED_LOOP_ERROR;
|
|
goto finish;
|
|
}
|
|
|
|
info= &join_tab->read_record;
|
|
do
|
|
{
|
|
if (join_tab->keep_current_rowid)
|
|
join_tab->table->file->position(join_tab->table->record[0]);
|
|
|
|
if (join->thd->killed)
|
|
{
|
|
/* The user has aborted the execution of the query */
|
|
join->thd->send_kill_message();
|
|
rc= NESTED_LOOP_KILLED;
|
|
goto finish;
|
|
}
|
|
int err= 0;
|
|
|
|
if (rc == NESTED_LOOP_OK)
|
|
update_virtual_fields(join_tab->table);
|
|
|
|
/*
|
|
Do not look for matches if the last read record of the joined table
|
|
does not meet the conditions that have been pushed to this table
|
|
*/
|
|
if (rc == NESTED_LOOP_OK &&
|
|
(!select || (err= select->skip_record(join->thd)) != 0))
|
|
{
|
|
if (err < 0)
|
|
return NESTED_LOOP_ERROR;
|
|
rc= NESTED_LOOP_OK;
|
|
//psergey3-merge: todo: check if all other places in this file
|
|
// should have the
|
|
// skip_record(...) <0 --> return error
|
|
// code.
|
|
|
|
/* Prepare to read records from the join buffer */
|
|
reset(FALSE);
|
|
|
|
/* Read each record from the join buffer and look for matches */
|
|
for (cnt= records - test(skip_last) ; cnt; cnt--)
|
|
{
|
|
/*
|
|
If only the first match is needed and it has been already found for
|
|
the next record read from the join buffer then the record is skipped.
|
|
*/
|
|
if (!check_only_first_match || !skip_record_if_match())
|
|
{
|
|
get_record();
|
|
rc= generate_full_extensions(get_curr_rec());
|
|
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
|
|
goto finish;
|
|
}
|
|
}
|
|
}
|
|
} while (!(error= info->read_record(info)));
|
|
|
|
if (error > 0) // Fatal error
|
|
rc= NESTED_LOOP_ERROR;
|
|
finish:
|
|
for (tab= join->join_tab; tab != join_tab ; tab++)
|
|
tab->table->status= tab->status;
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
Set match flag for a record in join buffer if it has not been set yet
|
|
|
|
SYNOPSIS
|
|
set_match_flag_if_none()
|
|
first_inner the join table to which this flag is attached to
|
|
rec_ptr pointer to the record in the join buffer
|
|
|
|
DESCRIPTION
|
|
If the records of the table are accumulated in a join buffer the function
|
|
sets the match flag for the record in the buffer that is referred to by
|
|
the record from this cache positioned at 'rec_ptr'.
|
|
The function also sets the match flag 'found' of the table first inner
|
|
if it has not been set before.
|
|
|
|
NOTES
|
|
The function assumes that the match flag for any record in any cache
|
|
is placed in the first byte occupied by the record fields.
|
|
|
|
RETURN
|
|
TRUE the match flag is set by this call for the first time
|
|
FALSE the match flag has been set before this call
|
|
*/
|
|
|
|
bool JOIN_CACHE::set_match_flag_if_none(JOIN_TAB *first_inner,
|
|
uchar *rec_ptr)
|
|
{
|
|
if (!first_inner->cache)
|
|
{
|
|
/*
|
|
Records of the first inner table to which the flag is attached to
|
|
are not accumulated in a join buffer.
|
|
*/
|
|
if (first_inner->found)
|
|
return FALSE;
|
|
else
|
|
{
|
|
first_inner->found= 1;
|
|
return TRUE;
|
|
}
|
|
}
|
|
JOIN_CACHE *cache= this;
|
|
while (cache->join_tab != first_inner)
|
|
{
|
|
cache= cache->prev_cache;
|
|
DBUG_ASSERT(cache);
|
|
rec_ptr= cache->get_rec_ref(rec_ptr);
|
|
}
|
|
if (rec_ptr[0] == 0)
|
|
{
|
|
rec_ptr[0]= 1;
|
|
first_inner->found= 1;
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/*
|
|
Generate all full extensions for a partial join record in the buffer
|
|
|
|
SYNOPSIS
|
|
generate_full_extensions()
|
|
rec_ptr pointer to the record from join buffer to generate extensions
|
|
|
|
DESCRIPTION
|
|
The function first checks whether the current record of 'join_tab' matches
|
|
the partial join record from join buffer located at 'rec_ptr'. If it is the
|
|
case the function calls the join_tab->next_select method to generate
|
|
all full extension for this partial join match.
|
|
|
|
RETURN
|
|
return one of enum_nested_loop_state.
|
|
*/
|
|
|
|
enum_nested_loop_state JOIN_CACHE::generate_full_extensions(uchar *rec_ptr)
|
|
{
|
|
enum_nested_loop_state rc= NESTED_LOOP_OK;
|
|
|
|
/*
|
|
Check whether the extended partial join record meets
|
|
the pushdown conditions.
|
|
*/
|
|
if (check_match(rec_ptr))
|
|
{
|
|
int res= 0;
|
|
|
|
if (!join_tab->check_weed_out_table ||
|
|
!(res= do_sj_dups_weedout(join->thd, join_tab->check_weed_out_table)))
|
|
{
|
|
set_curr_rec_link(rec_ptr);
|
|
rc= (join_tab->next_select)(join, join_tab+1, 0);
|
|
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
|
|
{
|
|
reset(TRUE);
|
|
return rc;
|
|
}
|
|
}
|
|
if (res == -1)
|
|
{
|
|
rc= NESTED_LOOP_ERROR;
|
|
return rc;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
Check matching to a partial join record from the join buffer
|
|
|
|
SYNOPSIS
|
|
check_match()
|
|
rec_ptr pointer to the record from join buffer to check matching to
|
|
|
|
DESCRIPTION
|
|
The function checks whether the current record of 'join_tab' matches
|
|
the partial join record from join buffer located at 'rec_ptr'. If this is
|
|
the case and 'join_tab' is the last inner table of a semi-join or an outer
|
|
join the function turns on the match flag for the 'rec_ptr' record unless
|
|
it has been already set.
|
|
|
|
NOTES
|
|
Setting the match flag on can trigger re-evaluation of pushdown conditions
|
|
for the record when join_tab is the last inner table of an outer join.
|
|
|
|
RETURN
|
|
TRUE there is a match
|
|
FALSE there is no match
|
|
*/
|
|
|
|
inline bool JOIN_CACHE::check_match(uchar *rec_ptr)
|
|
{
|
|
/* Check whether pushdown conditions are satisfied */
|
|
if (join_tab->select && join_tab->select->skip_record(join->thd) < 1)
|
|
return FALSE;
|
|
|
|
if (!join_tab->is_last_inner_table())
|
|
return TRUE;
|
|
|
|
/*
|
|
This is the last inner table of an outer join,
|
|
and maybe of other embedding outer joins, or
|
|
this is the last inner table of a semi-join.
|
|
*/
|
|
JOIN_TAB *first_inner= join_tab->get_first_inner_table();
|
|
do
|
|
{
|
|
set_match_flag_if_none(first_inner, rec_ptr);
|
|
if (first_inner->check_only_first_match() &&
|
|
!join_tab->first_inner)
|
|
return TRUE;
|
|
/*
|
|
This is the first match for the outer table row.
|
|
The function set_match_flag_if_none has turned the flag
|
|
first_inner->found on. The pushdown predicates for
|
|
inner tables must be re-evaluated with this flag on.
|
|
Note that, if first_inner is the first inner table
|
|
of a semi-join, but is not an inner table of an outer join
|
|
such that 'not exists' optimization can be applied to it,
|
|
the re-evaluation of the pushdown predicates is not needed.
|
|
*/
|
|
for (JOIN_TAB *tab= first_inner; tab <= join_tab; tab++)
|
|
{
|
|
if (tab->select && tab->select->skip_record(join->thd) < 1)
|
|
return FALSE;
|
|
}
|
|
}
|
|
while ((first_inner= first_inner->first_upper) &&
|
|
first_inner->last_inner == join_tab);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
Add null complements for unmatched outer records from join buffer
|
|
|
|
SYNOPSIS
|
|
join_null_complements()
|
|
skip_last do not add null complements for the last record
|
|
|
|
DESCRIPTION
|
|
This function is called only for inner tables of outer joins.
|
|
The function retrieves all rows from the join buffer and adds null
|
|
complements for those of them that do not have matches for outer
|
|
table records.
|
|
If the 'join_tab' is the last inner table of the embedding outer
|
|
join and the null complemented record satisfies the outer join
|
|
condition then the the corresponding match flag is turned on
|
|
unless it has been set earlier. This setting may trigger
|
|
re-evaluation of pushdown conditions for the record.
|
|
|
|
NOTES
|
|
The same implementation of the virtual method join_null_complements
|
|
is used for JOIN_CACHE_BNL and JOIN_CACHE_BKA.
|
|
|
|
RETURN
|
|
return one of enum_nested_loop_state.
|
|
*/
|
|
|
|
enum_nested_loop_state JOIN_CACHE::join_null_complements(bool skip_last)
|
|
{
|
|
uint cnt;
|
|
enum_nested_loop_state rc= NESTED_LOOP_OK;
|
|
bool is_first_inner= join_tab == join_tab->first_unmatched;
|
|
bool is_last_inner= join_tab == join_tab->first_unmatched->last_inner;
|
|
|
|
/* Return at once if there are no records in the join buffer */
|
|
if (!records)
|
|
return NESTED_LOOP_OK;
|
|
|
|
cnt= records - (is_key_access() ? 0 : test(skip_last));
|
|
|
|
/* This function may be called only for inner tables of outer joins */
|
|
DBUG_ASSERT(join_tab->first_inner);
|
|
|
|
for ( ; cnt; cnt--)
|
|
{
|
|
if (join->thd->killed)
|
|
{
|
|
/* The user has aborted the execution of the query */
|
|
join->thd->send_kill_message();
|
|
rc= NESTED_LOOP_KILLED;
|
|
goto finish;
|
|
}
|
|
/* Just skip the whole record if a match for it has been already found */
|
|
if (!is_first_inner || !skip_record_if_match())
|
|
{
|
|
get_record();
|
|
/* The outer row is complemented by nulls for each inner table */
|
|
restore_record(join_tab->table, s->default_values);
|
|
mark_as_null_row(join_tab->table);
|
|
/* Check all pushdown conditions attached to the inner table */
|
|
join_tab->first_unmatched->found= 1;
|
|
if (join_tab->select && join_tab->select->skip_record(join->thd) < 1)
|
|
continue;
|
|
if (is_last_inner)
|
|
{
|
|
JOIN_TAB *first_upper= join_tab->first_unmatched->first_upper;
|
|
while (first_upper && first_upper->last_inner == join_tab)
|
|
{
|
|
set_match_flag_if_none(first_upper, get_curr_rec());
|
|
for (JOIN_TAB* tab= first_upper; tab <= join_tab; tab++)
|
|
{
|
|
if (tab->select && tab->select->skip_record(join->thd) < 1)
|
|
goto next;
|
|
}
|
|
first_upper= first_upper->first_upper;
|
|
}
|
|
}
|
|
/* Find all matches for the remaining join tables */
|
|
rc= (*join_tab->next_select)(join, join_tab+1, 0);
|
|
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
|
|
{
|
|
reset(TRUE);
|
|
goto finish;
|
|
}
|
|
}
|
|
next:
|
|
;
|
|
}
|
|
|
|
finish:
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
Initialize retrieval of range sequence for BKA algorithm
|
|
|
|
SYNOPSIS
|
|
bka_range_seq_init()
|
|
init_params pointer to the BKA join cache object
|
|
n_ranges the number of ranges obtained
|
|
flags combination of HA_MRR_SINGLE_POINT, HA_MRR_FIXED_KEY
|
|
|
|
DESCRIPTION
|
|
The function interprets init_param as a pointer to a JOIN_CACHE_BKA
|
|
object. The function prepares for an iteration over the join keys
|
|
built for all records from the cache join buffer.
|
|
|
|
NOTE
|
|
This function are used only as a callback function.
|
|
|
|
RETURN
|
|
init_param value that is to be used as a parameter of bka_range_seq_next()
|
|
*/
|
|
|
|
static
|
|
range_seq_t bka_range_seq_init(void *init_param, uint n_ranges, uint flags)
|
|
{
|
|
DBUG_ENTER("bka_range_seq_init");
|
|
JOIN_CACHE_BKA *cache= (JOIN_CACHE_BKA *) init_param;
|
|
cache->reset(0);
|
|
DBUG_RETURN((range_seq_t) init_param);
|
|
}
|
|
|
|
|
|
/*
|
|
Get the key over the next record from the join buffer used by BKA
|
|
|
|
SYNOPSIS
|
|
bka_range_seq_next()
|
|
seq the value returned by bka_range_seq_init
|
|
range OUT reference to the next range
|
|
|
|
DESCRIPTION
|
|
The function interprets seq as a pointer to a JOIN_CACHE_BKA
|
|
object. The function returns a pointer to the range descriptor
|
|
for the key built over the next record from the join buffer.
|
|
|
|
NOTE
|
|
This function are used only as a callback function.
|
|
|
|
RETURN
|
|
0 ok, the range structure filled with info about the next key
|
|
1 no more ranges
|
|
*/
|
|
|
|
static
|
|
uint bka_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range)
|
|
{
|
|
DBUG_ENTER("bka_range_seq_next");
|
|
JOIN_CACHE_BKA *cache= (JOIN_CACHE_BKA *) rseq;
|
|
TABLE_REF *ref= &cache->join_tab->ref;
|
|
key_range *start_key= &range->start_key;
|
|
if ((start_key->length= cache->get_next_key((uchar **) &start_key->key)))
|
|
{
|
|
start_key->keypart_map= (1 << ref->key_parts) - 1;
|
|
start_key->flag= HA_READ_KEY_EXACT;
|
|
range->end_key= *start_key;
|
|
range->end_key.flag= HA_READ_AFTER_KEY;
|
|
range->ptr= (char *) cache->get_curr_rec();
|
|
range->range_flag= EQ_RANGE;
|
|
DBUG_RETURN(0);
|
|
}
|
|
DBUG_RETURN(1);
|
|
}
|
|
|
|
|
|
/*
|
|
Check whether range_info orders to skip the next record from BKA buffer
|
|
|
|
SYNOPSIS
|
|
bka_range_seq_skip_record()
|
|
seq value returned by bka_range_seq_init()
|
|
range_info information about the next range
|
|
rowid [NOT USED] rowid of the record to be checked
|
|
|
|
|
|
DESCRIPTION
|
|
The function interprets seq as a pointer to a JOIN_CACHE_BKA object.
|
|
The function interprets seq as a pointer to the JOIN_CACHE_BKA_UNIQUE
|
|
object. The function returns TRUE if the record with this range_info
|
|
is to be filtered out from the stream of records returned by
|
|
multi_range_read_next().
|
|
|
|
NOTE
|
|
This function are used only as a callback function.
|
|
|
|
RETURN
|
|
1 record with this range_info is to be filtered out from the stream
|
|
of records returned by multi_range_read_next()
|
|
0 the record is to be left in the stream
|
|
*/
|
|
|
|
static
|
|
bool bka_range_seq_skip_record(range_seq_t rseq, char *range_info, uchar *rowid)
|
|
{
|
|
DBUG_ENTER("bka_range_seq_skip_record");
|
|
JOIN_CACHE_BKA *cache= (JOIN_CACHE_BKA *) rseq;
|
|
bool res= cache->get_match_flag_by_pos((uchar *) range_info);
|
|
DBUG_RETURN(res);
|
|
}
|
|
|
|
/*
|
|
Using BKA find matches from the next table for records from the join buffer
|
|
|
|
SYNOPSIS
|
|
join_matching_records()
|
|
skip_last do not look for matches for the last partial join record
|
|
|
|
DESCRIPTION
|
|
This function can be used only when the table join_tab can be accessed
|
|
by keys built over the fields of previous join tables.
|
|
The function retrieves all partial join records from the join buffer and
|
|
for each of them builds the key value to access join_tab, performs index
|
|
look-up with this key and selects matching records yielded by this look-up
|
|
If a match is found the function will call the sub_select function trying
|
|
to look for matches for the remaining join operations.
|
|
This function currently is called only from the function join_records.
|
|
It's assumed that this function is always called with the skip_last
|
|
parameter equal to false.
|
|
|
|
NOTES
|
|
The function produces all matching extensions for the records in the
|
|
join buffer following the path of the Batched Key Access algorithm.
|
|
When an outer join operation is performed all unmatched records from
|
|
the join buffer must be extended by null values. The function
|
|
join_null_complements serves this purpose.
|
|
The Batched Key Access algorithm assumes that key accesses are batched.
|
|
In other words it assumes that, first, either keys themselves or the
|
|
corresponding rowids (primary keys) are accumulated in a buffer, then
|
|
data rows from join_tab are fetched for all of them. When a row is
|
|
fetched it is always returned with a reference to the key by which it
|
|
has been accessed.
|
|
When key values are batched we can save on the number of the server
|
|
requests for index lookups. For the remote engines, like NDB cluster, it
|
|
essentially reduces the number of round trips between the server and
|
|
the engine when performing a join operation.
|
|
When the rowids for the keys are batched we can optimize the order
|
|
in what we fetch the data for this rowids. The performance benefits of
|
|
this optimization can be significant for such engines as MyISAM, InnoDB.
|
|
What is exactly batched are hidden behind implementations of
|
|
MRR handler interface that is supposed to be appropriately chosen
|
|
for each engine. If for a engine no specific implementation of the MRR
|
|
interface is supllied then the default implementation is used. This
|
|
implementation actually follows the path of Nested Loops Join algorithm.
|
|
In this case BKA join surely will demonstrate a worse performance than
|
|
NL join.
|
|
|
|
RETURN
|
|
return one of enum_nested_loop_state
|
|
*/
|
|
|
|
enum_nested_loop_state JOIN_CACHE_BKA::join_matching_records(bool skip_last)
|
|
{
|
|
int error;
|
|
handler *file= join_tab->table->file;
|
|
enum_nested_loop_state rc= NESTED_LOOP_OK;
|
|
uchar *rec_ptr= 0;
|
|
bool check_only_first_match= join_tab->check_only_first_match();
|
|
|
|
/* Set functions to iterate over keys in the join buffer */
|
|
|
|
RANGE_SEQ_IF seq_funcs= { bka_range_seq_init,
|
|
bka_range_seq_next,
|
|
check_only_first_match ?
|
|
bka_range_seq_skip_record : 0,
|
|
join_tab->cache_idx_cond ?
|
|
bka_skip_index_tuple : 0 };
|
|
|
|
/* The value of skip_last must be always FALSE when this function is called */
|
|
DBUG_ASSERT(!skip_last);
|
|
|
|
/* Return at once if there are no records in the join buffer */
|
|
if (!records)
|
|
return NESTED_LOOP_OK;
|
|
|
|
rc= init_join_matching_records(&seq_funcs, records);
|
|
if (rc != NESTED_LOOP_OK)
|
|
goto finish;
|
|
|
|
while (!(error= file->multi_range_read_next((char **) &rec_ptr)))
|
|
{
|
|
if (join->thd->killed)
|
|
{
|
|
/* The user has aborted the execution of the query */
|
|
join->thd->send_kill_message();
|
|
rc= NESTED_LOOP_KILLED;
|
|
goto finish;
|
|
}
|
|
if (join_tab->keep_current_rowid)
|
|
join_tab->table->file->position(join_tab->table->record[0]);
|
|
/*
|
|
If only the first match is needed and it has been already found
|
|
for the associated partial join record then the returned candidate
|
|
is discarded.
|
|
*/
|
|
if (rc == NESTED_LOOP_OK &&
|
|
(!check_only_first_match || !get_match_flag_by_pos(rec_ptr)))
|
|
{
|
|
get_record_by_pos(rec_ptr);
|
|
update_virtual_fields(join_tab->table);
|
|
rc= generate_full_extensions(rec_ptr);
|
|
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
|
|
goto finish;
|
|
}
|
|
}
|
|
|
|
if (error > 0 && error != HA_ERR_END_OF_FILE)
|
|
return NESTED_LOOP_ERROR;
|
|
finish:
|
|
return end_join_matching_records(rc);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
Prepare to search for records that match records from the join buffer
|
|
|
|
SYNOPSIS
|
|
init_join_matching_records()
|
|
seq_funcs structure of range sequence interface
|
|
ranges number of keys/ranges in the sequence
|
|
|
|
DESCRIPTION
|
|
This function calls the multi_range_read_init function to set up
|
|
the BKA process of generating the keys from the records in the join
|
|
buffer and looking for matching records from the table to be joined.
|
|
The function passes as a parameter a structure of functions that
|
|
implement the range sequence interface. This interface is used to
|
|
enumerate all generated keys and optionally to filter the matching
|
|
records returned by the multi_range_read_next calls from the
|
|
intended invocation of the join_matching_records method. The
|
|
multi_range_read_init function also receives the parameters for
|
|
MRR buffer to be used and flags specifying the mode in which
|
|
this buffer will be functioning.
|
|
The number of keys in the sequence expected by multi_range_read_init
|
|
is passed through the parameter ranges.
|
|
|
|
RETURN
|
|
return one of enum_nested_loop_state
|
|
*/
|
|
|
|
enum_nested_loop_state
|
|
JOIN_CACHE_BKA::init_join_matching_records(RANGE_SEQ_IF *seq_funcs, uint ranges)
|
|
{
|
|
int error;
|
|
handler *file= join_tab->table->file;
|
|
enum_nested_loop_state rc= NESTED_LOOP_OK;
|
|
|
|
join_tab->table->null_row= 0;
|
|
|
|
|
|
/* Dynamic range access is never used with BKA */
|
|
DBUG_ASSERT(join_tab->use_quick != 2);
|
|
|
|
for (JOIN_TAB *tab =join->join_tab; tab != join_tab ; tab++)
|
|
{
|
|
tab->status= tab->table->status;
|
|
tab->table->status= 0;
|
|
}
|
|
|
|
init_mrr_buff();
|
|
|
|
/*
|
|
Prepare to iterate over keys from the join buffer and to get
|
|
matching candidates obtained with MMR handler functions.
|
|
*/
|
|
if (!file->inited)
|
|
file->ha_index_init(join_tab->ref.key, 1);
|
|
if ((error= file->multi_range_read_init(seq_funcs, (void*) this, ranges,
|
|
mrr_mode, &mrr_buff)))
|
|
rc= error < 0 ? NESTED_LOOP_NO_MORE_ROWS: NESTED_LOOP_ERROR;
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
Finish searching for records that match records from the join buffer
|
|
|
|
SYNOPSIS
|
|
end_join_matching_records()
|
|
rc return code passed by the join_matching_records function
|
|
|
|
DESCRIPTION
|
|
This function perform final actions on searching for all matches for
|
|
the records from the join buffer and building all full join extensions
|
|
of the records with these matches.
|
|
|
|
RETURN
|
|
return code rc passed to the function as a parameter
|
|
*/
|
|
|
|
enum_nested_loop_state
|
|
JOIN_CACHE_BKA::end_join_matching_records(enum_nested_loop_state rc)
|
|
{
|
|
for (JOIN_TAB *tab=join->join_tab; tab != join_tab ; tab++)
|
|
tab->table->status= tab->status;
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
Get the key built over the next record from BKA join buffer
|
|
|
|
SYNOPSIS
|
|
get_next_key()
|
|
key pointer to the buffer where the key value is to be placed
|
|
|
|
DESCRIPTION
|
|
The function reads key fields from the current record in the join buffer.
|
|
and builds the key value out of these fields that will be used to access
|
|
the 'join_tab' table. Some of key fields may belong to previous caches.
|
|
They are accessed via record references to the record parts stored in the
|
|
previous join buffers. The other key fields always are placed right after
|
|
the flag fields of the record.
|
|
If the key is embedded, which means that its value can be read directly
|
|
from the join buffer, then *key is set to the beginning of the key in
|
|
this buffer. Otherwise the key is built in the join_tab->ref->key_buff.
|
|
The function returns the length of the key if it succeeds ro read it.
|
|
If is assumed that the functions starts reading at the position of
|
|
the record length which is provided for each records in a BKA cache.
|
|
After the key is built the 'pos' value points to the first position after
|
|
the current record.
|
|
The function returns 0 if the initial position is after the beginning
|
|
of the record fields for last record from the join buffer.
|
|
|
|
RETURN
|
|
length of the key value - if the starting value of 'pos' points to
|
|
the position before the fields for the last record,
|
|
0 - otherwise.
|
|
*/
|
|
|
|
uint JOIN_CACHE_BKA::get_next_key(uchar ** key)
|
|
{
|
|
uint len;
|
|
uint32 rec_len;
|
|
uchar *init_pos;
|
|
JOIN_CACHE *cache;
|
|
|
|
if (pos > last_rec_pos || !records)
|
|
return 0;
|
|
|
|
/* Any record in a BKA cache is prepended with its length */
|
|
DBUG_ASSERT(with_length);
|
|
|
|
/* Read the length of the record */
|
|
rec_len= get_rec_length(pos);
|
|
pos+= size_of_rec_len;
|
|
init_pos= pos;
|
|
|
|
/* Read a reference to the previous cache if any */
|
|
if (prev_cache)
|
|
pos+= prev_cache->get_size_of_rec_offset();
|
|
|
|
curr_rec_pos= pos;
|
|
|
|
/* Read all flag fields of the record */
|
|
read_flag_fields();
|
|
|
|
if (use_emb_key)
|
|
{
|
|
/* An embedded key is taken directly from the join buffer */
|
|
*key= pos;
|
|
len= emb_key_length;
|
|
}
|
|
else
|
|
{
|
|
/* Read key arguments from previous caches if there are any such fields */
|
|
if (external_key_arg_fields)
|
|
{
|
|
uchar *rec_ptr= curr_rec_pos;
|
|
uint key_arg_count= external_key_arg_fields;
|
|
CACHE_FIELD **copy_ptr= blob_ptr-key_arg_count;
|
|
for (cache= prev_cache; key_arg_count; cache= cache->prev_cache)
|
|
{
|
|
uint len= 0;
|
|
DBUG_ASSERT(cache);
|
|
rec_ptr= cache->get_rec_ref(rec_ptr);
|
|
while (!cache->referenced_fields)
|
|
{
|
|
cache= cache->prev_cache;
|
|
DBUG_ASSERT(cache);
|
|
rec_ptr= cache->get_rec_ref(rec_ptr);
|
|
}
|
|
while (key_arg_count &&
|
|
cache->read_referenced_field(*copy_ptr, rec_ptr, &len))
|
|
{
|
|
copy_ptr++;
|
|
--key_arg_count;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Read the other key arguments from the current record. The fields for
|
|
these arguments are always first in the sequence of the record's fields.
|
|
*/
|
|
CACHE_FIELD *copy= field_descr+flag_fields;
|
|
CACHE_FIELD *copy_end= copy+local_key_arg_fields;
|
|
bool blob_in_rec_buff= blob_data_is_in_rec_buff(curr_rec_pos);
|
|
for ( ; copy < copy_end; copy++)
|
|
read_record_field(copy, blob_in_rec_buff);
|
|
|
|
/* Build the key over the fields read into the record buffers */
|
|
TABLE_REF *ref= &join_tab->ref;
|
|
cp_buffer_from_ref(join->thd, join_tab->table, ref);
|
|
*key= ref->key_buff;
|
|
len= ref->key_length;
|
|
}
|
|
|
|
pos= init_pos+rec_len;
|
|
|
|
return len;
|
|
}
|
|
|
|
|
|
/*
|
|
Initialize a BKA_UNIQUE cache
|
|
|
|
SYNOPSIS
|
|
init()
|
|
|
|
DESCRIPTION
|
|
The function initializes the cache structure. It supposed to be called
|
|
right after a constructor for the JOIN_CACHE_BKA_UNIQUE.
|
|
The function allocates memory for the join buffer and for descriptors of
|
|
the record fields stored in the buffer.
|
|
The function also estimates the number of hash table entries in the hash
|
|
table to be used and initializes this hash table.
|
|
|
|
NOTES
|
|
The code of this function should have been included into the constructor
|
|
code itself. However the new operator for the class JOIN_CACHE_BKA_UNIQUE
|
|
would never fail while memory allocation for the join buffer is not
|
|
absolutely unlikely to fail. That's why this memory allocation has to be
|
|
placed in a separate function that is called in a couple with a cache
|
|
constructor.
|
|
It is quite natural to put almost all other constructor actions into
|
|
this function.
|
|
|
|
RETURN
|
|
0 initialization with buffer allocations has been succeeded
|
|
1 otherwise
|
|
*/
|
|
|
|
int JOIN_CACHE_BKA_UNIQUE::init()
|
|
{
|
|
int rc= 0;
|
|
TABLE_REF *ref= &join_tab->ref;
|
|
|
|
DBUG_ENTER("JOIN_CACHE_BKA_UNIQUE::init");
|
|
|
|
hash_table= 0;
|
|
key_entries= 0;
|
|
|
|
if ((rc= JOIN_CACHE_BKA::init()))
|
|
DBUG_RETURN (rc);
|
|
|
|
key_length= ref->key_length;
|
|
|
|
/* Take into account a reference to the next record in the key chain */
|
|
pack_length+= get_size_of_rec_offset();
|
|
|
|
/* Calculate the minimal possible value of size_of_key_ofs greater than 1 */
|
|
uint max_size_of_key_ofs= max(2, get_size_of_rec_offset());
|
|
for (size_of_key_ofs= 2;
|
|
size_of_key_ofs <= max_size_of_key_ofs;
|
|
size_of_key_ofs+= 2)
|
|
{
|
|
key_entry_length= get_size_of_rec_offset() + // key chain header
|
|
size_of_key_ofs + // reference to the next key
|
|
(use_emb_key ? get_size_of_rec_offset() : key_length);
|
|
|
|
uint n= buff_size / (pack_length+key_entry_length+size_of_key_ofs);
|
|
|
|
/*
|
|
TODO: Make a better estimate for this upper bound of
|
|
the number of records in in the join buffer.
|
|
*/
|
|
uint max_n= buff_size / (pack_length-length+
|
|
key_entry_length+size_of_key_ofs);
|
|
|
|
hash_entries= (uint) (n / 0.7);
|
|
|
|
if (offset_size(max_n*key_entry_length) <=
|
|
size_of_key_ofs)
|
|
break;
|
|
}
|
|
|
|
/* Initialize the hash table */
|
|
hash_table= buff + (buff_size-hash_entries*size_of_key_ofs);
|
|
cleanup_hash_table();
|
|
curr_key_entry= hash_table;
|
|
|
|
pack_length+= key_entry_length;
|
|
pack_length_with_blob_ptrs+= get_size_of_rec_offset() + key_entry_length;
|
|
|
|
rec_fields_offset= get_size_of_rec_offset()+get_size_of_rec_length()+
|
|
(prev_cache ? prev_cache->get_size_of_rec_offset() : 0);
|
|
|
|
data_fields_offset= 0;
|
|
if (use_emb_key)
|
|
{
|
|
CACHE_FIELD *copy= field_descr;
|
|
CACHE_FIELD *copy_end= copy+flag_fields;
|
|
for ( ; copy < copy_end; copy++)
|
|
data_fields_offset+= copy->length;
|
|
}
|
|
|
|
DBUG_RETURN(rc);
|
|
}
|
|
|
|
|
|
/*
|
|
Reset the JOIN_CACHE_BKA_UNIQUE buffer for reading/writing
|
|
|
|
SYNOPSIS
|
|
reset()
|
|
for_writing if it's TRUE the function reset the buffer for writing
|
|
|
|
DESCRIPTION
|
|
This implementation of the virtual function reset() resets the join buffer
|
|
of the JOIN_CACHE_BKA_UNIQUE class for reading or writing.
|
|
Additionally to what the default implementation does this function
|
|
cleans up the hash table allocated within the buffer.
|
|
|
|
RETURN
|
|
none
|
|
*/
|
|
|
|
void JOIN_CACHE_BKA_UNIQUE::reset(bool for_writing)
|
|
{
|
|
this->JOIN_CACHE::reset(for_writing);
|
|
if (for_writing && hash_table)
|
|
cleanup_hash_table();
|
|
curr_key_entry= hash_table;
|
|
}
|
|
|
|
/*
|
|
Add a record into the JOIN_CACHE_BKA_UNIQUE buffer
|
|
|
|
SYNOPSIS
|
|
put_record()
|
|
|
|
DESCRIPTION
|
|
This implementation of the virtual function put_record writes the next
|
|
matching record into the join buffer of the JOIN_CACHE_BKA_UNIQUE class.
|
|
Additionally to what the default implementation does this function
|
|
performs the following.
|
|
It extracts from the record the key value used in lookups for matching
|
|
records and searches for this key in the hash tables from the join cache.
|
|
If it finds the key in the hash table it joins the record to the chain
|
|
of records with this key. If the key is not found in the hash table the
|
|
key is placed into it and a chain containing only the newly added record
|
|
is attached to the key entry. The key value is either placed in the hash
|
|
element added for the key or, if the use_emb_key flag is set, remains in
|
|
the record from the partial join.
|
|
|
|
RETURN
|
|
TRUE if it has been decided that it should be the last record
|
|
in the join buffer,
|
|
FALSE otherwise
|
|
*/
|
|
|
|
bool JOIN_CACHE_BKA_UNIQUE::put_record()
|
|
{
|
|
bool is_full;
|
|
uchar *key;
|
|
uint key_len= key_length;
|
|
uchar *key_ref_ptr;
|
|
uchar *link= 0;
|
|
TABLE_REF *ref= &join_tab->ref;
|
|
uchar *next_ref_ptr= pos;
|
|
|
|
pos+= get_size_of_rec_offset();
|
|
/* Write the record into the join buffer */
|
|
if (prev_cache)
|
|
link= prev_cache->get_curr_rec_link();
|
|
write_record_data(link, &is_full);
|
|
|
|
if (use_emb_key)
|
|
key= get_curr_emb_key();
|
|
else
|
|
{
|
|
/* Build the key over the fields read into the record buffers */
|
|
cp_buffer_from_ref(join->thd, join_tab->table, ref);
|
|
key= ref->key_buff;
|
|
}
|
|
|
|
/* Look for the key in the hash table */
|
|
if (key_search(key, key_len, &key_ref_ptr))
|
|
{
|
|
uchar *last_next_ref_ptr;
|
|
/*
|
|
The key is found in the hash table.
|
|
Add the record to the circular list of the records attached to this key.
|
|
Below 'rec' is the record to be added into the record chain for the found
|
|
key, 'key_ref' points to a flatten representation of the st_key_entry
|
|
structure that contains the key and the head of the record chain.
|
|
*/
|
|
last_next_ref_ptr= get_next_rec_ref(key_ref_ptr+get_size_of_key_offset());
|
|
/* rec->next_rec= key_entry->last_rec->next_rec */
|
|
memcpy(next_ref_ptr, last_next_ref_ptr, get_size_of_rec_offset());
|
|
/* key_entry->last_rec->next_rec= rec */
|
|
store_next_rec_ref(last_next_ref_ptr, next_ref_ptr);
|
|
/* key_entry->last_rec= rec */
|
|
store_next_rec_ref(key_ref_ptr+get_size_of_key_offset(), next_ref_ptr);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
The key is not found in the hash table.
|
|
Put the key into the join buffer linking it with the keys for the
|
|
corresponding hash entry. Create a circular list with one element
|
|
referencing the record and attach the list to the key in the buffer.
|
|
*/
|
|
uchar *cp= last_key_entry;
|
|
cp-= get_size_of_rec_offset()+get_size_of_key_offset();
|
|
store_next_key_ref(key_ref_ptr, cp);
|
|
store_null_key_ref(cp);
|
|
store_next_rec_ref(next_ref_ptr, next_ref_ptr);
|
|
store_next_rec_ref(cp+get_size_of_key_offset(), next_ref_ptr);
|
|
if (use_emb_key)
|
|
{
|
|
cp-= get_size_of_rec_offset();
|
|
store_emb_key_ref(cp, key);
|
|
}
|
|
else
|
|
{
|
|
cp-= key_len;
|
|
memcpy(cp, key, key_len);
|
|
}
|
|
last_key_entry= cp;
|
|
/* Increment the counter of key_entries in the hash table */
|
|
key_entries++;
|
|
}
|
|
return is_full;
|
|
}
|
|
|
|
|
|
/*
|
|
Read the next record from the JOIN_CACHE_BKA_UNIQUE buffer
|
|
|
|
SYNOPSIS
|
|
get_record()
|
|
|
|
DESCRIPTION
|
|
Additionally to what the default implementation of the virtual
|
|
function get_record does this implementation skips the link element
|
|
used to connect the records with the same key into a chain.
|
|
|
|
RETURN
|
|
TRUE - there are no more records to read from the join buffer
|
|
FALSE - otherwise
|
|
*/
|
|
|
|
bool JOIN_CACHE_BKA_UNIQUE::get_record()
|
|
{
|
|
pos+= get_size_of_rec_offset();
|
|
return this->JOIN_CACHE::get_record();
|
|
}
|
|
|
|
|
|
/*
|
|
Skip record from the JOIN_CACHE_BKA_UNIQUE join buffer if its match flag is on
|
|
|
|
SYNOPSIS
|
|
skip_record_if_match()
|
|
|
|
DESCRIPTION
|
|
This implementation of the virtual function skip_record_if_match does
|
|
the same as the default implementation does, but it takes into account
|
|
the link element used to connect the records with the same key into a chain.
|
|
|
|
RETURN
|
|
TRUE - the match flag is on and the record has been skipped
|
|
FALSE - the match flag is off
|
|
*/
|
|
|
|
bool JOIN_CACHE_BKA_UNIQUE::skip_record_if_match()
|
|
{
|
|
uchar *save_pos= pos;
|
|
pos+= get_size_of_rec_offset();
|
|
if (!this->JOIN_CACHE::skip_record_if_match())
|
|
{
|
|
pos= save_pos;
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
Search for a key in the hash table of the join buffer
|
|
|
|
SYNOPSIS
|
|
key_search()
|
|
key pointer to the key value
|
|
key_len key value length
|
|
key_ref_ptr OUT position of the reference to the next key from
|
|
the hash element for the found key , or
|
|
a position where the reference to the the hash
|
|
element for the key is to be added in the
|
|
case when the key has not been found
|
|
|
|
DESCRIPTION
|
|
The function looks for a key in the hash table of the join buffer.
|
|
If the key is found the functionreturns the position of the reference
|
|
to the next key from to the hash element for the given key.
|
|
Otherwise the function returns the position where the reference to the
|
|
newly created hash element for the given key is to be added.
|
|
|
|
RETURN
|
|
TRUE - the key is found in the hash table
|
|
FALSE - otherwise
|
|
*/
|
|
|
|
bool JOIN_CACHE_BKA_UNIQUE::key_search(uchar *key, uint key_len,
|
|
uchar **key_ref_ptr)
|
|
{
|
|
bool is_found= FALSE;
|
|
uint idx= get_hash_idx(key, key_length);
|
|
uchar *ref_ptr= hash_table+size_of_key_ofs*idx;
|
|
while (!is_null_key_ref(ref_ptr))
|
|
{
|
|
uchar *next_key;
|
|
ref_ptr= get_next_key_ref(ref_ptr);
|
|
next_key= use_emb_key ? get_emb_key(ref_ptr-get_size_of_rec_offset()) :
|
|
ref_ptr-key_length;
|
|
|
|
if (memcmp(next_key, key, key_len) == 0)
|
|
{
|
|
is_found= TRUE;
|
|
break;
|
|
}
|
|
}
|
|
*key_ref_ptr= ref_ptr;
|
|
return is_found;
|
|
}
|
|
|
|
|
|
/*
|
|
Calclulate hash value for a key in the hash table of the join buffer
|
|
|
|
SYNOPSIS
|
|
get_hash_idx()
|
|
key pointer to the key value
|
|
key_len key value length
|
|
|
|
DESCRIPTION
|
|
The function calculates an index of the hash entry in the hash table
|
|
of the join buffer for the given key
|
|
|
|
RETURN
|
|
the calculated index of the hash entry for the given key.
|
|
*/
|
|
|
|
uint JOIN_CACHE_BKA_UNIQUE::get_hash_idx(uchar* key, uint key_len)
|
|
{
|
|
ulong nr= 1;
|
|
ulong nr2= 4;
|
|
uchar *pos= key;
|
|
uchar *end= key+key_len;
|
|
for (; pos < end ; pos++)
|
|
{
|
|
nr^= (ulong) ((((uint) nr & 63)+nr2)*((uint) *pos))+ (nr << 8);
|
|
nr2+= 3;
|
|
}
|
|
return nr % hash_entries;
|
|
}
|
|
|
|
|
|
/*
|
|
Clean up the hash table of the join buffer
|
|
|
|
SYNOPSIS
|
|
cleanup_hash_table()
|
|
key pointer to the key value
|
|
key_len key value length
|
|
|
|
DESCRIPTION
|
|
The function cleans up the hash table in the join buffer removing all
|
|
hash elements from the table.
|
|
|
|
RETURN
|
|
none
|
|
*/
|
|
|
|
void JOIN_CACHE_BKA_UNIQUE:: cleanup_hash_table()
|
|
{
|
|
last_key_entry= hash_table;
|
|
bzero(hash_table, (buff+buff_size)-hash_table);
|
|
key_entries= 0;
|
|
}
|
|
|
|
|
|
/*
|
|
Initialize retrieval of range sequence for BKA_UNIQUE algorithm
|
|
|
|
SYNOPSIS
|
|
bka_range_seq_init()
|
|
init_params pointer to the BKA_INIQUE join cache object
|
|
n_ranges the number of ranges obtained
|
|
flags combination of HA_MRR_SINGLE_POINT, HA_MRR_FIXED_KEY
|
|
|
|
DESCRIPTION
|
|
The function interprets init_param as a pointer to a JOIN_CACHE_BKA_UNIQUE
|
|
object. The function prepares for an iteration over the unique join keys
|
|
built over the records from the cache join buffer.
|
|
|
|
NOTE
|
|
This function are used only as a callback function.
|
|
|
|
RETURN
|
|
init_param value that is to be used as a parameter of
|
|
bka_unique_range_seq_next()
|
|
*/
|
|
|
|
static
|
|
range_seq_t bka_unique_range_seq_init(void *init_param, uint n_ranges,
|
|
uint flags)
|
|
{
|
|
DBUG_ENTER("bka_unique_range_seq_init");
|
|
JOIN_CACHE_BKA_UNIQUE *cache= (JOIN_CACHE_BKA_UNIQUE *) init_param;
|
|
cache->reset(0);
|
|
DBUG_RETURN((range_seq_t) init_param);
|
|
}
|
|
|
|
|
|
/*
|
|
Get the key over the next record from the join buffer used by BKA_UNIQUE
|
|
|
|
SYNOPSIS
|
|
bka_unique_range_seq_next()
|
|
seq value returned by bka_unique_range_seq_init()
|
|
range OUT reference to the next range
|
|
|
|
DESCRIPTION
|
|
The function interprets seq as a pointer to the JOIN_CACHE_BKA_UNIQUE
|
|
object. The function returns a pointer to the range descriptor
|
|
for the next unique key built over records from the join buffer.
|
|
|
|
NOTE
|
|
This function are used only as a callback function.
|
|
|
|
RETURN
|
|
0 ok, the range structure filled with info about the next key
|
|
1 no more ranges
|
|
*/
|
|
|
|
static
|
|
uint bka_unique_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range)
|
|
{
|
|
DBUG_ENTER("bka_unique_range_seq_next");
|
|
JOIN_CACHE_BKA_UNIQUE *cache= (JOIN_CACHE_BKA_UNIQUE *) rseq;
|
|
TABLE_REF *ref= &cache->join_tab->ref;
|
|
key_range *start_key= &range->start_key;
|
|
if ((start_key->length= cache->get_next_key((uchar **) &start_key->key)))
|
|
{
|
|
start_key->keypart_map= (1 << ref->key_parts) - 1;
|
|
start_key->flag= HA_READ_KEY_EXACT;
|
|
range->end_key= *start_key;
|
|
range->end_key.flag= HA_READ_AFTER_KEY;
|
|
range->ptr= (char *) cache->get_curr_key_chain();
|
|
range->range_flag= EQ_RANGE;
|
|
DBUG_RETURN(0);
|
|
}
|
|
DBUG_RETURN(1);
|
|
}
|
|
|
|
|
|
/*
|
|
Check whether range_info orders to skip the next record from BKA_UNIQUE buffer
|
|
|
|
SYNOPSIS
|
|
bka_unique_range_seq_skip_record()
|
|
seq value returned by bka_unique_range_seq_init()
|
|
range_info information about the next range
|
|
rowid [NOT USED] rowid of the record to be checked (not used)
|
|
|
|
DESCRIPTION
|
|
The function interprets seq as a pointer to the JOIN_CACHE_BKA_UNIQUE
|
|
object. The function returns TRUE if the record with this range_info
|
|
is to be filtered out from the stream of records returned by
|
|
multi_range_read_next().
|
|
|
|
NOTE
|
|
This function are used only as a callback function.
|
|
|
|
RETURN
|
|
1 record with this range_info is to be filtered out from the stream
|
|
of records returned by multi_range_read_next()
|
|
0 the record is to be left in the stream
|
|
*/
|
|
|
|
static
|
|
bool bka_unique_range_seq_skip_record(range_seq_t rseq, char *range_info,
|
|
uchar *rowid)
|
|
{
|
|
DBUG_ENTER("bka_unique_range_seq_skip_record");
|
|
JOIN_CACHE_BKA_UNIQUE *cache= (JOIN_CACHE_BKA_UNIQUE *) rseq;
|
|
bool res= cache->check_all_match_flags_for_key((uchar *) range_info);
|
|
DBUG_RETURN(res);
|
|
}
|
|
|
|
|
|
/*
|
|
Check if the record combination matches the index condition
|
|
|
|
SYNOPSIS
|
|
JOIN_CACHE_BKA_UNIQUE::skip_index_tuple()
|
|
rseq Value returned by bka_range_seq_init()
|
|
range_info MRR range association data
|
|
|
|
DESCRIPTION
|
|
See JOIN_CACHE_BKA::skip_index_tuple().
|
|
This function is the variant for use with
|
|
JOIN_CACHE_BKA_UNIQUE. The difference from JOIN_CACHE_BKA case is that
|
|
there may be multiple previous table record combinations that share the
|
|
same key, i.e. they map to the same MRR range.
|
|
As a consequence, we need to loop through all previous table record
|
|
combinations that match the given MRR range key range_info until we find
|
|
one that satisfies the index condition.
|
|
|
|
NOTE
|
|
Possible optimization:
|
|
Before we unpack the record from a previous table
|
|
check if this table is used in the condition.
|
|
If so then unpack the record otherwise skip the unpacking.
|
|
This should be done by a special virtual method
|
|
get_partial_record_by_pos().
|
|
|
|
RETURN
|
|
0 The record combination satisfies the index condition
|
|
1 Otherwise
|
|
|
|
|
|
*/
|
|
|
|
bool JOIN_CACHE_BKA_UNIQUE::skip_index_tuple(range_seq_t rseq, char *range_info)
|
|
{
|
|
DBUG_ENTER("JOIN_CACHE_BKA_UNIQUE::skip_index_tuple");
|
|
JOIN_CACHE_BKA_UNIQUE *cache= (JOIN_CACHE_BKA_UNIQUE *) rseq;
|
|
uchar *last_rec_ref_ptr= cache->get_next_rec_ref((uchar*) range_info);
|
|
uchar *next_rec_ref_ptr= last_rec_ref_ptr;
|
|
do
|
|
{
|
|
next_rec_ref_ptr= cache->get_next_rec_ref(next_rec_ref_ptr);
|
|
uchar *rec_ptr= next_rec_ref_ptr + cache->rec_fields_offset;
|
|
cache->get_record_by_pos(rec_ptr);
|
|
if (join_tab->cache_idx_cond->val_int())
|
|
DBUG_RETURN(FALSE);
|
|
} while(next_rec_ref_ptr != last_rec_ref_ptr);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
|
|
/*
|
|
Check if the record combination matches the index condition
|
|
|
|
SYNOPSIS
|
|
bka_unique_skip_index_tuple()
|
|
rseq Value returned by bka_range_seq_init()
|
|
range_info MRR range association data
|
|
|
|
DESCRIPTION
|
|
This is wrapper for JOIN_CACHE_BKA_UNIQUE::skip_index_tuple method,
|
|
see comments there.
|
|
|
|
NOTE
|
|
This function is used as a RANGE_SEQ_IF::skip_index_tuple callback.
|
|
|
|
RETURN
|
|
0 The record combination satisfies the index condition
|
|
1 Otherwise
|
|
*/
|
|
|
|
static
|
|
bool bka_unique_skip_index_tuple(range_seq_t rseq, char *range_info)
|
|
{
|
|
DBUG_ENTER("bka_unique_skip_index_tuple");
|
|
JOIN_CACHE_BKA_UNIQUE *cache= (JOIN_CACHE_BKA_UNIQUE *) rseq;
|
|
DBUG_RETURN(cache->skip_index_tuple(rseq, range_info));
|
|
}
|
|
|
|
|
|
/*
|
|
Using BKA_UNIQUE find matches from the next table for records from join buffer
|
|
|
|
SYNOPSIS
|
|
join_matching_records()
|
|
skip_last do not look for matches for the last partial join record
|
|
|
|
DESCRIPTION
|
|
This function can be used only when the table join_tab can be accessed
|
|
by keys built over the fields of previous join tables.
|
|
The function retrieves all keys from the hash table of the join buffer
|
|
built for partial join records from the buffer. For each of these keys
|
|
the function performs an index lookup and tries to match records yielded
|
|
by this lookup with records from the join buffer attached to the key.
|
|
If a match is found the function will call the sub_select function trying
|
|
to look for matches for the remaining join operations.
|
|
This function does not assume that matching records are necessarily
|
|
returned with references to the keys by which they were found. If the call
|
|
of the function multi_range_read_init returns flags with
|
|
HA_MRR_NO_ASSOCIATION then a search for the key built from the returned
|
|
record is carried on. The search is performed by probing in in the hash
|
|
table of the join buffer.
|
|
This function currently is called only from the function join_records.
|
|
It's assumed that this function is always called with the skip_last
|
|
parameter equal to false.
|
|
|
|
RETURN
|
|
return one of enum_nested_loop_state
|
|
*/
|
|
|
|
enum_nested_loop_state
|
|
JOIN_CACHE_BKA_UNIQUE::join_matching_records(bool skip_last)
|
|
{
|
|
int error;
|
|
uchar *key_chain_ptr;
|
|
handler *file= join_tab->table->file;
|
|
enum_nested_loop_state rc= NESTED_LOOP_OK;
|
|
bool check_only_first_match= join_tab->check_only_first_match();
|
|
bool no_association= test(mrr_mode & HA_MRR_NO_ASSOCIATION);
|
|
|
|
/* Set functions to iterate over keys in the join buffer */
|
|
RANGE_SEQ_IF seq_funcs= { bka_unique_range_seq_init,
|
|
bka_unique_range_seq_next,
|
|
check_only_first_match && !no_association ?
|
|
bka_unique_range_seq_skip_record : 0,
|
|
join_tab->cache_idx_cond ?
|
|
bka_unique_skip_index_tuple : 0 };
|
|
|
|
/* The value of skip_last must be always FALSE when this function is called */
|
|
DBUG_ASSERT(!skip_last);
|
|
|
|
/* Return at once if there are no records in the join buffer */
|
|
if (!records)
|
|
return NESTED_LOOP_OK;
|
|
|
|
rc= init_join_matching_records(&seq_funcs, key_entries);
|
|
if (rc != NESTED_LOOP_OK)
|
|
goto finish;
|
|
|
|
while (!(error= file->multi_range_read_next((char **) &key_chain_ptr)))
|
|
{
|
|
if (no_association)
|
|
{
|
|
uchar *key_ref_ptr;
|
|
TABLE *table= join_tab->table;
|
|
TABLE_REF *ref= &join_tab->ref;
|
|
KEY *keyinfo= table->key_info+ref->key;
|
|
/*
|
|
Build the key value out of the record returned by the call of
|
|
multi_range_read_next in the record buffer
|
|
*/
|
|
key_copy(ref->key_buff, table->record[0], keyinfo, ref->key_length);
|
|
/* Look for this key in the join buffer */
|
|
if (!key_search(ref->key_buff, ref->key_length, &key_ref_ptr))
|
|
continue;
|
|
key_chain_ptr= key_ref_ptr+get_size_of_key_offset();
|
|
}
|
|
|
|
uchar *last_rec_ref_ptr= get_next_rec_ref(key_chain_ptr);
|
|
uchar *next_rec_ref_ptr= last_rec_ref_ptr;
|
|
do
|
|
{
|
|
next_rec_ref_ptr= get_next_rec_ref(next_rec_ref_ptr);
|
|
uchar *rec_ptr= next_rec_ref_ptr+rec_fields_offset;
|
|
|
|
if (join->thd->killed)
|
|
{
|
|
/* The user has aborted the execution of the query */
|
|
join->thd->send_kill_message();
|
|
rc= NESTED_LOOP_KILLED;
|
|
goto finish;
|
|
}
|
|
/*
|
|
If only the first match is needed and it has been already found
|
|
for the associated partial join record then the returned candidate
|
|
is discarded.
|
|
*/
|
|
if (rc == NESTED_LOOP_OK &&
|
|
(!check_only_first_match || !get_match_flag_by_pos(rec_ptr)))
|
|
{
|
|
get_record_by_pos(rec_ptr);
|
|
update_virtual_fields(join_tab->table);
|
|
rc= generate_full_extensions(rec_ptr);
|
|
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
|
|
goto finish;
|
|
}
|
|
}
|
|
while (next_rec_ref_ptr != last_rec_ref_ptr);
|
|
}
|
|
|
|
if (error > 0 && error != HA_ERR_END_OF_FILE)
|
|
return NESTED_LOOP_ERROR;
|
|
finish:
|
|
return end_join_matching_records(rc);
|
|
}
|
|
|
|
|
|
/*
|
|
Check whether all records in a key chain have their match flags set on
|
|
|
|
SYNOPSIS
|
|
check_all_match_flags_for_key()
|
|
key_chain_ptr
|
|
|
|
DESCRIPTION
|
|
This function retrieves records in the given circular chain and checks
|
|
whether their match flags are set on. The parameter key_chain_ptr shall
|
|
point to the position in the join buffer storing the reference to the
|
|
last element of this chain.
|
|
|
|
RETURN
|
|
TRUE if each retrieved record has its match flag set on
|
|
FALSE otherwise
|
|
*/
|
|
|
|
bool JOIN_CACHE_BKA_UNIQUE::check_all_match_flags_for_key(uchar *key_chain_ptr)
|
|
{
|
|
uchar *last_rec_ref_ptr= get_next_rec_ref(key_chain_ptr);
|
|
uchar *next_rec_ref_ptr= last_rec_ref_ptr;
|
|
do
|
|
{
|
|
next_rec_ref_ptr= get_next_rec_ref(next_rec_ref_ptr);
|
|
uchar *rec_ptr= next_rec_ref_ptr+rec_fields_offset;
|
|
if (!get_match_flag_by_pos(rec_ptr))
|
|
return FALSE;
|
|
}
|
|
while (next_rec_ref_ptr != last_rec_ref_ptr);
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
Get the next key built for the records from BKA_UNIQUE join buffer
|
|
|
|
SYNOPSIS
|
|
get_next_key()
|
|
key pointer to the buffer where the key value is to be placed
|
|
|
|
DESCRIPTION
|
|
The function reads the next key value stored in the hash table of the
|
|
join buffer. Depending on the value of the use_emb_key flag of the
|
|
join cache the value is read either from the table itself or from
|
|
the record field where it occurs.
|
|
|
|
RETURN
|
|
length of the key value - if the starting value of 'cur_key_entry' refers
|
|
to the position after that referred by the the value of 'last_key_entry'
|
|
0 - otherwise.
|
|
*/
|
|
|
|
uint JOIN_CACHE_BKA_UNIQUE::get_next_key(uchar ** key)
|
|
{
|
|
if (curr_key_entry == last_key_entry)
|
|
return 0;
|
|
|
|
curr_key_entry-= key_entry_length;
|
|
|
|
*key = use_emb_key ? get_emb_key(curr_key_entry) : curr_key_entry;
|
|
|
|
DBUG_ASSERT(*key >= buff && *key < hash_table);
|
|
|
|
return key_length;
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
* Join cache module end
|
|
****************************************************************************/
|